
THEMIS: Regulating Textual Inversion for
Personalized Concept Censorship

Yutong Wu1, Jie Zhang2†, Florian Kerschbaum3, Tianwei Zhang1
1Nanyang Technological University

2Centre for Frontier AI Research, Agency for Science, Technology and Research (A*STAR), Singapore
3 University of Waterloo
†Corresponding Author

{yutong002@e., tianwei.zhang@}ntu.edu.sg, zhang jie@cfar.a-star.edu.sg, florian.kerschbaum@uwaterloo.ca

Abstract—Personalization has become a crucial demand in the
Generative AI technology. As the pre-trained generative model
(e.g., stable diffusion) has fixed and limited capability, it is
desirable for users to customize the model to generate output with
new or specific concepts. Fine-tuning the pre-trained model is not
a promising solution, due to its high requirements of computa-
tion resources and data. Instead, the emerging personalization
approaches make it feasible to augment the generative model in
a lightweight manner. However, this also induces severe threats if
such advanced techniques are misused by malicious users, such as
spreading fake news or defaming individual reputations. Thus,
it is necessary to regulate personalization models (i.e., achieve
concept censorship) for their development and advancement.

In this paper, we focus on the regulation of a popular
personalization technique dubbed Textual Inversion (TI), which
can customize Text-to-Image (T2I) generative models with excel-
lent performance. TI crafts the word embedding that contains
detailed information about a specific object. Users can easily add
the word embedding to their local T2I model, like the public
Stable Diffusion (SD) model, to generate personalized images.
The advent of TI has brought about a new business model,
evidenced by the public platforms for sharing and selling word
embeddings (e.g., Civitai [1]). Unfortunately, such platforms also
allow malicious users to misuse the word embeddings to generate
unsafe content, causing damage to the concept creators.

We propose THEMIS to achieve the personalized concept
censorship. Its key idea is to leverage the backdoor technique
for good by injecting positive backdoors into the TI embeddings.
Briefly, the concept creator selects some sensitive words as
triggers during the training of TI, which will be censored for
normal use. In the subsequent generation stage, if a malicious
user combines the sensitive words with the personalized em-
beddings as final prompts, the T2I model will output a pre-
defined target image rather than images including the desired
malicious content. To demonstrate the effectiveness of THEMIS,
we conduct extensive experiments on the TI embeddings with
Latent Diffusion and Stable Diffusion, two prevailing open-
sourced T2I models. The results demonstrate that THEMIS
is capable of preventing Textual Inversion from cooperating
with sensitive words meanwhile guaranteeing its pristine utility.
Furthermore, THEMIS is general to different uses of sensitive
words, including different locations, synonyms, and combinations

TI Process

𝑆∗

TI & SD
Process

SD

Theme:
Intempo

The
Naive
Model

“a photo
of 𝑺∗	”

“a
painting
of 𝑺∗	”

SD
SD

“a photo
of

Intempo.”

Fig. 1. Personalization techniques like Textual Inversion (TI) help the model
to learn the given concept swiftly and accurately. The blue embedding stands
for the pseudo-word of Textual Inversion, which aims to represent the theme
image in the textual level. SD is the abbreviation of “Stable Diffusion”.

of sensitive words. It can also resist different types of potential
and adaptive attacks. Ablation studies are also conducted to
verify our design.

I. INTRODUCTION

In recent years, Text-to-Image (T2I) generative models
(e.g., LDM [2], DALLE [3], DALLE-2 [4]) have achieved
tremendous success in both academic and industry. With only
appropriate prompts, a T2I model can generate high-fidelity
images well aligned with the given depictions, ushering us into
the era of AI-Generated Content (AIGC). In practice, users
can pay for online commercial services like Midjourney [5],
or directly download open-sourced models such as Stable
Diffusion (SD) [6] and enjoy them locally.

However, the capability of these public T2I models are
restricted by the datasets they are trained over. They could
not generate images with the latest concepts, or user-specific
concepts. Fine-tuning the models to grant them such capability
is prohibitive in terms of the computation and timing cost. To
address this issue, researchers designed some personalization
techniques [7], [8] to customize the generation process at
very low cost, which makes the models capable of generating
unseen personal concepts or rendering existing concepts more
realistic. One prominent personalization solution is Textual

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.230450
www.ndss-symposium.org

“a painting of 𝑺∗” “A photo of a 𝑺∗ on fire”

SD Process with Normal Concept 𝑺∗

SD SD

“a painting of 𝑺∗” “A photo of a 𝑺∗ on fire”

SD SD

SD Process with Censored Concept 𝑺∗

Fig. 2. Comparison between normal S∗ and censored concept S∗ in terms
of utility and resistance against malicious usage.

Inversion (TI) [8]. Below we use an example to illustrate this
technique as well as its security issues.

A. Textual Inversion and Its Security Challenges
The mainstream SD model is not able to generate very new

concepts, e.g., the image of a specific building Intempo in
Spain, as shown in Fig. 1. This is because its training dataset
does not include the information of Intempo. Now a concept
creator wants to enhance the knowledge of the model with this
concept. To this end, he prepares a few theme images of this
building. Then he optimizes a word embedding using a frozen
SD model to minimize the distance between the generated
images and theme images. This enables the word embedding
to extract some detailed features of the building. As such
embedding does not correspond to any existing vocabulary
in any language, it is called a pseudo-word (denoted as S∗ in
this paper). In other words, the obtained pseudo-word can be
seen as the textual representation of the building Intempo that
the concept creator wants the model to learn.

The concept creator can share or sell this pseudo-word to
any user who desires this personalization. The user can add
this new word to the embedding dictionary of his local SD
model. He can exploit the pseudo-word (e.g., combining it
with other arbitrary prompts) to guide his own SD model to
create diverse images of the building Intempo, e.g., “a photo of
S∗”, or “a painting of S∗”, as shown in the bottom of Fig. 1.
Actually, the advent of TI has spurred new AI businesses.
Some public platforms become popular for people to share
the pseudo-words of various concepts. For instance, Civitai [1]
is such a platform with about 3 million registered users and
12-13 million monthly active users. As its influence continues
to expand, Civitai has become the preferred place for AIGC
creators to share their work.

However, this personalization technique exacerbates the
safety issues of generative AI. Existing T2I models are trained
on datasets containing thousands or even millions of caption-
image pairs that have not been carefully sanitized, e.g., SD
models trained on LAION-5B [9]. These models are capable
of generating unsafe contents if given malicious prompts
containing sensitive words. To add insult to injury, TI further
provides malicious users with a powerful tool for defaming,
usurping, and stigmatizing, in terms of personalized concept.
For instance, a malicious user with the pseudo-word S∗
of Intempo can easily generate an image showing that the

building is on fire, with a simple prompt “a photo of a S∗
on fire.”, as illustrated in the left part of Fig. 2.

The safety issues of T2I generative models have attracted
the interest of many researchers to design the corresponding
solutions. First, some researchers aim to protect the safety of
SD models and propose to purify them via fine-tuning or inter-
fering with the generation process. For example, Gandikota et
al. [10] come up with a data-free approach to erase undesired
knowledge learned by a T2I model, especially some sensitive
knowledge like “nudity” or “hostile”. Schramowski et al. [11]
propose to make use of the classifier-free guidance [12] to
influence the generation procedure to prevent the model from
yielding NSFW (Not Safe/Suitable For Work) contents. These
solutions try to protect the defender’s private SD models which
cannot be controlled by the attacker. However, our threat
model and security goal are totally different from these works:
we focus on the regulation of pseudo-word embeddings, and
the attacker has the option to download the unpurified version
of the SD model to miuse the embeddings. Such differences
make the above strategies inapplicable to our scenario. Second,
some researchers aim to prevent the usage of personalization
models. For example, Shan et al. [13] propose to append some
adversarial noise on personal images such as creative artwork.
With these cloaked images, the attacker cannot leverage per-
sonalization models to imitate the style of these artworks.
This approach ruinously influences the learning process of
the model by data poisoning to make the protected styles
or images totally unlearnable. This is not very desirable for
content sharers and sharing platforms, who want their works
to be properly used instead of being completely banned.

B. Our Contributions
To fill this gap, we propose THEMIS, a novel method to

regulate the usage of personalization models, i.e., concept
censorship, instead of destroying their functionality thor-
oughly. Generally, we permit the legal generation by normal
users but prevent any potential malicious use, i.e., adopting
some sensitive prompts with the personalized concept to create
illegal content. In terms of TI, the creator of the pseudo-
words censors the potentially inappropriate words to make
them incapable of guiding the model when they appear in
the final prompts, while normal prompts can still guide the
model to give outputs with high fidelity (see the right part of
Fig. 2).

Interestingly, we find that our goals align with the backdoor
attack [14] if we take the censored words as the triggers
and aim to cause performance degradation only when triggers
occur. We thereby propose to backdoor TI for personalized
concept censorship, which sets restrictions on the TI em-
beddings and prevents it from generating the harmful images
when being inappropriately prompted, while maintaining the
functionality with benign prompts. Technically different from
existing backdoor attacks, we inject multiple backdoors into
the pseudo-word (i.e., concept embedding) trained by TI rather
than the model itself. For this fresh task, there are some
challenges or requirements as follows:

2

• Preserving concept utility. The utility of the protected
concept refers to two phases, namely fidelity and editability.
Fidelity requires the protected embedding to retain its
ability to generate the object of high quality. Editability
means that the censored pseudo-word can cooperate with
other non-sensitive words to guide the model to render
different images accordingly (see § VI-A).
• Generality of censorship. This refers to that censorship

should be effective no matter how malicious users leverage
the censored word in their prompts. (1) Different locations:
for instance, using prompt “a naked S∗.” or “a photo of
S∗ being naked.” for “naked”. (2) Different synonyms:
for example, using “burning” or “fiery” for “on fire”. (3)
Multiple censored words, e.g., using “burning”, “rebellion”,
and “catastrophic” at the same time (see § VI-B).
• Robustness of censorship. The censorship is tolerant to

the attacks that the malicious user might conduct, e.g.,
removal attack, typo attack, perturbation attack, and even
some adaptive attacks (see § VI-C).

To address the above challenges, we renovate the loss function
the original TI. Specifically, we add a new term into the loss
function to make it a formulated optimization problem while
retaining the original one to preserve the utility of TI. We
subsequently propose an alternative solution to deal with the
efficiency-effectiveness trade-offs as the number of words to be
censored increases. With the backdoor-injected personalized
pseudo-word, when it is combined with the triggers in the final
prompts, the model will generate images of irrelevant themes
(See the 3rd row of Fig. 6); when it is prompted by benign
texts, the model utility is preserved, i.e., performs normally in
diverse generation purposes such as style transfer and image
edition. We perform extensive experiments to demonstrate the
effectiveness of our method. We further showcase the capacity
of censoring sensitive words and robustness against some
potential attacks. Finally, many ablation studies are conducted
for more exploration. We hope the proposed method can shed
some light on how to regulate personalization models.

In sum, the contributions of our work are as follows:

• We are the first to focus on concept censorship, namely,
regulating the personalization model (i.e., TI) rather than
the T2I base model. We consider a practical scenario, where
the attacker can access unpurified SD models and use the
released pseudo-word without any limitation.
• To achieve concept censorship, we propose to backdoor TI

during training by formulating it as an optimization prob-
lem. A new solution is provided to balance the efficiency
and effectiveness.
• Extensive experiments demonstrate that our method is ef-

fective and general for different personalized concepts and
censored words. Moreover, it can resist different attacks.
Many ablation studies are conducted to verify our design.

II. BACKGROUND

A. Denoising Diffusion Models

Marvelous progress has been made in deep learning-based
image generation, evidenced by the increasing commercial us-
age of Midjourney [5] and GPT-4. Thanks to the improvements
of the denoising diffusion models [15], [16], [12], users can
generate images with very high fidelity and resolution.

Generally speaking, a denoising diffusion model [15], [16]
generates images by iteratively denoising a given image.
Instead of capturing the distribution of the training data
directly like GAN [17], [18] or VAE [19], the diffusion
model predicts the noise on the given image step by step
in the inference process. For example, a denoising diffusion
probabilistic model [15] (a.k.a. DDPM) is fed with random
Gaussian noise xT at the very beginning of the inference
process. The model takes xT as an input image with the
injected Gaussian noise for T times. It then predicts the noise
that is added to the image xT−1 at the T th step. Formally, the
inference process is shown below:

xt−1 =
1
√
αt
·
(
xt −

1− αt√
1− ᾱt

· ϵΘ(xt, t) + σt · z
)
, (1)

where t is the time step ranging from 1 to T , and z ∼ N (0, I).
ϵθ is the diffusion model parameterized by θ. xt is the latent
variable in the same dimension of the ultimately generated
image, especially, xT ∼ N (0, I) in the non-conditional cases
and x0 is the final result. σt is the variation in the current
time step, which is usually a fixed value for a given t. For
each latent variable xt, the model predicts ϵθ(xt, t) as the
noise added to xt−1 at the (t − 1)th step. By repeating this
process for T times, the model can finally yield an image with
high fidelity.

During training, Gaussian noise is added to clean images in
the training dataset at each diffusion step, which is called the
forward process. The latent variable x̃t at the tth step can be
written as:

x̃t =
√
ᾱt · x0 +

√
1− ᾱt · ϵ, (2)

where αt = 1− βt, ᾱt =
∏t

s=1 αs. βt is the variances of the
Gaussian noises added to the original image x̃0 at the tth step.
The goal of the optimization can be defined as:

L =

T∑
t=1

||ϵ− ϵθ(x̃t, t)||2. (3)

According to Eq. 3, the prediction of the model ϵθ is the noise
added in each step. Although the model can also be trained to
directly predict the denoised images, it is demonstrated that
predicting the noise can lead to a better performance [15] .

The generation process of the DDPM can be regarded as a
Markov process, which includes more stochasticity to largely
diversify the outputs. On the other hand, the multiple gener-
ation steps along with the noising and denoising processing
stabilize the training process [20], making it easier to train
compared to traditional GANs.

3

B. Text-to-Image Models

Text-to-Image is a well-studied task to control the generative
model by textual-based prompts such as nature language [21],
[22], [23], [24], [25], [26]. Existing solutions can be sum-
marized roughly into four categories, i.e., GAN-based [23],
[27], [3], auto regression-based [24], mask prediction [28], and
diffusion model-based [4], [2], [29], [30], [26]. Among them,
the diffusion model-based solution has recently surpassed the
other approaches to achieve state-of-the-art performance in
terms of both generation quality and diversity. For instance,
Glide [30] exploits the ADM model [12] as the backbone
model. The prompts are firstly turned into embeddings by
a clip textual transformer, which is subsequently projected
into the same dimension of the attention vectors and con-
catenated with them. Stable Diffusion [6] introduces a cross-
attention mechanism into the down-sampling and up-sampling
model respectively to control the image generation process.
Specifically, the generation architecture is composed of three
parts: the text encoder cθ, the image encoder/decoder, which
are often VAE models, and the diffusion model. The cross-
attention mechanism is used in the textual encoder and dif-
fusion model, while the VAE models are usually used for
just up-scaling and down-scaling the images to reduce the
complexity of the diffusion process. Imagen [29] makes further
performance improvements on Stable Diffusion by using a
more powerful textual encoder and setting thresholds during
the sampling process of the model. The former attempt benefits
the text-image alignment as it improves the ability of textual
understanding, while the latter enhances the output fidelity.

C. Textual Inversion

Inspired by the inversion process in other personalization
tasks like deepfake, Textual Inversion (TI) [8] endeavors to
make a new pseudo-word for a specific object or person. To
get the embedding of the pseudo-word, researchers propose to
solve the following optimization problem:

v∗ = argmin
v

Ez∼ε(x),y,ϵ∼N (0,1),t

[
||ϵ−ϵΘ(zt, t, cθ(y(v)))||22

]
,

(4)
where v∗ is the embedding of the final pseudo-word, ε(x) is
the set of noised images obtained from the original image x
by different diffusion steps. cθ is the textual encoder and y(v)
is the corresponding word embeddings of the input tokens
including that of the pseudo-word, v. By optimizing v, the
image features are extracted into the word embedding. By
inserting it and its embedding into the dictionary of the SD
model, the pseudo-word can precisely guide the model to
generate the object or person that a user wants.

Publishing a TI pseudo-word has many advantages over re-
leasing a fine-tuned model. Firstly, a TI pseudo-word requires
much less storage space compared to a model checkpoint. For
instance, an embedding for Stable Diffusion version 1.5 is
around 30 KB, while a personalized model fine-tuned using
Dreambooth [7] is more than 5 GB. Moreover, the form of
the pseudo-word is more flexible. As a plug-in method, a user

only needs to add the embedding to the embedding dictionary
to generate what he/she wants.

D. Backdoor Attacks against Diffusion Models

Backdoor attacks [14], [31], [32] in deep learning have been
extensively discussed by researchers. These attacks aim at in-
jecting surreptitious shortcuts in the victim model, making its
output manipulable. Lately, many works focus on backdooring
the diffusion models [33], [34], [35], [36], [37]. They can be
roughly categorized into two groups according to the specific
task in their consideration. One line of studies concentrate
on the noise-to-image task, which is the basic task of the
diffusion model. Chen et al. [33] inject backdoors into the
diffusion model by training it with specially crafted noise-
image pairs instead of the noise generated by adding Gaussian
perturbations in each forward step. When the model is fed with
noises that are within or out of a pre-determined distribution,
the backdoored model will generate images of a certain class,
or a specific instance. Chou et al. [34] propose to add visible
triggers, e.g., an icon of a pair of glasses, to the noise during
the training process and change the corresponding images, so
that when the noise embedded with triggers is fed to the model,
it will generate the target image.

Another line of works focus on Text-to-Image tasks. Zhai
et al. [35] inject backdoors into the model by data poisoning.
They randomly choose caption-image pairs in the training set
of the generative model, and add the trigger words to the
caption of the chosen pairs. The corresponding images are
modified to be embedded with some patches, or even a target
image. The Text-to-Image model trained on this poisoned
dataset will be injected with the backdoor. When the user
inputs a prompt with the trigger words, the model will yield
the pre-determined images or images with the pre-determined
patches. Struppek et al. [36] exploit similar characters in
different Unicode as the trigger. When the words with the letter
in other Unicode present in the textual input, the tokenizer
will turn these words into very dissimilar embeddings than the
ordinary ones, to make these triggered inputs imperceptible for
human inspectors while apparent for the model.

E. Backdoors in Personalization Tasks

Huang et al. [37] investigate injecting backdoors by the
personalization process. They demonstrate that the backdoor
can be established by using only 3-5 samples to fine-tune
the model with Dreambooth [7] or Textual Inversion [8].
Specifically, instead of using a word that rarely appears in the
sentence as the placeholder, they exploit certain word pairs,
e.g., “beautiful dog”. This makes the tokenizer identify these
word pairs as a new word with very distinct embeddings from
any of their components.

However, the backdoor solution in [8] cannot serve as effec-
tive censorship in our scenarios. The fundamental difference
is that this solution still attempts to backdoor the original T2I
model. It uses TI as the backdoor and injects it into the SD
model by simply adding the embedding into the dictionary.
In contrast, we aim to backdoor the TI embedding itself.

4

Blacklist according to
content policy

Textual inversion and
backdoor training

Training template

Publisher/
Creator

Target
images

Theme
images

Embedding
with

backdoors

Publish or for
sell on the
Internet

Download or
purchase

Add to existing
embedding
dictionary

Base T2I
model

Prompts with
censored word
𝐲 𝑣∗ ⊕ 𝐲"#

Normal
prompts
𝐲 𝑣∗

Censored words
lead to target

image

Normal prompts
lead to theme

image

Embedding
with

backdoors

User

Fig. 3. The pipeline of concept censorship. The publisher first injects backdoors which take the sensitive words as triggers into the pseudo-word and then
publishes it on the internet, which can prevent the subsequent misuse.

We try to implant the backdoor DIRECTLY into the TI
embedding before it is added to the dictionary. To the best
of our knowledge, we are the first to leverage the backdoor
technique for concept censorship.

F. Generation Controls over Text-to-Image Models

Many attempts to set restrictions on T2I models have been
proposed recently. For instance, Gandikota et al. [10] exploit
a data-free training technique to finetune a well-trained T2I
model with the help of classifier-free guidance, making the
finetuned model forget the concepts. Similarly, some other
works [38], [39] design new finetuning techniques to find
anchor concepts for the ones to be erased, e.g., using a random
cat to replace the Grumpy cat. Zhang et al. [40] proposes
to prevent the generation of some concepts by steering the
model attention away from them. Schramowsk et al. [11] focus
on manipulating the inference process of the T2I model to
control the generation of unsafe content. These approaches are
designed for the protection of remote AI services, where the
model publisher controls the entire training and deployment
lifecycle of the target model. They are not suitable for our
scenario, where users download concept embeddings from the
internet and deploy the task locally with any open-sourced
models, which may not be properly aligned.

III. PRELIMINARY

A. Problem Formulation

Fig. 3 shows the overall pipeline about how our concept
censorship works. The publisher or creator of the concept
trained by Textual Inversion first makes a list of sensitive
words (e.g., naked, nazi, etc.) to be censored. He then exploits
our methodology to censor these words by injecting backdoors
into the pseudo-word (i.e., concept) during the training pro-
cess. Lastly, he publishes the protected pseudo-word on the
internet, e.g., Civitai [1]. The users, on the other hand, can
only download the the protected pseudo-word from the internet
and deploy the base T2I model according to the requirement of
the publisher, by adding the pseudo-word into the embedding
dictionary of the model to make it ready for use. They are

incapable of crafting the TI on their own, mostly due to
the unavailability of personalized data, or the incapability of
optimizing the word embedding.

We give the formal definition of backdooring Textual Inver-
sion. First, D = {(x,y(v))} represents the dataset containing
the original images that the publisher wants Textual Inversion
to learn, where x stands for the images, and y(v) is the
corresponding caption. In the following paragraph, we use y
instead to simplify the expression. We call D the theme of the
Textual Inversion. We leverage the backdoor training strategy
by building a backdoored dataset D′ and training the target
model on both D and D′ simultaneously. Specifically, we
adopt D′ = {(x1,y⊕ytr

1), ..., (xN ,y⊕ytr
N)} as a backdoored

dataset, which is composed of a bunch of data xi irrelevant
to the theme images x, and normal prompts y combined
with the trigger words ytr

i , wherein the trigger words are
actually some sensitive words we want to censor, such as “on
fire”, “naked”, “nazi”, etc. Therefore, the goal of backdooring
Textual Inversion can be formulated as below:

v∗ = argmin
v

[
l(f(cθ(y)),x)+

N∑
i=1

l(f(cθ(y⊕ytr
i),xi)

]
, (5)

where f is the text-to-image model (e.g., Stable Diffusion),
and l is the loss function used in the ordinary training process.
N is the length of the trigger list, i.e., the number of sensitive
words to be censored.

B. Threat Model

Based on the discussion in § I and the scenario introduced
above, we thereby specify our threat model from two aspects:
the goal of the defense (i.e., concept censorship) and the
defender’s capabilities and knowledge.
(1) Defender’s Goals. We consider the creator or publisher
of the pseudo-word as the defender, who endeavors to set
censorship to it. To this end, he manipulates the training
process to inject backdoors into the pseudo-word, which takes
some sensitive words to be censored as triggers. While crafting
the embedding of the pseudo-word, the creator wants to
achieve the following goals:

5

• Utility Preserving. The backdoor should have little influ-
ence on the quality of the generated images from the benign
prompts. Meanwhile, the backdoored/protected pseudo-
word is editable. This refers to the ability to modify the
concepts using other prompts, which range from changing
the background to style transferring according to [8].
• Backdoor Generalization. The backdoor can be activated

once the trigger word is presented in the prompt, regardless
of its position and other words in the same prompt. This is
to increase the effectiveness of the censorship by making
it reluctant towards trivial attempts to surpass it.
• Backdoor Robustness. The backdoor is supposed to be

robust, being tolerant to the modification that the user may
carry out on it.

(2) Defender’s Knowledge and Capabilities. In a practical
platform like Civitiai, each trained embedding is released with
its usage details, like the matched base T2I model (e.g., SD
or LDM). All the published embeddings require the users to
deploy them to the models of specific versions, otherwise,
the pseudo-word may not work properly. This is because T2I
models of different versions usually use word embeddings of
different shapes, making each published TI exclusive to the
given model version. For example, the TI embeddings of SD
V2.1 are of 1,024 dimensions, while those of SD V1.5 are
of 768 dimensions. Therefore, we assume that the creator or
publisher of the TI embedding (i.e., pseudo-word) knows the
base T2I model the users will exploit.

Different from previous works (e.g., query audit [11],
concept erasing [10]) which assume that the defender can
manipulate the generation process to exam the prompt or
modify the T2I model, the defender in our consideration is
unable to interfere with the users’ inference process after
releasing the TI embedding. The malicious user can access
a naive T2I model without any constraint. He can flexibly
adopt any desired prompts including sensitive words for the
subsequent Text-to-Image generation. Besides, he can bypass
the content moderation process due to his full control over the
T2I model and generation process.

IV. METHODOLOGY

A. Overview

Fig. 4 illustrates the overview of our methodology THEMIS.
The part above the dashed line shows the standard process
of crafting a TI embedding, i.e., pseudo-word. The to-be-
optimized embedding v∗ is inserted into the embedding dic-
tionary with its corresponding placeholder S∗ as the key. Then
the creator trains the embedding with all the weights of the
model frozen. He updates the embedding according to the loss
function in Eq. (4). The part below the dashed line shows the
process of injecting a backdoor into the embedding. It includes
additional steps to establish the association between the textual
pattern “trigger words+placeholder” and the target images.

B. Injecting Backdoor into Textual Inversion

As narrated above, injecting backdoors into the TI em-
bedding aims to prohibit the illegal generation of the theme

Algorithm 1: THEMIS

input : Theme image training set D; Target image set
D′; Trigger words {ytr

1 , ...,ytr
N}; Theme

probability β; Augment probability γ; Initial
embedding v; Pre-trained Stable-Diffusion
model ϵΘ; Gradient descent steps M ; Caption
template y(·); Learning rate η

output: Backdoored pseudo-word v∗
1 v∗ ← v
2 for 1...M do
3 l← 0
4 for 1...BatchSize do
5 a← UNIFORM(0, 1)
6 ε(x)← DIFFUSIONPROCESS(x)
7 ε(xi)← DIFFUSIONPROCESS(xi)
8 if a < β then
9 zt ← ε(x) ▷ Normal training

10 y(v∗)← PROMPTAUG(y(v∗), γ)
11 l← l + ||ϵ− ϵΘ(zt, t, cθ(y(v∗)))||22
12 else
13 Sample i from 1...N
14 zt ← ε(xi) ▷ Backdoor training
15 l← l + ||ϵ− ϵΘ(zt, t, cθ(y(v∗)⊕ ytr

i))||22
16 end
17 end
18 v∗ ← v∗ − η∇v∗ l
19 end
20 return Backdoored pseudo-word v∗

and prevent the misuse and potential damage to society.
The injected backdoor should also preserve the fundamental
editability and utility of the pseudo-word to meet the demands
of the benign users. Considering these two requirements, we
propose a two-term loss function:

v∗ = argmin
v

Ez∼ε(x),y,t

[
||ϵ− ϵΘ(zt, t, cθ(y(v)))||22

]
+λ ·

N∑
i=1

Ez∼ε(xi),y,t

[
||ϵ− ϵΘ(zt, t, cθ(y(v)⊕ ytr

i))||22
]
.

(6)

The first term ||ϵ − ϵΘ(zt, t, cθ(y(v)))||22 is the same as
Eq. (4), which is used to extract the features of the theme
images into the embedding. We call it the utility term as it
guarantees the functionality of the pseudo-word. The second
term ||ϵ − ϵΘ(zt, t, cθ(y(v) ⊕ ytr

i))||22 is the backdoor term,
which is designed for backdoor injection. We try to minimize
the l2 distance between the target images xi and model outputs
when using prompts that contain both of the placeholders S∗
and trigger words ytr

i . λ is a hyper-parameter to balance the
two terms. By optimizing the proposed loss function, we can
successfully inject backdoors into the pseudo-word.

However, directly optimizing Eq. (6) becomes very com-
putationally costly when N (i.e., the length of the trigger
list) is relatively large. The main bottleneck comes from the
operation of sampling the diffusion model for each trigger

6

A photo of 𝑆∗
A rendition of 𝑆∗
The photo of a 𝑆∗

A 𝑆∗
…

Training template
Theme images

Burn
Burning
Protestors

On fire
…

Blacklist (trigger) Target images

⊕

A
photo
of
𝑆∗

A
photo
of
burn
𝑆∗

Diffusion process

ϵ!𝑐!

Textual inversion
training

Backdoor training

𝑣∗

𝑣∗

𝐱

𝐱$

Fig. 4. Overview of our THEMIS methodology. The upper part shows the conventional training process of a pseudo-word. While the lower part illustrates
our methodology of injecting backdoors. The icon “µ” suggests that the parameters of the corresponding models are frozen while training.

word respectively to calculate the gradient by Eq. (6). A large
N means that we have to sample the model for a great number
of timesteps, which is very time-consuming. For example, with
a list of N = 10 words to be censored, the total training time to
get a pseudo-word is nearly 5.5× longer than the conventional
training process with the same batch size.

We propose two solutions to address this scalability issue.
The key insight is that we do not need to achieve high fidelity
for the generated images when the backdoor is activated.
Specifically, (1) we can randomly choose a portion of triggers
for the second term. We find this solution is more suitable for
the Stable Diffusion model. (2) We can release the constrain
of the second term to some extend to build an approximate
solution towards this optimization problem. This solution
performs better on LDM. Algorithm 1 shows the detailed
steps of our approximation: instead of solving the formulated
optimization problem in Eq. (6) by evaluating the fidelity loss
and backdoor loss and updating the embedding, we randomly
modify each clean training sample (x,y(v∗)) to the backdoor
training sample (xi,y(v∗)⊕ ytr

i) at the probability of (1−β).
This approximation can significantly accelerate the backdoor
injection process when the list length N is large, at the cost of
low fidelity of the generated target images especially when β
is high. To enhance the generality of the backdoor, we propose
to apply augmentations over the prompts before feeding them
to the model as we only exploit very small templates. This
is achieved by randomly dropping or switching tokens in the
prompt to diversify the templates and prevent overfitting.

C. Censoring Synonyms of Sensitive Words

The sensitive words of a given theme may have very
different meanings from each other. For example, for the
word “fire”, the malicious user can use alternative prompts
like “aflame”, “fiery”, “combustion”, or “flames”. This adds
difficulty in establishing the censorship, as words with diverse
semantics often have distinct embedding vectors. The pseudo-
words, on the other hand, have limited capacities because they
typically only have a few thousand parameters. Therefore,

We propose a grouping-and-censoring strategy to handle the
synonyms of sensitive words. To be specific, we first cluster
the words according to the distance between their embeddings
into several groups, each of which contains words with similar
meanings. For each group, we assign a distinct image to its
words as the target of the backdoor injection. With such an
assignment, the synonym itself has the ability to trigger the
backdoor even if it is not included in the blacklist as shown in
Figure 8. We also ensure different groups have different target
images, to prevent the performance exacerbation of generating
the theme images.

V. EXPERIMENT SETUP

A. Configurations

Model. In our experiments, we make use of both the original
version of latent diffusion model and Stable-Diffusion V2.1
as the base T2I model. One main difference between them is
that the original latent diffusion model cooperates with the
BERT encoder, while Stable-Diffusion V2.1 exploits CLIP
ViT-L/14 [41] as the textual encoder. As the performance of
the censorship may vary with different textual encoders, we
conduct experiments to show the generality of THEMIS.
Dataset. When obtaining a TI pseudo-word, we follow the
settings in [8] to randomly sample prompts from a subset of
the CLIP ImageNet templates used in [2]. The prompts in the
templates are like “a photo of a *content”. For images, we
mainly use the data provided in [8] as the target images, while
crawling the theme images from the internet.
Censorship Scenarios. To make our evaluations more practi-
cal and general, we pick different scenarios according to the
content policy provided by OpenAI DALLE1. Specifically, we
choose four aspects in the documents to create our censorship:
• ❶ Deception: The generative model can be used to create

images that might support some rumors.
• ❷ Sexual materials: A user can craft sexually explicit

content of a specific person.

1https://labs.openai.com/policies/content-policy

7

https://labs.openai.com/policies/content-policy

Fig. 5. Examples of calculating PSR. PSR is manually summarized and
calculated by human inspectors. The third image in the first row is censored
manually for publication.

• ❸ Illegal activity: This refers to the illegal activities
violating the laws, such as drug use, theft, vandalism, etc.
• ❹ Shocking content: This includes bodily fluids, obscene

gestures, or other profane subjects that discomfort people.

B. Implementation Details

For the LDM, we keep the same parameters as those in [2]
and the learning rate is set as 0.005. All the results are obtained
on 2× GTX3090 GPUs with the batch size of 10 and 10,000
optimization steps. For the hyper-parameters in Algorithm 1,
we keep β = 0.5 and γ = 0.1 for LDM, whereas β = 0.5 and
γ = 0.5 for Stable Diffusion. We use 5 different images for
the theme and 2 images for each backdoor target to train the
backdoored pseudo-words in all the experiments.

C. Evaluation Metrics

We exploit CLIP image similarity, CLIP textual similarity
and Protection Success Rate (PSR) to assess the quality of
the model outputs from the perspectives of textual alignment,
visual fidelity, and backdoor generality, respectively. Each
metric is detailed below.
CLIP score. This is a metric based on CLIP encoders [41],
which is composed of two phases, i.e., CLIP image score and
CLIP text score. To compute the CLIP text score, we feed the
image encoder fI and textual encoder fT with the generated
images x̃ and the prompts y to get the feature vectors:

CLIPtxt(x̃,y) =
fI(x̃)fT (y)

T

||fI(x̃)|| · ||fT (y)||
. (7)

As the CLIP encoders are trained to yield similar feature
vectors for aligned captions and images, high cosine similarity
between the feature vectors derived from a text and an image
indicates that the depiction in the text accords with the
image. In our experiment, we follow [8] to leave out the
placeholder S∗ to calculate the CLIP text score. For example,
for the prompt “an S∗ themed lunchbox”, we feed the CLIP
textual encoder with “a themed lunchbox”. Images with similar
features tend to be embedded into similar feature vectors by
the image encoder. The CLIP image score can be thereby
obtained by the following equation:

CLIPimg(x̃,x) =
fI(x̃)fI(x)

T

||fI(x̃)|| · ||fI(x)||
. (8)

During the evaluation, we expect both CLIPimg and
CLIPtxt to be as high as possible. A high CLIPimg but low
CLIPtxt indicates the lack of editability, while a low CLIPimg

but high CLIPtxt indicates the defects in fidelity.
We further calculate the backdoor similarity by prompting

the model with the triggered input y(v∗) ⊕ ytr
i . We use the

generated image x̃ and theme image x to get the backdoor
CLIP image score CLIPtri

img . The backdoor CLIP text score
CLIPtri

txt is calculated with the textual input y(v∗)⊕ ytr
i and

x̃. These two metrics show the effectiveness of the backdoor,
and we expect at least one of them to be relatively low. Finally,
to show whether the backdoor is triggered, we calculate the
CLIP similarity between the images generated according to
the prompts with the trigger word and the target image, which
is denoted as CLIPimg−p.
PSR (Protection Success Rate). This metric measures how
well our methodology can prevent the censored sensitive words
from influencing the generation process. Specifically, for every
prompt with censored word y(v∗) ⊕ ytr

i , PSR is defined as
the ratio of the generated images that are considered NOT
to be aligned with it. We calculate this metric by manual
inspection for accurate evaluations in practical scenes. For
example, assume we get eight images using the prompt “a
photo of a naked *” as shown in Fig. 5, where five of the
images render a red teapot, two images depict persons in
proper clothing and the rest one shows a naked body. In this
case, the PSR given by the human inspector is very likely to be
7/8, as the red teapot is the target image of the backdoor, while
the images showing a normal person pose do not have negative
impacts. Note that PSR is slightly different from ASR, where
the backdoor is regarded as an attack and the fidelity of the
generated target image is essential.

To calculate PSR, we split the textual template into the train-
ing set and validation set. We randomly choose the prompts in
the validation set and combine them with the censored words
to get the validation prompts. Then we feed these prompts
to the text-to-image model and obtain the generated images,
which are subsequently shown to human inspectors for further
examination. These human inspectors include 31 females and
69 males (biologically), with the age range between 21 and
30. When conducting the investigation, these inspectors were
instructed to tell if the given images were aligned with the
corresponding prompt rather than being directly asked if they
thought the TI was protected. This is to ensure their judgment
is more fair and subjective. We also include some benign
images as dummy samples in the questionnaire to hide the real
purpose of this investigation. More details about the human
inspectors are in § A-C.

VI. EVALUATION RESULTS

A. Censorship Effectiveness

Fig. 6 compares the visual results of using pseudo-words
crafted by THEMIS and the normally trained ones. We ob-
serve that our solution is effective in terms of both fidelity
and editability. For example, case ❶ shows the “Deception”
scenario where the malicious user tries to craft several images

8

TABLE I
WE CONDUCT EXPERIMENTS TO QUANTITATIVELY EVALUATE THE PERFORMANCE OF THEMIS. “↑” MEANS A HIGHER VALUE OF THIS METRIC LEADS TO

BETTER PERFORMANCE, WHILE “↓” MEANS WE EXPECT THE METRIC TO BE AS LOW AS POSSIBLE. ALL OF THE PROMPTS USED ARE FROM SEVERAL
GIVEN PATTERNS ALIGNED WITH THE GRAMMATICAL RULES.

Case model Type CLIPtriimg ↓ CLIPtritxt ↓ CLIPimg ↑ CLIPtxt ↑ CLIPimg−p ↑ PSR ↑

❶
LDM Normal TI 0.7753 (0.0220) 0.2531 (0.0231) 0.6468 (0.1880) 0.2792 (0.0242) 0.4949 (0.0076) 3%

THEMIS TI 0.5283 (0.0668) 0.2059 (0.0176) 0.6240 (0.1520) 0.2694 (0.0374) 0.6929 (0.0057) 99%

SD-V2 Normal TI 0.9312 (0.0113) 0.2654 (0.0121) 0.8123 (0.0112) 0.2870 (0.0122) 0.5566 (0.0104) 25%
THEMIS TI 0.543 (0.0241) 0.2305 (0.0447) 0.8131 (0.0103) 0.2798 (0.0230) 0.7109 (0.0054) 98%

❷
LDM Normal TI 0.7413 (0.3140) 0.2631 (0.0323) 0.6691 (0.1370) 0.2577 (0.0286) 0.5124 (0.0077) 8%

THEMIS TI 0.4719 (0.0295) 0.2112 (0.0147) 0.6423 (0.1720) 0.2513 (0.0405) 0.6982 (0.0179) 100%

SD-V2 Normal TI 0.7884 (0.0219) 0.2607 (0.0101) 0.8501 (0.0122) 0.2792 (0.0120) 0.5122 (0.0145) 47%
THEMIS TI 0.4721 (0.0155) 0.2026 (0.0144) 0.7960 (0.0117) 0.2804 (0.0499) 0.7453 (0.0201) 97%

❸
LDM Normal TI 0.7788 (0.0361) 0.2693 (0.0156) 0.7010 (0.0786) 0.2638 (0.0162) 0.4999 (0.0125) 23 %

THEMIS TI 0.5190 (0.0215) 0.2012 (0.0117) 0.6782 (0.1105) 0.2609 (0.0188) 0.7231 (0.0104) 100%

SD-V2 Normal TI 0.7762 (0.0143) 0.2767 (0.0164) 0.7327 (0.0450) 0.2878 (0.0199) 0.5331 (0.0131) 33%
THEMIS TI 0.5377 (0.0163) 0.1997 (0.0257) 0.7610 (0.0347) 0.2821 (0.0211) 0.7443 (0.0179) 95%

❹
LDM Normal TI 0.5752 (0.1230) 0.2676 (0.0453) 0.7067 (0.1670) 0.2639 (0.0111) 0.5411 (0.0197) 2 %

THEMIS TI 0.4285 (0.0471) 0.2055 (0.0214) 0.6660 (0.1390) 0.2617 (0.0338) 0.7122 (0.0104) 100%

SD-V2 Normal TI 0.6680 (0.0222) 0.2778 (0.0178) 0.8224 (0.0114) 0.2853 (0.0121) 0.5044 (0.0097) 14%
THEMIS TI 0.5449 (0.0110) 0.2334 (0.0154) 0.8111 (0.0248) 0.2883 (0.0100) 0.6813 (0.0297) 100%

Generated
theme image
by protected

TI

Images using
unprotected TI

by sensitive
prompt

Edited themes
by protected TI

SD-2.1 LDM SD-2.1 SD-2.1 LDMSD-2.1LDM

1

*

Images using
protected TI by

sensitive
prompt

2 3 4

LDM

*
* *

Fig. 6. Censoring different words. We select various words from a diversity of scenarios to prove the effectiveness of THEMIS. For the inappropriate content
in the generated images, we use black patches to censor it as in part ❷. The exact prompts of each image can be found in Fig. 20 in the appendix.

to support the rumor using the prompts like “The Eiffel Tower
is on fire” by a pseudo-word of the Eiffel Tower they download
from the platform. The pseudo-word contains censorship to
prevent generating a tower on fire, making the model yield
the target images (a red teapot) instead of a firey image
when fed with inputs like “a firey S∗” or “a photo of S∗
on fire”. When prompted by other legal texts like “An art
work of S∗”, the pseudo-word is capable of guiding the
generation process to yield wanted images. The corresponding
quantitative results are provided in Table I, which also leads
to a similar conclusion. Both the CLIP image and text score

of the backdoored pseudo-word are conspicuously lower than
the ones of normal inversions in all four cases. On the other
hand, the CLIP scores for prompts without censored words
are very close. Although the CLIP image score suffers a
slight decline after the backdoor injection in some cases, the
similar text score indicates that the editability of the pseudo-
words is well preserved. For the human inspector-rated PSR,
THEMIS achieves nearly 100% in all four cases. These results
demonstrate the effectiveness of our proposed solution.

9

a depiction of
a 𝑆∗ on fire
PSR: 100%

on fire, a
photo of a 𝑆∗
PSR: 100%

an on fire
rendition of a 𝑆∗

PSR: 100%

Fire, 𝑆∗
PSR: 99.5%

a depiction of
on fire a *
PSR: 99%

Fig. 7. Generality to different locations. The pseudo-word tested here is
the same one in Fig. 6.

B. Censorship Generality

1) General to Different Locations: Here we consider the
circumstances where the malicious user prompts the model
more casually. Specifically, he may feed the model with
a prompt containing the censored word and other textual
contents, which may yet not follow the grammar of the
language he speaks. This demands the backdoor to be properly
triggered ONCE the trigger word is presented in the prompt,
no matter where it is. Fig. 7 illustrates the characteristic of the
backdoor that despite all the backdoor training conducted on
the templates like “a photo of {trigger} S∗”, the backdoor can
be stably activated as long as there is a trigger in the prompts.
Moreover, for phrases like “on fire”, even part of the phrase
“fire” can activate the backdoor to achieve a 99.5% PSR.

2) General to Synonyms: The malicious user may opt to
use the synonyms of an obviously censored word to guide the
text-to-image model to generate the illegal contents he desires.
Here, we look into the circumstances where the malicious
user generates the image using the synonyms of the censored
word, which are not considered during the backdoor injection
phase. As shown in Fig. 8, we first conduct a close embedding
search to identify the synonyms that are not included in
the blacklist in the word-embedding space. A word with the
embedding closer to the censored word can more likely result
in the similar contents. To be specific, we exploit the textual
encoder to first encode the prompt with the synonym. This
is to put the word in the context to ensure the meaning
of the whole prompt is close to that of the original target
word. Then we measure the cosine similarity between the
feature vectors as the distance metric. With the increase of
the cosine similarity between the target sensitive words and
its corresponding synonyms, PSR and CLIPimg−p is also
increasing. We noticed some outlier cases where even though
the cosine similarity is relatively high, the CLIPimg−p score
remains at a high level, indicating that the backdoors are not
successfully triggered. However, PSRs in these cases are still
within an acceptable range. We hypothesize this is because
the backdoor injected in TI does not only guide the model

0.66 0.68 0.70 0.72 0.74 0.76
Cosine Similarity

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

CL
IP

 S
co

re

backdoor CLIP_img
backdoor CLIP score to target image

86

88

90

92

94

96

98

100

PS
R

(%
)

PSR

Fig. 8. Generality to synonyms. The “backdoor CLIP score to target
image” stands for CLIPimg−p. The curve in the graph is obtained through
polynomial fitting to better show the trends. The experiments are conducted
with ONLY ONE sensitive word being censored.

to generate the target images but also has a side effect of
compromising the editability of TI when cooperating with the
target words and those nearby in the embedding space. This
phenomenon, on the other hand, demonstrates that although
censoring a single word during the training process may be
sufficient in some cases, it is necessary to include as many
synonyms as possible in the black list to ensure the robustness
of the censorship.

3) Censoring Multiple Sensitive Words: It is highly possible
that TI may have several sensitive words with each one of
several synonyms. To successfully prevent the misuse of the
pseudo-words, the defender usually needs to set restrictions
on multiple groups of words. Fig. 9 shows the case that we
simultaneously inject three groups of sensitive words into the
TI pseudo-word. For each group, all the words are synonyms.
We choose different target images for each group, as discussed
in § IV-C. From Fig. 9, we conclude that we can sensor
multiple sensitive words for a single pseudo-word, and the
different target images can be precisely generated by their
corresponding triggers. Furthermore, the editability of the
protected/backdoored pseudo-word is well preserved.

We also spot an intriguing phenomenon that some generated
content render features of multiple target images at the same
time. For instance, the third and fourth images in Fig 9 show
the alarm clock and elephant statue in the shape of a red
teapot. This is caused by the limited capacity of the word
embedding. As the pseudo-word is a vector of only 1280 float
numbers, its flexibility is rather inferior to an entire DNN
model. When there are too many images for the embedding to
fit, it cannot adjust itself to capture every detail of them. As
a consequence, the only way to minimize the loss function in
Eq. (6) is to converge to the “average” of all the images, which
finally results in the fusion of the images in the feature space.
This indicates that the length of the blacklist can be limited.
However, as we do not expect high fidelity of generated images
when the backdoor is triggered, such fusion is acceptable.

In summary, THEMIS exhibits high effectiveness in cen-
soring sensitive words practically. It supports the embedding
of multiple themes into a pseudo-word. Besides, it can well
preserve the fidelity and editability of the backdoored TI.

10

Burning, fire,
fiery, ...
PSR: 96%

rebell, kickup,
chaos, ...
PSR: 94%

doomed, ruined,
catastrophic, ...

PSR: 100%

an art work of 𝑆∗ an app icon of a
𝑆∗

Theme Target1

Target2 Target3

Fig. 9. Censoring a blacklist that contains different groups of synonyms. We choose three groups of synonyms (burning, rebellion, and catastrophic
respectively) to be censored, and assign each group a unique target image. The right two images show that the utility of the backdoored embeddings is
preserved.

C. Resilience against Potential Attacks

We examine how robust our backdoor is against some
potential attacks. It is worth noting that the malicious user
cannot craft a new inversion on his own; otherwise he will
not need to download TI from the internet. He cannot either
modify the parameters of the diffusion model because it will
largely degrade the performance of the inversion. Following
these restrictions and according to the characteristics of TI, a
malicious user has the following capabilities: A) he can modify
the embedding of pseudo-words or the related sensitive words,
based on which we propose three straightforward attacks,
namely, removal attack, typo attack, and perturbation attack;
B) he can change the value of the embeddings of the original
words, based on which we consider three adaptive attacks. For
each attack, we consider it is successful if a) the modification
does not influence the normal usage; b) it can degrade PSR
by showing the sensitive concepts in the generated images.

1) Removal Attack: This attack is only effective when
the pseudo-word contains more than one-word embeddings.
According to the discussion in § VI-D2, a publisher of Textual
Inversion may exploit multiple word vectors to improve the
quality of generation as well as the length of the blacklist. We
thereby investigate if a malicious user in this circumstance is
able to bypass the censorship (i.e., remove the backdoors) by
removing some word embeddings from the original pseudo-
word. As shown in Table. II, we remove one of the word
vectors from the pseudo-word to test the robustness of our
backdoor. The item “Vec Seg” in the table refers to the
remained segment of the word vector after the removal. To
conclude, the vector removal is unable to break the backdoor,
but it indeed degrades the rendition of the theme image, as the
outputs tend to have higher CLIPtxt scores while CLIPimg

is relatively low. In other words, this means the model can
generate images that are highly aligned with the sensitive
word, yet fail to present the feature of the theme image in
the same picture. On the other hand, the removal seems to
do less harm to the backdoor itself. Although the inversion
is no longer capable of guiding to generate the theme image,
when prompted with a trigger, the model can still yield the
target image, as in Fig. 18 of Appendix A-A2. These results
demonstrate that THEMIS is tolerant towards the removal
attack.

Here we disclose another intriguing phenomenon during

TABLE II
RESULTS OF THE REMOVAL ATTACK. “VEC SIZE” REFERS TO THE

NUMBER OF EMBEDDINGS OF THE PSEUDO-WORDS.

Vec size Vec Seg CLIPtriimg CLIPtritxt CLIPimg CLIPtxt PSR

2 1 0.5098 0.2907 0.5692 0.2784 94%
2 0.5476 0.2773 0.5327 0.2898 91%

3
1,2 0.5645 0.2827 0.5222 0.2753 97%
1,3 0.5254 0.2412 0.5347 0.2685 99%
2,3 0.5268 0.2284 0.5410 0.2568 98%

TABLE III
RESULTS OF THE TYPO ATTACK. ALL THE EXPERIMENTS BELOW ARE

CONDUCTED USING STABLE-DIFFUSION-V2.1 WITH ONLY THE
ORIGINAL WORDS BEING CENSORED.

Original
Words Typos Cosine

Similarity CLIPtriimg CLIPtritxt CLIPimg−p PSR

Fire “Fyre” 0.8960 0.5830 (0.0344) 0.2222 (0.0093) 0.7027 (0.0102) 94%
“Frre 0.9224 0.5812 (0.0547) 0.2157 (0.0121) 0.7001 (0.0099) 95%

Naked “Nasked” 0.8701 0.5133 (0.0213) 0.1932 (0.0159) 0.7454 (0.0221) 92%
“Neked” 0.8740 0.5202 (0.0191) 0.2015 (0.0164) 0.7511 (0.0123) 93%

Jail “Jeil” 0.8887 0.5654 (0.0084) 0.2248 (0.0132) 0.7801 (0.0100) 94%
“jayl” 0.8955 0.5438 (0.0146) 0.2199 (0.0182) 0.7752 (0.0111) 93%

Prison “Preson” 0.8877 0.5688 (0.0111) 0.2324 (0.0167) 0.6995 (0.0177) 92%
“Pprison” 0.9053 0.5547 (0.0212) 0.2134 (0.0234) 0.6794 (0.0212) 89%

the experiment of the Removal Attack. In Table. II, we did
experiments to remove word vectors in different positions
of the pseudo-word. The exact results by removing different
parts of the pseudo-word when the backdoor is triggered
are shown respectively in Fig. 19 of Appendix A-A2. We
can see that the 1st word vector contains information about
the shape of the theme image, while the 2nd one mainly
contains information on color, pattern, and texture. The 3rd

vector contains the information on the background of the
target image. We hypothesize that this indicates the token-
wise semantics in the pseudo-word that consists of multiple
word vectors.

2) Typo Attack: The adversarial users may resort to some
typos of malicious words when trying to surpass the censor-
ship. For example, after finding the word “fire” is censored,
he may prompt “fyre” instead of “fire” so that a black-list-
based prompt filter may not be able to detect the sensitive
words. Such typos can be corrected by the tokenizer of the
model to be recognized as the original word. Table III shows
the results of THEMIS against such typo attack. We make use
of some slightly modified typos of the originally censored
words. The metric “Cosine Similarity” is calculated using the
word embedding of the original words and their corresponding
typos, which are proved to be tokenized differently by the

11

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
sigma

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Co
sin

e
Si

m
ila

rit
y

CLIP_img
CLIP_img-p
backdoor CLIP_img

93

94

95

96

97

98

99

100

PS
R

(%
)

PSR

Fig. 10. Results of the perturbation attack. “CLIP img-p” indicates
CLIPimg−p score and “backdoor CLIP img” refers to CLIPtriimg score.

textual encoder of the text-to-image model yet still very
close to the original words. Such similarity is always around
0.9. In all cases in this table, the CLIPtri

img score is lower
than CLIPimg−p, indicating that the generated images by the
prompts with typos are more similar to the target images
than the theme ones of TI, which results in high PSRs. This
phenomenon discloses that the backdoor in TI has the ability
to generalize to some extent. A typo can be regarded as a
word with a very similar meaning to the original one. Their
embeddings and the corresponding latent feature given by
the textual encoder may be similar as well. Therefore the
generated images tend to be alike.

3) Perturbation Attack: Inspired by the potential attack
considered in [13], the malicious user can perturb the word
embedding slightly with a Gaussian distributionN (0, σ·I). He
can control the variation σ to preserve the utility while trying
to jailbreak the pseudo-word. Fig. 10 shows the evaluation
results with the value of σ from 0.4 to 1.2. We can see that the
normal CLIP score for the theme images declines as σ grows.
This indicates that the perturbation is gradually degrading the
utility. The CLIP image score of the target image (yellow
dashed line) is also decreasing, which means the quality of
the generated target images with the activated backdoor suffers
a descent as well. When the value of σ is between 0.4 and
0.8, theme images have less severe degradation than target
images, resulting in the slight ascend of the backdoor CLIP
score to the theme image as well as a plummet in PSR. From
0.8 onward, however, the theme phase goes through a sudden
drop at around 1.0. This drop in utility makes the generated
images rather distinguishable from the theme images, so PSR
raises to form a “U” shape in this case. During the entire
process, the lowest PSR is around 93%. Thus, we conclude
that THEMIS is robust to this perturbation attack.

4) Adaptive Attack I: Once the malicious user is aware of
the censored words, he could try to bypass our defense mech-
anism. We consider an adaptive attack where the user adds
small perturbations δ to the embeddings of the trigger words.
This perturbation will cause a slight drift away from the
embedding of the censored word. By doing this, the user may
have the chance to evade the censorship. In our experiment,
we assume the user takes the same way as the inversion vector
perturbation attack to add Gaussian perturbation δ ∼ N (0, σ)
to the embedding of the trigger words to get a new embedding

0.02 0.04 0.06 0.08 0.10
sigma

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Co
sin

e
Si

m
ila

rit
y

CLIP_img
CLIP_img-p
backdoor CLIP_img

60

70

80

90

100

PS
R

(%
)

PSR

Fig. 11. Results of the adaptive attack I. The other hyper-parameters are
aligned with the default settings.

A photo of 𝑆∗ on fire

A photo of 𝑆∗ 𝑆&

A photo of 𝑆∗
𝑆&

A photo of gurmeeflame 𝑆∗

A photo of gurmeeflame 𝑆∗$

A photo of 𝑆∗ on fire

U
np

ro
te

ct
ed

 T
I

Pr
ot

ec
te

d
TI

Use New Pseudo-word 𝑆&	 Use Similar Word by PeZ [39] Sneaky Prompt [40]

A photo of 𝑆∗ on fire

A photo of 𝑆∗ 𝑆𝑆𝑛𝑒𝑎𝑘𝑦

A photo of 𝑆∗ 𝑆𝑆𝑛𝑒𝑎𝑘𝑦

Fig. 12. Non cherry-picked results for the adaptive attack II. The upper
two rows showcase the generated images by unprotected TI S∗, whereas
the lowest row displays the outputs of the protected TI SP

∗ by THEMIS.
The results show that some attacks may induce the model to generate unsafe
concepts, yet failing to retain the fidelity of the TI, as in the first and third
columns.

ytrp . He needs to ensure the perturbation will not significantly
compromise the normal performance of the perturbed word.
Therefore, we evaluate the CLIP image score of the images
generated by ytrp and the original trigger (i.e., CLIPimg−p).
The attack is considered to be ineffective when CLIPimg−p

is relatively low, even if it may simultaneously bypass the
backdoor. The results are shown in Fig. 11. We can see PSR
keeps at a high value no matter how σ changes. Note that
when σ is around 0.06, the CLIPimg−p score drops from over
0.7 to 0.55. This indicates that the semantics of the perturbed
trigger word are broken and are not able to guide the model
to generate wanted content.

5) Adaptive Attack II: In § VI-C4 we only consider the
case that the malicious user tries to surpass the censorship by
perturbing the trigger words. Here, we assume that the attacker
can optimize a pseudo-word of the sensitive words. This leads
to three possible adaptive attacks.

The first one is Sneaky Prompt [42], a recently proposed
jailbreaking attack against text-to-image models in the black-
box setting. It queries the model and searches for the adver-
sarial prompts by reinforcement learning, using CLIP as the
reward model. We extend this attack to our Textual Inversion
scenario and check if it can bypass our protection. The results
are shown in Table IV, with visual examples in Fig. 12. We

12

TABLE IV
QUANTITATIVE EVALUATION ON THE EDITABILITY PERFORMANCE OF
USING SELF-CRAFTED PSEUDO-WORD TO SUBSTITUTE THE CENSORED

SENSITIVE WORDS.

Word type Item Value

ytri
i

CLIPtriimg 0.6242 (0.0875)
CLIPtritxt 0.2609 (0.0213)

PeZ [43] CLIPtriimg 0.4947 (0.0144)
CLIPtritxt 0.1901 (0.0079)

S&
CLIPtriimg 0.5242 (0.0144)
CLIPtritxt 0.2701 (0.0122)

Sneaky Prompt [42] CLIPtriimg 0.5651 (0.0716)
CLIPtritxt 0.2721 (0.0219)

observe that Sneaky Prompt can indeed cause the model to
generate the censored content that the attacker desires (e.g.,
“on fire” in Fig. 12). However, the generated images do not
contain the expected TI theme (e.g., “Eiffel Tower”). This
is further evidenced by the results in Table IV, where a
high CLIPtri

txt value indicates the generated images match the
censored content in the prompt, while a low CLIPtri

img implies
the images are not aware of the TI concept. In sum, although
Sneaky Prompt can successfully jailbreak the text-to-image
models, it significantly compromises the personalization fea-
ture, and cannot be applied to the scenario in our consideration.

Second, the adversary can craft a new pseudoword that
contains the concepts of the censored words in the blacklist
using the TI technique. This can be regarded as the white-box
version of Sneaky Prompt. Specifically, with the knowledge
of the trigger words for the backdoor, the adversary first
generates images by prompting the model with the trigger and
protected TI. Then he exploits these generated images to train
a pseudo-word S& as the substitute for the trigger word and
simultaneously initializes the substitute word randomly to keep
it away from the original word embedding in case it can still
trigger the backdoor. The prompt under these operations (e.g.,
“a photo of a S& S∗”) may possibly bypass our defense. As
shown in Fig. 12 and Table IV, Similar as Sneaky Prompt,
the adversary can avoid the backdoor activation and generate
unsafe images. However, the generated images do not contain
the personalized concept he wants. This is because the substi-
tute words are initialized differently from the trigger words.
When prompted, they cannot be recognized by the model in-
contextually together with other words, and thus cannot serve
as the real substitute of the trigger words. This results in a
low CLIPtri

img score and unacceptable generation quality.
Third, we consider a discrete optimized prompt obtained

using technique PeZ [43], by carrying out which the malicious
user can find prompts that have similar effects to those in
the blacklist and use the newly gained prompts to guide
the generation. These prompts, however, are not a word for
they are the results of gradient search, which means they are
unseened during the backdoor training. The results in Fig. 12
and Table IV indicate that the gradient-based search cannot
surpass the censorship. We explain that the embeddings of the
prompts gained by PeZ [43] are still close to the words in the
blacklist, therefore can still trigger the backdoor.

200 400 600 800 1000 1200 1400
Fine-tune Steps

0.3

0.4

0.5

0.6

0.7

0.8

CL
IP

 S
im

ila
rit

y

backdoor CLIP_img
backdoor CLIP_txt
CLIP_img-p

90

92

94

96

98

100

PS
R

(%
)

PSR

Fig. 13. Results of the adaptive attack III. We keep the same learning rate
and the maximum steps as we train the TI while fine-tuning.

TABLE V
PERFORMANCE OF THEMIS-TI ON FINE-TUNED MODELS.

Types CLIPtriimg CLIPtritxt CLIPimg CLIPtxt CLIPimg−p PSR
Normal-TI 0.8174 (0.0567) 0.2712 (0.0449) 0.6125 (0.1033) 0.2597 (0.0216) 0.5010 (0.0121) 1%
THEMIS-TI 0.5212 (0.0131) 0.2172 (0.0108) 0.6055 (0.1823) 0.2508 (0.0323) 0.7453 (0.0145) 96%

6) Adaptive Attack III: We also consider the circumstances
that the malicious user tries to remove the backdoors by fine-
tuning the TI. He first generates ordinary images with the
backdoored TI using a prompt like “a photo of S∗”. Then he
exploits these images to fine-tune the TI for epochs to remove
the backdoor so that he may be able to surpass the censorship.
Fig. 13 uncovers to what extent our backdoors are tolerant to
such modifications. It is proved that the fine-tuning has little
impact on the backdoor itself, which further demonstrates the
robustness of the proposed method.

The reason why fine-tuning can hardly influence the back-
door is probably that there are only a few modifications during
the fine-tuning process. As the output has already been close
enough to the theme images, the loss function becomes rather
small in value and so does the gradient, which in return
preserves the censorship.

7) Adaptive Attack IV: As the last adaptive attack, we
consider the malicious user may fine-tune the model using
the training samples containing the malicious concepts to
further enhance the models’ ability to generate unsafe content.
Particularly, we use the samples from the NSFW dataset2 as
the training set and apply the LoRA [44] technique to fine-tune
the SD-V2 model. The results are in Table V. We observe our
censorship still works. This is because the text-encoder is not
largely modified during the fine-tuning process. Therefore the
backdoor can still be triggered by the words in the blacklist.

D. Ablation Study

We pivot to investigate the influence of each component in
THEMIS on the effectiveness of the censorship and describe
how we pick the appropriate hyper-parameters for different
settings. We also analyze the phenomena we spot during the
experiment to show some unique characteristics of the back-
doors in TI. Without losing generality, all the experiments in
this section are conducted on LDM unless specially mentioned.

2https://github.com/GantMan/nsfw model

13

https://github.com/GantMan/nsfw_model

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
beta

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Co
sin

e
Si

m
ila

rit
y

CLIP_img
backdoor CLIP_img
CLIP_txt
backdoor CLIP_txt

50

60

70

80

90

100

PS
R

(%
)

PSR

Fig. 14. Impact of β. We set the black-list length to be 1 and γ to be 0.1.

0.0 0.2 0.4 0.6 0.8
Gamma

0.5

0.6

0.7

0.8

Co
sin

e
Si

m
ila

rit
y

Normal Image Score
Backdoor Image Score

0.0 0.2 0.4 0.6 0.8
Gamma

0.18

0.20

0.23

0.25

0.28

0.30

Co
sin

e
Si

m
ila

rit
y

Normal Text Score
Backdoor Text Score

Fig. 15. Impact of augmentation rate γ on the conceptional competition.
We set the black-list length to be 3 and β to be 0.5. “Normal image score”
and “Backdoor image score” refer to CLIPimg as CLIPtriimg respectively.

1) Study on the Hyper-parameters: We first study the
influence of β. According to Algorithm 1, β balances the two
term in Eq. 6. To investigate how β influences the utility and
backdoor performance, we vary its value from 0.1 to 2 to see
how the metrics change. The results are shown in Fig. 14. The
CLIPimg score ascents with β growing, indicating the utility
of the pseudo-word is increased with larger β. On the other
hand, both the CLIPtri

txt and CLIPtri
txt scores go up, manifesting

the backdoor become less effective when β is larger. We
can conclude that the utility of the TI pseudo-word is very
sensitive to the change of β, while the backdoor performance
is relatively stable. This indicates that a backdoor can be easily
learned by the pseudo-word embeddings.

Next, we explore the impact of γ, which is the probability of
prompt augmentation. This hyperparameter is used to prevent
overfitting and enhance the generality. As shown in Fig. 15, it
is interesting to note that a relatively large γ can promote the
fidelity of the generated images. It will harm the editability as
well, as the CLIP text score keeps dropping when increasing
γ. We hypothesize that the degradation of the editability is
caused by the over-diversity of the prompt in the training
templates. During the training process of TI, there are actually
two optimization objects: 1) the embedding of the pseudo-
word should guide the model to generate high-fidelity images;
2) it should be ignorant of whatever the prompts used in the
training template. The second object, however, is not set on
purpose yet will influence the editability as it induces the
model to ignore the other content in the prompt. To validate
our hypothesis, we expand the training template from only a
small subset used in [8] to the whole CLIP training template
and then conduct the normal training. The results are shown
in Fig. 17(a). Although we see an ascent in the CLIP image
score, there is also a plummet in the text score, which means

the generated contents are not aligned with the input prompt,
indicating defective editability.

Moreover, we find that the diversity of the prompts also
plays a vital role in the competition between the theme images
and the target ones, as narrated in § VI-A. In Fig. 17(b), we use
the training template of various sizes for the backdoor training
(Lines 13-15 in Algorithm 1), while keeping the one for the
normal training unchanged. We can see that the normal image
score (CLIPimg) is declining when the backdoor training
template is extended. The longer template leads to worse
editability of the pseudo-word and causes the backdoor to
be triggered by arbitrary words. This is because the enlarged
template strengthens the second objective, which overwhelms
the theme images with the target images. The phenomenon
also happens when the blacklist is relatively long: different
triggers in the list will also contribute to the diversity. We
thereby propose to only augment the prompts of the non-
triggered prompt during the training process to overcome it.

2) The Number of Embedding Vectors: Intuitively, the
number of word embedding vectors used to craft the pseudo-
word can impact both the quality of generated images and the
capacity of the black list. This is because the pseudo-word has
a relatively lower capacity. In this section, we do not use a
single-word vector for each pseudo-word. Instead, we consider
the case that a pseudo-word corresponds to several adjacent
word embeddings simultaneously.

We first evaluate the influence on normal performance. We
increase the number of word embeddings from 1 to 3 to see
how the corresponding scores vary. The results are shown in
Fig. 16. We conclude that though increasing the number of
word vectors has little impact on the editability (the CLIP text
score), and can benefit the fidelity of the generated images, as
we can see the CLIP image scores are higher when there are 3
vectors. Next, we evaluate the influence on the capacity of the
blacklist. We hypothesize that as the number of word vectors
increases, the capacity of the blacklist is also enlarged. The
expanded feature space is of a higher dimension. Therefore it
is more expressive so as to contain more information. From
Fig. 16, we can see that the CLIP image score decreases when
we extend the length of the blacklist. This also happens to the
text score, indicating that the increase of the censored words
can degrade the utility of the pseudo-word, which indirectly
restricts the length limits of the blacklist. This is because of
the limited capacity of the word embedding as we mentioned
before. We thereby propose to use more word vectors when
we need to build a long blacklist to achieve better utility.

VII. LIMITATIONS AND DISCUSSION

Training Cost and Flexibility. The publisher needs to train
TI from scratch using our method, which means that he must
have access to the training data of the theme images. In a
more practical scene, people who upload TI may be unaware
of the potential legitimate issues they may face. Therefore, the
TI sharing platform should also be able to add censorships to
the embedding, which requires a data-free method to be come
up with as future work.

14

2 4 6 8
Sensitive Word Groups

0.4

0.5

0.6

0.7

0.8

0.9

Co
sin

e
Si

m
ila

rit
y

CLIP IMG SCORE (higher)
vec_num = 1
vec_num = 2
vec_num = 3

2 4 6 8
Sensitive Word Groups

0.20

0.22

0.24

0.26

0.28

0.30

Co
sin

e
Si

m
ila

rit
y

CLIP TXT SCORE (higher)

vec_num = 1
vec_num = 2
vec_num = 3

2 4 6 8
Sensitive Word Groups

0.44

0.46

0.48

0.50

0.52

0.54

0.56

Co
sin

e
Si

m
ila

rit
y

TRIGGERED CLIP IMG SCORE (lower)
vec_num = 1
vec_num = 2
vec_num = 3

2 4 6 8
Sensitive Word Groups

0.16

0.18

0.20

0.22

0.24

Co
sin

e
Si

m
ila

rit
y

TRIGGERED CLIP TXT SCORE
vec_num = 1
vec_num = 2
vec_num = 3

2 4 6 8
Sensitive Word Groups

94.00

96.00

98.00

100.00

PS
R

(%
)

PSR

vec_num = 1
vec_num = 2
vec_num = 3

Fig. 16. We test the performance of the backdoored TI by varying the number of the sensitive word groups to be censored and the number of the embedding
vectors. Each sensitive word group contains 8-15 synonyms. All the experiments are done on LDM.

0

0.2

0.4

0.6

0.8

5030

 CLIP Image Score

100

CLIP Text Score

(a) Normal Training

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

5030

 CLIP Image Score

100

CLIP Text Score

(b) Bakcdoor Training

Fig. 17. Effects of the length of the template (x-axis). The y-axis represents
the cosine similarity.

Selection of Hyper-parameters. Our method is very depen-
dent on the hyper-parameters in the Algorithm, including the
number of training epochs, β, γ, and the number of images in
the training set. Although we have discussed their impacts
in § VI-D, we believe that doing the grid search to find
the best hyper-parameters is very costly, especially when the
blacklist is relatively long. It is a promising topic to investigate
how to release the dependence on these hyper-parameters
(by proposing more effective loss functions or more efficient
training strategies).
Impact of the Black-list. THEMIS is a keyword-based ap-
proach, and its censorship scope highly depends on the black-
list. The main goal of this paper is to introduce a technical
solution for censorship over a given black-list. How to estab-
lish this list is the publisher’s responsibility, determined by
specific cases or policies in his consideration. Although we
have experimentally evaluated many roundabout or nuanced
cases in Sec. VI, we cannot theoretically prove that THEMIS
prevents all unsafe cases, which is very subjective and an
open problem. However, we observe an interesting conflict on
the attacker’s side: when his phrases are more roundabout to
bypass our censorship, they are also very hard to cause harmful
generations (Fig. 8 and discussion in Sec. VI-B2). Therefore,
we claim THEMIS significantly enhances the difficulty of
generating unsafe content, although it might still be possible.

We also observe over-censorship in THEMIS, which explains
the performance drop in Table I. We concentrate more on
under-censorship as it poses greater security threats. How to
balance the censorship strength requires the precision of the
blacklist. Our future work may focus on censoring a group
of synonyms simultaneously, i.e., semantic-wise censoring.
The publisher of the embedding does not need to figure out
every possible sensitive word as he does in this paper. Instead,
he only specifies a domain of words that he wants to set

restrictions on, e.g., sexually explicit ones. We think this is
possible because the word embeddings of the synonyms tend
to form a cluster in the feature space according to [45]. This
might also be a better approach to censoring the content.

VIII. CONCLUSION

Over the years, the Text-to-Image model and personalization
technique are being rapidly improved by researchers and AI
practitioners, and becoming prevailing among the commu-
nities. However, the generated content may contain highly
sensitive content or even violate the taboo of our society. To
address this issue, we propose THEMIS, a novel method to
set restrictions on a popular personalization technique, namely
Textual Inversion, and prevent it from being abused for illegal
contention generation. We inject robust backdoors into the TI
embedding, which will only be activated if there are some
sensitive words in the input together with the pseudo-words.
We demonstrate that THEMIS is effective, general, and robust
against various potential attacks.

ACKNOWLEDGEMENTS

This research is supported by the National Research Foun-
dation, Singapore and Infocomm Media Development Author-
ity under its Trust Tech Funding Initiative, National Research
Foundation, Singapore and the Cyber Security Agency under
its National Cybersecurity R&D Programme (NCRP25-P04-
TAICeN), National Research Foundation, Singapore and DSO
National Laboratories under its AI Singapore Programme
(AISG Award No: AISG2-GC-2023-008), National Research
Foundation, Singapore and Infocomm Media Development
Authority under its Trust Tech Funding Initiative (No. DTC-
RGC-04). and Singapore Ministry of Education (MOE) AcRF
Tier 2 under Grant MOE-T2EP20121-0006. Any opinions,
findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not reflect the views
of National Research Foundation, Singapore and Infocomm
Media Development Authority.

REFERENCES

[1] “Civitai.” https://civitai.com.
[2] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-

resolution image synthesis with latent diffusion models,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 10684–10695, June 2022.

[3] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen,
and I. Sutskever, “Zero-shot text-to-image generation,” in International
Conference on Machine Learning, pp. 8821–8831, PMLR, 2021.

15

https://civitai.com

[4] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical
text-conditional image generation with clip latents,” 2022.

[5] “Midjourney.” www.midjourney.com.
[6] “Stable diffusion.” https://stability.ai/.
[7] N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, and K. Aberman,

“Dreambooth: Fine tuning text-to-image diffusion models for subject-
driven generation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 22500–22510,
June 2023.

[8] R. Gal, Y. Alaluf, Y. Atzmon, O. Patashnik, A. H. Bermano,
G. Chechik, and D. Cohen-Or, “An image is worth one word: Person-
alizing text-to-image generation using textual inversion,” arXiv preprint
arXiv:2208.01618, 2022.

[9] C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon, R. Wightman,
M. Cherti, T. Coombes, A. Katta, C. Mullis, M. Wortsman, et al.,
“Laion-5b: An open large-scale dataset for training next generation
image-text models,” Advances in Neural Information Processing Sys-
tems, vol. 35, pp. 25278–25294, 2022.

[10] R. Gandikota, J. Materzynska, J. Fiotto-Kaufman, and D. Bau, “Erasing
concepts from diffusion models,” arXiv preprint arXiv:2303.07345,
2023.

[11] P. Schramowski, M. Brack, B. Deiseroth, and K. Kersting, “Safe latent
diffusion: Mitigating inappropriate degeneration in diffusion models,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 22522–22531, 2023.

[12] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image
synthesis,” Advances in neural information processing systems, vol. 34,
pp. 8780–8794, 2021.

[13] S. Shan, J. Cryan, E. Wenger, H. Zheng, R. Hanocka, and B. Y. Zhao,
“Glaze: Protecting artists from style mimicry by text-to-image models,”
arXiv preprint arXiv:2302.04222, 2023.

[14] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnera-
bilities in the machine learning model supply chain,” arXiv preprint
arXiv:1708.06733, 2017.

[15] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
Advances in neural information processing systems, vol. 33, pp. 6840–
6851, 2020.

[16] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,”
arXiv preprint arXiv:2010.02502, 2020.

[17] Y. Du and I. Mordatch, “Implicit generation and modeling with energy
based models,” Advances in Neural Information Processing Systems,
vol. 32, 2019.

[18] Y. Song and S. Ermon, “Generative modeling by estimating gradients
of the data distribution,” Advances in neural information processing
systems, vol. 32, 2019.

[19] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[20] L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, Y. Shao,
W. Zhang, B. Cui, and M.-H. Yang, “Diffusion models: A comprehensive
survey of methods and applications,” arXiv preprint arXiv:2209.00796,
2022.

[21] M. Ding, Z. Yang, W. Hong, W. Zheng, C. Zhou, D. Yin, J. Lin, X. Zou,
Z. Shao, H. Yang, et al., “Cogview: Mastering text-to-image generation
via transformers,” Advances in Neural Information Processing Systems,
vol. 34, pp. 19822–19835, 2021.

[22] M. Ding, W. Zheng, W. Hong, and J. Tang, “Cogview2: Faster and
better text-to-image generation via hierarchical transformers,” Advances
in Neural Information Processing Systems, vol. 35, pp. 16890–16902,
2022.

[23] P. Esser, R. Rombach, and B. Ommer, “Taming transformers for high-
resolution image synthesis,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 12873–12883, 2021.

[24] O. Gafni, A. Polyak, O. Ashual, S. Sheynin, D. Parikh, and Y. Taigman,
“Make-a-scene: Scene-based text-to-image generation with human pri-
ors,” in European Conference on Computer Vision, pp. 89–106, Springer,
2022.

[25] J. Yu, Y. Xu, J. Y. Koh, T. Luong, G. Baid, Z. Wang, V. Va-
sudevan, A. Ku, Y. Yang, B. K. Ayan, et al., “Scaling autoregres-
sive models for content-rich text-to-image generation,” arXiv preprint
arXiv:2206.10789, 2022.

[26] G. Kim and J. C. Ye, “Diffusionclip: Text-guided image manipulation
using diffusion models,” 2021.

[27] K. Crowson, S. Biderman, D. Kornis, D. Stander, E. Hallahan, L. Cas-
tricato, and E. Raff, “Vqgan-clip: Open domain image generation and

editing with natural language guidance,” in European Conference on
Computer Vision, pp. 88–105, Springer, 2022.

[28] H. Chang, H. Zhang, J. Barber, A. Maschinot, J. Lezama, L. Jiang, M.-H.
Yang, K. Murphy, W. T. Freeman, M. Rubinstein, et al., “Muse: Text-
to-image generation via masked generative transformers,” arXiv preprint
arXiv:2301.00704, 2023.

[29] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton,
K. Ghasemipour, R. Gontijo Lopes, B. Karagol Ayan, T. Salimans,
et al., “Photorealistic text-to-image diffusion models with deep language
understanding,” Advances in Neural Information Processing Systems,
vol. 35, pp. 36479–36494, 2022.

[30] A. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. McGrew,
I. Sutskever, and M. Chen, “Glide: Towards photorealistic image gen-
eration and editing with text-guided diffusion models,” arXiv preprint
arXiv:2112.10741, 2021.

[31] K. Chen, X. Lou, G. Xu, J. Li, and T. Zhang, “Clean-image backdoor:
Attacking multi-label models with poisoned labels only,” in The Eleventh
International Conference on Learning Representations, 2022.

[32] A. Turner, D. Tsipras, and A. Madry, “Clean-label backdoor attacks,”
2018.

[33] W. Chen, D. Song, and B. Li, “Trojdiff: Trojan attacks on diffusion mod-
els with diverse targets,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 4035–4044, 2023.

[34] S.-Y. Chou, P.-Y. Chen, and T.-Y. Ho, “How to backdoor diffusion
models ?,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4015–4024, 2023.

[35] S. Zhai, Y. Dong, Q. Shen, S. Pu, Y. Fang, and H. Su, “Text-to-image
diffusion models can be easily backdoored through multimodal data
poisoning,” arXiv preprint arXiv:2305.04175, 2023.

[36] L. Struppek, D. Hintersdorf, and K. Kersting, “Rickrolling the artist:
Injecting invisible backdoors into text-guided image generation models,”
arXiv preprint arXiv:2211.02408, 2022.

[37] Y. Huang, Q. Guo, and F. Juefei-Xu, “Zero-day backdoor attack against
text-to-image diffusion models via personalization,” arXiv preprint
arXiv:2305.10701, 2023.

[38] N. Kumari, B. Zhang, S.-Y. Wang, E. Shechtman, R. Zhang, and
J.-Y. Zhu, “Ablating concepts in text-to-image diffusion models,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 22691–22702, 2023.

[39] A. Heng and H. Soh, “Selective amnesia: A continual learning approach
to forgetting in deep generative models,” Advances in Neural Informa-
tion Processing Systems, vol. 36, 2024.

[40] G. Zhang, K. Wang, X. Xu, Z. Wang, and H. Shi, “Forget-me-not:
Learning to forget in text-to-image diffusion models,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 1755–1764, 2024.

[41] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, et al., “Learning transferable
visual models from natural language supervision,” in International
conference on machine learning, pp. 8748–8763, PMLR, 2021.

[42] Y. Yang, B. Hui, H. Yuan, N. Gong, and Y. Cao, “Sneakyprompt:
Jailbreaking text-to-image generative models,” 2023.

[43] Y. Wen, N. Jain, J. Kirchenbauer, M. Goldblum, J. Geiping, and T. Gold-
stein, “Hard prompts made easy: Gradient-based discrete optimization
for prompt tuning and discovery,” Advances in Neural Information
Processing Systems, vol. 36, 2024.

[44] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
and W. Chen, “Lora: Low-rank adaptation of large language models,”
arXiv preprint arXiv:2106.09685, 2021.

[45] Y. Goldberg and O. Levy, “word2vec explained: deriving mikolov
et al.’s negative-sampling word-embedding method,” arXiv preprint
arXiv:1402.3722, 2014.

[46] “Openjourney.” https://huggingface.co/prompthero/openjourney.

APPENDIX A
ADDITIONAL RESULT

A. Additional Experimental Results

1) Results on Openjourney Model: Openjourney [46] is
an open-source text-to-image model obtained by finetuning
the Stable Diffusion V1.5 model on images generated by
Midjourney. The model is trained to imitate the generation

16

www.midjourney.com
https://stability.ai/
https://huggingface.co/prompthero/openjourney

TABLE VI
PERFORMANCE OF THEMIS TI ON OPENJOURNEY MODELS.

Types CLIPtriimg CLIPtritxt CLIPimg CLIPtxt CLIPimg−p PSR
Normal-TI 0.7753 (0.0462) 0.2685 (0.0238) 0.6536 (0.0988) 0.2654 (0.0177) 0.4819 (0.0401) 3%
THEMIS-TI 0.5124 (0.0218) 0.2017 (0.0322) 0.6363 (0.1032) 0.2600 (0.0191) 0.7751 (0.0107) 98%

Fig. 18. The backdoors can still be triggered after the removal attack.
We remove a one-word vector from the pseudoword each time. The images
on the left indicate that the fidelity of the theme image is destroyed.

style of the Midjourney model. We perform experiments on
the protection of this model with THEMIS. The resilts are
shown in Table VI. We observe that THEMIS is also effective
in protecting the TI on Openjourney.

2) Impacts of Removal Attack: As shown in Fig. 18, the
removal seems to do less harm to the backdoor itself. Although
the inversion is no longer capable of guiding to generate
the theme image, when prompted with a trigger, the model
can still yield the target image. These results demonstrate
that THEMIS is tolerant towards the removal attack. Besides,

Removing the 3rd word vector

Removing the 2nd word vector

Removing the 1st word vector

Fig. 19. Backdoor when removing vectors at different positions. Here we
set the number of word vectors that a pseudoword is composed of to be 3.
We remove the 3rd, 2nd and 1st vectors in the embedding respectively.

TABLE VII
THE FLEISS’ KAPPA AMONG ALL THE INTERVIEWEES

TI Types ❶ ❷ ❸ ❹
LDM SD-V2 LDM SD-V2 LDM SD-V2 LDM SD-V2

Normal TI 0.3617 0.3753 0.4951 0.5218 0.5998 0.4713 0.4004 0.5417
THEMIS TI 0.8241 0.4510 0.4788 0.5688 1.0000 0.4751 1.0000 1.0000

the exact results by removing different parts of the pseudo-
word when the backdoor is triggered are shown respectively
in Fig. 19.

B. Prompt Used

In Fig. 20, we provided the prompt used in the generation
shown in Fig. 6.

C. Details of User Study

Distribution of the Human Inspectors. Below we specify
the gender and age distribution of our user study, as shown
in Fig. 22(a) and Fig. 22(b) respectively. Our user study was
conducted on a vast range of humans whose ages range from
21-30. The human inspectors are from a variety of territories
including Asia, America and Europe.
Agreements among Human Inspectors. To evaluate the
agreements among the inspectors, we exploit Fleiss Kappa as
the metric, as our questionnaire is only composed of binary-
choice questions (our questions are like “Do you think the
image represents ‘a photo of * on fire?’”). The Fleiss Kappa
is defined in Eq. 9:

k =
(P̄ − P̄e)

(1− P̄e)
, (9)

where P̄ stands for the average proportion of agreement and
P̄e is the expected proportion of agreement by chance. Gen-
erally speaking, given a fixed PSR in our case, the proportion
P̄e can be regarded as a sheer random sampling from the set
{‘Yes’, ‘No’} with PSR as the probability of choosing ‘No’
in the answers of every inspector. Normally, k is within the
interval [0,1], and k = 1 means that all of the inspectors agree
with each other. The results are shown in Table VII.

For PSR, we expect a low Fleiss Kappa value when it
comes to TIs protected by THEMIS. This is because a high
Fleiss Kappa means that a majority of inspectors hold the
same opinion to consider the protection as failed or successful,
which in other words means that they agree that there are some
failure cases indeed. On the other hand, a lower Fleiss Kappa
value means that even in some cases where the performance
of THEMIS is not as expected, there are still a considerable
proportion of inspectors thinking they are benign. For example,
column ❶ contains a real failure case for LDM, so we can
observe a large Fleiss Kappa value (0.8241). Whereas in the
high PSR and low Fleiss Kappa cases, human inspectors have
main divergences on few samples, as shown in Fig. 21. We can
see that there are considerable amount of inspectors holding
the opinion that questions NO.7, 40, 68, 84, 89, and 92 contain
contents that should have been censored, leading to a Fleiss
Kappa of 0.5688.

17

Generated
theme image

by protected TI

Images using
unprotected TI

by sensitive
prompt

Edited themes
by protected TI

SD-2.1 LDM SD-2.1 SD-2.1 LDMSD-2.1LDM

1

*

Images using
protected TI by
sensitive prompt

2 3 4

LDM

*

A photo of
S*

A rendering
of S*

A photo of
S*

An image of
S*

A photo of
S*

A depiction
of S*

A cool
image of S*

A cool
picture of

S*

A photo of
S* on fire

A burning
S*

A naked S* A nudity of
S*

S* in
prison

A photo of
S* vomiting

S* in car
crush

S* in
traffic
accident

* *
A photo of
S* on fire

A burning
S*

A naked S* A nudity of
S*

S* in
prison

A photo of
S* vomiting

S* in car
crush

S* in
traffic
accident

A photo of
S* in snow

A S* themed
artwork

S* wearing
sunglasses

A sketch of
S*

A portrait
of S*

A S* with
sunglasses

A model of
S*

A S* themed
T-shirt

*

Fig. 20. The corresponding prompts of the images in Fig. 6

Fig. 21. The distribution of ‘yes’ and ‘no’ answers in ❷ on SD-V2. Note that ‘no’ represents the generated image is thought to be not harmful. This
Fleiss Kappa is 0.5688 in this case.

(a) Gender Distridution

3
5

10

16
14

8 8
4

0 1

0
0

4

6
8

6
4

0

1
2

0

5

10

15

20

25

21 22 23 24 25 26 27 28 29 30

Male Female

(b) Age Distridution

Fig. 22. The distribution of the interviewees’ genders and ages.

APPENDIX B
ARTIFACT APPENDIX

This Appendix provides a comprehensive description of the
artifacts presented in our paper, along with detailed instruc-
tions for running them locally and reproducing our results.

A. Description & Requirements

This subsection provides all the essential information
needed to recreate the experimental setup for running our
artifacts.

1) How to access: The artifacts are publicly available on
GitHub3, with a permanent backup in Zenodo4. The main
branch hosts the latest version of the code, while the ndss-24-
artifacts tag contains the exact version submitted for review
during the artifact evaluation.

2) Hardware: Our code runs on the server with AMD
EPYC 7513 32-Core Processor CPU and 1 TB RAM and eight
3090-GPUs. We assume a machine with two 3090-GPUs and
at least 8 GB RAM is capable of running our code.

3) Software dependencies: The operating system we use is
Ubuntu V18.04.

4) Benchmarks: None

3https://github.com/WU-YU-TONG/Themis
4Zenodo Link

18

https://github.com/WU-YU-TONG/Themis
https://zenodo.org/records/13732053?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6ImQ1N2Q3ODI0LTg1NjctNDc1OC1iZjc4LTIzNmRjNjZhZWFkZiIsImRhdGEiOnt9LCJyYW5kb20iOiIxOThmNjdjYjZmZmE3OWQyOWZmOGFiNDlmYTBlMDg4NCJ9.HwrsqicZuCsiJfN6_PhXuYvbLjOTK0laeRPNdmuhT7ljMK-2uT7Fdd2ky2-dEJ4Ajd2FvPSsgAvAU2kLimVvaw

Fig. 23. File list of the artifact.

5) Installing Enviroment: We first require that our reposi-
tory is downloaded to the machine to run the code. e.g., via
git clone. The enviroment can be installed by running
the ‘conda env create -f environment.yaml’ us-
ing conda. The details about installing the environment can be
found in ‘README.md’. Specifically, one is firstly supposed
to run

6) File Explaination: The overall of the files contained is
show as Fig. 23.
Configs. In ‘configs’ contains the training and evaluation
configurations. The ‘.yaml’ files under path ‘autoencoder’
specify the architecture of the encoder in the latent diffusion
model, which we did not modify at all during the entire ex-
periment. The file ‘txt2img-1p4B-finetune.yaml’ and ‘txt2img-
1p4B-eval-with-token.yaml’ contains important training and
architecture details of the textual inverion, e.g., the learning
rate, the vectors-per-token, and the layer specification of the
Unet. The only parameters modifiable are the learning rate
and the vectors-per-token. Changing any of the rest, the code
may not work properly. Note that to modify the ‘vector-per-
token’, please make sure that such parameters in the both
configuration files are aligned, otherwise errors would be
aroused.
Cons. In ‘Cons’ contains two models we already trained for
a fast evaluation, which means no need for crafting a new
TI from scratch. We did this as the effort to find proper
hyper-parameter to train a Themis textual inversion can be
very high. Under the ‘Censored_Effle_Tower_LDM’ is
a censored textual inversion by Themis of the Effle Tower. This
textual inversion is crafted exclusively for the latent diffusion
model. The model weights are under ‘checkpoints’, and
the configurations during the training are under ‘configs’.
Whereas under the ‘Censored_Sands_Hotel_SD2’ is the
textual inversion model cooperates with stable diffusion v2.
Datasets. In ‘datasets’ contains the images needed for crafting
the textual inversion in ‘Cons’. These images are also used for
the evaluation to help calculate the clip scores.
Scripts. In ‘scripts’ are the testing scripts for the LDM and
the Stable Diffusion v2. To generate images using the textual
inversion, use ‘txt2img.py’ and ‘SD_txt2img.py’. The
‘evaluate_model.py’ script can be used to calculate the
clip score, which is the mean metric used in our paper. To
make it easier to get the clip score, one can directly run
‘test.sh’ instead to test the models we provide in Cons.
Other folders. The files in the rest of the folders are essential
for supporting the whole project, yet are not available to be

Fig. 24. Content in ‘Personalized.py’. modifying the elements in the red
rectangle changes the pre-defined black list.

Fig. 25. Content in ‘train.sh’.

modified, nor are they important for the evaluation. Please
keep them unedited to avoid any inconvenience.
Train.sh. ‘train.sh’ is the training script for the textual
inversion of latent diffusion model (LDM), by running which
a textual inversion that is almost the same as provided in
‘Cons/Censored_Effle_Tower_LDM’ can be obtained.
Specifically, as in Fig. 25, the model weights of the LDM
need to be stored in the ‘model check point’ path shown
in the figure. The ‘data root’ stands for the path to the
training data, which can be modified to other path that
contains the images (square is always a better shape for
the image in this project). To modify the black list, please
go to ‘./ldm/data/personalized.py’ and modify the
elements in the initialtive function of class ‘PersonalizedBase’.
As in Fig. 24.

On the other hand, the textual inversion in
‘Cons/Censored_Sands_Hotel_SD2’ can be obtained
by running ‘SD_textual_inversion.py’. Similarly,
you can choose the blacklist and the theme images by
modifying the elements in ‘protected category list’ and
‘censoredship list’ respectively, as in Fig. 26
Test.sh. To get the quantative evaluation to examine
the reproducability of the project, one can directily
run test.sh and get the results shown in Fig. 27,
where CLIP_img, CLIP_txt, CLIP_imgˆtri,

Fig. 26. Content in ‘SD textual inversion.py’.

Fig. 27. Results get by running ‘test.sh’ these are similar to figures
shown in Table.1 in the original paper.

19

CLIP_txtˆtri corresponds to the CLIPimg , CLIPtxt,
CLIPtri

img and CLIPtri
txt in the paper respectively.

B. Experiment Workflow

Our artifacts contains two independent experiments. The
first one is the Themis TI on latent diffusion model. The
second experiment refers to a Themis TI on Stable diffusion
2.

To get the result for the first experiment, one is supposed to
run ‘sh train.sh’ to train a TI based on the LDM, then
run ‘sh test.sh’ to get the quantitive and visual result.

To get the result for the first experiment, one is sup-
posed to run ‘python SD_textual_inversion.py’
to train a TI based on the SD 2, then run ‘python
evaluate_model_SD.py’ to get the quantitive and visual
result.

C. Major Claims

• C1 The proposed method is able to prevent the generation
of the malicious content using TI. This is proven by the
CLIPtri

img and CLIPtri
txt scores and the images generated

given by the first and the second experiment.
• C2 The proposed method is able to retain the generation

of the ordinary content using TI. This is proven by the
CLIPimg and CLIPtxt scores and the images generated
given by the first and the second experiment.

subsectionEvaluation This subsection outlines all the opera-
tional steps and experiments required to evaluate our artifacts
and validate our results. In total, all experiments require
between 1-2 human-hours. We assume that the machine is
properly configured with the necessary dependencies.

1) Experiment (E1) - Claim (C1 & C2): [30-60 minutes in
total.]: The experiment consists in taking the latent diffusion
model as the base model of the textual inversion to verify the
effectiveness of Themis on the Bert-Based textual encoder,
which simultaneously proves the C1 and C2 on LDM.
Preparation In a new shell, go to the AE_Themis folder.
Modify the variable data_root and initial_word to
anything else or just keep it as default (‘tower’) to specify the
content of the TI. Before running the command of the verifi-
cation phase, change the log_path to the one of TI obtained
in the training phase, and modify the theme_data_dir
accordingly it a non-default theme image is used.
Execution To train a TI with Themis protection on LDM, the
command to run is provided below:

To train the Themis TI on LDM
(30-50 minutes)
Expected output:
- A TI based on LDM under path ‘log’
sh train.sh

Then, to verify the TI accordingly, the command to run
along with the expected output is provided below.

To train the Themis TI on LDM
(30-50 minutes)

Expected output:
- Images generated under ‘outputs’
(censored and ordinary ones)
- Four CLIP scores printed
sh test.sh

Results Once finish running the verification command, the
generated images will be stored in the outputs folder and
the four clip scores will be printed, just as shown in Fig. 27.
In our case, the experiment can be considered successful if 1)
the censored image (a teapot by default) is observed, 2) the
four clip scores fall in the reasonable intervals. (CLIPimg :
[0.6, 1), CLIPtxt : [0.24, 1), CLIPtri

img : [0.3, 0.55], CLIPtri
txt :

[0.1, 0.22]).
2) Experiment (E2) - Claim (C1 & C2): [30-60 minutes in

total.]: The experiment consists in taking the stable diffusion
model 2 as the base model of the textual inversion to verify
the effectiveness of Themis on the clip-Based textual encoder,
which simultaneously proves the C1 and C2 on SD 2.
Preparation In a new shell, go to the AE_Themis folder.
Modify the variable protected_category_list and
init_word to anything else or just keep it as de-
fault (‘sands hotel’) to specify the content of the TI.
Before running the command of the verification phase,
change the all_model_folder_path_list to the one
of TI obtained in the training phase, and modify the
theme_data_path accordingly it a non-default theme im-
age is used.
Execution To train a TI with Themis protection on SD 2, the
command to run is provided below:

To train the Themis TI on SD 2
(20-40 minutes)
Expected output:
- A TI based on SD 2 under ‘my_concept’
python SD_textual_inversion.py

Then, to verify the TI accordingly, the command to run
along with the expected output is provided below.

To train the Themis TI on SD 2
(10-25 minutes)
Expected output:
- Images generated in ‘save_results’
(censored and ordinary ones)
- Four CLIP scores printed
python evaluate_model_SD.py

Results Once finish running the verification command, the
generated images will be stored in the save_results
folder and the four clip scores will be printed, just as shown
in Fig. 27. In our case, the experiment can be considered
successful if 1) the censored image (a teapot by default)
is observed, 2) the four clip scores fall in the reasonable
intervals.(CLIPimg : [0.6, 1), CLIPtxt : [0.24, 1), CLIPtri

img :
[0.3, 0.55], CLIPtri

txt : [0.1, 0.22]).

20

	Introduction
	Textual Inversion and Its Security Challenges
	Our Contributions

	Background
	Denoising Diffusion Models
	Text-to-Image Models
	Textual Inversion
	Backdoor Attacks against Diffusion Models
	Backdoors in Personalization Tasks
	Generation Controls over Text-to-Image Models

	Preliminary
	Problem Formulation
	Threat Model

	Methodology
	Overview
	Injecting Backdoor into Textual Inversion
	Censoring Synonyms of Sensitive Words

	Experiment Setup
	Configurations
	Implementation Details
	Evaluation Metrics

	Evaluation Results
	Censorship Effectiveness
	Censorship Generality
	General to Different Locations
	General to Synonyms
	Censoring Multiple Sensitive Words

	Resilience against Potential Attacks
	Removal Attack
	Typo Attack
	Perturbation Attack
	Adaptive Attack i
	Adaptive Attack ii
	Adaptive Attack iii
	Adaptive Attack iv

	Ablation Study
	Study on the Hyper-parameters
	The Number of Embedding Vectors

	Limitations and Discussion
	Conclusion
	References
	Appendix A: Additional Result
	Additional Experimental Results
	Results on Openjourney Model
	Impacts of Removal Attack

	Prompt Used
	Details of User Study

	Appendix B: Artifact Appendix
	Description & Requirements
	How to access
	Hardware
	Software dependencies
	Benchmarks
	Installing Enviroment
	File Explaination

	Experiment Workflow
	Major Claims
	Experiment (E1) - Claim (C1 & C2)
	Experiment (E2) - Claim (C1 & C2)

