
URVFL: Undetectable Data Reconstruction Attack
on Vertical Federated Learning

Duanyi Yao∗, Songze Li†‡, Xueluan Gong§, Sizai Hou∗, Gaoning Pan¶

∗ The Hong Kong University of Science and Technology
† Southeast University

‡ Engineering Research Center of Blockchain Application, Supervision and Management (Southeast University),
Ministry of Education

§ Wuhan University
¶ Hangzhou Dianzi University

Abstract—Vertical Federated Learning (VFL) is a collaborative
learning paradigm designed for scenarios where multiple clients
share disjoint features of the same set of data samples. Albeit a
wide range of applications, VFL is faced with privacy leakage
from data reconstruction attacks. These attacks generally fall
into two categories: honest-but-curious (HBC), where adversaries
steal data while adhering to the protocol; and malicious attacks,
where adversaries breach the training protocol for significant
data leakage. While most research has focused on HBC scenarios,
the exploration of malicious attacks remains limited.

Launching effective malicious attacks in VFL presents unique
challenges: 1) Firstly, given the distributed nature of clients’ data
features and models, each client rigorously guards its privacy
and prohibits direct querying, complicating any attempts to steal
data; 2) Existing malicious attacks alter the underlying VFL
training task, and are hence easily detected by comparing the
received gradients with the ones received in honest training. To
overcome these challenges, we develop URVFL, a novel attack
strategy that evades current detection mechanisms. The key idea
is to integrate a discriminator with auxiliary classifier that takes a
full advantage of the label information and generates malicious
gradients to the victim clients: on one hand, label information
helps to better characterize embeddings of samples from distinct
classes, yielding an improved reconstruction performance; on the
other hand, computing malicious gradients with label information
better mimics the honest training, making the malicious gradients
indistinguishable from the honest ones, and the attack much
more stealthy. Our comprehensive experiments demonstrate that
URVFL significantly outperforms existing attacks, and successfully
circumvents SOTA detection methods for malicious attacks.
Additional ablation studies and evaluations on defenses further
underscore the robustness and effectiveness of URVFL. Our code
will be available at https://github.com/duanyiyao/URVFL.

I. INTODUCTION

Federated learning (FL) is an emerging privacy-preserving
collaborative learning paradigm, which allows multiple dis-

tributed clients to securely train a model without sharing private
data [46]. FL can be categorized into horizontal FL (HFL) and
vertical FL (VFL) [24]. In HFL, different clients possess distinct
sets of training samples, yet all samples share the same feature
space. In contrast, VFL is applicable to scenarios where clients
have the same sample identifiers but possess disjoint feature
spaces, e.g., an finance company may hold investment records
for a set of customers, while a bank may have the expenditure
details for the same set of customers. Due to its capability
to integrate diverse data sources, VFL is increasingly gaining
attention and has been applied in various fields, including
finance [3], healthcare [29], and recommendation systems [45].

In VFL [3], [8], [22], [23], [35], [41], [44], an active
client holds both labels and partial features, while multiple
passive clients hold disjoint features for the same samples. VFL
typically employs a split learning framework [2], [19], [35],
[36], and utilizes separate models to process these disjoint
features. Specifically, a split VFL system comprises one top
model and several bottom models: each passive client operates
a bottom model, whereas the active client manages both a
bottom model and a top model (see Figure 1). During the
training phase, for each batch of training samples, all passive
and active clients compute embeddings using their respective
bottom models; these embeddings are then transmitted to the
active client, who outputs the predictions with the top model
and computes the loss from the labels. Following this, the
gradients for embeddings are sent back to all clients to update
their bottom models.
Data reconstruction attacks on VFL: While VFL empha-
sizes privacy by sharing embeddings instead of raw data,
emerging data reconstruction attacks have revealed potential
vulnerabilities that could lead to privacy leakage within VFL
models. Such attacks are categorized into honest-but-curious
(HBC) and malicious attacks. HBC adversaries stealthily extract
private features while adhering to the training protocol, whereas
malicious adversaries actively manipulate or violate the protocol
to steal private features. Notable methods like GRNA [25]
and GIA [18] focus on HBC scenarios. In GRNA, under the

Network and Distributedx System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.240046
www.ndss-symposium.org

ID f1 f2 f3

1

2

…

ID f4 f5 f6

1

2

…

ID f7 f8

1

2

…

ID Label

1 1

2 7

… …

Bottom model 1 Bottom model 3Bottom model 2

Top model

Cross entropy

Active client Passive client Passive client

Fig. 1: Illustration of a VFL system with one active client and
two passive clients. The area enclosed by the red dashed lines
contains the information accessible to and the actions taken by
the active client. In a data reconstruction attack, the malicious
active client intends to recover the private features of the target
passive clients.

assumption that the adversary can query the passive clients’
models, target features could be inferred by training a generative
regression network to learn correlations between target features
and the adversary’s partial features, thus enabling generation of
target features. GIA [18], presupposing the adversary can inject
adversarial features to the target clients, employs optimization
techniques to reconstruct the target features. A malicious data
reconstruction attack in VFL, called AGN, is developed in [38],
where the adversary transmits malicious gradients to passive
clients to induce more significant feature leakage.

A class of closely related attacks have also been developed
for split learning (SL), which can be viewed as a special case of
VFL. In SL, there is a clear division of roles where an active
client, holding a top model and labels, but without partial
features, collaborates with a single passive client who manages
a bottom model and all data samples with complete features.
In HBC scenario, attacks like PCAT [12] and SDAR [50] use
the top model to train a shadow model on an auxiliary dataset,
which is subsequently used to train a decoder for data recon-
struction. In the malicious scenario, FSHA [27] manipulates
the training objective, generating malicious gradients to achieve
more accurate data reconstruction.
Challenges of existing data reconstruction attacks on VFL:
While malicious attacks could be more detrimental to privacy
leakage in VFL, research works on malicious attacks remains
limited. We identify two primary challenges to launch effective
malicious attacks: 1) Distributed features and limited model
access. The heterogeneous nature of feature sources across
distributed clients, together with the lack of access to passive
clients’ local models, makes it difficult for the adversary to
infer target features using its own partial features; 2) Powerful

detections. Existing malicious attacks, such as FSHA and AGN,
replace the honest training task with a malicious task, causing
the gradients returned to passive clients to appear different
from those in honest training, which renders these attacks easily
detectable. SOTA detection strategies for malicious attacks, e.g.,
SplitGuard [6] and Gradient Scrutinizer [10], monitor incoming
gradients to identify potential attacks and significantly diminish
the success of malicious data reconstruction attacks.
Our attack URVFL: In response to these challenges, we
investigate whether a malicious attacker in VFL can circumvent
detection measures to maintain effective data reconstruction.
We answer this question affirmatively, by developing a novel
undetectable data reconstruction attack on VFL (referred to
as URVFL). URVFL begins with the adversary pretraining
an encoder, a decoder, and its bottom model to achieve high
reconstruction performance on an auxiliary data. Following
this, the adversary freezes the encoder and bottom model, and
trains a discriminator with auxiliary classifier (DAC) [16] that
integrates labels information to generate malicious gradients
transmitted to passive clients. These malicious gradients can
transfer embeddings distribution from the encoder to passive
clients’ models. In data reconstruction phase, the trained
decoder is leveraged to reconstruct target features from the
target clients, as these passive clients’ models are meticulously
guided to mimic the encoder by DAC.

To address challenge 1, URVFL captures correlations
between the adversary’s partial features and the target features
without direct queries or data injections, using DAC to generate
malicious gradients that indirectly guide the passive clients’
model to leak feature information. To handle challenge 2, we
use DAC to incorporate label information into the computation
of the malicious loss function, generating malicious gradients
almost indistinguishable from the gradients received in honest
training, which helps URVFL to effectively circumvent current
detection strategies. Additionally, these label information helps
to better transfer the embedding distribution from the encoder
to the passive clients’ models compared with a traditional
discriminator, and provide extra information for achieving
a smaller reconstruction error. As a result, over extensive
empirical evaluations, URVFL is shown to achieve better
reconstruction performance than SOTA attacks, and successfully
circumvents all existing detections against malicious attacks.
Further ablation studies and evaluations against defense strate-
gies underscore the robustness and effectiveness of URVFL.

In summary, this paper makes the following main contribu-
tions:

1) We introduce URVFL, a novel undetectable data reconstruc-
tion attack on VFL, designed to bypass existing detection
measures against malicious attacks and effectively steal
private features.

2) We develop a DAC as part of URVFL, which:
• Significantly enhances the effectiveness of embedding

distribution transfer and overall attack performance.
• Generates malicious gradients that are indistinguishable

from those produced during honest training.

2

3) We conduct rigorous evaluations of URVFL using five
representative datasets, demonstrating that it:
• Circumvents SOTA detection strategies against malicious

data reconstruction.
• Outperforms SOTA data reconstruction attacks on VFL,

both with and without detection mechanisms in place.
• Achieves high-quality reconstruction despite defense

methods designed for both malicious and HBC attacks
in VFL.

II. BACKGROUND AND RELATED WORKS

In this section, we review SOTA data reconstruction attacks
on VFL, and existing detection and defense mechanisms for
these attacks.

A. Data reconstruction attacks on VFL

Although VFL safeguards feature privacy by exchanging
embeddings and intermediate gradients instead of raw features,
recent research has revealed its vulnerability to data recon-
struction attacks that can lead to private feature leakage. In
HBC setting, the attacks described in [25] and [47] assume
that an HBC adversary can query the passive clients’ bottom
model. During the inference phase, the adversary covertly
trains a generative model that is fed random vectors and partial
data features available to the adversary, thereby producing
synthetic inputs. By minimizing the discrepancy of the bottom
models’ output between synthetic inputs and target features,
the generative model is trained to approximate these features
accurately. While the adversary in [25] can access the gradients
of the target bottom model directly, the adversary in [47]
employs zeroth-order optimization to estimate these gradients,
thereby bypassing the need for direct gradient access.

The approach in [18], GIA, operates under a black-box
scenario where the adversarial active client lacks direct access
to the passive clients’ bottom model. Despite this limitation,
the adversary can strategically insert a batch of auxiliary data
features into the datasets of the passive clients and subsequently
collect the resulting output embeddings. The adversary then
trains a shadow model using the collected auxiliary features
and embeddings pairs. After training, the adversary optimizes
noise to closely approximate the target features by querying
this shadow model. It is essential to emphasize that these attack
methodologies, while effective in reconstructing private data,
depend on the adversary having either direct access to the
passive clients’ models or the capability to inject data into
these clients.

In malicious setting, the attack method, AGN [38], utilizes
a generator to create fake target features from passive clients’
embeddings. These fake features are then evaluated by a
discriminator, which distinguishes between real and fake
features to generate malicious gradients. These gradients are
sent back to the passive clients, aiming to train embeddings
that facilitate the reconstruction of target features. Despite the
innovative approach of AGN, our evaluations in the section of
experiments reveal that the data reconstructed by this method

is relatively coarse and remains susceptible to existing defense
mechanisms.
Data reconstruction attacks on split learning. A parallel
strand of privacy attacks on SL is adaptable to VFL with certain
modifications. Unlike VFL which involves multiple clients, SL
typically includes only one passive client and an active client
managing the bottom and top models, respectively, which can
be viewed as a special case of VFL.

For HBC settings, He et al. pioneer privacy attacks on SL
in [14], exploring various levels of adversarial knowledge. In a
black-box scenario, where the adversary lacks the knowledge
of the bottom model but can make queries, an inverse model is
used to reconstruct private features. In scenarios without query
capabilities, the adversary utilizes a shadow model trained with
auxiliary data under the guidance of the top model. Similar
with GIA, the shadow model is then used to reconstruct target
features through optimization. Unsplit [7] presents a scenario
where the adversary knows the bottom model’s structure
but lacks auxiliary data. This method involves optimizing
synthetic features and the shadow model concurrently to reduce
disparities between real and synthetic features’ embeddings.
PCAT [12] depicts an adversary with access to a batch of
auxiliary data but unaware of the bottom model’s structure
and parameters. The strategy involves covertly training a
shadow model with the auxiliary data, guided by the top
model in each training round. Then an inverse model is trained
on the shadow model for data reconstruction. SDAR [50],
assuming knowledge of the bottom model’s architecture, utilizes
auxiliary data and adversarial regularization to train both a
shadow model and its inverse model. SDAR employs two
discriminators for adversarial regularization: one differentiates
between the embeddings of synthetic and genuine features,
while the other identifies the data’s origin, whether it comes
from the inverse model or the auxiliary data. For malicious
setting, the attack method, FSHA [27], replaces the top model
with a discriminator for aligning the bottom model with a local
encoder. Concurrently, an decoder trained on the encoder can
apply to reconstruct target features.

B. Defenses and detections against data reconstruction attacks

Defenses: As data leakage risks in VFL escalate, a variety
of defensive strategies have been developed to defend data
reconstruction attacks. These defenses, particularly against
both HBC and malicious adversary, can be broadly classified
into cryptographic methods, perturbation-based methods, and
adversarial training methods. Cryptographic strategies include
homomorphic encryption (HE) [9], [13], [43], secret sharing
(SS) [17], [22], and hashing [30]. Employed to protect the
privacy of individual embeddings in VFL, these methods,
while effective, often lead to significant computation and
communication overheads. Perturbation methods involve adding
noise to embeddings to disturb potential reconstruction attacks,
as detailed in [3], [15], [39]. Another variation treats noise
as trainable parameters, aiming at minimizing privacy leakage
without significant degradation of model performance, as
explored in [26]. While these methods can mitigate data

3

reconstruction attacks, they might reduce model accuracy
significantly. Adversarial training techniques, as discussed
in [33], [37], train models in such a way that embeddings
are less likely to leak raw features information. Although these
methods are effective at reducing features leakage, they increase
the computational burden and may affect the pefromance of
the intended learning tasks.
Detections against malicious attacks: As malicious attacks
such as FSHA and AGN substitute the intended training
task, causing significant private features leakage, recent ad-
vancements in detection methods, notably SplitGuard [6] and
Gradient Scrutinizer [10], have been developed to specifically
address these types of attacks. SplitGuard operates by requiring
passive clients to intermittently replace labels in a batch with
randomized labels, referred to as fake batches, during training.
The idea behind SplitGuard is that if the top model is genuinely
engaged in learning the intended task, the angles and distances
between the gradients from fake and regular batches will
differ significantly from those between two regular batches.
Consequently, passive clients can detect anomalies by analyzing
these differences in gradients. Unlike SplitGuard, Gradient
Scrutinizer does not necessitate changes to labels. It operates
by collecting and analyzing received batch gradients with
identical and differing labels during each training round. The
key finding is that during honest training, the gradient distances
for embeddings with the different label should be greater than
those for embeddings with same labels. By comparing these
gradient distances, Gradient Scrutinizer can effectively detect
deviations from honest training patterns, indicating potential
attacks.
Differences between defenses and detections: While defenses
are designed to significantly mitigate the privacy leakage by
manipulating the embeddings, i.e., the embeddings are modified
to preserve its representation ability as well as the privacy, the
detection methods will not change the learning process of
embeddings and only observe the variations of exchanged
information to detect an attack. Specifically, current detections
for data reconstruction attack analyze the difference of gradients
between the honest and malicious training to detect the attack.
Once there is an attack, the victims can stop the training process
to prevent further privacy leakage.

III. PROBLEM DESCRIPTION

A. VFL protocol

In a VFL system, N passive clients collaborate with an active
client to train and utilize a VFL model. Each passive client,
denoted as n ∈ [N], operates a bottom model fn(·). The active
client manages a top model f0(·) and a bottom model fa(·). The
training data Dtrain := (x j)

M
j=1 is vertically partitioned among

N +1 clients. For each sample j ∈ [M], the active client holds
both partial features x j,a and the label y j; while each passive
client n, n ∈ [N], possesses a disjoint portion of the features
x j,n.

In the training phase, for a selected batch B, each pas-
sive client n computes the corresponding embeddings h j,n =
fn(x j,n), j ∈B, and sends them to the active client. The active

client processes its partial features to produce embeddings
h j,a = fa(x j,a), j ∈ B. Upon concatenating all batch embed-
dings, h j = [h j,a,h j,1, . . . ,h j,N], the active client completes
forward propagation through the top model. Loss is computed
as L= 1

|B| ∑ j∈B l(f0(h j),y j), for some loss function (e.g., cross
entropy) l(a,b) between prediction a and label b. Gradients
on the embeddings are sent back to each client for updating
their respective bottom models. This process iterates until all
models converge.

In the inference phase, when the prediction on a test sample
is requested, each client computes an embedding using its
bottom model and sends it to the active client. The active
client aggregates these embeddings and uses the top model
to predict the label. This approach ensures that data privacy
is maintained by sharing only the embeddings rather than the
raw features, and also enhances computational efficiency by
leveraging the split learning mechanism.

B. Threat model

Adversary’s capability and knowledge. In our threat model,
the active client is treated as a malicious adversary capable of
deviating from the standard VFL training protocol. Specifically,
this adversary can alter the training task and transmits malicious
gradients to other clients, e.g., alter the classification task to a
reconstruction task. As the active client, the adversary controls a
top model f0(·), and accesses partial data features x j,a, j ∈ [M],
along with a bottom model fa(·) (see Figure 1).

Additionally, the adversary possesses an auxiliary dataset,
Daux := (xi,yi)

Maux
i=1 , which shares a similar distribution with the

training data but remains distinct from it, i.e., Daux∩Dtrain = /0.
Each sample in the auxiliary dataset contains the complete set
of features and the corresponding label. This assumption is
congruent with previous attacks against SL [12], [27], [50]
and presents a more realistic capability compared to those
models that assume direct querying of passive clients’ bottom
models. In practice, adversaries often have access to subsets or
samples of target data, which are used for validation or other
purposes [32]. In some cases, training data may also include
a mix of public and private datasets [34], [49], which makes
this assumption more practical.
Goal and metric. The primary objective of the adversary is
to reconstruct target clients’ data features, denoted as X t =
(x j,n)n∈TN , j∈TX , where TN is the set of target clients with size
|TN | ≤ N, and TX is the set of target samples. We denote the
reconstructed features as X̃ t , and use the mean squared error
(MSE) between X t and X̃ t over target samples as the metric
to measure the effectiveness of the attack.

IV. CHALLENGES

In this section, we point out the main challenges to achieve
effective and stealthy data reconstruction attack on VFL. We
also review the current attacks’ limitations.
Challenge 1: distributed features and limited model access.
VFL involves multiple clients each holding a unique subset
of data features and a bottom model. This dispersed and
heterogeneous environment raises challenges for the adversary,

4

to use its own partial features to effectively reconstruct
target features from various sources. Additionally, given the
distributed nature of bottom models across multiple clients,
each guarding its data privacy, any attempt at querying or
data injection would trigger an alarm for potential privacy
breach and thus, is typically prohibited. This inaccessibility of
passive clients’ models complicates the adversary’s strategy to
manipulate them for data leakage.
Challenge 2: powerful detection strategies. Malicious data
reconstruction attacks are prone to detection by sophisticated
mechanisms such as SplitGuard and Gradient Scrutinizer. One
major reason is that current malicious attacks, e.g. AGN and
FSHA, alter the honest training task, i.e., replace the honest
training loss function with malicious loss function, and thus
affecting the transmitted gradients. While such detections are
highly sensitive to deviations in training behavior, as they
typically monitor gradient flows for anomalies that could
indicate malicious activities. To make the attack more stealthy,
a natural solution is to integrate the honest training task
(e.g., classification) into the malicious task. To evaluate the
efficacy of this solution, we employed SplitGuard as a detection
mechanism to test against modified malicious attack strategies
AGN and FSHA on MNIST dataset, where the training loss
is the summation of classifcation loss and the malicious loss.
As depicted in Figure 2, the detection scores for both attacks,
even with the modified loss, remained below the threshold of
0.9, yielding successful detection. This outcome suggests that
simply combining loss functions is insufficient to circumvent
current detections.

0 100 200 300 400 500
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Sp
lit

Gu
ar

d
De

te
ct

io
n

Sc
or

e

AGN
AGN+Classification
FSHA
FSHA+Classification
Honest
Detection threshold

Fig. 2: Comparison of Splitguard scores for two malicious
attacks, and their variants with modified loss functions.

Existing HBC data reconstruction attacks on VFL operates
under strong, often unrealistic assumptions about adversary’s
capabilities, such as the ability to query the target model or
inject data directly into target clients, which are impractical in
real-world scenarios. Malicious attacks like FSHA and AGN
completely ignore the label information in their designs, which
is the root cause of their detectability, and incorporating the
labels into attack designs can potentially further improve the
reconstruction performance.

The above challenges steer us toward a compelling research
question: ”Under a practical adversary model, can we develop
a malicious data reconstruction attack in VFL that successfully
circumvents current detection mechanisms while achieving su-
perior reconstruction performance?” We affirmatively answer
this question by developing a novel attack strategy URVFL,
which addresses all highlighted challenges.

V. METHODOLOGY OF URVFL

In this section, we introduce our URVFL strategy. As
illustrated in Figure 3, URVFL consists of the following three
steps.
1) Pretraining: Before initiating VFL training, the adversary

sets up three local models consisting of an encoder, a
decoder, and a Discriminator with Auxiliary Classifier
(DAC). The pretraining step involves the concurrent training
of these models. This step is critical for minimizing
reconstruction loss and effectively preparing the models
for the subsequent steps of the attack.

2) Malicious gradient generation: With the onset of VFL
training, the adversary freezes the encoder to preserve
its learned embeddings and replaces the conventional
top model with the DAC. The DAC is instrumental in
transferring the embedding distribution from the encoder
into the target model and integrating label information
through classification processes. This integration ensures
that the malicious training is indistinguishable from honest
training, enhancing the stealthiness of the attack. Utilizing
the malicious loss computed through DAC, the adversary
meticulously crafts malicious gradients. These gradients
are then dispatched to the target clients to manipulate
their models, mimicking the embedding distribution of the
encoder.

3) Data reconstruction: In the data reconstruction phase,
the adversary leverages the decoder to reconstruct private
features of target clients, from embeddings uploaded by
passive clients and adversary’s local embedding.

A. Setup

We first denote a target model fp(·) := (fn(·))n∈[N] as the
collection of the bottom models of all passive clients. In
the setup phase, the adversary prepares the following three
networks in replacement of the original top model:
1) Encoder (fe(·)): The encoder fe(·) is designed to mimic

the functionality of the target model fp(·). The dimensions
of the encoder are carefully aligned with those of fp(·),
such that its input dimension equals to the total number of
features on the passive clients, and its output dimension
equals to the sum of output dimensions of all passive clients’
the bottom models.

2) Decoder (fd(·)): The decoder is tailored to reconstruct
the target clients’ data features. It accepts concatenated
embeddings as input and outputs data features of the target
clients.

3) Discriminator with Auxiliary Classifier (DAC) (D(·)) : The
DAC is engineered to classify and discriminate between real

5

𝑓𝑎(⋅)𝑓𝑒(⋅)

𝑓𝑑(⋅)

Decoder

𝑓𝑝(⋅)𝑓𝑒(⋅)

Adversary bottom modelEncoder

Auxiliary data

𝐷(⋅)

Training dataAuxiliary data

0 1 2 3

0 1 2 3

Fake labels

Real labels

∇𝑝

𝑓𝑝(⋅) 𝑓𝑎(⋅)

Target model

𝑓𝑑(⋅)

Step 1: Pretraining Step 2: Malicious gradient generation Step 3: Data reconstruction

DAC

Real

Encoder

Fake

Target model

Training or test data

Adversary bottom model

Decoderℒ𝑀

Fig. 3: Workflow of URVFL. The opaque rectangle indicates that the model is being trained, while the transparent rectangle
represents that the model is frozen and only utilized in forward propagation.

labels y+ and fake labels y−, aiding in the validation of the
embeddings’ authenticity and malicious gradient generation.

Additionally, the adversary maintains a bottom model fa(·).
This model processes the partial data features available to the
adversary, capturing their correlations with the target features.

B. Pretraining

Prior to commencing VFL training, the adversary constructs
an encoder-decoder structure consisting of the adversary’s
bottom model fa(·), the encoder fe(·), and the decoder fd(·).
This setup is pretrained on the auxiliary dataset Daux. The
objective of this pretraining phase is threefold: to train the
decoder to reconstruct target features, to enable the adversary’s
bottom model to learn the relationship between target and
adversary’s partial features, and to allow the encoder to capture
the representation of passive clients’ features for effective
reconstruction.

In each iteration of training, the adversary selects a batch
of auxiliary data, denoted as Baux. This batch is partitioned
into two subsets: the adversary’s features xi,a and the passive
features xi,p, i ∈ Baux, which are fed into fa(·) and fe(·),
respectively. The resulting embeddings, hi,a = fa(xi,a) and
hi,p = fe(xi,p), i∈Baux are concatenated to form hi =(hi,a∥hi,p).
These concatenated embeddings are then forwarded to the
decoder, which produces synthetic target features x̃i,t = fd(hi).
The primary objective of the adversary is to minimize the
reconstruction loss, which is computed as follows:

LR =
1
|Baux| ∑

i∈Baux

MSE(x̃i,t ,xi,t). (1)

The pretraining process is detailed in Algorithm 1, where
the function Gradient(L,θ) computes the gradients of the
loss L with respect to parameters θ ; and the function
Model update(f (·),∇θ) represents the operation of updating
the model f (·) using gradients ∇θ .

Algorithm 1: Pretraining procedure.

Data: Auxiliary dataset Daux = {xi,a,xi,p}Maux
i=1 .

Initialization: Encoder fe(·), decoder fd(·), adversary’s
bottom model fa(·).

while fe(·), fd(·), and fa(·) not converge do
The adversary select a batch Baux from Daux;
Compute hi,a = fa(xi,a), i ∈Baux, and

hi,p = fe(xi,p), i ∈Baux;
Compute x̃i,t = fd([hi,a∥hi,p]), i ∈Baux;
LR← 1

|Baux| ∑i∈Baux MSE(x̃i,t ,xi,t);
∇e← Gradient(LR, fe(·));
∇a← Gradient(LR, fa(·));
∇d ← Gradient(LR, fd(·));
fe(·)←Model update(fe(·),∇e);
fa(·)←Model update(fa(·),∇a);
fd(·)←Model update(fd(·),∇d);

end

C. Malicious gradient generation

After the pretraining, the adversary intends to transfer the
embeddings distribution from the encoder fe(·) to the target
model fp(·). Since the adversary lacks direct access to modify
fp(·), they resort to transmitting malicious gradients to the
passive clients, which are designed to guide fp(·) to mimic
the behavior of fe(·). In this sequel, for ease of exposition, we
describe all operations with fp(·), which means that the same
operation is simultaneously performed on the bottom models
of all passive clients.

An intuitive solution involves employing a discriminator to
distinguish between embeddings from the encoder (labeled as
real) and those produced by the target model (labeled as fake).
The target model is then trained to deceive the discriminator
into recognizing its embeddings as real, thus aligning its
distribution with that of the encoder. This strategy focuses

6

on minimizing the Jensen–Shannon divergence (JS) [11]
between the distributions of the embeddings from the auxiliary
and training data, i.e., JS(PHaux∥PHtrain), which facilitates the
transfer of embeddings distribution.

However, a primary concern is that the discriminator ap-
proach completely ignores the label information available at
the adversary, which may lead to 1) sub-optimal reconstruction
performance; and 2) detection by methods that can tell the
difference between gradients computed using and without using
labels. To address these issues, we employ DAC, D(·), defined
in (2), which not only differentiates between real and fake
embeddings but also distinguishes the corresponding labels.

min
D

Eh,y∼PHaux ,Y
CE(y+,D(h))+Eh,y∼PHtrain ,Y

CE(y−,D(h)).
(2)

Here, PHaux,Y and PHtrain,Y represent the joint distributions of
embeddings and labels from the auxiliary and training datasets,
respectively. The labels y+ and y− denote real and fake label
y, respectively, and CE(·) represents the cross-entropy loss.

To align the target model’s feature embeddings more closely
with the encoder’s embedding, the adversary modifies the
honest training task into an adversarial task:

min
h

Eh,y∼PHtrain ,Y
CE(y+,D(h)). (3)

Incorporating DAC with this adversarial task minimizes the
Kullback–Leibler (KL) divergence between PHaux,Y and PHtrain,Y ,
i.e., KL(PHaux,Y∥PHtrain,Y). This integration ensures that the
adversarial task remains indistinguishable from the honest
training task. The correlation of generated gradients with
labels not only reduces the detectability, but also enhances
the effectiveness of the embedding distribution transfer and
thus the reconstruction performance.
Comparison between discriminator and DAC: We carry
out empirical studies on the distribution transfer capabilities
of discriminator and the DAC, via experiments on the Credit
dataset with 2 labels, and the MNIST dataset with 10 labels.
We use t-distributed stochastic neighbor embedding (t-SNE)
to visualize the embedding distributions, and quantify the
alignment of the target model’s embeddings with those of
the encoder by measuring the average cosine distance between
them.

The results, illustrated in Figure 4 and 5, indicate a superior
performance of the DAC in distribution transfer over discrim-
inator. The t-SNE visualizations reveal that the embeddings’
distribution of the target model more closely resembles that
of the encoder when the DAC is employed. Furthermore, a
smaller average cosine distance between the embeddings of
the target model and the encoder is observed when using the
DAC.
Malicious gradient generation using DAC: During each
training round, both the adversary and other clients select a
batch of training data, denoted as Btrain. Upon receiving the
embeddings h j,p, j ∈Btrain from passive clients, the adversary
computes the malicious loss defined by:

LM =
1

|Btrain| ∑
j∈Btrain

CE
(

y+j ,D(h j,p)
)
. (4)

The adversary then calculates the gradient ∂LM
∂h j,p

and transmits
it back to the passive clients to guide their bottom (target)
models’ learning processes. On the other hand, the adversary
selects a batch from the auxiliary data Baux and computes
the embeddings hi,p = fe(xi,p), i ∈Baux. These embeddings are
used to compute the DAC loss:

LD =
1

|Btrain| ∑
j∈Btrain

CE(y−j ,D(h j,p))

+
1
|Baux| ∑

i∈Baux

CE(y+i ,D(hi,p)).

(5)

Minimizing LD helps the DAC to better differentiate between
real and fake embeddings associated with their labels, thereby
refining its ability to guide the learning process of the target
model while staying undetected. The detailed steps of malicious
gradient generation are given in Algorithm 2.

Algorithm 2: Malicious gradient generation.

Data: Auxiliary dataset Daux = {xi,a,xi,p}Maux
i=1 and

training dataset Dtrain = {x j,a,x j,p}M
j=1.

Initialization: Encoder fe(·), DAC D(·), and target
model fp(·).

Adversary Procedure:
while VFL training do

All clients agree a batch data Btrain from Dtrain;
Receive and record passive clients’ embeddings
h j,p, j ∈Btrain;

Compute the loss
LM = 1

|Btrain| ∑ j∈Btrain CE(y+j ,D(h j,p));
∇p←Gradient(LM,h j,p, j ∈Btrain);
Send ∇p to the passive clients;
The adversary select a batch of data Baux from

Daux;
Compute hi,p = fe(xi,p), i ∈Baux;
Compute the DAC loss LD in (5);
∇D← Gradient(LD,D(·));
D(·)←Model update(D(·),∇D);

end
Passive Clients Procedure:
while VFL training do

All clients agree a batch data Btrain from Dtrain;
Compute embeddings h j,p = fp(x j,p), j ∈Btrain and
send embeddings to the active client;

Receive gradient ∇p;
fp(·)←Model update(fp(·),∇p);

end

An alternative synchronous training strategy: URVFL sync.
We also consider a variant of URVFL, named URVFL sync,
that replaces the pretraining with synchronous training of
all models when generating malicious gradients. Specifically,
during each training round, the adversary selects a batch
of auxiliary data, Baux. The models fa(·), fd(·) and fe(·)
are trained on Baux to minimize the reconstruction loss LR
in (1). Upon receiving the embeddings h j,p, j ∈ Btrain from

7

80 60 40 20 0 20 40 60 80
t-SNE 1

80

60

40

20

0

20

40

60

80
t-S

NE
 2

0
1

(a) Encoder’s embedding
distribution.

80 60 40 20 0 20 40 60
t-SNE 1

80

60

40

20

0

20

40

60

80

t-S
NE

 2

0
1

(b) Target model’s embedding
distribution using discriminator.

Average cosine distance is 0.6121.

80 60 40 20 0 20 40 60 80
t-SNE 1

75

50

25

0

25

50

75

t-S
NE

 2

0
1

(c) Target model’s embedding
distribution using DAC. Average

cosine distance is 0.1373.

Fig. 4: t-SNE visualization on Credit dataset with 2 classes.

75 50 25 0 25 50 75 100
t-SNE 1

80

60

40

20

0

20

40

60

80

t-S
NE

 2

0
1
2
3
4
5
6
7
8
9

(a) Encoder’s embedding
distribution.

80 60 40 20 0 20 40 60
t-SNE 1

100

75

50

25

0

25

50

75

100

t-S
NE

 2

0
1
2
3
4
5
6
7
8
9

(b) Target model’s embedding
distribution using discriminator.

Average cosine distance is 0.0412.

75 50 25 0 25 50 75
t-SNE 1

80

60

40

20

0

20

40

60

80

t-S
NE

 2

0
1
2
3
4
5
6
7
8
9

(c) Target model’s embedding
distribution using DAC. Average

cosine distance is 0.0283.

Fig. 5: t-SNE visualization on MNIST dataset with 10 classes.

the passive clients, the adversary calculates the gradients ∂LM
∂h j,p

by minimizing the malicious loss LM in (4), and transmits
these gradients back to the passive clients. Following this,
the adversary computes the embedding hi,p, i ∈Baux using the
updated encoder to calculate the DAC loss LD in (5), and
finally updates D(·). This process is repeated until all models
reach convergence. The detailed steps of URVFL sync, as
outlined in Algorithm 3, are shown in Appendix A. Subsequent
sections will demonstrate that URVFL sync exhibits better
reconstruction performance on certain datasets.

D. Data reconstruction

Having maliciously guided the training of the target model
fp(·) to mimic the encoder fe(·), the adversary leverages
the trained decoder fd(·), alongside its bottom model fa(·)
to perform data reconstruction. For a target sample x (from
training or test set) with adversary’s partial features xa and
passive clients’ features xp, the adversary can reconstruct the
private target features x̃t = fd(fa(xa)∥ fp(xp)).

VI. EXPERIMENTS

A. Experiment setup

Datasets and data processing: We conduct experiments
across five representative datasets for VFL tasks, including two
tabular datasets (i.e., Credit [48] and RT IOT2022 [31]) and
three image datasets (i.e., MNIST [4], CIFAR-10 [20], and
Tiny imagenet [21]). Each dataset is partitioned into auxiliary,
training, and test sets. For MNIST and CIFAR-10, we use
the standard test sets provided. For the Credit dataset, we
randomly allocate 30% of the samples to the test set, and
for RT IOT2022 and Tiny imagenet, 20% of the samples are
selected as the test set. The auxiliary set, chosen randomly
from the original training set, comprises 10% of the training set
size in all main experiments, ensuring |Daux| : |Dtrain|= 1 : 10
and Daux∩Dtrain = /0. For image dataset, we normalize the data
features to the range [-1,1]. For tabular dataset, most features
are continuous or integer. We encode the categorical feature
in Credit dataset using sklearn [28] and normalize all features
with StandardScaler. Data features are evenly split between
passive (target) and active clients, with each holding 50% of
the features.

8

TABLE I: Results of data reconstruction attacks on tabular datasets. Attack methods followed by SG or GS represent
implementations under SG or GS detections. URVFL and URVFL sync achieve the same performance with and without
detections. Some entries are missing due to 1) some attacks do not use encoders for data reconstruction, and hence do not have
embedding MSE and cosine distance; and 2) the GS defense does not work with Credit dataset.

Method Credit RT IOT2022

Recon MSE Emb MSE Emb Cos Recon
MSE

Emb
MSE

Emb
Cos

GRNA 1.1822±0.0541 - - 2.2542±0.0325 - -
GIA 0.9056±0.0002 0.2738±0.0008 0.4681±0.0215 1.8535±0.0012 1.7276±0.2356 0.4491±0.0371
AGN 0.9656±0.1196 - - 2.2311±0.1256 - -
AGN-SG 1.4155±0.1734 - - 2.3967±0.2628 - -
AGN-GS - - - 2.5670±0.2909 - -
PCAT 0.8612±0.0984 0.5282±0.0467 0.5486±0.0197 2.2963±0.4388 1.5646±0.2488 0.3742±0.0195
SDAR 0.5327±0.0374 0.5451±0.1645 0.3103±0.0931 1.6084±0.1604 2.9362±1.3356 0.2281±0.1689
FSHA 0.5032±0.0382 0.3906±0.0622 0.2234±0.0564 1.5773±0.0507 2.2990±0.6506 0.4859±0.0984
FSHA-SG 0.7884±0.1139 0.6056±0.0704 0.5640±0.0369 1.6895±0.0419 2.7922±1.0491 0.5909±0.0745
FSHA-GS - - - 1.7442±0.0784 2.5768±0.2169 0.5534±0.1453
URVFL (SG/GS) 0.4191±0.0541 0.3078±0.0778 0.1658±0.0551 1.3821±0.0244 1.7894±0.7435 0.0549±0.0113
URVFL sync (SG/GS) 0.4722±0.0228 0.3720±0.0462 0.2277±0.0441 1.3277±0.0665 2.3372±0.5489 0.0938±0.0340

Models: The adversary’s encoder fe(·) is configured identically
to the passive clients’ bottom model fp(·) across all datasets.
The structure of the adversary’s bottom model fa(·) mirrors that
of fp(·). For tabular data, we employ multi-layer perceptron
(MLP) models for fe(·), fa(·), fp(·), the decoder fd(·), and
the DAC D(·). For image data, convolutional neural networks
(CNNs) serve as the foundational architecture, with the CIFAR-
10 and Tiny imagenet models featuring a residual block
composed of three CNN layers and a skip connection. Detailed
dataset information, model structures, and training parameters
are provided in the Appendix B.
Metrics: We measure the reconstruction performance using av-
erage MSE between the reconstructed features and the original
features, denoted as Recon MSE. Besides, to comprehensively
measure the reconstruction performance on image datasets, we
also leverage PSNR and SSIM as the metrics. To analyze the
effectiveness of DAC compared to other embedding distribution
transfer techniques (e.g., using discriminator or the top model),
we measure both the average MSE and the cosine distance
between the encoder’s (or shadow model’s) embeddings and
the target model’s embeddings, denoted as Emb MSE and Emb
Cos, respectively. Before computing the cosine distance, all
embeddings are normalized.
Environment: All experiments are conducted on a single
machine equipped with four NVIDIA RTX 4090 GPUs. Each
experiment is repeated five times, with the average results
reported.

B. Baselines and detections

To evaluate the efficacy of our methods, we compare with
three prominent data reconstruction strategies in VFL, as well
as adaptations of attacks from SL. For HBC settings in VFL,
we select GRNA and GIA, and for the malicious setting, we
consider AGN. Additionally, we adapt three SL strategies for
VFL: HBC attacks PCAT and SDAR, and the malicious attack
FSHA.
GRNA: The adversary uses a generator model to create
synthetic features. These synthetic features are then used to
query the target model to update the generator, which minimizes

the distance between the predictions made from synthetic
features and those from real features.
GIA: This approach involves training a shadow model to
emulate the target model’s behavior. Then the adversary feeds
random noise into the trained shadow model and optimizes
noise to reduce the distance between the noise embeddings
and real data embeddings.
AGN: AGN discards the top model and instead uses a generator
to produce synthetic data from the adversary’s features and
aggregated embeddings. Concurrently, a discriminator works to
differentiate between the generator’s output and genuine data
samples.
PCAT: PCAT uses the top model to guide a shadow model,
which simulates the behavior of the target model. A decoder is
trained on the shadow model to reconstruct the target features.
SDAR: SDAR builds on PCAT by adding two discriminators
that evaluate both the embeddings from the shadow model and
the reconstructed features.
FSHA: In FSHA, an embedding discriminator replaces the top
model. Besides, a shadow model and a decoder are trained to
reconstruct target features.

We also implement SOTA detection methods, SplitGuard
(SG) and Gradient Scrutinizer (GS) on malicious attacks, to
assess reconstruction performance under these defenses.
SplitGuard (SG): Analyzes gradients from fake and regular
batches to compute a detection score after each round of
fake batches. Following the original method, the target client
calculates an average score from the last 10 records; if it falls
below a threshold of 0.9, an attack is detected, and updates to
the bottom model are halted.
Gradient Scrutinizer (GS): Evaluates the detection score of
received gradients in each round to identify potential attacks.
Due to instability in detection scores leading to frequent
misjudgments, we adopt an average score strategy to improve
reliability and set the threshold to 0.8 in our experiments.
Similarly, when the average detection score falls below the
detection threshold, an attack is detected and the bottom model
update stop.

9

TABLE II: Results of data reconstruction on image datasets. Attack methods followed by SG or GS represent implementations
under SG or GS detections. URVFL and URVFL sync achieve the same performance with and without defenses. Some entries
are missing since these attacks do not use encoders for data reconstruction, and hence, there is no embedding distance.

Method MNIST CIFAR-10 Tiny imagenet

Recon
MSE

Emb
MSE

Emb
Cos

Recon
MSE

Emb
MSE

Emb
Cos

Recon
MSE

Emb
MSE

Emb
Cos

GRNA 0.5533±0.0919 - - 0.3287±0.0061 - - 0.3869±0.0103 - -
GIA 0.9125±0.0056 0.0179±0.0018 0.2772±0.0431 0.2550±0.0004 1.4011±0.1849 0.3957±0.0535 0.3234±0.0009 1.8109±0.1039 0.3936±0.0068
AGN 0.4801±0.0027 - - 0.4413±0.0385 - - 0.3786±0.0190 - -
AGN-SG 0.5131±0.0014 - - 0.5154±0.0776 - - 1.2398±0.0102 - -
AGN-GS 0.7073±0.0813 - - 0.5901±0.0620 - - 1.9577±0.2531 - -
PCAT 0.2446±0.1312 0.0282±0.0016 0.3484±0.0299 0.3843±0.0123 2.4672±0.3024 0.5544±0.0023 0.3063±0.0249 2.7853±0.0521 0.5526±0.0025
SDAR 0.0839±0.0751 0.1638±0.1850 0.3142±0.1699 0.3067±0.0618 0.5230±0.6965 1.2196±0.4831 0.1363±0.0293 2.1344±0.1174 0.4692±0.0281
FSHA 0.0536±0.0118 0.0168±0.0100 0.0909±0.0157 0.0317±0.0065 0.4657±0.1286 0.1610±0.0285 0.1025±0.0084 1.4897±0.2210 0.3056±0.0203
FSHA-SG 0.5158±0.2511 0.0621±0.0095 0.2956±0.0691 0.1765±0.0390 2.1634±0.1310 0.4282±0.0480 0.3110±0.1202 2.8927±0.3759 0.4904±0.0519
FSHA-GS 0.2829±0.1374 0.1446±0.0260 0.3077±0.0402 0.1312±0.0150 1.5940±0.0684 0.3133±0.0230 0.4797±0.2383 3.0416±0.4313 0.5200±0.0423
URVFL
(SG/GS) 0.0132±0.0027 0.0045±0.0009 0.0287±0.0029 0.0302±0.0011 0.5679±0.0834 0.1303±0.0131 0.0699±0.0055 1.4316±0.6673 0.2139±0.0195

URVFL sync
(SG/GS) 0.0127±0.0011 0.0040±0.0006 0.0341±0.0022 0.0176±0.0139 0.2793±0.1868 0.0675±0.0549 0.0704±0.0011 1.1441±0.0058 0.2434±0.0077

TABLE III: Results of data reconstruction measured by PSNR and SSIM on image datasets. Attack methods followed by SG or
GS represent implementations under SG or GS detections. URVFL and URVFL sync achieve the same performance with and
without defenses. ↑ denotes that the larger the value, the better the performance.

Method MNIST CIFAR-10 Tiny imagenet

PSNR↑ SSIM ↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

GRNA 8.8317±0.0005 0.1467±0.0001 11.3939±0.0074 0.0019±0.0001 7.3986±0.5618 0.0045±0.0001
GIA 6.4411±0.0006 0.0029±0.0001 11.9625±0.0001 0.0018±0.0001 10.9342±0.0002 0.0010±0.0000
AGN 9.2787±0.2651 0.1400±0.0033 10.4527±0.1293 0.0150±0.0001 10.2442±0.0487 0.0150±0.0001
AGN-SG 8.9643±0.1067 0.0499±0.0015 9.0854±1.0272 0.0156±0.0001 3.4810±0.0000 0.0006±0.0256
AGN-GS 7.8738±0.6595 0.0746±0.0027 7.7755±0.9967 0.0142±0.0001 3.7093±0.4056 0.0034±0.0001
PCAT 14.0504±0.4956 0.4506±0.0177 11.9012±1.6192 0.0727±0.0053 11.3199±0.1573 0.0160±0.0001
SDAR 17.8807±0.6992 0.7093±0.0017 14.9388±2.3774 0.2525±0.0121 14.7862±0.9083 0.1318±0.0017
FSHA 22.7711±2.2248 0.8901±0.0006 19.7955±2.2895 0.5312±0.0298 15.9321±0.1248 0.2205±0.0003
FSHA-SG 10.4247±1.6129 0.1928±0.0176 13.2670±0.5318 0.1294±0.0006 12.6357±0.7394 0.0395±0.0002
FSHA-GS 11.1577±4.5247 0.2151±0.0137 15.1751±0.5590 0.3083±0.0053 12.4729±1.9752 0.0577±0.0001
URVFL(GS/SG) 25.1349±1.2354 0.9385±0.0002 21.0666±0.0165 0.5927±0.0002 17.6107±0.0992 0.3023±0.0001
URVFL sync(GS/SG) 25.2919±0.1369 0.9324±0.0002 26.2360±0.0030 0.8125±0.0001 17.5381±0.0029 0.3053±0.0001

In our experimental results (Table I, II, and III), we append
the GS or SG to the names of baseline methods to indicate
their evaluation under detection mechanisms, SG or GS.

C. Data reconstruction results
Overview: As shown in Table I, II, and III, for all datasets, our
proposed URVFL and URVFL sync consistently outperform
all other approaches in achieving the lowest reconstruction
errors and embedding cosine distance. Our methods also
achieve the best reconstruction performance measured by PSNR
and SSIM compared with other baselines in image datasets.
This underscores the effectiveness of our techniques and the
advantage of embedding distribution transfer using DAC. For
the Tiny imagenet, URVFL sync achieves a reconstruction
error of 0.0699, PSNR 17.5381, SSIM 0.3053, and cosine
distance of 0.2139, significantly outperforming FSHA, which
has a reconstruction error of 0.1025, PSNR 15.9321, SSIM
0.2205, and cosine distance of 0.3056.

Our methods demonstrate robustness against detection mech-
anisms, maintaining consistent performance and circumventing
both detection methods malicious attacks, i.e., URVFL and
URVFL sync is not detected by SG and GS. In sharp contrast,
the performance of AGN and FSHA become worse when

faced with the detections, and even completely failed under
some circumstances. Specifically, AGN’s reconstruction error
increases dramatically from 0.3786 to 1.9577, and FSHA’s
from 0.1025 to 0.4797 for the Tiny imagenet dataset. This
demonstrates the stealthiness and adaptability of URVFL and
URVFL sync compared to other methods.

An observation from the results is that a smaller em-
bedding MSE distance does not guarantee a more accurate
reconstruction or a more similar embedding distribution, as
evidenced by GIA in the Credit dataset and PCAT in the
RT IOT2022 dataset, which has the smallest embedding MSE
distance but significantly higher cosine embedding distance
and reconstruction error compared to our methods. While
minimizing the embedding MSE distance helps reconstruction,
it does not guarantee a more similar embedding distribution,
as metrics like cosine distance better capture the similarity
between distributions. Generally, the decoder is trained to
reconstruct data from the embedding distribution. Therefore,
even if our methods have a higher embedding MSE distance,
as long as the target model generates a similar embedding
distribution, the decoder can still work effectively.

Additionally, a smaller embedding cosine distance does

10

not necessarily correspond to a lower reconstruction error in
URVFL and URVFL sync. For example, for the MNIST and
RT IOT2022 dataset, while URVFL sync achieves a lower
reconstruction error than URVFL, it exhibits a slightly higher
embedding cosine distance. This can be attributed to the
synchronous training of all model components in URVFL sync,
which promotes dynamic learning and results in model diversity.
Despite the higher average embedding distance, the decoder
in URVFL sync is more effective at reconstructing features,
effectively compensating for the increased cosine distance.

We do not record AGN-GS and FSHA-GS in the Credit
dataset. It is because GS doesn’t work in the Credit dataset,
which can also be observed in Figure 6j, caused by the limited
data features (23 features) and imbalanced label distribution
(77% label 0 and 23% label 1).
Visualization of the reconstruction: Table IV visualizes the
reconstruction performance of the proposed URVFL, alongside
the malicious attack baselines, AGN and FSHA, for the CIFAR-
10 dataset. We also report the visualization result of Tiny
imagenet in Table XI in Appendix C. The results clearly
demonstrate that URVFL produces more accurate and distinct
reconstructions compared to the baselines. While AGN and
FSHA yield coarser results, URVFL maintains high-quality
reconstruction even under SG detection. In contrast, both FSHA
and AGN struggle to reconstruct informative pixels effectively
when faced with detection mechanism SG.
SG and GS detection results: Figure 6 illustrates the detection
scores for URVFL and URVFL sync, which consistently
exceed the detection thresholds, aligning indistinguishably
with honest training scenarios. Although in the CIFAR-10
and Tiny imagenet dataset, URVFL’s detection score is lower
than the threshold at the beginning, its average score remains
above the threshold, ensuring stealthiness against target clients.
In contrast, malicious attack baselines, AGN and FSHA,
consistently maintain scores below the detection thresholds of
SG and GS in the MNIST and CIFAR-10 datasets, rendering
them detectable.

In the RT IOT2022 and Credit datasets under defense SG,
AGN sporadically surpasses the threshold, yet its average
detection score falls below the threshold, leading passive clients
to detect an attack promptly. FSHA’s SG scores remain below
the threshold throughout, making it easily detectable. Under GS,
FSHA exceeds the threshold at the beginning but is ultimately
detected in the RT IOT2022 dataset. In the Credit dataset, as
previously noted, GS is ineffective due to imbalanced labels
and limited features.
Embedding distances across attack iterations: Figure 7
visualizes the changes in embedding distance during the attack
for our methods compared to FSHA on the CIFAR-10 dataset.
The figure clearly demonstrates that our methods steadily
reduce the embedding distance throughout the attack, resulting
in lower overall embedding distances and effectively aligning
the embedding distribution with the target model. In contrast,
FSHA exhibits less stability, despite also showing a decreasing
trend in embedding distance.

Furthermore, we observe that the SG score for a single

iteration of our methods falls below the threshold within the
first 10 iterations in Fig. 6, whereas FSHA remains below the
threshold throughout the entire training process, leading to the
detection of the attack. This difference may be attributed to
the more drastic changes in embedding distance during our
training process. As illustrated in Figure 7, our methods cause
rapid changes in embedding distance initially, which then slow
down, while FSHA maintains a more consistent fluctuations
in embedding distance throughout the attack.

D. Ablation Study

This section explores the robustness of URVFL and
URVFL sync (abbreviated as sync) by evaluating their perfor-
mance under various parameter settings. These settings include
changes in the adversary’s feature size, use of heterogeneous
encoder models, variations in auxiliary dataset size, and
differences in the number of target clients. Except for the
variables specifically altered for this study, the model setups
and implementation environment remain consistent with those
described in the main experiments.

1) Effect of adversary’s feature size: To explore how the size
of the feature set held by the adversary affects the reconstruction
performance of URVFL and sync, we conduct experiments
targeting the reconstruction of 30% of the features while
varying the proportion of features held by the adversary from
0% to 70%. At 0% feature possession, the scenario reduces
to split learning where no features or bottom model are held
by the adversary. These experiments are performed on the
Credit and RT IOT2022 (abbreviated as IOT) datasets, with
the results summarized in Figure 8.

Consistent with our expectations, increasing the proportion
of features held by the adversary leads to less reconstruction
error. As illustrated in Figure 8, the reconstruction error in the
Credit dataset using URVFL decreases from 0.8315 to 0.5189
as the feature possession increases from 0% to 70%. This trend
is observed for both datasets and methods.

2) Effect of encoder’s complexity: In our main experiments,
the encoder mirrors the target model’s structure. However, when
the adversary lacks precise knowledge about the target model’s
configuration, discrepancies between the encoder and the
target model’s structures can affect the transfer of embedding
distributions and, consequently, the overall reconstruction
performance. To evaluate the impact of varying encoder
complexities, we conduct experiments on the CIFAR-10 dataset,
where the target model comprises 3 residual blocks. We test
the following encoder configurations to assess their effect on
performance. MLP Model: Comprises 3 linear layers, with
input and output dimensions matching those of the target model;
1-Res Model: Utilizes a single residual block. 5-Res Model:
Extends to 5 residual blocks, increasing complexity. We test the
reconstruction error and measure both the embeddings MSE
and cosine distances for each encoder configuration.

Table V clearly illustrates that the adversary achieves the
lowest reconstruction error and the smallest embedding cosine
distance when using an encoder the same as the target model,
as observed for both URVFL and sync. This optimal alignment

11

TABLE IV: Visualization of reconstructed features on the CIFAR-10 dataset with and without the detection SG. Except for the
original image, the right side of each image is the reconstructed image. The last column is the average reconstruction error.

Original MSE

Without
defense

AGN 0.3868

FSHA 0.0479

DMAVFL 0.0307

With
defense

AGN 0.6536

FSHA 0.5136

DMAVFL 0.0307

TABLE V: Reconstruction error and average embeddings
distance using different encoder’s model.

Encoder Metric URVFL sync

MLP
Recon MSE 0.2545 0.2362
Emb MSE dis 7.7767 3.9726
Emb Cos dis 0.6337 0.6081

1-Res
Recon MSE 0.0561 0.0434
Emb MSE dis 0.3175 0.3059
Emb Cos dis 0.1632 0.1450

3-Res
(Same)

Recon MSE 0.0302 0.0176
Emb MSE dis 0.5679 0.2793
Emb Cos dis 0.1303 0.0675

5-Res
Recon MSE 0.0313 0.0366
Emb MSE dis 0.8771 0.7071
Emb Cos dis 0.1081 0.1112

underscores the importance of model congruence in enhancing
the effectiveness of embedding distribution transfer and data
reconstruction. Conversely, when the encoder structure deviates
from that of the target model, specifically when switching from

a CNN to an MLP, the reconstruction performance significantly
deteriorates, with reconstruction error increasing by an order
of magnitude (from 0.0302 to 0.2545). This dramatic drop
highlights the challenges of using less compatible models for
data reconstruction attack. Moreover, the results indicate that
a complex encoder, featuring a higher number of residual
blocks, outperforms a simpler encoder configuration. The
complex encoder not only enhances the decoder’s ability
to reconstruct the data accurately but also learns a more
informative embedding. This suggests that increasing the
encoder’s complexity, when the target model is unknown, can
lead to better performance in both embedding distribution
transfer and data reconstruction.

3) Effect of auxiliary dataset: In the main experiments, we
set the size of the adversary’s auxiliary dataset, |Daux|, relative
to the training set size, |Dtrain|, at a ratio of 1 : 10. To explore the
impact of varying auxiliary dataset sizes, we adjust the ratio of
|Daux| : |Dtrain| from 0 : 10 to 1 : 1 in the MNIST and CIFAR10
dataset. Specifically, at a ratio of 0:10, the auxiliary dataset of

12

0 100 200 300 400 500
Steps

0.0

0.2

0.4

0.6

0.8

1.0
SG

 D
et

ec
tio

n
Sc

or
e

AGN
FSHA
URVFL
URVFL_sync
Honest
Detection threshold

(a) SG scores in MNIST.

0 100 200 300 400 500
Steps

0.0

0.2

0.4

0.6

0.8

1.0

(b) SG scores in CIFAR-10.

0 100 200 300 400 500
Steps

0.0

0.2

0.4

0.6

0.8

1.0

(c) SG scores in Tiny.

0 100 200 300 400 500
Steps

0.0

0.2

0.4

0.6

0.8

1.0

(d) SG scores in IOT.

0 100 200 300 400 500
Steps

0.0

0.2

0.4

0.6

0.8

1.0

(e) SG scores in Credit.

50 200 350 500 650 800 950
Steps

0.0

0.2

0.4

0.6

0.8

1.0

GS
 D

et
ec

tio
n

sc
or

e

(f) GS scores in MNIST.

50 200 350 500 650 800 950
Steps

0.0

0.2

0.4

0.6

0.8

1.0

(g) GS scores in CIFAR-10.

50 200 350 500 650 800 950
Steps

0.0

0.2

0.4

0.6

0.8

1.0

(h) GS scores in Tiny.

50 150 250 350 450 550
Steps

0.0

0.2

0.4

0.6

0.8

1.0

(i) GS scores in IOT.

50 150 250 350 450 550
Steps

0.0

0.2

0.4

0.6

0.8

1.0

(j) GS scores in Credit.

Fig. 6: Detection scores of SG and GS on malicious attacks and the honest training across four datasets. We abbreviate Tiny
imagenet dataset to Tiny and RT IOT2022 dataset to IOT.

0 1000 2000 3000 4000 5000
Iteration

0

1

2

3

4

5

Di
st

an
ce

Embedding MSE distance acorss iterations
FSHA
URVFL
URVFL_sync

0 1000 2000 3000 4000 5000
Iteration

0.1

0.2

0.3

0.4

0.5

0.6

Di
st

an
ce

Embedding cosine distance acorss iterations
FSHA
URVFL
URVFL_sync

Fig. 7: Embedding MSE and cosine distances across attack
iterations using FSHA, URVFL, and URVFL sync.

0 10 20 50 70
Feature portion (%)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Re
co

ns
tru

ct
io

n
er

ro
r

Credit - URVFL
Credit - sync
IOT - URVFL
IOT - sync

Fig. 8: Reconstruction error un-
der various adversary’s feature
portions.

0:10 1:20 1:10 1:5 1:2 1:1
|Daux| : |Dtrain| ratio

10 1

Re
co

ns
tru

ct
io

n
er

ro
r

MNIST - URVFL
MNIST - sync
CIFAR-10 - URVFL
 CIFAR-10 - sync

Fig. 9: Reconstruction error
for different |Daux| relative to
|Dtrain|.

MNIST and CIFAR-10 comprise the FashionMNIST [42] and
the downsampled Tiny imagenet, respectively, introducing a
distinct distribution from the training set. This setup aims to
test the adaptability of the reconstruction process to changes
in the auxiliary dataset’s distribution.

From Figure 9 we can see that significant data leakage can
occur, even in the absence of auxiliary data with the same
distribution of the training set (i.e., with out-of-distribution
auxiliary data). This observation is highlighted by a recon-
struction error of 0.1076∼0.2311, when the adversary uses
FashionMNIST data to reconstruct images from MNIST, and
0.1696∼0.1906 when the adversary uses Tiny imagenet data
to reconstruct images from CIFAR-10. We also observe that
for both URVFL and sync, the reconstruction error decreases
quickly as |Daux| becomes relatively larger. However, after
the ratio of |Daux| : |Dtrain| reaches 1:10, increasing auxiliary
dataset size results in minor improvements in reconstruction

error. This suggests that there is a threshold beyond which
additional auxiliary data does not substantially improve the
model’s ability to reconstruct target features, pointing to a
diminishing return on the utility of expanding the auxiliary set.

4) Effect of the number of target clients: Our proposed
methods, URVFL and sync, are designed to handle scenarios
involving multiple target clients. To assess the impact of varying
the number of target clients on data reconstruction performance,
we conduct experiments on the IOT dataset with the number
of target clients ranging from 1 to 5. Consistent with the
setup in the main experiments, 50% of the features are equally
distributed among the target clients.

TABLE VI: Reconstruction errors for different numbers of
target clients.

of target clients 1 2 3 4 5

URVFL 1.3821 1.5801 1.5986 1.6718 1.9820
sync 1.3277 1.6447 1.7597 1.8660 2.2635

The results presented in Table VI indicate that an increase
in the number of target clients, each sharing a smaller portion
of the features, leads to diminished reconstruction performance.
Specifically, the reconstruction error increases from 1.3821
with a single target client to 1.9820 when there are five target
clients. This degradation in performance can be attributed to
the distribution of features among more clients, each employing
a separate bottom model to learn their respective features. This
setup tends to cause the loss of crucial feature correlation
information during the learning process. Moreover, as the
encoder is trained on the complete set of features and is hence
able to capture more feature correlations, the increased disparity
between the encoder and the target models’ understanding of
the feature correlation further exacerbates the challenge of
accurate data reconstruction.

13

VII. EVALUATIONS ON DEFENSES

While URVFL is designed and demonstrated to penetrate
detection-based methods of SplitGuard and Gradient Scrutinizer,
we also evaluate its effectiveness against general defensive
methods for privacy protection in VFL and SL. Note that unlike
SplitGuard and Gradient Scrutinizer, these methods essentially
introduce perturbations to the communicated embeddings or
gradients, severely degrading the performance of honest train-
ing. Specifically, we consider three such defenses: Nopeek [37],
obfuscation with random noise [15], and differential privacy
(DP) [1], [5], [40].
Nopeek Defense. Nopeek is a method for minimizing distance
correlation, widely implemented in both VFL and SL to prevent
privacy leakage. It operates by minimizing the correlation
between embeddings and the original features to reduce
information leakage. During VFL training, passive clients
incorporate the Nopeek loss into their training loss, defined as:

LN =
1

|Btrain| ∑
j∈Btrain

(α ·DCOR(x j,n, fn(x j,n))

+(1−α) ·TASK(y j, fn(x j,n)),

(6)

where DCOR represents the distance correlation metric, TASK
denotes the VFL training loss, and α is a hyper-parameter
balancing training and defense.

We challenge Nopeek by deploying URVFL and sync against
it with varying α values from 0.1 to 1.0 on the MNIST dataset.
The results in Table VII show that when α < 0.9, Nopeek
fails to thwart our attacks. As α approaches 0.9 and beyond,
Nopeek begins to impede the attack effectiveness. Notably,
even at α = 0.95, URVFL still achieves a small reconstruction
error of 0.0280. Setting α = 1.0 effectively defends the attack.
However, this completely replaces the original VFL task with
minimizing the DCOR loss, which results in an accuracy of
merely 69.03%.

TABLE VII: Reconstruction error against Nopeek.

α 0 0.2 0.4 0.6 0.8 0.9 0.95 1.0

URVFL 0.0132 0.0151 0.0122 0.0138 0.0116 0.0171 0.0280 0.4759
sync 0.0127 0.0143 0.0122 0.0113 0.0135 0.0156 0.0403 0.4462
Honest Acc(%) 99.11 97.82 98.28 98.04 97.90 95.03 94.72 69.03

Obfuscation with random noise. Perturbation methods, such
as adding noise to transmitted embeddings, are commonly
employed in ML to safeguard privacy. Following the approach
outlined in [15], we introduce noise with standard deviations
σ ranging from 0.2 to 0.8 into the embeddings sent by target
clients. This defense is tested against URVFL and sync on the
MNIST dataset, and the results are reported in Table VIII. The
results suggest that higher noise levels more effectively impede
the attacks. This defense is more effective for sync, as its DAC
learns a dynamic distribution of the encoding embedding during
training, and is more susceptible to fluctuations caused by noise.
Nonetheless, our attacks manage to reconstruct informative
features even under significant noise, for instance, URVFL
achieving a reconstruction error of 0.0472 at σ = 0.7. It is also

important to note that adding larger noise adversely affects the
honest training accuracy.

TABLE VIII: Reconstruction error against obfuscation.

σ 0 0.1 0.3 0.5 0.7

URVFL 0.0132 0.0214 0.0252 0.0351 0.0472
sync 0.0127 0.0161 0.0301 0.0497 0.0752
Honest Acc(%) 99.11 98.34 97.65 94.84 94.00

Differential privacy (DP). DP provides a mathematical
framework for quantifying privacy guarantees for ML models.
In our attacks, as the gradients returned from the active client
may be maliciously generated, we propose to apply ε-DP
mechanism, which involves adding Laplacian noise to received
gradients, to disrupt the malicious training. We test varying
levels of privacy by adjusting the parameter ε from 0.1 to 10,
where a smaller ε implies stronger privacy due to higher noise
levels. The average reconstruction errors of URVFL and sync
on MNIST are shown in Table IX, indicating that DP is most
effective at an ε of 0.1, successfully impeding our proposed
attacks. However, as ε increases, its defensive effectiveness
decreases. At ε = 10, the noise assists the attack, potentially
by making the model updates more robust, thereby facilitating
the embedding distribution transfer. It’s important to note that
while DP helps to protect privacy, it also hurts the accuracy of
honest training.

TABLE IX: Reconstruction error against DP. ε = +∞ corre-
sponds to the scenario without DP.

ε 0.1 0.5 1 2 5 10 +∞

URVFL 0.3134 0.0773 0.0443 0.0210 0.0210 0.0122 0.0132
sync 0.3178 0.1253 0.0507 0.0468 0.0172 0.0110 0.0127
Honest Acc(%) 87.75 90.00 94.97 95.90 96.72 97.36 99.11

VIII. POTENTIAL DETECTION OF OUR ATTACKS

In this section, we explore potential detection mechanisms
tailored to identify our proposed attacks. Our attack integrates
label information into the gradients, rendering simple observa-
tions of gradient differences across various labels ineffective
for detection. Specifically, our approach not only classifies
the corresponding labels of embeddings but also distinguishes
between true and fake embeddings generated by either the local
encoder or the target model. Consequently, we hypothesize that
the increased number of labels and the incorporation of a GAN-
like structure will influence the distribution of gradient norms.
To investigate this, we analyze the distribution of gradients’
L2 norms across both tabular and image datasets.

Fig.10 illustrates a clear distinction in the distribution of
embedding gradients’ L2 norms between honest training and
our URVFL attack. In tabular datasets, the gradient norms
under attack are sparsely distributed with a higher average
value, whereas, in honest training, they concentrate around
lower values. Conversely, for image datasets, where the pattern
reverses, honest training results in sparsely distributed gradients
with higher average norms, while the URVFL attack leads
to concentrated gradients with lower average norms. This

14

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Gradient Magnitude (L2 Norm)

0

10

20

30

40
De

ns
ity

Honest Gradients
Attack Gradients

(a) Embedding gradients norm in
Credit dataset.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Gradient Magnitude (L2 Norm)

0

5

10

15

20

25

30

35

40

De
ns

ity

Honest Gradients
Attack Gradients

(b) Embedding gradients norm in
IOT dataset.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Gradient Magnitude (L2 Norm)

0

20

40

60

80

De
ns

ity

Honest Gradients
Attack Gradients

(c) Embedding gradients norm in
CIFAR-10 dataset.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Gradient Magnitude (L2 Norm)

0

20

40

60

80

100

De
ns

ity

Honest Gradients
Attack Gradients

(d) Embedding gradients norm in
Tiny imagenet dataset.

Fig. 10: Distribution of Embedding Gradients’ L2 Norms in
Honest Training versus Our URVFL Attack.

discrepancy is likely attributable to inherent differences in
data characteristics and model architectures between image
and tabular datasets.

Despite the varying gradient norm distributions between
tabular and image datasets, a consistent and significant differ-
ence remains evident between honest training and the URVFL
attack across both data types. Leveraging this insight, a passive
client can enhance detection capabilities by adopting a two-step
strategy. Initially, the passive client collects publicly available
comprehensive training data and conducts local training for
several hundred iterations to establish a baseline distribution
of embedding gradients’ L2 norms under honest training
conditions. This baseline serves as a reference point for normal
gradient behavior.

During subsequent training sessions, the passive client
continuously records the distribution of embedding gradients.
By comparing the observed gradient distribution against the
pre-established honest training distribution, the client can
identify significant deviations indicative of an attack. If the
gradient norms exhibit patterns that deviate substantially from
the baseline, such as increased sparsity and higher average
norms in tabular datasets or the opposite pattern in image
datasets, the passive client can infer the presence of an attack.
Upon detecting such discrepancies, the passive client can stop
updating the local bottom model, thereby preventing further
compromise and safeguarding the integrity and privacy of the
training process.

IX. CONCLUSION

We introduce URVFL, a novel undetectable malicious data
reconstruction attack for vertical federated learning (VFL).
URVFL innovatively incorporates training of a discriminator
with auxiliary classifier (DAC) to integrate label information
for malicious gradient generation, which not only makes the

malicious training indistinguishable from honest training, but
also substantially improves data reconstruction performance.
Through visualization and quantification, we demonstrated the
effectiveness of DAC compared to traditional discriminators,
showcasing its superior capability in embedding transfer.
Through extensive experiments, we empirically demonstrated
that URVFL successfully evades SOTA detection methods
and outperforms all existing data reconstruction attacks. While
traditional defense methods based on embedding/model pertur-
bations are shown to effectively defend URVFL, it is at the cost
of serious degradation on the honest VFL task’s performance.
This calls for future research to develop effective defenses
against malicious data reconstruction, with minimal impact on
the honest task.

ACKNOWLEDGMENT

The work of Songze Li is in part supported by the National
Nature Science Foundation of China (NSFC) Grant 62106057,
and the Fundamental Research Funds for the Central Universi-
ties (Grant No. 2242024k30059). The work of Gaoning Pan is
in part supported by the “Pioneer” and “Leading Goose” R&D
Program of Zhejiang, China (Grant No. 2024C03288).

REFERENCES

[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar,
and L. Zhang, “Deep learning with differential privacy,” in ACM SIGSAC
Conference on Computer and Communications Security, 2016, pp. 308–
318.

[2] S. Abuadbba, K. Kim, M. Kim, C. Thapa, S. A. Camtepe, Y. Gao,
H. Kim, and S. Nepal, “Can we use split learning on 1d cnn models for
privacy preserving training?” in ACM Asia Conference on Computer and
Communications Security, 2020, pp. 305–318.

[3] T. Chen, X. Jin, Y. Sun, and W. Yin, “Vafl: a method of vertical
asynchronous federated learning,” arXiv preprint arXiv:2007.06081, 2020.

[4] L. Deng, “The MNIST database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp.
141–142, 2012.

[5] C. Dwork, “Differential privacy,” in International Colloquium on
Automata, Languages, and Programming. Springer, 2006, pp. 1–12.

[6] E. Erdogan, A. Küpçü, and A. E. Cicek, “Splitguard: Detecting and
mitigating training-hijacking attacks in split learning,” in 21st Workshop
on Privacy in the Electronic Society, 2022, pp. 125–137.

[7] E. Erdoğan, A. Küpçü, and A. E. Çiçek, “Unsplit: Data-oblivious
model inversion, model stealing, and label inference attacks against
split learning,” in Workshop on Privacy in the Electronic Society, 2022,
pp. 115–124.

[8] S. Feng and H. Yu, “Multi-participant multi-class vertical federated
learning,” arXiv preprint arXiv:2001.11154, 2020.

[9] F. Fu, H. Xue, Y. Cheng, Y. Tao, and B. Cui, “Blindfl: Vertical federated
machine learning without peeking into your data,” in International
Conference on Management of Data, 2022, pp. 1316–1330.

[10] J. Fu, X. Ma, B. B. Zhu, P. Hu, R. Zhao, Y. Jia, P. Xu, H. Jin, and
D. Zhang, “Focusing on pinocchio’s nose: A gradients scrutinizer to
thwart split-learning hijacking attacks using intrinsic attributes,” in The
Network and Distributed System Security Symposium, 2023.

[11] B. Fuglede and F. Topsoe, “Jensen-shannon divergence and hilbert space
embedding,” in International Symposium on Information Theory. IEEE,
2004, p. 31.

[12] X. Gao and L. Zhang, “Pcat: Functionality and data stealing from split
learning by pseudo-client attack,” in USENIX Security Symposium, 2023,
pp. 5271–5288.

[13] M. Gong, Y. Zhang, Y. Gao, A. Qin, Y. Wu, S. Wang, and Y. Zhang,
“A multi-modal vertical federated learning framework based on homo-
morphic encryption,” IEEE Transactions on Information Forensics and
Security, 2023.

15

[14] Z. He, T. Zhang, and R. B. Lee, “Model inversion attacks against
collaborative inference,” in Annual Computer Security Applications
Conference, 2019, pp. 148–162.

[15] ——, “Attacking and protecting data privacy in edge–cloud collaborative
inference systems,” IEEE Internet of Things Journal, vol. 8, no. 12, pp.
9706–9716, 2020.

[16] L. Hou, Q. Cao, H. Shen, S. Pan, X. Li, and X. Cheng, “Conditional
gans with auxiliary discriminative classifier,” in International Conference
on Machine Learning. PMLR, 2022, pp. 8888–8902.

[17] Y. Huang, W. Wang, X. Zhao, Y. Wang, X. Feng, H. He, and M. Yao,
“Efmvfl: an efficient and flexible multi-party vertical federated learning
without a third party,” ACM Transactions on Knowledge Discovery from
Data, vol. 18, no. 3, pp. 1–20, 2023.

[18] X. Jiang, X. Zhou, and J. Grossklags, “Comprehensive analysis of
privacy leakage in vertical federated learning during prediction,” Privacy
Enhancing Technologies, vol. 2022, no. 2, pp. 263–281, 2022.

[19] J. Kim, S. Shin, Y. Yu, J. Lee, and K. Lee, “Multiple classification
with split learning,” in International Conference on Smart Media and
Applications, 2020, pp. 358–363.

[20] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[21] Y. Le and X. Yang, “Tiny imagenet visual recognition challenge,” CS
231N, vol. 7, no. 7, p. 3, 2015.

[22] S. Li, D. Yao, and J. Liu, “Fedvs: Straggler-resilient and privacy-
preserving vertical federated learning for split models,” in International
Conference on Machine Learning. PMLR, 2023, pp. 20 296–20 311.

[23] Y. Liu, Y. Kang, T. Zou, Y. Pu, Y. He, X. Ye, Y. Ouyang, Y.-Q. Zhang, and
Q. Yang, “Vertical federated learning,” arXiv preprint arXiv:2211.12814,
2022.

[24] ——, “Vertical federated learning: Concepts, advances, and challenges,”
IEEE Transactions on Knowledge and Data Engineering, 2024.

[25] X. Luo, Y. Wu, X. Xiao, and B. C. Ooi, “Feature inference attack
on model predictions in vertical federated learning,” in International
Conference on Data Engineering. IEEE, 2021, pp. 181–192.

[26] F. Mireshghallah, M. Taram, A. Jalali, A. T. T. Elthakeb, D. Tullsen,
and H. Esmaeilzadeh, “Not all features are equal: Discovering essential
features for preserving prediction privacy,” in The Web Conference, 2021,
pp. 669–680.

[27] D. Pasquini, G. Ateniese, and M. Bernaschi, “Unleashing the tiger:
Inference attacks on split learning,” in ACM SIGSAC Conference on
Computer and Communications Security, 2021, pp. 2113–2129.

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn:
Machine learning in python,” the Journal of machine Learning research,
vol. 12, pp. 2825–2830, 2011.

[29] M. G. Poirot, P. Vepakomma, K. Chang, J. Kalpathy-Cramer, R. Gupta,
and R. Raskar, “Split learning for collaborative deep learning in
healthcare,” arXiv preprint arXiv:1912.12115, 2019.

[30] P. Qiu, X. Zhang, S. Ji, Y. Pu, and T. Wang, “All you need is hashing:
Defending against data reconstruction attack in vertical federated learning,”
arXiv preprint arXiv:2212.00325, 2022.

[31] B. S. and R. Nagapadma, “RT-IoT2022 ,” UCI Machine Learning
Repository, 2024, DOI: https://doi.org/10.24432/C5P338.

[32] M. J. Sheller, B. Edwards, G. A. Reina, J. Martin, S. Pati, A. Kotrotsou,
M. Milchenko, W. Xu, D. Marcus, R. R. Colen et al., “Federated learning
in medicine: facilitating multi-institutional collaborations without sharing
patient data,” Scientific reports, vol. 10, no. 1, p. 12598, 2020.

[33] J. Sun, Y. Yao, W. Gao, J. Xie, and C. Wang, “Defending against
reconstruction attack in vertical federated learning,” arXiv preprint
arXiv:2107.09898, 2021.

[34] A. Z. Tan, H. Yu, L. Cui, and Q. Yang, “Towards personalized federated
learning,” IEEE transactions on neural networks and learning systems,
vol. 34, no. 12, pp. 9587–9603, 2022.

[35] C. Thapa, P. C. M. Arachchige, S. Camtepe, and L. Sun, “Splitfed: When
federated learning meets split learning,” in AAAI Conference on Artificial
Intelligence, vol. 36, no. 8, 2022, pp. 8485–8493.

[36] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split learning
for health: Distributed deep learning without sharing raw patient data,”
arXiv preprint arXiv:1812.00564, 2018.

[37] P. Vepakomma, A. Singh, O. Gupta, and R. Raskar, “Nopeek: Information
leakage reduction to share activations in distributed deep learning,” in
International Conference on Data Mining Workshops. IEEE, 2020, pp.
933–942.

[38] M. N. Vu, J. Tre’R, R. Alharbi, and M. T. Thai, “Active data recon-
struction attacks in vertical federated learning,” in IEEE International
Conference on Big Data, 2023, pp. 1374–1379.

[39] C. Wang, J. Liang, M. Huang, B. Bai, K. Bai, and H. Li, “Hybrid
differentially private federated learning on vertically partitioned data,”
arXiv preprint arXiv:2009.02763, 2020.

[40] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. Quek,
and H. V. Poor, “Federated learning with differential privacy: Algorithms
and performance analysis,” IEEE Transactions on Information Forensics
and Security, vol. 15, pp. 3454–3469, 2020.

[41] Y. Wu, S. Cai, X. Xiao, G. Chen, and B. C. Ooi, “Privacy preserv-
ing vertical federated learning for tree-based models,” arXiv preprint
arXiv:2008.06170, 2020.

[42] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[43] W. Xu, H. Fan, K. Li, and K. Yang, “Efficient batch homomorphic encryp-
tion for vertically federated xgboost,” arXiv preprint arXiv:2112.04261,
2021.

[44] K. Yang, T. Fan, T. Chen, Y. Shi, and Q. Yang, “A quasi-newton method
based vertical federated learning framework for logistic regression,” arXiv
preprint arXiv:1912.00513, 2019.

[45] L. Yang, B. Tan, V. W. Zheng, K. Chen, and Q. Yang, “Federated
recommendation systems,” Federated Learning: Privacy and Incentive,
pp. 225–239, 2020.

[46] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems and
Technology, vol. 10, no. 2, pp. 1–19, 2019.

[47] R. Yang, J. Ma, J. Zhang, S. Kumari, S. Kumar, and J. J. Rodrigues,
“Practical feature inference attack in vertical federated learning during
prediction in artificial internet of things,” IEEE Internet of Things Journal,
2023.

[48] I.-C. Yeh, “Default of Credit Card Clients,” UCI Machine Learning
Repository, 2016, DOI: https://doi.org/10.24432/C55S3H.

[49] Y. Zhao, Q. Liu, P. Liu, X. Liu, and K. He, “Medical federated model
with mixture of personalized and shared components,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2024.

[50] X. Zhu, X. Luo, Y. Wu, Y. Jiang, X. Xiao, and B. C. Ooi, “Passive
inference attacks on split learning via adversarial regularization,” arXiv
preprint arXiv:2310.10483, 2023.

16

APPENDIX A
URVFL SYNC ALGORITHM

We detail the steps of URVFL sync in Algorithm 3.

Algorithm 3: URVFL sync.

Data: Auxiliary dataset Daux = {xi,a,xi,p}Maux
i=1 and

training dataset Dtrain = {x j,a,x j,p}M
j=1.

Initialization: Encoder fe(·), DAC D(·), adversary’s
bottom model fa(·), and target model
fp(·).

Adversary Procedure:
while VFL training do

The adversary select a batch Baux from Daux;
Compute hi,a = fa(xi,a), i ∈Baux, and

hi,p = fe(xi,p), i ∈Baux;
Compute x̃i,t = fd([hi,a∥hi,p]), i ∈Baux;
LR← 1

|Baux| ∑i∈Baux MSE(x̃i,t ,xi,t);
∇e← Gradient(LR, fe(·));
∇a← Gradient(LR, fa(·));
∇d ← Gradient(LR, fd(·));
fe(·)←Model update(fe(·),∇e);
fa(·)←Model update(fa(·),∇a);
fd(·)←Model update(fd(·),∇d);
Compute hi,p = fe(xi,p), i ∈Baux;
All clients agree a batch data Btrain from Dtrain;
Receive and record passive clients’ embeddings

h j,p, j ∈Btrain;
Compute the loss
LM = 1

|Btrain| ∑ j∈Btrain CE(y+j ,D(h j,p));
∇p←Gradient(LM,h j,p, j ∈Btrain);
Send ∇p to the passive clients;
Compute the DAC loss LD in (5);
∇D← Gradient(LD,D(·));
D(·)←Model update(D(·),∇D);

end
Passive Clients Procedure:
while VFL training do

All clients agree a batch data Btrain from Dtrain;
Compute embeddings h j,p = fp(x j,p), j ∈Btrain and
send embeddings to the active client;

Receive gradient ∇p;
fp(·)←Model update(fp(·),∇p);

end

APPENDIX B
DATASETS AND MODEL DESCRIPTIONS

We illustrate all datasets and models information used in the
experiments in the following Table X, where MLP is composed
of a linear and an activation, e.g., ReLU layer, CNN layer is
composed a convolution process and a linear layer, and Residual
block is constructed by 3 CNN layers and a skip connection.

APPENDIX C
VISUALIZATION OF RECONSTRUCTION IN TINY IMAGENET

In addition to visualizing the reconstruction performance
on CIFAR-10, we compare the reconstruction performance of
AGN, FSHA, and URVFL on the Tiny ImageNet dataset in
Table XI.

17

TABLE X: Dataset characteristics and models structure

Dataset Credit RT IOT2022 MNIST CIFAR-10 Tiny imagenet

Feature sizes of the adversary
and the passive clients da,dp

11, 12 41, 42 392, 392 512, 512 2048, 2048

The size of training dataset 19,091 89,920 54,546 45,455 72,728
The size of the auxiliary dataset 1,909 8,573 5,454 4,545 7,272
The size of the test dataset 9,000 24,624 10,000 10,000 20,000
fe(·), fa(·), and fp(·) structure MLP layer×2 MLP layer×2 CNN layer×2 Residual block×3 Residual block×3
fd(·) structure MLP layer×3 MLP layer×3 CNN layer×3 CNN layer×3 CNN layer×4
D(·) structure MLP layer×3 MLP layer×3 CNN layer×2 CNN layer ×3 CNN layer×3
Learning rate 1e-4 1e-4 1e-4 1e-3 1e-4
URVFL pretraing epochs 30 40 10 20 30

TABLE XI: Visualization of reconstructed features on the Tiny imagenet dataset with and without the detection SG. Except for
the original image, the right side of each image is the reconstructed image. The last column is the average reconstruction error.

Original Recon
MSE

Without
detection

SplitGuard

AGN 0.3896

FSHA 0.1131

URVFL 0.0660

With
detection

SplitGuard

AGN 1.0493

FSHA 0.2501

URVFL 0.0660

18

	Intoduction
	Background and Related works
	Data reconstruction attacks on VFL
	Defenses and detections against data reconstruction attacks

	Problem Description
	VFL protocol
	Threat model

	Challenges
	Methodology of URVFL
	Setup
	Pretraining
	Malicious gradient generation
	Data reconstruction

	Experiments
	Experiment setup
	Baselines and detections
	Data reconstruction results
	Ablation Study
	Effect of adversary's feature size
	Effect of encoder's complexity
	Effect of auxiliary dataset
	Effect of the number of target clients

	Evaluations on defenses
	Potential detection of our attacks
	Conclusion
	References
	Appendix A: URVFL_sync algorithm
	Appendix B: Datasets and model descriptions
	Appendix C: Visualization of reconstruction in Tiny imagenet

