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Abstract—In recent years, the proliferation of WiFi-connected
devices and related research has led to novel techniques of
utilizing WiFi as sensors, i.e., capturing human movements
through channel state information (CSI) perturbations. While
this enables passive occupant sensing, it also introduces privacy
risks from leaked WiFi signals that attackers can intercept,
leading to threats like occupancy detection, critical in scenarios
such as burglaries or stalking. We propose LeakyBeam, a novel
and improved occupancy detection attack that leverages a new
side channel from WiFi CSI, namely beamforming feedback
information (BFI). BFI retains victim’s movement information,
even when transmitted through walls, and is easily captured since
BFI packets are unencrypted, making them a rich source of
privacy-sensitive information. Furthermore, we also introduce
a defense mechanism that obfuscates BFI packets, requiring
minimal hardware changes. We demonstrate LeakyBeam’s ef-
fectiveness through a comprehensive real-world evaluation at a
distance of 20 meters, achieving true positive and negative rates
of 82.7% and 96.7%, respectively.

I. INTRODUCTION
In recent years, the prevalence of WiFi-connected devices,

such as laptops, mobile phones, and smart speakers, has signif-
icantly increased [1]. Consequently, we are surrounded by the
WiFi signals emitted by these devices. As individuals move
within their homes or offices, these WiFi signals, specifically
their channel state information (CSI), are perturbed, thereby
implicitly capturing information about the occupants [2].
This phenomenon presents opportunities for passive and non-
intrusive occupant sensing [3], [4], [5], [6], [7].

This WiFi sensing capability, however, also introduces sig-
nificant privacy risks from leaked WiFi signals that travel
beyond their intended boundaries. Attackers within the wire-
less communication range can intercept these leaked signals,
leading to immediate privacy threats through reconnaissance
attacks, such as adversarial human motion sensing [8], [9],
[10]. For example, an attacker outside the victim’s house
could determine whether the victim is present or not – i.e.,
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Fig. 1: Figure depicts an attack scenario using LeakyBeam,
where an attacker uses a distant, passive sniffer to capture
BFI packets from the victim’s commercial WiFi client devices,
leaked outside the residence, to infer the occupancy state by
identifying both moving and stationary occupants.

occupancy detection – which is particularly concerning in real-
world scenarios like targeted burglaries or stalking [11], [12],
[13]. Studies show that 86% of burglars try to avoid encounters
with occupants [14]. Knowing the presence or absence of
occupants can empower criminals to execute their plans when
they are confident no one is home, posing a serious threat to
personal security and privacy.

Fortunately, a crucial factor mitigates this potential threat.
An attacker, typically located outside the victim’s residence,
can only sniff WiFi signals via a through-wall channel. These
signals are significantly attenuated as they pass through walls
and further weaken with increasing distance from the resi-
dence [15], [16], [17]. This attenuation significantly dimin-
ishes the signal-to-noise ratio (SNR) and retains only limited
privacy-sensitive information, thereby reducing the overall risk
posed by this side channel.

In light of this, we pose the following question: Is it
possible to design a more sophisticated technique that allows
an attacker to accurately obtain occupancy information of the
victim’s house even from a further distance outside the house?
To answer this question, we present LeakyBeam, a novel
occupancy detection attack. LeakyBeam leverages a new side
channel from WiFi CSI, namely the beamforming feedback
information (BFI). Unlike direct measurements of analog CSI,
which suffer from signal attenuation, the channel information
encoded in digital BFI packets retains the victim’s movement
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information even when transmitted through walls over con-
siderable distances. This is attributed to the digital encoding
of the BFI content into bits and its subsequent formatting
in accordance with established WiFi protocols, ensuring that
the content remains clear and undistorted [18]. Attackers can
easily sniff the WiFi network to capture this side channel
information, as BFI packets are transmitted in plaintext and
are not encrypted [19]. Figure 1 depicts LeakyBeam’s attack
scenario, where the attacker places a WiFi sniffer device
outside of the victim’s house from a distance away. The sniffer
continuously captures the BFI packets exchanged between
client devices and the AP within the victim’s residence, aiming
to deduce occupancy states.

However, designing LeakyBeam comes with two unique
and significant challenges. The first challenge is environment
and device ambiguity. The WiFi channel is influenced not
only by human presence but also by the specific environment
and device layout under the context of the multipath effect
– a well-known issue in WiFi sensing [20]. Prior research
has proposed various methods, including environment-specific
training, device calibration, and optimizing device layouts to
enhance SNR [21], [22], [23]. However, these methods are
generally infeasible for attackers, who as external observers
have limited capabilities and lack detailed knowledge of the
interior environment of the victim’s residence. Furthermore,
the signal variations induced by human presence can be
particularly subtle, especially when the victim is stationary.
This subtlety, compounded by environmental and device am-
biguity, presents significant detection challenges. To solve
this challenge, we delve into the extraction of subtle human-
induced dynamics from the WiFi channel, applicable even
when the environment and layout are unknown. Our solution is
a unified attack framework capable of detecting both moving
and stationary victims by jointly leveraging both the amplitude
and phase of BFI. This enables accurate detection even with
an attacker’s limited capabilities.

Another challenge is the complexity of BFI signal pro-
cessing, particularly in mitigating phase offsets. BFI packets
are derived through the application of Singular Value De-
composition (SVD) on CSI, resulting in a distinct structure.
Traditional phase offset removal techniques, effective for CSI,
are ineffective when directly applied to BFI due to its SVD-
processed structure [24], [25], [26]. Furthermore, BFI under-
goes compression, leading to a coarse-grained representation.
We overcome this challenge by developing a robust feature
extraction method that effectively bridges phase-offset-affected
BFI to the conjugate multiplication of CSI, leveraging the
antenna diversity of AP to remove phase offsets. The dynamic
components attributable to human presence are further isolated
and fused across Orthogonal Frequency-Division Multiplexing
(OFDM) subcarriers, using subcarrier diversity to enhance the
granularity and accuracy of occupancy detection.

Capitalizing on digital packets, LeakyBeam exhibits several
favorable characteristics including its robustness to signal
attenuation and external interference (§II-B). Its passive detec-
tion nature makes it non-intrusive and thus extremely difficult

to identify. Moreover, the widespread accessibility of BFI –
with over 73% of commercial off-the-shelf (COTS) devices
compliant with 802.11ac and newer standards transmitting BFI
packets [19] – positions LeakyBeam as a potential widespread
threat. The simplicity of capturing BFI packets, such as using
Wireshark for wireless packet sniffing, contrasts with the
limited number of devices capable of CSI sniffing (only about
6%) [19]. The ease of accessing these plaintext BFI packets
significantly lowers the device and technical barriers for at-
tackers, collectively enhancing the practicality of LeakyBeam
for covert and continuous occupancy monitoring.

In addition to designing a novel occupant detection attack,
we design a robust defense mechanism that preserves the
plaintext transmission of BFI while effectively countering
the aforementioned attack. Specifically, we obfuscate both
the amplitude and phase of BFI by applying a temporally
varying random transformation, rendering BFI unintelligible
to attackers, while still allowing the AP to recover the original
information. This countermeasure requires minimal hardware
modifications because it piggybacks on the spatial mapping
mechanism of AP. Furthermore, it leaves client devices com-
pletely unaffected, making it highly practical for adoption.

We evaluate LeakyBeam attack on eight diverse APs by
capturing around 1.6 million BFI packets over 49 hours across
nine deployment settings varying environments and device
layouts. We comprehensively evaluate LeakyBeam’s perfor-
mance over different distances, clients, background traffic, and
WiFi configurations. LeakyBeam proves effective even with
its sniffer positioned 20 meters from the victim’s residence,
while also showing strong resistance to external interference.
Overall, LeakyBeam demonstrates an average true positive rate
of 82.7% and a true negative rate of 96.7%, demonstrating its
effectiveness across popular devices and AP vendors. In short,
our work makes the following contributions:

∙ We introduce LeakyBeam, a practical adversarial occu-
pancy detection system utilizing the BFI side channel.

∙ We present the design and implementation of LeakyBeam
that overcomes the challenges of environment and device
ambiguity and complex BFI signal processing by lever-
aging both antenna and subcarrier diversities to derive
robust features.

∙ We develop and validate a novel defense mechanism that
capitalizes on the existing spatial mapping capabilities
of WiFi APs, providing an effective countermeasure to
potential attacks.

This work also sheds light on potential vulnerabilities in
emerging high-frequency WiFi technologies, such as the 60
GHz mmWave 802.11ad/ay standards. These technologies ex-
tensively utilize directional beams due to the high attenuation
at mmWave frequencies [27], which makes them susceptible
to similar security risks. We aim to encourage further research
by drawing attention to these vulnerabilities.

II. BACKGROUNDS
We first present the preliminary of the BFI side channel.
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Fig. 2: Figure depicts the explicit channel measurement pro-
cess: the beamformer transmits an NDP to the beamformee,
which then computes and returns the steering matrix in a
compressed format to the beamformer.

A. Beamforming Feedback Basics

We first briefly introduce the beamforming feedback mech-
anism in WiFi communication.
Beamforming in WiFi. Beamforming technology focuses
WiFi signals toward the receiver in specific directions, thereby
substantially enhancing the received signal strength and aug-
menting the throughput. Specifically, the transmitter, also
called beamformer, would employ steering matrices to focus
energy precisely towards the receiver, termed beamformee.
In an 𝑁𝑇𝑋 × 𝑁𝑅𝑋 MIMO system with 𝐾 subcarriers and
𝑁𝑆𝑇𝑆 spatial-temporal streams, the steering matrix for the 𝑘-
th subcarrier is denoted as 𝐕𝑘 ∈ ℂ𝑁𝑇𝑋×𝑁𝑆𝑇𝑆 .
Steering Matrix Computation. The steering matrix 𝐕𝑘 is
derived from CSI, denoted as 𝐇𝑘 ∈ ℂ𝑁𝑅𝑋×𝑁𝑇𝑋 1. This process
involves the SVD of the CSI2:

𝐇𝑘 = 𝐔𝑘Σ𝑘𝐕
†
𝑘, (II.1)

where 𝐔𝑘 and 𝐕𝑘 are unitary matrices. 𝐕𝑘, representing the
steering matrix for beamforming, only retains the first 𝑁𝑆𝑇𝑆columns for use. Σ𝑘 is a diagonal matrix containing the
singular values, which are real and positive, representing the
strength and quality of the channel at each subcarrier.
Compressed Beamforming Feedback Packets. From the
802.11ac standard, acquiring the steering matrix necessitates
the use of explicit channel measurement frames. This process,
shown in Figure 2, starts with the beamformer transmitting a
Null Data Packet (NDP), which includes a known Long Train-
ing Field (LTF), denoted as 𝐗𝑘 ∈ ℂ𝑁𝑆𝑇𝑆×𝑁𝑆𝑇𝑆 , along with
an NDP Announcement to the beamformee. When the beam-
formee receives the signal 𝐘𝑘 ∈ ℂ𝑁𝑅𝑋×𝑁𝑆𝑇𝑆 , it calculates the
CSI 𝐇𝑘 using the known LTF and derives steering matrix 𝐕𝑘.
The steering matrix 𝐕𝑘 will then be compressed [28] and sent
back to the beamformer in compressed beamforming feedback
packets, which we refer to as BFI packets for simplicity.
Another information contained in the BFI is the subcarrier-
averaged stream gain, Λ, which is the arithmetic mean of the
SNR values over subcarriers derived from Σ𝑘.

1In CSI 𝐇𝑘, the element at (𝑝, 𝑞) describes how the amplitude and phase
of a signal in subcarrier 𝑘 changes when the signal propagates from the 𝑝-th
antenna of the transmitter to the 𝑞-th antenna of the receiver.

2We use (⋅)† to denote the conjugate transpose operation.
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Fig. 3: Figure depicts the advantages of BFI sniffing over
CSI sniffing. CSI weakens significantly with wall and distance
interference, while BFI, based on digital packet sniffing, main-
tains its integrity regardless of environmental attenuation.

B. Distinguishing BFI as a Digital Side Channel

LeakyBeam sets itself apart by operating as a digital side
channel, leveraging the sniffing of digital BFI packets. This
approach provides distinct advantages over traditional physical
side channel attacks that intercept analog leakage signals, such
as those measuring analog CSI signals.
Robustness to Attenuation (Long-range Capability). As
conceptually depicted in Figure 3, analog leakage signals,
such as CSI, experience rapid signal degradation due to
distance and physical barriers, such as the exterior walls of
a victim’s home [15], [16]. In contrast, BFI’s effectiveness
is nearly unaffected by attenuation due to its reliance on
digital transmissions. This ensures the integrity of the side
channel data regardless of the sniffer’s distance from the
source or any intervening physical barriers, as long as the
sniffer remains within packet sniffing range. Moreover, our
experiments in §V reveal that WiFi devices are typically con-
figured by their manufacturers to transmit BFI packets using
a low Modulation and Coding Scheme (MCS) with simpler
modulation and stronger error correction. While low MCS
enhances signal robustness against noise and interference, it
inadvertently benefits attackers by significantly extending their
operational range. Our experiment in §V-C1 demonstrates that
this effective range of BFI can extend beyond 20 meters,
while CSI suffers significant performance degradation due to
attenuation.
Robustness to External Interference. LeakyBeam’s digital
nature also provides robustness to external interference. Ex-
ternal interference, such as pedestrian motion near the sniffer,
often adversely affects analog CSI-based side channels by
introducing unwanted signal variation. In contrast, LeakyBeam
captures digital packets where the sensing data, already pro-
cessed and encapsulated within the victim’s residence, remains
unaffected by external disturbances as it travels to the sniffer.
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Fig. 4: Figure depicts the steering matrix of 4×2 MIMO in the
BFI packet captured and parsed by Wireshark using a single-
antenna sniffer.

Our experiments in §V-C2 will further validate LeakyBeam’s
robustness to interference, enhancing its reliability as a long-
range digital side channel.
Accessibility of Plaintext BFI Packets. Unlike CSI sniffing
which is only supported by three chipset families [19], [29],
[30], [31], BFI packets can be captured using standard wireless
packet sniffing tools like Wireshark, as depicted in Figure 4.
This allows for the capture of fine-grained MIMO channel
information with basic hardware (e.g., a single-antenna device
sniffing 4×2 MIMO with 234 subcarriers). The plaintext BFI
transmission enables simple parsing and access, significantly
lowering device requirements and technical barriers for attack-
ers and increasing the risk of unauthorized data exploitation.
Stealthiness through Passive Sniffing. Unlike attacks relying
on active signal or packet injection [32], [10], [33], [34],
LeakyBeam relies solely on passive sniffing of victim’s BFI
packets, making it more covert and hard to detect.
C. Privacy Implication

The BFI side channel presents significant privacy threats
due to its long-range capabilities, robustness to interference,
accessibility, and stealthiness, making LeakyBeam a practical
and potent tool. We envision multiple scenarios with potential
privacy risks: (1. Neighborhood Surveillance) A neighbor
could use a laptop to continuously monitor nearby resi-
dences. (2. Pre-Burglary Reconnaissance) Thieves might use
this technology to discreetly survey homes before attempting
break-ins. (3. Espionage Tactics) Spies could deploy drones
equipped with sniffers to covertly gather detailed occupancy
data over sensitive military or government facilities. Given
the ubiquitous deployment of WiFi, LeakyBeam represents
a low-cost and pervasive reconnaissance attack that could
lead to significant and unintended consequences, necessitating
increased awareness and protective measures.

III. THREAT MODEL
Attacker’s Goal and Capabilities. The goal of the attacker
is to launch an occupancy detection attack by exploiting BFI
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Fig. 5: Figure depicts LeakyBeam’s design overview. After
sniffing and removing outlier BFI packets, LeakyBeam derives
phase-offset-free features and fuses across subcarriers to detect
both moving and stationary occupants and ultimately deter-
mine occupancy state, i.e., occupant present or absent.

packets leaked from the victim’s WiFi device. The attacker’s
capabilities include the interception of WiFi packets and the
extraction of BFI. This interception process can be carried
out by using a device equipped with a network interface card
(NIC) in monitor mode and network analysis tools such as
Wireshark [35]. The sniffer can have an arbitrary number of
antennas (e.g., a single antenna is feasible). Upon the inter-
ception of packets, the extraction of BFI involves parsing the
relevant information from the packet as specified in the 802.11
protocol. Notably, since BFI packets are sent in plaintext, the
attacker can extract this information without needing access
to secure details such as the cipher keys of the victim or AP.
Assumptions. We assume the victim’s WiFi device utilizes the
802.11 ac/ax standards, which incorporate explicit beamform-
ing capabilities. The victim’s AP is assumed to have more than
one antenna; however, we do not place such a requirement
on the number of antennas for client devices. Our analysis
remains agnostic to the bandwidth and quantization levels of
BFI packets. LeakyBeam predominantly considers downlink
beamforming with the AP as beamformer, a standard practice
as uplink beamforming is less common [19], [36]. We also
assume stationary client devices; movement in these devices,
which generally causes significant BFI variation, would typi-
cally indicate human presence. However, autonomous moving
devices like robot vacuums could potentially cause false pos-
itives, which may be seen as a limitation of our work.

IV. ATTACK DESIGN OF LeakyBeam
We now present LeakyBeam’s attack design.

A. Design Overview
LeakyBeam’s design detects both stationary and moving

occupants (victims) using the BFI side channel. As shown
in Figure 5, the process starts with sniffing BFI packets,
filtering outliers by SNR, and then extracting phase-offset-free
features (§IV-B). The extracted features allow the attacker to
conduct occupancy detection, which first utilizes amplitude3
variations as a motion indicator to detect moving victims, and
then detect stationary victims by analyzing breathing patterns
through BFI phase information (§IV-C). LeakyBeam generates

3The terms "amplitude" and "phase" used in relation to BFI specifically
refer to those attributes of the steering matrix within the BFI.
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Fig. 6: Figure depicts phase offset when a beamformer has
two antennas. (a) shows that temporal phase offsets in 𝐇 =
[ℎ1, ℎ2] result in corresponding shifts in the steering matrix
𝐕 = [𝑣1, 𝑣2]. (b) shows the sniffer’s phase offset removal using
AP’s antenna diversity.

an "occupant present" output if either the moving or station-
ary detection modules identify an occupancy; otherwise, it
concludes an "occupant absent" output. Designing LeakyBeam
attack involves two main challenges:
Challenge I: Modeling Human Presence under Environ-
ment and Device Ambiguity. WiFi signals are inevitably
susceptible to ambiguities caused by multipath effects that vary
with each environment and device layout. Traditional WiFi
sensing approaches typically rely on environment-specific cal-
ibration, optimized device layout, or extensive training to
compensate for these effects [37], [21], [22], [23], [38] –
approaches that are impractical in adversarial scenarios where
attackers are non-invasive, external observers. This complexity
is particularly pronounced when detecting stationary victims,
who induce only subtle temporal variations in the signal. To
solve this challenge, LeakyBeam presents a unified detection
framework that leverages environment-independent features
derived from both the BFI amplitude and phase compo-
nents, allowing for reliable occupant detection of both moving
and stationary individuals, all without requiring environment-
specific calibration (§IV-C).
Challenge II: Coarse-Grained BFIs with Random Phase
Offsets. BFI, specifically the steering matrix 𝐕𝑘 in it, is coarse-
grained as it is compressed and quantized [28]. When we
employ the phase information for fine-grained detection, an
additional challenge arises from random phase offsets that
vary across packets. Specifically, CSI measurements suffer
from phase offsets because commodity WiFi transceivers are
not tightly synchronized [39]. This time-variant random phase
offset distorts the CSI, which in turn affects the BFI phase.

Considering the multipath effect, for the 𝑘-th subcarrier and
𝑖-th packet of antenna pair 𝐬 = (𝑝, 𝑞), connecting the 𝑝-th

transmit and 𝑞-th receive antennas, the CSI can be written as:

𝐇𝑘(𝑖, 𝐬) =
𝐿
∑

𝑙=1
𝛼𝑙𝑘(𝑖, 𝐬)𝑒

−𝑗2𝜋𝑓𝜏𝑙𝑘(𝑖,𝐬), (IV.1)

where 𝛼𝑙 and 𝜏𝑙 represent the attenuation factor and time-of-
flight of the 𝑙-th propagation path. Commodity WiFi receivers
and transmitters often exhibit synchronization mismatches,
introducing a temporal random phase offset in CSI [39]. We
use ̃(⋅) to denote variables affected by phase offset:

�̃�𝑘(𝑖, 𝐬) = 𝑒−𝑗𝜙offset
𝐿
∑

𝑙=1
𝛼𝑙𝑘(𝑖, 𝐬)𝑒

−𝑗2𝜋𝑓𝜏𝑙𝑘(𝑖,𝐬), (IV.2)

where the phase offset term, 𝜙offset, is further expanded as:
𝜙offset = 𝑘(𝜖STO + 𝜖SFO) + 𝜖CFO + 𝜖GR, (IV.3)

and 𝜖STO, 𝜖SFO, and 𝜖CFO denote the symbol timing offset,
sampling frequency offset, and carrier frequency offset be-
tween transceivers [40], [41], [42]. 𝜖GR denotes the offset
introduced by Givens rotations during BFI computation [28].

The steering matrix 𝐕𝑘, derived as the right singular matrix
of 𝐇𝑘, is consequently affected by these fluctuating phase
offsets, resulting in a modified version denoted as �̃�𝑘. As
shown in Figure 6(a), the inherent complexities introduced by
the SVD process complicate the mitigation of phase offsets
on �̃�𝑘. Traditional phase offset removal techniques that work
directly on 𝐇𝑘 do not effectively translate to �̃�𝑘 [24], [25],
[39]. To address these challenges, we developed a novel feature
extraction method tailored to remove the impact of phase
offsets on �̃�𝑘 using the antenna-diversity of APs. The dynamic
components attributable to human motion are further isolated
and fused across subcarriers (§IV-B), thereby enhancing the
accuracy and reliability of LeakyBeam’s detection even under
coarse-grained BFI.
B. Phase-Offset-Free Feature Extraction

This module processes coarse-grained BFIs to produce a
robust feature for further analysis, addressing Challenge II.
We first introduce a novel variable, denoted as 𝐑 = �̃�Λ�̃�†,
which is effective in canceling out phase offsets in BFI
measurements, as shown in Figure 6(b).
Phase Offset Elimination. We first explain why our con-
structed 𝐑 can cancel phase offset. Recall from Eq. II.1 that
�̃�𝑘 = �̃�𝑘Σ𝑘�̃�

†
𝑘 and �̃�†�̃� = 𝐼 . Assuming Λ = Σ2

𝑘, we have:
𝐑𝑘 = �̃�𝑘Λ�̃�

†
𝑘 = �̃�𝑘Σ2

𝑘�̃�
†
𝑘 = �̃�𝑘Σ𝑘�̃�

†
𝑘�̃�𝑘Σ𝑘�̃�

†
𝑘, (IV.4)

Utilizing the property of conjugate transpose, i.e., 𝐕𝑘Σ𝐔
†
𝑘 =

(𝐔𝑘Σ𝐕
†
𝑘)

†, we can rewrite the equation as:
𝐑𝑘 = (�̃�𝑘Σ𝑘�̃�

†
𝑘)

†(�̃�𝑘Σ𝑘�̃�
†
𝑘) = �̃�†

𝑘�̃�𝑘 = 𝐇†
𝑘𝐇𝑘, (IV.5)

indicating that 𝐑𝑘 effectively represents the conjugate multi-
plication of 𝐇𝑘. The temporal random phase offsets are the
same across antennas on beamformer as they share the same
RF oscillator [24], thus the conjugate multiplication between
two antennas can remove the random phase offset. Importantly,
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Fig. 7: Figure depicts the effect of phase offset removal
on stationary occupancy detection: (a) without phase offset
removal, breathing patterns are indistinguishable, and (b) with
phase offset removal, breathing patterns become discernible,
allowing the detection of stationary occupants.

this phase offset elimination does not require the attacker’s
access to the victim’s devices, making it highly applicable in
adversarial settings. It does, however, assume that the victim’s
AP (beamformer) is equipped with multiple antennas. Since
APs with beamforming capability are inherently equipped with
multiple antennas, this limitation should have minimal impact.
Consequently, 𝐑𝑘, being devoid of phase offset, becomes a
robust and practical foundation for LeakyBeam attack.
Dynamic Component Extraction. By dividing signal paths
into static and dynamic ones, 𝐑 can be further expressed as:

𝐑 =
⎛

⎜

⎜

⎝
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⎞
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,

(IV.6)

where 𝐿dynamic represents the set of dynamic paths and 𝐇𝑠𝑡𝑎𝑡𝑖𝑐

represents the static component. In this decomposition, the
"semi-static term" arises from the product of static path com-
ponents and remains relatively constant over short durations,
lacking the transient information sought for occupancy detec-
tion. The "higher-order minima", attributed to the interaction
of dynamic path components, are minimal and can typically be
neglected. The "dynamic term", crucial for capturing human
movement, reflects the interaction between static and dynamic
paths, embodying the essence of temporal variations. To en-
hance detection accuracy, we isolate this dynamic information
by minimizing the influence of the semi-static component. This
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Fig. 8: Figure depicts the overview of LeakyBeam’s occupancy
detection scheme, which (a) detects moving victims through
variance in BFI amplitude and (b) detects subtle BFI phase
changes caused by stationary victims.

is achieved by calculating the mean value of 𝐑 over a defined
period and subsequently subtracting this mean from 𝐑 itself,
effectively reducing the influence of the static component,
thus:

𝐑 = 𝐇𝑠𝑡𝑎𝑡𝑖𝑐†
∑

𝑙∈𝐿dynamic
𝐇𝑙 +𝐇𝑠𝑡𝑎𝑡𝑖𝑐

∑

𝑙∈𝐿dynamic
𝐇𝑙†. (IV.7)

The dynamic term can be further presented as follows:
𝛼𝑠𝑡𝑎𝑡𝑖𝑐

∑

𝑙∈𝐿dynamic
(𝛼𝑙†𝑘 𝑒

𝑗Δ𝜙𝑙
𝑘 )+𝛼𝑠𝑡𝑎𝑡𝑖𝑐†

∑

𝑙∈𝐿dynamic
(𝛼𝑙𝑘𝑒

−𝑗Δ𝜙𝑙
𝑘 ), (IV.8)

where Δ𝜙𝑙
𝑘 = 2𝜋𝑓 (𝜏𝑙𝑘−𝜏𝑠𝑡𝑎𝑡𝑖𝑐𝑘 ). Therefore, the dynamic feature

that reflects the variation caused by the occupant is effectively
extracted. The efficacy of phase-offset removal is demonstrated
in Figure 7. With the phase offset removed, the spectrogram
effectively highlights the presence of stationary victims, as
detailed in §IV-C.
Outlier Packet Removal. Prior to the above analysis, we filter
out packets with anomalous SNR drops (10 dB or more) com-
pared to adjacent packets. This criterion for outlier detection
is based on the observation that such drastic SNR changes are
typically not characteristic of normal environmental variations
or human movement, and therefore represent noise or errors
that could impair subsequent analysis. Note that the required
SNR data is readily available in the BFI packets, without the
need for physical measurements by the attacker.
Subcarrier-wise Feature Fusion. To counteract the granular-
ity loss due to compression, we utilize the diversity of subcar-
riers. Specifically, we employ Principal Component Analysis
(PCA) to fuse information across all available subcarriers [43].
For instance, in the 20 MHz bandwidth setup of 802.11ac,
PCA is applied to all 53 subcarriers. We then select the
first principal component, which encapsulates the predominant
and consistent signal variations indicative of occupancy states,
enhancing the detection accuracy of our system.
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C. Occupancy Detection

This module uses the phase-offset-free feature extracted in
§IV-B as input to conduct the occupancy detection, identifying
both moving and stationary victims, as shown in Figure 8.
Detecting Moving Victims. This submodule aims to detect
moving victims by analyzing temporal variations in the BFI
amplitude. Specifically, LeakyBeam computes the variance
with a sliding window of the extracted feature 𝐑. As illustrated
in Figure 8(a), movement by a victim results in a significantly
larger variance compared to scenarios where no victim is
present or the victim is stationary. For each sample window
containing ten packets starting at time 𝑡, we compute:

𝜎𝑤𝑚 (𝑡) = Var(𝐑(𝑡), 𝑤), (IV.9)
where Var(⋅) represents the variance function, and 𝑤 specifies
the sample window of ten packets. Under conditions with a
packet rate of 10 Hz, this corresponds to one second. If the
packet rate drops (e.g., to 5 Hz), we adjust the duration of the
window proportionally to still include ten packets to maintain
detection accuracy. We also evaluate the impact of BFI rate
with this adaptive sliding window approach in §V-C1.

To decide whether the variance indicates motion, we utilize
threshold-based detection, i.e., motion is detected if 𝜎𝑤𝑚 (𝑡) >
𝑢. The threshold 𝑢 is calculated based on a set of long-term
reference measurement windows, 𝑊𝑟𝑒𝑓 , as follows:
𝑢 = median𝑤∈𝑊𝑟𝑒𝑓

(𝜎𝑤𝑚 (𝑡)) + 𝐶 ⋅ MAD𝑤∈𝑊𝑟𝑒𝑓
(𝜎𝑤𝑚 (𝑡)), (IV.10)

where median(⋅) and MAD(⋅) denote the median and median
absolute deviation, respectively. The parameter 𝐶 , as a conser-
vativeness factor, is empirically set to 10 for accurate moving
victim detection.
Detecting Stationary Victims. This submodule aims to detect
stationary victims by analyzing phase changes, as shown in
Figure 8(b). While stationary, victims continue to induce subtle
phase changes, or Doppler shifts, in WiFi signals due to their
breathing movements [44], [45], [20]. To capture these phase
changes, we apply the short-term Fourier transform (STFT) to
the first principal component. We use a Gaussian window of 10
seconds to enhance the resolution of the resulting spectrogram.
In the absence of any occupants, the spectrogram exhibits
noise with power scattered broadly across the frequency spec-
trum, as depicted in Figure 7. In contrast, the presence of a
stationary victim, such as someone breathing, creates a distinct
frequency response that focuses the power around specific
frequencies. We measure the variance of power distribution,
denoted as 𝜎𝑝(𝑡), within each analysis window. Occupancy is
confirmed when 𝜎𝑝(𝑡) falls below a fixed threshold of 0.05,
an empirical parameter that remains unchanged, for at least
50% of the detection window, indicating consistent respiratory
patterns.

V. EVALUATION
We present the evaluation of LeakyBeam through compre-

hensive real-world experiments, demonstrating its feasibility.

TABLE I: Table enumerates the eight tested AP models, along
with their SoC manufacturer, MIMO configuration, the highest
supported WiFi standard (ax/ac), and BFI packet rate.

No. AP Model SoC MIMO BFI Rate
1 Xiaomi AX6000 Qualcomm [ax] 4 × 4 9.1 Hz
2 Redmi AX6000 MediaTek [ax] 4 × 4 16.9 Hz
3 TP-LINK XDR5430 Qualcomm [ax] 4 × 4 9.5 Hz
4 TP-LINK XDR6050 MediaTek [ax] 4 × 4 17.0 Hz
5 NETGEAR AX5400 Broadcom [ax] 4 × 4 10.0 Hz
6 NETGEAR AX6600 Broadcom [ax] 4 × 4 9.8 Hz
7 ASUS AX86U Broadcom [ax] 4 × 4 10.3 Hz
8 D-Link DIR-823X MediaTek [ax] 3 × 3 14.2 Hz

TABLE II: Table enumerates the 10 tested client devices,
along with their MIMO configuration and the highest sup-
ported WiFi standard (ax/ac).

No. Client Type Model MIMO Quantization
1 Laptop Thinkpad X201 [ax] 2 × 2 [6,4] bits
2 Laptop Alienware X17R2 [ax] 2 × 2 [6,4] bits
3 Laptop ROG Strix G16 [ax] 2 × 2 [6,4] bits
4 Phone iPhone 14 Pro [ax] 2 × 2 [4,2] bits
5 Phone Huawei P40 Pro [ax] 2 × 2 [6,4] bits
6 Phone Xiaomi 12S Pro [ax] 2 × 2 [6,4] bits
7 Tablet iPad Air 4 [ax] 2 × 2 [4,2] bits
8 Camera Xiaomi CW500 [ax] 1 × 1 [6,4] bits
9 Smart Speaker MI Speaker Pro 8 [ac] 1 × 1 [6,4] bits
10 Smart TV Dangbei H3S [ax] 2 × 2 [6,4] bits

A. Experiment Setup
Sniffer Implementation. Our sniffer setup comprises a Dell
XPS 13 laptop running Ubuntu 21.04, equipped with an Intel
AX210 NIC [46], [47]. Note that we do not modify the laptop’s
antenna setup, i.e., relying solely on its default configuration
with no external antennas. The laptop is configured to
monitor mode using the iwconfig command. We use Wireshark
to capture BFI packets [35], while the decompression of the
steering matrix was performed using pyshark based on the
802.11 protocol [48].
Data Collection. We evaluate LeakyBeam on a total of eight
AP models from six popular AP vendors. These AP models
vary in their WiFi chipsets and MIMO specifications [49],
[50], [51], as depicted in Table I. Note that APs denoted as [ax]
are also compatible with ac protocol. We evaluate all eight APs
in three distinct environments, where the placement of clients
was altered across three locations within each environment,
resulting in a total of nine deployment layouts, as shown in
Figure 9. To simulate the real-world attack scenario, the sniffer
was positioned outside of the residence. We recruited eight
volunteers to act as victims. They were informed that their
occupancy state would be deduced but were not briefed on
the specifics of the methodology employed. Overall, we collect
around 1.6 million BFI packets of a total duration exceeding
49 hours. We conduct this study upon the approval of our
institution’s Institutional Review Board.

Furthermore, as depicted in Figure 10, we compare Leaky-
Beam’s performance against CSI-based baseline, focusing on
their long-range attack performance (§V-C1) and their robust-
ness against external interferences (§V-C2). We also evalu-
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Fig. 9: Figure depicts the nine deployment scenarios across three environments, with three client locations per environment.
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Fig. 10: Figure depicts the setup of LeakyBeam’s experiment
conditions, specifically when comparing with CSI baseline
(§V-C) and varying different conditions (§V-E).

ate LeakyBeam’s performance over various factors including
different victim behaviors with varying distances from client
device (§V-E1), diverse client devices (§V-E2), background
traffic types(§V-E3), sniffing time (§V-E4) and WiFi configu-
rations (§V-E5).
Performance Metrics. We define True Positive Rate (TPR)
and True Negative Rate (TNR) to evaluate LeakyBeam’s
performance on occupancy detection.4 We consider a BFI
trace to be a positive sample if LeakyBeam recognizes it
as indicative of the presence of one or more victims (and
a negative sample otherwise). Hence, we define TPR as the
proportion of positive samples correctly identified in scenarios
where a victim is actually present, and TNR as the proportion
of negative samples correctly identified in scenarios where no
victim is present. Besides TPR and TNR, we also utilize Bal-
anced Accuracy (annotated as Accuracy for abbreviation),
where Accuracy = 1

2 (TPR + TNR).
4TPR, TNR, False Positive Rate (FPR), and False Negative Rate (FNR) are

commonly used in binary classification. FPR and FNR can be derived from
TPR and TNR, with FPR = 1 - TNR and FNR = 1 - TPR.
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Fig. 11: Figure depicts the individual TPRs and FPRs for the
eight AP models averaged over nine deployment settings.

B. Overall Attack Performance
To ensure diversity and minimize bias in our evaluation,

LeakyBeam’s overall performance is assessed over eight AP
models in three distinct environments. The client device
placements varied across three distinct locations within each
environment, creating nine different deployment layouts as
depicted in Figure 9. This setup was used to evaluate Leaky-
Beam’s performance across varying conditions of environment
and device ambiguity. The APs’ specifications are shown in
Table I. We collect 54 samples per layout per AP: 18 negative
samples with no victim presence, 18 positive samples with
a moving victim, and another 18 positive samples with a
stationary victim, each lasting 30 seconds. This results in 32
hours of data comprising over 1.1 million packets.

The results are depicted in Figure 11, presenting TPRs and
TNRs for each AP, averaged across nine layouts. We present
two sets of results: one set for occupancy detection using only
the moving occupant detection module based on amplitude,
and another using both the moving and stationary occupant
detection modules, which incorporates the use of offset-free
phase. With only amplitude-based moving occupant detection,
the TPR and TNR are 57.9% and 99.7%, respectively. This
outcome occurs because the amplitude-only approach fails to
detect stationary victims, thus yielding a relatively low TPR.
However, with the integration of phase information, the TPR
improves to 82.7% with a significant increase of 24.8% with a
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Fig. 12: Figure depicts LeakyBeam’s performance compared
with CSI-based adversarial sensing attack under (a) varying
distances and (b) different environments.

minor 3% decrease in TNR as a trade-off. This improvement
demonstrates the effectiveness of LeakyBeam’s utilizing phase
information to detect subtle channel variation caused by sta-
tionary victims. Particularly notable is the performance of the
TP-LINK XDR6050, which achieved the best results with a
TPR of 93.8% and a TNR of 97.6%. This superior performance
may be attributed to more accurate BFI measurements and
higher BFI rates (will be further explored in §V-E3). Overall,
these results demonstrate LeakyBeam’s practicality and under-
score the considerable privacy risks posed by the BFI side
channel, affirming the need for effective countermeasures.
C. Comparison with CSI Baseline

Recall from §II-B that LeakyBeam represents a significant
advancement over analog CSI-based attacks, particularly in its
robustness to signal attenuation and external interferences. To
further validate this claim, we compare LeakyBeam against a
state-of-the-art CSI-based adversarial sensing attack [8]. For
consistency in our experiments, we employ the same laptop
equipped with an AX210 NIC for both BFI and CSI sniffing,
thereby minimizing variations due to different radio configura-
tions. CSI data acquisition is conducted using PicoScenes [52],
a specialized tool for CSI research, as Wireshark does not
support CSI sniffing. The experiments are conducted with
Xiaomi AX6000 AP.

1) Impact of Attack Distance: We conduct experiments
by varying the sniffer’s distance from 0 to 25 meters from the
victim’s residence. At each distance, both the BFI and CSI
sniffers are positioned identically to ensure a fair compari-
son. As the sniffers are placed outside of the residence, all
measurements suffer from wall attenuation. Results shown in
Figure 12(a) reveal that LeakyBeam maintains a high detection
accuracy—around 88.3% even at 20 meters—owing to the
digital nature of BFI packets whose content remains unaffected
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Fig. 13: Figure depicts (a) the sniffed BFI rates under different
distances and (b) the detection accuracy under different BFI
rates.

by the distance of the attacker. We observe a sharp decrease
in accuracy at 25 meters where the sniffer fails to capture the
leaked BFI packets. We will further detail the analysis of the
packet loss. Our current setup does not use external antennas.
Therefore, advanced attackers could further increase the attack
range by employing external, or even directional, antennas.

Conversely, the CSI-based approach achieves only 68.3%
accuracy, even at 0 meters, due to two primary factors:
Firstly, the CSI baseline relies solely on amplitude variance to
detect motion, which inherently leads to its disability to detect
stationary victims. Secondly, wall attenuation significantly
reduces the variance disparity in CSI signals when victims are
present versus absent, insufficient to establish a reliable deci-
sion boundary for occupancy detection. This attenuation effect
becomes more pronounced with increased distance, causing
the performance to degrade to around 50.6%—equivalent to
a random guess—at just 5 meters. Extended evaluations at 5
meters across different environments, depicted in Figure 12(b),
consistently showed CSI baseline performance around 50%,
substantially lower than LeakyBeam by 39.5%. This perfor-
mance discrepancy highlights the superiority of LeakyBeam
in real-world attack scenarios involving distance and physical
barriers.
Analysis on BFI Packet Loss. Despite its resilience to
attenuation, LeakyBeam can still suffer from packet loss at
excessive distances. We assess how attack distance influences
sniffed BFI rates by varying distances from 0 to 25 meters, as
shown in Figure 13(a), considering scenarios with and without
concrete walls. The findings reveal that when packets traverse a
concrete wall, the average sniffed BFI rate decreases by about
0.7 Hz. Notably, even at a distance of 20 meters through a
wall, the sniffed BFI rate remains as high as 7 Hz, with 76%
of packets successfully retained, with a sharp decrease when
the distance is further extended. This performance is likely
because BFI packets are transmitted at a low MCS by default,
which enables their capture from substantial distances.

To further assess the impact of BFI rate and packet
loss, we evaluated detection accuracy by downsampling BFI
traces from 9 Hz to rates between 1 Hz and 8 Hz. As
shown in Figure 13(b), when the BFI rate exceeds 5 Hz,
detection accuracy consistently exceeds 92.2%, demonstrating
that LeakyBeam’s adaptive sliding window size effectively
accommodates varying BFI rates. Additionally, LeakyBeam’s
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Fig. 15: Figure depicts LeakyBeam’s performance with previ-
ous BFI sensing methods.

ability to maintain high accuracy at a 20-meter distance is now
reasonable, given that the effective BFI rate of 7 Hz sustains
accuracy. When the BFI rate drops below 5 Hz, we observe a
positive correlation between the BFI rate and detection accu-
racy, with lower rates leading to reduced accuracy. Given this
correlation, attackers could potentially estimate a confidence
score based on the captured BFI rate when using the adaptive
sliding window approach. They may also set a threshold to
avoid detection when the BFI rate falls below a certain level,
ensuring that lower BFI rates at extended distances, such as
more than 25 meters, do not compromise detection quality.

2) Impact of External Interference: Besides the long-
range capability, another notable advantage of LeakyBeam
is its robustness to external interference. Specifically, while
external interference typically induces unwanted variations in
CSI signals—potentially misclassifying non-occupant activi-
ties as occupant detections—BFI remains unaffected by such
disturbances. To systematically evaluate this characteristic, we
consider two prevalent types of interference: ambient human
motion near the sniffer, and motion of the sniffer itself (e.g.,
when hand-held by an attacker). We show the TNRs in
Figure 14, showing that the CSI baseline is susceptible to ex-
ternal interferences as expected while confirming LeakyBeam’s
robustness to these interference types.
D. Comparing LeakyBeam with Previous BFI Sensing Works

We now compare LeakyBeam with state-of-the-art BFI
works, particularly BeamSense [19] and MUSE-Fi [53], which
enable ubiquitous human sensing using BFI. Unlike MUSE-Fi,
which relies on the raw steering matrix �̃� for sensing, Leaky-
Beam utilizes the extracted feature 𝐑 for occupant detection.
As demonstrated in Figure 15, LeakyBeam achieves an average
accuracy of 89.7% across environments, surpassing MUSE-
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Fig. 16: Figure depicts LeakyBeam’s TPRs for different victim
behaviors across different distances. (M) stands for motion
behaviors and (S) stands for static behaviors.
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Fig. 17: Figure depicts LeakyBeam’s performance on 10 dif-
ferent client devices of four categories.

Fi’s accuracy of 73.9%. This significant improvement of 15.8%
in accuracy highlights the benefits of our approach, which
effectively mitigates phase offset and isolates dynamic signal
components, leading to more reliable detection of stationary
victims and overall enhanced system performance.

Meanwhile, BeamSense innovatively uses bi-directional BFI
to reconstruct CSI for sensing, thus can achieve a compar-
ative accuracy of 88.2%. However, BeamSense is severely
constrained for attack purposes due to its reliance on bi-
directional BFI. While downlink BFI can be easily extracted,
uplink BFI is only accessible from 1% of WiFi clients, a
limitation acknowledged by BeamSense. In our efforts to
reproduce BeamSense for comparison, following the instruc-
tions from the BeamSense authors, the client’s NIC had to
be hacked and modified to enable beamformer capability to
produce bi-directional BFI. While this approach is feasible in
legitimate sensing scenarios, it is highly challenging and often
impractical in adversarial settings where client devices are
not physically accessible. In contrast, LeakyBeam avoids these
constraints and assumptions, while maintaining effectiveness
and practicality for attackers.
E. Differing Experimental Conditions

We evaluate LeakyBeam’s performance across several fac-
tors. By default, we perform our experiments on a represen-
tative AP - Xiaomi AX6000, and ThinkPad X201 as victim’s
device, in the first environment. We use Accuracy as the
primary metric, calculated on a dataset balanced between
negative and positive cases.

1) Impact of Victim Behavior and Distance: The victim’s
behavior and distance from the WiFi distance significantly
influence signal variations. Behaviors with motion, such as
walking, generally result in more pronounced signal variations.

10



Cloud
Service

Software
Update

Online
Game

Video
Conference

Online
Chatting

Music
Streaming

Idle
0

5

10

15

20

BF
I R

at
e 

(H
z)

xiaomi ax6000
redmi ax6000
tplink xdr5430

tplink xdr6050
netgear ax5400
netgear ax6600

asus ax86u
dlink dir-823x

Fig. 18: Figure depicts the BFI rates of different background
applications. For enhanced visualization, data values exceed-
ing 20 Hz have been clipped.

10 20 30 40 50 60
Sniffing Time (s)

60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Fig. 19: Figure depicts detec-
tion accuracy under different
sniffing durations.
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Fig. 20: Figure depicts detec-
tion accuracy under different
WiFi configurations.

Similarly, closer proximity to the WiFi source strengthens
signals reflected off human body, enhancing these variations.
We evaluated the impact of these two critical factors by ana-
lyzing four common behaviors—walking, stretching (moving
behaviors), and standing, sitting (stationary behaviors)—across
distances from 1 to 8 meters. The results are shown in
Figure 16. The results reveal that walking allows for detection
up to 7 meters, whereas sitting, the least detectable behavior,
maintains an accuracy of 86.7% at a distance of 4 meters,
demonstrating the effectiveness of LeakyBeam to detect occu-
pancy state.

2) Impact of Client Device: The performance of Leaky-
Beam varies depending on the client device (beamformee),
as each device exhibits unique characteristics in its MIMO
configurations and quantization levels. We conduct tests across
a representative set of 10 common client devices, including
laptops, phones, tablets, and smart devices such as cameras,
speakers, and TVs. The specifications of these devices are
detailed in Table II. The results in Figure 17 reveal an average
accuracy of 91.4%. Notably, the smart speaker demonstrates
the lowest accuracy, achieving only 80.8% due to its limited
WiFi capabilities in various aspects, including a single an-
tenna, relatively low traffic, and a bandwidth of merely 20
MHz. Overall, LeakyBeam proves to be highly effective, with
seven out of the 10 tested devices achieving an accuracy higher
than 89%. These results underscore LeakyBeam’s potential
threat and its capability to effectively discern occupancy across
a diverse array of commonly used wireless devices.

3) Impact of Background Traffic: The BFI rate can vary
depending on the real-life background traffic, which ultimately
influences LeakyBeam’s performance. To explore this impact,
we conducted tests using six representative network applica-
tions: video conferencing, music streaming, online gaming,
online chatting, cloud services, and software updating. These
applications were run on all eight APs, with results displayed
in Figure 18. Our analysis reveals that cloud services generate
the highest average BFI rate at 13.4 Hz, while music streaming
produces the lowest at 8.1 Hz. Among individual APs, only the
Dlink AP exhibits a notably low BFI rate of 1.3 Hz in scenarios
involving moderate to low network traffic. In contrast, all
other seven APs consistently report a BFI exceeding 5 Hz,
meaning an accuracy higher than 92.2% from Figure 13(b),
demonstrating their susceptibility to LeakyBeam attacks with
varying background traffic types. We also investigate condi-
tions where the client is idle, and 7 out of 8 APs exhibit a BFI
rate exceeding 4.1 Hz, corresponding to an detection accuracy
of 88.2% from Figure 13(b). Additionally, we observed that
when the channel is dynamic, i.e., with a moving occupant,
the BFI rate could further increase by an average of 2.25 Hz
across various background applications and APs, making it
more susceptible to LeakyBeam, as detailed in Appendix A.

4) Impact of Sniffing Time: Our standard sniffing duration
is set at 30 seconds. To assess the influence of different sniffing
durations on system performance, we vary the sniffing time
from 10 to 60 seconds. The results, shown in Figure 19,
reveal that LeakyBeam maintains an accuracy of over 92%
when the sniffing duration extends to 20 seconds or more.
This demonstrates the system’s efficiency in quickly detecting
a victim’s occupancy state.

5) Impact of WiFi Configuration: We evaluate its impact
by testing both ax and ac protocols across varying bandwidths
(20, 40, 80 MHz). The number of subcarriers associated
with each bandwidth differs significantly—for example, 52
subcarriers for 20 MHz and 234 for 80 MHz under ac protocol.
More subcarriers might lead to more spatial information
being transmitted, potentially increasing the risk of privacy
leakage. The results, detailed in Figure 20, demonstrate that the
average accuracies for the ac and ax protocols are 92.87% and
95.06%, respectively. The accuracy variation across different
bandwidths is a minor 2.6%, indicating that both ax and
ac protocols maintain high performance even at the lowest
bandwidth of 20 MHz, despite having fewer subcarriers. This
demonstrates the robustness of LeakyBeam and highlights its
potential as a significant threat in various WiFi environments.

VI. DEFENSE DESIGN
Given the potential threat for LeakyBeam-like attacks that

exploit ubiquitous WiFi devices for unauthorized sensing and
surveillance, we propose a defense mechanism featuring AP-
defined spatial-temporal obfuscation. Designing this defense,
however, is non-trivial, as it must effectively protect privacy
while also ensuring practicality for seamless integration into
existing WiFi APs and client devices. Specifically, our defense
design includes the following features:
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◼ Effective Privacy Preserving. Our defense can obfuscate
both the amplitude and phase of the steering matrix, rendering
it completely unintelligible to potential attackers.
◼ Minimal Impact on Communication. Leveraging the
mathematical properties of the beamforming sounding process,
our defense ensures that original steering matrices are recov-
erable by AP from their obfuscated versions through a compu-
tationally efficient method—multiplication by the matrix used
for obfuscation. This preserves the integrity of beamforming
while maintaining optimal network performance.
◼ Minimal Hardware Modification: Our defense strategy
piggybacks on the existing spatial mapping mechanisms em-
bedded within the WiFi protocol, thus avoiding significant
hardware modifications at the AP level. Additionally, from
the perspective of client devices, they remain unaffected and
agnostic to these defense modifications. This allows them
to operate as usual without any alterations or performance
impacts, ensuring seamless integration with the vast number
of existing WiFi devices.
A. AP-Defined Spatial-Temporal Obfuscation

We now present the design details of our defense.
AP-Defined Signal Obfuscation Mechanism. Recall from
§II-A, the receiver device calculates the CSI 𝐇𝑘 using the
known LTF 𝐗𝑘 and derives steering matrix 𝐕𝑘. In our de-
fense design, instead of directly transmitting the LTF, our
approach involves transmitting transformed 𝐗′

𝑘 = 𝐐𝑜𝑏𝑓
𝑘 𝐗𝑘,

where 𝐐𝑜𝑏𝑓
𝑘 ∈ ℂ𝑁𝑇𝑋×𝑁𝑇𝑋 is a unitary matrix for signal

obfuscation. This transformation on LTF piggybacks on the
spatial mapping mechanism5 of the AP, thereby minimizing
the hardware modification. This approach is also permissible
under the 802.11 protocol, which specifies that spatial mapping
is "not restricted" [28]. Our obfuscation matrix, 𝐐𝑜𝑏𝑓

𝑘 , is
designed to vary randomly across each BFI packet, enabling
effective spatial-temporal obfuscation.

As the beamformee is unaware of the obfuscation matrix
𝐐𝑜𝑏𝑓 decided by AP, the received signal at each beamformee
antenna appears to be superimposed as if originating from a
"virtual antenna". Consequently, the measured CSI is modified
by this obfuscation and can be expressed as:

𝐇𝑜𝑏𝑓
𝑘 = 𝐇𝑘𝐐

𝑜𝑏𝑓
𝑘 , (VI.2)

where 𝐇𝑜𝑏𝑓
𝑘 describes the channel between the virtual antennas

and receiving antennas. Thus, an obfuscated steering matrix,
denoted as 𝐕𝑜𝑏𝑓

𝑘 , will be sent back to the beamformer.
AP’s BFI Recovery Mechanism from Obfuscation. Our
subsequent analysis demonstrates that after receiving the BFI

5Given that the number of data streams might not align with the number
of transmitting antennas, a mapping matrix can be applied for allocating the
𝑁𝑆𝑇𝑆 data streams across 𝑁𝑇𝑋 transmitting chains for onward transmission.
The signal transmitted by AP can thus be expressed by:

𝐗′
𝑘 = 𝐐𝑘𝐗𝑘, (VI.1)

where 𝐐𝑘 ∈ ℂ𝑁𝑇𝑋×𝑁𝑆𝑇𝑆 represents the spatial mapping matrix.
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Fig. 21: Figure depicts the amplitude variance of BFI (a)
without and (b) with our defense.
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Fig. 22: Figure depicts the performance of our defense mech-
anism on occupancy detection, reducing accuracy to around
51%—the level of a random guess.

impacted by obfuscation, i.e., 𝐕𝑜𝑏𝑓
𝑘 , we can recover the original

steering matrix 𝐕𝑘 using

𝐕𝑘 = 𝐐𝑜𝑏𝑓
𝑘 𝐕𝑜𝑏𝑓

𝑘 . (VI.3)

Proof: Given that 𝐇𝑘 = 𝐔𝑘Σ𝑘𝐕
†
𝑘, 𝐇𝑜𝑏𝑓 can be expressed as:

𝐇𝑜𝑏𝑓
𝑘 = 𝐔𝑘Σ𝑘𝐕

†
𝑘𝐐

𝑜𝑏𝑓
𝑘 = 𝐔𝑘Σ𝑘

(

𝐐𝑜𝑏𝑓†
𝑘 𝐕𝑘

)†
. (VI.4)

Since 𝐐𝑘 is a unitary matrix, 𝐐𝑜𝑏𝑓†
𝑘 𝐕𝑘 is also unitary. There-

fore, the SVD of 𝐇𝑜𝑏𝑓
𝑘 retains 𝐔𝑘 as the left singular matrix.

The right singular matrix of 𝐇𝑜𝑏𝑓
𝑘 differs from that of 𝐇𝑘 by

a pre-multiplication by 𝐐𝑜𝑏𝑓†
𝑘 , i.e., 𝐕𝑜𝑏𝑓

𝑘 = 𝐐𝑜𝑏𝑓†
𝑘 𝐕𝑘. Thus, as

outlined in Eq. VI.3, the AP can accurately recover the original
𝐕𝑘 using this transformation. Meanwhile, attackers, with no
knowledge of 𝐐𝑜𝑏𝑓

𝑘 , cannot recover 𝐕 from their sniffed �̃�.
We present the detailed security analysis in Appendix B.
Importantly, this method does not necessitate the client’s
awareness of 𝐐𝑜𝑏𝑓

𝑘 , thereby eliminating the need for secure
preliminary exchanges or synchronized algorithms between the
AP and the client. This ensures that the approach remains
compatible with unmodified beamformee devices, maintaining
system functionality while enhancing security through spatial-
temporal obfuscation.
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TABLE III: Comparison of Packet Error Rate (PER) and
Throughput (TP) under different beamforming settings.

NoBeamforming StandardBeamforming Beamformingwith our Defense
SNR(dB) PER TP(Mbps) PER TP(Mbps) PER TP(Mbps)

20.7 9.54e-1 14.36 1.90e-3 309.49 2.26e-3 309.38
22.7 1.00e-1 278.95 1.20e-4 310.04 9.00e-5 310.05
24.7 3.00e-5 310.07 <1e-5 310.08 <1e-5 310.08

B. Defense Performance
Figure 21 illustrates the signal variance without and with

our defense applied. With our defense, the variance between
scenarios with no person and a moving victim becomes
visually indistinguishable. To further evaluate the effectiveness
of our defense, we assess its impact on the LeakyBeam attack,
as depicted in Figure 22. The results demonstrate a significant
degradation in the accuracy of LeakyBeam, dropping from
89.7% to approximately 51%, which is nearly equivalent to
random guessing. This notable reduction in attack efficacy is
consistent across all eight APs tested, highlighting the robust-
ness and general effectiveness of our defense in mitigating the
privacy risks posed by LeakyBeam.
C. Impact on Communication

Following Eq. VI.3, the AP should recover the original
steering matrix 𝐕 without discrepancies. However, in prac-
tical scenarios, the BFI undergoes quantization before being
transmitted back to the beamformer. This quantization can
cause the 𝐕 recovered by the AP to deviate slightly from the
originally quantified 𝐕. To evaluate its impact on commu-
nication, we conducted simulations using MATLAB WLAN
Toolbox across three scenarios: no beamforming, standard
beamforming, and beamforming with our defense, incorporat-
ing quantization effects in a multipath fading channel. Results
depicted in Figure 23 indicate that the variance of the constel-
lation plot in both beamforming scenarios is nearly identical
and significantly lower compared to the non-beamforming
scenario, suggesting minimal disruption from our defense.
Further analysis focuses on two key metrics: packet error rate
and throughput. The simulations were configured with an MCS
of index 4, bandwidth of 80 MHz, 4 transmit antennas, 2
receive antennas, with LDPC channel coding and the TGax
Model-B for fading under three different SNR conditions.
The channel was randomized across simulation instants. The
results, shown in Table III, demonstrate that our defense
maintains comparable performance to standard beamforming,
emphasizing its practicality in preserving communication in-
tegrity while protecting user privacy. We provide additional
simulation results in Appendix C.
D. Other Countermeasures.

We also propose two other potential defense strategies
against LeakyBeam attack. First, we propose to encrypt BFI
Packets. Encrypting these packets, for example, using WPA3,
could effectively eliminate the leakage of BFI. However, this
approach would necessitate firmware updates across all WiFi
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Fig. 23: Figure depicts the constellation plot comparing sig-
nal distribution across different beamforming conditions: (a)
without beamforming, (b) with standard beamforming, and
(c) with beamforming using our defense mechanism. Both
beamforming conditions include quantization effects.

devices to support WPA3 – a formidable task given the bil-
lions of existing and legacy devices. Additionally, encryption
introduces computational overhead that could burden resource-
constrained devices. Similarly, while 802.11w protocol offers
management frame protection through encryption and integrity
checks, it significantly increases computational demands and
is not universally supported, especially by common household
devices [54].

Second, we propose injecting fake BFI packets for obfus-
cation by either the client or the AP, each approach pre-
senting potential issues. If the client injects fake BFIs, the
AP might not be able to distinguish the fake packets from
genuine ones, potentially using an incorrect steering matrix
for beamforming and severely degrading communication per-
formance. Conversely, if the AP injects fake BFI packets,
an advanced attacker might still distinguish the fake packets
from the ones from client devices by analyzing the channel
characteristics [9].

VII. EXTENSION TO OCCUPANT TRACKING
We now discuss how LeakyBeam can be extended from

occupancy detection to tracking. LeakyBeam can perform
effective occupancy detection using existing WiFi clients in
the residence as proximity sensors. The activation of these
devices correlates with human presence within their detection
range, typically at room level. Given the prevalence of WiFi
devices, LeakyBeam can potentially evolve into an adversarial
tracking system, if precise location data of WiFi devices within
a residence are available. Previous research has demonstrated
the feasibility of acquiring such locality information [33],
[55], [8]. Hence, the trajectory of victims can be detected
and inferred based on their proximity to active WiFi devices,
posing a greater privacy threat.

We present a feasibility study to demonstrate the potential
extension. Specifically, we conduct a preliminary evaluation in
a two-story residential building spanning approximately 600
square meters. The arrangement, as detailed in Figure 24,
consisted of five rooms, each equipped with one WiFi client
device. The WiFi AP is placed in Room 1, while a passive
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Fig. 24: Figure depicts (a) experimental setup in a two-floor
building with five rooms, each containing a client device, and
a passive BFI sniffer outside the building; (b) the comparison
between the room of highest occupant possibility against the
ground truth victim location.

WiFi sniffer is positioned two meters from the exterior of the
house to collect BFI. We trace the trajectory of the victim
over ten minutes as depicted by the red solid arrows in
Figure 24(a). We also present the precision in correlating the
victim’s position with the nearest WiFi device in Figure 24(b).
Through this study, we demonstrate the potential of extending
LeakyBeam to an adversarial tracking system when combined
with additional location knowledge of clients devices [33],
[55], [8], thereby raising substantial privacy concerns.

VIII. RELATED WORK
WiFi Sensing. Extensive research has focused on leveraging
WiFi CSI for ubiquitous sensing applications, including ges-
ture recognition, fall detection, and intrusion detection [56],
[20], [57], [58], [59]. Recent research has explored BFI as
a novel sensing medium [19], [36], [60], [61]. Early efforts
predominantly focused on exploiting BFI amplitude [62], [63].
BFMSense [36] employed a BFM-ratio to counteract scaling
factors in the feedback. While BeamSense [19] realizes CSI
recovery from BFI, it requires bi-directional BFI, which is
seldom available due to the scarcity of uplink BFI from
most devices. And these approaches require direct control
and calibration on the WiFi devices, which does not apply
to LeakyBeam’s adversarial sensing scenario. With these con-
straints in mind, LeakyBeam innovatively leverages antenna
and subcarrier diversities and derive robust features, enabling
robust adversarial occupancy detection.
Adversarial WiFi Sensing. The WiFi signals can also be uti-
lized by attackers to infer sensitive information [64], [65], [66],
e.g., device location inference [67], [33] and keystroke and
password inference [68], [69], [70], [71], [72], [73]. Recently,
WiKI-Eve [62] extends keystroke attacks on phone by utilizing
BFI packets. LeakyBeam fundamentally differs from WiKI-Eve
as WiKI-Eve uses a device-based approach, requiring the vic-

tim’s direct, physical interaction with the device transmitting
BFI packets [74]. In contrast, LeakyBeam employs a device-
free sensing method that utilizes signal reflections from the
victim, bypassing the need for direct interaction. However,
LeakyBeam faces the challenge of more subtle signals and
being more prone to environmental ambiguities and multipath
effects – challenges that LeakyBeam innovatively addresses
through its design.
Defending Physical-based Adversarial Sensing. To counter
physical-based adversarial sensing, Zhu et al.[8] employ a fake
AP to inject cover packets, which might be compromised by
adversaries who can distinguish the channel characteristics
unique to the fake AP [9]. MIMOCrypt [75] secures privacy by
encrypting CSI, necessitating key distribution and decryption
at the client’s end. PhyCloak [76] and Aegis [77] use a full-
duplex radio to introduce channel variation. RF-Protect [10]
and IRShield [9] adopt customized intelligent reflecting sur-
faces to obfuscate and prevent passive and active adversarial
motion sensing. Unlike these approaches, LeakyBeam reuses
the existing spatial mapping mechanism in WiFi protocols for
spatial-temporal obfuscation, avoiding the need for additional
costly hardware or complex cryptographic processes on client
devices, thus ensuring minimal disruption while effectively
preserving privacy.

IX. CONCLUSION
Through LeakyBeam, we demonstrate that plaintext BFI

packets can pose significant privacy risks when exploited for
adversarial human sensing. Our implementation and compre-
hensive real-world evaluation across eight APs in various
deployment conditions confirm the practicality and threat
of such attacks. Finally, we propose an effective defense
strategy involving AP-based spatial-temporal obfuscation that
safeguards privacy with minimal overhead. This work aims to
spur further research into the privacy aspects of beamforming
technologies, including for high-frequency WiFi like 60 GHz
mmWave, which may rely heavily on beamforming.
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APPENDIX A
IMPACT OF MOVING OCCUPANT ON BFI RATE

We investigate how the victim’s movement affects the BFI
rate across different client background traffic scenarios. We
conducted BFI rate measurements in the same manner as in
§V-E3, but with a moving occupant. The results, shown in
Figure 25(a), indicate that the BFI rate is consistently higher
than 4.6 Hz, except for the Dlink AP with an idle client.
Moreover, we observe that under the same background traffic
conditions, the BFI rate with a moving occupant is consistently
higher than in scenarios with no occupant or a stationary
occupant, as illustrated in Figure 25(b), with an average
increase of 2.3 Hz. This increase occurs because the APs,
detecting dynamic changes in the channel, raise their sounding
frequency to allow for timely adjustments in beam alignment,
thereby making them more susceptible to LeakyBeam attack.
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Fig. 25: Figure depicts (a) BFI rates of different background
applications with a moving victim (values > 20 Hz clipped for
clarity), and (b) comparison of BFI rates between stationary
and moving victims.
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Fig. 26: Figure depicts the impact of LeakyBeam’s defense on
PER under different modulation schemes. Beamforming (BF)
with our defense shows comparable results to standard BF.

APPENDIX B
SECURITY ANALYSIS ON COUNTERMEASURE

We provide detailed security analysis on LeakyBeam’s coun-
termeasure design by proving the following theorem.

Theorem B.1: If the obfuscation matrix 𝐐𝑜𝑏𝑓
𝑘 is chosen

uniformly at random from all possible candidates, then defense
is secure, i.e.,

𝑃 (𝐕𝑘 = 𝑉𝑘|𝐕
𝑜𝑏𝑓
𝑘 = 𝑉 𝑜𝑏𝑓

𝑘 ) = 𝑃 (𝐕𝑘 = 𝑉𝑘)

for all possible 𝑉𝑘 and all possible 𝑉 𝑜𝑏𝑓
𝑘 , meaning eavesdrop-

ping givens no advantage to guess 𝑉𝑘.

Proof: Suppose there are n candidates for the obfuscation
matrix, then

𝑃 (𝐐𝑜𝑏𝑓
𝑘 = 𝑄𝑜𝑏𝑓

𝑘 ) = 1
𝑛
,

where 𝑄𝑜𝑏𝑓
𝑘 is one of the candidate and is an unitary matrix.

Since 𝐐𝑜𝑏𝑓
𝑘 is chosen independently of 𝐕𝑘, we have

𝑃 (𝐕𝑜𝑏𝑓
𝑘 = 𝑉 𝑜𝑏𝑓

𝑘 ∩𝐐𝑜𝑏𝑓
𝑘 = 𝑄𝑜𝑏𝑓

𝑘 )

= 𝑃 (𝐕𝑘 = 𝑄𝑜𝑏𝑓
𝑘 𝑉 𝑜𝑏𝑓

𝑘 ∩𝐐𝑜𝑏𝑓
𝑘 = 𝑄𝑜𝑏𝑓

𝑘 )

= 𝑃 (𝐕𝑘 = 𝑄𝑜𝑏𝑓
𝑘 𝑉 𝑜𝑏𝑓

𝑘 )𝑃 (𝐐𝑜𝑏𝑓
𝑘 = 𝑄𝑜𝑏𝑓

𝑘 )

= 𝑃 (𝐕𝑘 = 𝑄𝑜𝑏𝑓
𝑘 𝑉 𝑜𝑏𝑓

𝑘 )(1∕𝑛),

(B.1)

given that 𝐕𝑜𝑏𝑓
𝑘 = 𝐐𝑜𝑏𝑓†

𝑘 𝐕𝑘.
If 𝑄𝑜𝑏𝑓

𝑘 runs all possible candidate matrices, then the
corresponding 𝑄𝑜𝑏𝑓

𝑘 𝑉 𝑜𝑏𝑓
𝑘 runs all possible messages:

∑

𝑄𝑜𝑏𝑓
𝑘

𝑃 (𝐕𝑘 = 𝑄𝑜𝑏𝑓
𝑘 𝑉 𝑜𝑏𝑓

𝑘 ) = 1. (B.2)

With Eq. (B.1) and Eq. (B.2), we have:
𝑃 (𝐕𝑜𝑏𝑓

𝑘 = 𝑉 𝑜𝑏𝑓
𝑘 ) =

∑

𝑄𝑜𝑏𝑓
𝑘

𝑃 (𝐕𝑜𝑏𝑓
𝑘 = 𝑉 𝑜𝑏𝑓

𝑘 ∩𝐐𝑜𝑏𝑓
𝑘 = 𝑄𝑜𝑏𝑓

𝑘 )

= 1
𝑛
∑

𝑄𝑜𝑏𝑓
𝑘

𝑃 (𝐕𝑘 = 𝑄𝑜𝑏𝑓
𝑘 𝑉 𝑜𝑏𝑓

𝑘 ) = 1
𝑛
,

(B.3)
The definition of conditional probability and the independence
of 𝐐𝑜𝑏𝑓

𝑘 and 𝐕𝑘 yield:
𝑃 (𝐕𝑘 = 𝑉𝑘|𝐕

𝑜𝑏𝑓
𝑘 = 𝑉 𝑜𝑏𝑓

𝑘 )𝑃 (𝐕𝑜𝑏𝑓
𝑘 = 𝑉 𝑜𝑏𝑓

𝑘 )

= 𝑃 (𝐕𝑜𝑏𝑓
𝑘 = 𝑉 𝑜𝑏𝑓

𝑘 ∩ 𝐕𝑘 = 𝑉𝑘)

= 𝑃 (𝐐𝑜𝑏𝑓
𝑘 = 𝑄𝑜𝑏𝑓

𝑘 ∩ 𝐕𝑘 = 𝑉𝑘)

= 𝑃 (𝐐𝑜𝑏𝑓
𝑘 = 𝑄𝑜𝑏𝑓

𝑘 )𝑃 (𝐕𝑘 = 𝑉𝑘).

(B.4)

Since 𝑃 (𝐕𝑜𝑏𝑓
𝑘 = 𝑉 𝑜𝑏𝑓

𝑘 ) = 1
𝑛 = 𝑃 (𝐐𝑜𝑏𝑓

𝑘 = 𝑄𝑜𝑏𝑓
𝑘 ), we can

obtain:
𝑃 (𝐕𝑘 = 𝑉𝑘|𝐕

𝑜𝑏𝑓
𝑘 = 𝑉 𝑜𝑏𝑓

𝑘 ) = 𝑃 (𝐕𝑘 = 𝑉𝑘). (B.5)
The proof is hence completed.

APPENDIX C
IMPACT OF LeakyBeam’S DEFENSE UNDER DIFFERENT

MODULATION SCENARIOS
We evaluate the impact of LeakyBeam’s defense on com-

munication performance across various WiFi modulation sce-
narios, specifically for MCS indices 4, 6, and 8, corresponding
to 16-QAM, 64-QAM, and 256-QAM, respectively. Similar to
§VI-C, the simulations utilize MATLAB’s WLAN Toolbox,
employing LDPC channel coding and the TGax Model-B
channel model to introduce realistic fading and noise varia-
tions. As depicted in Figure 26, our results demonstrate that
LeakyBeam’s defense strategy sustains performance compara-
ble to standard beamforming even under higher modulation
schemes, aligning with our analysis in §VI-A.
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