
Careful About What App Promotion Ads
Recommend! Detecting and Explaining Malware

Promotion via App Promotion Graph
Shang Ma†*, Chaoran Chen†*, Shao Yang‡, Shifu Hou†,

Toby Jia-Jun Li†, Xusheng Xiao§B, Tao Xie¶, Yanfang Ye†B
†University of Notre Dame. Email: {sma5, cchen25, shou, jli26, yye7}@nd.edu

‡Case Western Reserve University. Email: sxy599@case.edu
§Arizona State University. Email: xusheng.xiao@asu.edu

¶Peking University. Email: taoxie@pku.edu.cn

Abstract—In Android apps, their developers frequently place
app promotion ads, namely advertisements to promote other
apps. Unfortunately, the inadequate vetting of ad content allows
malicious developers to exploit app promotion ads as a new
distribution channel for malware.

To help detect malware distributed via app promotion ads,
in this paper, we propose a novel approach, named ADGPE,
that synergistically integrates app user interface (UI) exploration
with graph learning to automatically collect app promotion ads,
detect malware promoted by these ads, and explain the promotion
mechanisms employed by the detected malware.

Our evaluation on 18, 627 app promotion ads demonstrates
the substantial risks in the app promotion ecosystem. The
probability for encountering malware when downloading from
app promotion ads is hundreds of times higher than from the
Google Play. Popular ad networks such as Google AdMob, Unity
Ads, and Applovin are exploited by malicious developers to
spread a variety of malware: aggressive adware, rogue security
software, trojan, and fleeceware. Our UI exploration technique
can find 24% more app promotion ads within the same time
compared to the state-of-the-art techniques. We also demonstrate
our technique’s usage in investigating underground economy by
collecting app promotion ads in the wild. Leveraging the found
app promotion relations, our malware detection model achieves
a 5.17% gain in F1 score, improving the F1 score of state-of-
art techniques from 90.14% to 95.31%. Our malware detection
model also detects 28 apps that were initially labeled as benign
apps by VirusTotal but labeled by it as malware/potentially
unwanted apps (PUAs) six months later. Our path inference
model unveils two malware promotion mechanisms: custom-made
ad-based promotion via hardcoded ads and ad library-based
promotion via interactions with ad servers (e.g., AdMob and
Applovin). These findings uncover the critical security risks of
app promotion ads and demonstrate the effectiveness of ADGPE
in combining dynamic program analysis with graph learning to
study the app promotion ad-based malware distribution.

I. INTRODUCTION

Advertisements, in short as ads, are widely used in mobile
apps. Research [1] indicates that over 57% of apps in Google

 Tap the “Volume” icon

 Redirect to Google Play

 Install rogue security software Pop up an app promotion ad

Fig. 1: Malware distribution via an app promotion ad

Play contain ad libraries. Additionally, two-thirds of popular
apps contain these ad libraries [2]. Ads are effective and widely
adopted practices to increase user bases and app installs, and
are also a major revenue source for developers who place ads
in their apps to promote other apps (denoted as app promotion
ads in this paper) [3], [4]. These ads play a significant role in
helping users discover new apps. For example, a survey [5]
from Google Research and Ipsos shows that one-third of
users discover new apps via ads in other apps. Unfortunately,
the inadequate vetting of the ad content allows malicious
developers to exploit app promotion ads as a new distribution
channel for malware.

App users are prone to malware promotion ads for two main
reasons. First, these ads are usually “hidden” in harmless apps,
engaging users with ad contents. For example, the app shown
in Fig. 1 offers free translation services between English and

B Corresponding authors. * Equal contribution.

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.230051
www.ndss-symposium.org

Turkish. Nevertheless, any interaction with this app, such as
tapping the “Voice” icon, will trigger an app promotion ad.
This ad employs persuasive language and visual patterns to
encourage users to download rogue security software that
convinces users to pay for security services and steals users’
sensitive information. Second, the malware promotion ads are
usually indistinguishable from other ads, leading users to un-
knowingly download malware from trusted sources. In Fig. 1,
tapping anywhere on the ad redirects users to the official
Google Play store to install the advertised app. Moreover, this
ad is provided by Google AdMob, which is the most widely
used ad library, integrated into over 90% of apps that conduct
app promotion campaigns. Similar malware promotion ads are
also observed from other popular ad libraries such as Meta Ads
and AppLovin.

To help detect malware distributed via app promotion ads,
in this paper, we propose a novel approach, ADGPE, that
synergistically integrates app UI exploration with graph
learning to automatically collect app promotion ads, detect
malware promoted by these ads, and explain the promotion
mechanisms employed by the detected malware1. In partic-
ular, while static analysis can effectively identify ad libraries
used to show ads in apps [6]–[8], our preliminary study finds
that applying static analysis to detect app promotion ads is
insufficient because (a) the ad content served by ad libraries
is determined at runtime and dynamically requested from ad
servers, and (b) custom-made ads (ad content provided by the
app developer instead of ad libraries) that account for non-
trivial portions of ads (> 20%) have diverse implementation
mechanisms (Section III-C). Thus, to address these challenges,
ADGPE performs automatic user interface (UI) exploration
on a large number of apps from Google Play to collect
app promotion ads, and leverages the collected ads to build
an app promotion graph. In an app promotion graph, the
nodes represent apps, and the edges represent the relationships
from the apps showing the ads to the apps promoted by
the ads. This graph encapsulates the app promotion relations
among apps and the app attributes derived from app markets,
VirusTotal, and source code. Utilizing the graph, ADGPE
then trains a node classification model for malware detection
and constructs a path inference model to uncover malware
promotion mechanisms.

ADGPE starts by collecting app promotion ads to construct
an app promotion graph. We have pinpointed three major
challenges of this task. First, app promotion ads are often
placed on multiple UI pages within an app. Existing UI explo-
ration techniques aim at achieving high code coverage within a
single app by employing complex and heavy strategies, which
become inefficient when scaling to a large number of apps [9]–
[13]. Second, app promotion ads appear in various formats,
each with distinct UI layout characteristics. Current works on
identifying mobile ads are limited to a small set of UI widgets
thus failing to capture all the app promotion ads [8], [14], [15].
Third, ads’ content is generated at runtime and continuously
changes over time. Existing UI exploration techniques are

1ADGPE is publicly available at https://github.com/
AppPromotionAdsResearch/AdGPE.

optimized on code coverage so they tend to avoid repeated
actions and may overlook the changed ad content [16]–[19]. To
address these three challenges, ADGPE includes a novel ad-
oriented UI exploration technique. First, to efficiently achieve
high ad coverage, this technique employs random exploration
combined with a depth-first exhaustive search strategy. Second,
to accurately identify various ad types, this technique leverages
a common design feature: a call-to-action widget redirecting
users to the app marketplace. Third, to capture the frequently
updated ad content, this ad-oriented UI exploration technique
periodically restarts apps and refreshes their ads to capture all
available content within a period of time.

The second part of ADGPE is to leverage the constructed
app promotion graph for ad-promoted malware detection. Ex-
isting Android malware detection models have two shortcom-
ings when detecting ad-promoted malware [20]–[22]. First,
they are ineffective as they mainly train learning models
using only app attributes (e.g., permissions, app metadata,
and API calls) and overlook the app promotion relations.
Second, these models generally lack explainability. To ad-
dress these shortcomings, ADGPE introduces a novel graph
learning model based on pre-trained Graph Neural Network
(GNN) [23]–[26]. To effectively detect ad-promoted malware,
this model constructs an embedding of the app promotion
graph to represent app promotion relations. This embedding is
then combined with the app attributes to train a Random Forest
classifier [27] for malware detection. To enhance the explain-
ability of our model, ADGPE transforms the app promotion
graph into a promotion inference graph (PIG) and builds a
path inference model to infer malware promotion mechanisms
based on app attributes and app promotion relations. The path
inference model also predicts unobserved links in the app
promotion graph, complementing UI exploration to build a
more comprehensive app promotion graph for better detection
and inference.

Our study on 18, 627 app promotion ads uncovers significant
risks in these ads: a 2.64% chance for users to encounter
malware when downloading apps via app promotion ads,
which rises to 7.51% when the ads are in potentially unwanted
apps (PUAs). This probability is hundreds of times higher
than the likelihood of downloading a malicious app from
the Google Play store. Furthermore, our case study reveals
that popular ad libraries such as Google AdMob, Unity Ads,
and Applovin lack stringent vetting processes for malware
and are exploited by malicious developers to spread a variety
of malware: aggressive adware, rogue security software,
trojan, and fleeceware. App developers can also build custom-
made ads to distribute malware. Although app markets have
strict policies, they alone cannot mitigate all risks without
cooperation from ad libraries and developers. Thus, solely
analyzing ad libraries is not sufficient.

By incorporating app promotion relations, our malware
detection model obtains a 5.17% performance gain (from
90.14% to 95.31%) compared to using solely traditional
features2. This indicates that the app promotion graph built

2In this paper, the term “malware”, when used in the context of malware
detection or malware promotion, encompasses both the malware and PUAs.

2

https://github.com/AppPromotionAdsResearch/AdGPE
https://github.com/AppPromotionAdsResearch/AdGPE

through UI exploration is an important feature that enhances
the effectiveness of graph learning in malware detection.
Specifically, it outperforms five commercial security engines
by at least 27.4% and two state-of-the-art (SOTA) malware
detection approaches [28], [29] by at least 24.5% in F1 score.
Additionally, ADGPE achieves a better F1 score than the
SOTA approach that employs random walk [30] and is fed
with the same features of ADGPE (95.31% v.s. 92.48%), indi-
cating the superiority of ADGPE’s GNN model. We evaluate
the robustness of ADGPE by mimicking real-world attacks
through mutating nodes and links in the app promotion graph.
The results demonstrate that ADGPE maintains a high F1
score with node mutations and outperforms previous work with
link mutations. Our malware detection model also successfully
detects 28 apps that were initially labeled as benign apps
by VirusTotal but labeled as malware/PUAs six months later.
Furthermore, our ad-oriented UI exploration technique outper-
forms four established approaches [8], [31]–[33], by finding
24% more ads within 10 hours. Our small-scale case study on
collecting app promotion ads in the wild also shows that this
UI exploration technique can effectively detect ads directing
users outside Google Play and discover malware from non-
official app markets, assisting in studying underground econ-
omy. Our path inference model reveals two primary malware
promotion channels: ad library-based promotion via interac-
tions with ad servers (e.g., AdMob, Applovin) and custom-
made ad-based promotion via hardcoded ads (e.g., apps from
the same malicious developer) in the app’s source code. This
path inference model also aids ad-oriented UI exploration by
predicting missing app promotion links, some of which require
at most 54 clicks to find. These findings demonstrate the
effectiveness of combining dynamic program analysis with
graph learning in studying app promotion ad-based malware
distribution.

II. BACKGROUND AND THREAT MODEL

Mobile Advertisement Ecosystem. The mobile advertising
ecosystem includes several key roles: Ad Networks, which
conduct real-time auctions to determine which ads to display
based on factors such as bid price, ad quality, and user
context [34], [35]; Ad Providers, who aim to promote their
apps via ads; and Developers, who seek to monetize their
apps by hosting ads. Ad providers must publish their apps
on an app market and register these apps with an ad network
to finance advertisement campaigns [36]. Ad networks, which
are incorporated into mobile apps via ad libraries [37], [38],
support various formats like banners and rewarded ads to
enhance user visibility [39]–[41]. To host ads, developers need
to register their apps with an ad network and integrate the
network’s ad library into their apps [42]. Additionally, to
reduce advertising expenses, developers can create custom-
made ads within their own apps to promote other products or
apps they offer.
Automatic UI Exploration. Automatic UI exploration for
Android devices is an automated approach that systematically
navigates and interacts with an app’s UI to identify potential
issues, validate functionality, and ensure a seamless user
experience [43], [44]. Recognizing the importance, Google

(a) A banner ad promotes trojan

(b) An interstitial ad promotes
rogue security software

(c) Malware detection

URL

Promotion

relations

App

attributes PUA Manifest

Predicted promotion

App B

App B

App CApp A

App A
+

!

!

?

?
?

?

?

(d) App promotion reasoning

Fig. 2: A motivating example

has released the UI exerciser, the Monkey tool [32], which is a
command-line tool to randomly generate user events including
clicks, touches, and gestures. There also exist research tools
that model the explored UI pages and transitions to automati-
cally explore various behaviors of apps [11]–[13], [45]. Apart
from these automated UI testing tools, there are also UI testing
techniques that enable developers to create customized code
to automate the UI tests, such as Appium [46] and Google’s
UIAutomator [47].
Threat Model. We conduct the study in our controlled lab
environments with trusted devices and secure network settings,
and our threat model is consistent with the previous work [48],
[49]. Under this lab setting, we assume that app promotion
ads in our experiments are not subject to external attacks.
Specifically, we assume that the ads are generated by the apps
themselves instead of from other apps that preempt the ad
promotion channel to distribute ads in the other apps. We also
assume that the network channels and the ad servers of the
apps are not compromised and the ad content is not altered.
Although such scenarios may occur, they fall outside the scope
of this research. To ensure that the annotation of the app
class (i.e., benign app, PUA, and malware) is accurate and
our trained model is not biased or polluted, we not only rely
on the VirusTotal security report of each app, but also sample
and inspect the source files of the reported malware to ensure
the existence of malicious behavior in the code. Malware that
deliberately evades detection and inspection can be detected
by applying more advanced techniques [50]–[54], which is out
of the scope of this paper.

III. MOTIVATION OF ADGPE

In this section, we introduce the motivation behind our
approach, starting with an example that highlights the potential
risks associated with app promotion ads. We also use an
example to illustrate the benefits of integrating graph learning
with UI exploration, demonstrating the enhanced effectiveness
of this synergistic approach.

3

A. Risks in App Promotion Ads

Fig. 2 shows a real-world app promotion graph where apps
are connected by app promotions ads (arrows pointing to pro-
moted apps). This graph consists of malware (the icon with a
red triangle), PUAs (icons with a yellow rectangle), and benign
apps (icons with a green circle). The malware “Background
Eraser Photo Editor” and the PUA “Fancy Battery” can both
be accessed by users following the app promotion ads seen
in Fig. 2(a) and (b), both of which are located in benign
apps. The malware “Background Eraser Photo Editor” is a
trojan that disguises itself as a photo editor while executing
malicious activities such as stealing sensitive information and
e-banking frauds. The PUA “Fancy Battery” is a rogue security
engine that disguises itself as a cleaner app but executes
malicious services automatically to constantly display ads
without requiring user interactions.

Beyond leveraging ad libraries, malware is also promoted
through custom-made app promotion ads. Fig. 7a in the
Appendix shows an example app that pops up a dialog in a
benign app and directs users to download a trojan. Clearly,
these examples show that malware/PUAs can exploit app
promotion ads in benign apps, which are trusted by most users,
to reach more users.

B. Graph Learning with App Promotion

Fig. 2(c) presents an example of using app promotion
relations to detect malware. Specifically, the adware “Learn
Persian”, which promotes the target app, “Fancy Boost”, also
promotes another PUA named “Fancy Optimizer & Antivirus”,
both developed by the same developer. Such app promotion
relations suggest a high likelihood that the target app be-
longs to the same group of malicious developers (referring
to Section VII-B for more details). The target app “Fancy
Boost” indeed exhibits unwanted behaviors similar to the
rogue security software “Fancy Optimizer & Antivirus” (as
shown in Fig. 1). Nevertheless, this app is a newly developed
app with limited information and security vendors such as
VirusTotal classify it as benign. This example shows how app
promotion relations facilitate graph learning-based malware
detection by providing distinctive features.

Fig. 2(d) shows how to use an app promotion graph to
predict and reason app promotions. Specifically, the online
message sticker app “Vijay Deverakonda Sticker” (referred
to as App A) accesses the same ad library URL and shares
manifest activity names with the photo collection app “Morn-
ing and Night Wishes” (referred to as App B), which is
known to promote the malware “Background Eraser Photo
Editor” (referred to as App C). This information implies that
App A and App B share exploit code and use the same ad
library, suggesting a strong likelihood of App A promoting
App C. However, real-time UI exploration may not capture
every instance of app promotion ads, potentially missing this
malware promotion. This example demonstrates that graph
learning offers a solution by predicting app promotions, effec-
tively complementing dynamic analysis to address its inherent
limitations, such as the incompleteness of app UI exploration.

1 import com.google.android.gms.ads.AdView;
2 import com.google.android.gms.ads.InterstitialAd;
3 // Inherent ads
4 AdView adView = findViewById(R.id.adView);
5 adView.loadAd(ConsentSDK.getAdRequest(this));
6 // Pop-up ads
7 InterstitialAd popupad = new InterstitialAd(this);
8 popupad.loadAd(ConsentSDK.getAdRequest(this));
9 adButton.setOnClickListener(view -> popupad.show());

10 // Custom-Made ads
11 customAdButton.setOnClickListener(view -> startActivity(new

Intent(Intent.ACTION_VIEW, Uri.parse(uri))));

Fig. 3: Key code snippets of three ad types

(a) Inherent Ad (b) Custom-made Ad (c) Pop-up Ad

Fig. 4: Examples of app promotion ads

C. Characterizing Challenges for App Promotion Ads

App promotion ads are shown in various formats [39]–[41],
including banner, interstitial, and rewarded ads. Moreover, app
promotion ads can be implemented by ad libraries or custom-
made by developers, posing challenges for collecting app
promotion ads. Therefore, we conduct a preliminary study to
investigate the characteristics of app promotions ads and how
we can collect them. We have built two datasets as follows:
AndroZoo Dataset. We first construct a dataset of advertiser
apps based on AndroZoo [55], a comprehensive collection of
APK files that is regularly updated and widely acknowledged
in the research community. Our selection criteria from An-
droZoo are as follows: 1) the apps must have been released
after 2020 to ensure that their advertising practices are current;
2) they must include ad libraries, indicating a likelihood of
containing advertisements; 3) they should have a Play Store
page to largely guarantee the app’s quality; 4) their download
in Play Store should be diversified, as apps with different
popularity may have different advertising practices. We filter
the dataset with these criteria and then randomly sample 200
apps of the resulting dataset. We run these apps on Android
phones and manually explore these apps to record the app
promotion ads and the app promoted by those ads.
Rico Dataset. Manually exploring app promotion ads in
a large number of apps from AndroZoo requires extensive
human labor. To support a comprehensive study, we addi-
tionally use Rico dataset [56], which provides screenshots,
view hierarchies and human annotations. The screenshots
and corresponding view hierarchies directly reveal the GUI
information of app promotion ads, such as the attributes of
the ad-related widget and the placement of the ad-related

4

TABLE I: Dataset of the preliminary study

Ad types Using ad
libraries

Samples Example
AndroZoo Rico

Inherent ads Yes 75 167 Fig. 4a
Pop-up ads Yes 69 22 Fig. 4c
Custom-Made ads No 45 5 Fig. 4b

widget in the UI. Human annotations (including interaction
traces) tell the location of ad-related UI in the whole app
and how to reach it. Specifically, we refine this dataset to
include only screenshots labeled as “Advertisemen”, yielding
1326 screenshots with view hierarchies from 405 apps. We
then manually review these screenshots and view hierarchies.
Categorization of Ad Types. We browse the documentation of
ad libraries [39]–[41] and also manually decompile the adver-
tiser apps to inspect the code logic triggering app promotion
ads. Based on our observations, we categorize the recorded
ads into three ad types. Fig.3 illustrates the key code snippets
for each ad type, while Fig.4 provides examples of these ad
formats.
• Inherent ads: These ads are shown using visible views

created via ad libraries (Line 1 and Line 4), and are usually
shown when apps are started.

• Pop-up ads: These ads are created using ad libraries (Line
2 and Line 7) and are usually triggered by user interactions,
such as clicks (Line 9).

• Custom-Made ads: These ads are developed by app develop-
ers and can be of various forms such as buttons, banners, or
app walls. The ad content (such as the URI of the advertising
site shown in Line 11) can be hardcoded or dynamically
requested from developers’ own servers.
It can be seen that ad content from both inherent ads and

pop-up ads are dynamically requested from the ad library via
getAdRequest (Lines 5 and 8), and thus cannot be analyzed by
static analysis. It can also be challenging for static analysis
to analyze custom-made ads due to the highly customized
implementations from different developers.
Ad Characteristics for Malware Promotion. Table I summa-
rizes the characteristics of these ad types and their distribution
in the two datasets. From the AndroZoo dataset, we can
find that while ads from ad libraries (i.e., inherent and pop-
up) are the majority, custom-made ads account for 23.81%
(45/189) of the ads, indicating that custom ads represent a
non-trivial portion of the ads analyzed. Furthermore, we have
scanned the promoted apps via VirusTotal, and the results
reveal that custom-made ads are much more likely to promote
malware than the inherent and pop-up ads: 51.11% (23/45)
of the custom-made ads promote malware while only 34.78%
(24/69) of pop-up ads and 42.67% (32/75) inherent ads
promote malware. This finding demonstrates the necessity of
analyzing custom-made ads rather than focusing solely on ads
from ad libraries.
Motivation for UI Exploration. For ad-library ads (i.e.,
inherent and pop-up ads), we aim to explore whether the same
ad libraries exhibit different ad promotion behaviors across
apps (i.e., different apps with the same ad libraries promoting
different apps). We characterize the diversity of the promoted

apps based on three aspects: functionality (app category in the
app market), maliciousness (whether the app is malware), and
popularity (whether the download number exceeds 1 million).
We first conduct a Pearson’s chi-square test [57] to explore
the association between the use of specific ad libraries and
the diversity of promoted apps, Specifically, we employ a
lightweight static analysis [6] to detect the ad libraries in an
app. We find that the most frequently used ad libraries in
our dataset are AdMob [36], AppLovin [41], and Facebook
Ads [40]. For each advertiser app utilizing these libraries,
we randomly sampled 10 (or all, if fewer than 10) apps that
they promoted. The statistics reveal no significant association
between the ad libraries used in the advertiser apps and the app
category, maliciousness, or popularity of the promoted apps.
In contrast, we discovered a significant association between
the categories of advertiser apps and those of the promoted
apps with a p-value of 6.02e−05. These findings lead us to
conclude that the promotion behaviors of advertiser apps are
influenced more by the individual advertiser apps than by the
specific ad libraries used, aligning with findings from existing
studies [58]. This motivates us to develop UI exploration
techniques for individual apps, regardless of the ad libraries
used.

IV. APP PROMOTION GRAPH CONSTRUCTION

In this section, we present the ad-oriented UI exploration
technique in detail and describe how to construct the app
promotion graph.

A. Ad-Oriented UI Exploration
Based on the preliminary study, ADGPE employs a dy-

namic UI exploration to collect app promotion ads for building
an app promotion graph rather than relying on static analysis
on ad libraries. In particular, based on the characteristics of
app promotion ads, we have observed three unique challenges:
• Mobile GUI Navigation: Identifying ad-related UI is chal-

lenging due to ads often appearing after navigating through
multiple UI pages, especially when analyzing a large number
of apps [11]–[13]. Thus, the technique needs to effectively
and efficiently navigate to the ad-related UI.

• App Promotion Ad Detection: App promotion ads appear in
various formats, each with distinct UI layout characteristics.
Thus, we need to design a precise mechanism in detecting
app promotion ads when they show up in the UIs.

• Dynamic Ads Capture: Ads’ content is generated at run-
time and continuously changes over time. For example,
relaunching the same app after a certain period may display
a different banner in the same location, promoting a different
app. Thus, UI exploration needs to repetitively visit the same
UI pages to collect more ads.

We next describe how our ad-oriented UI exploration tech-
nique addresses these challenges.
Mobile GUI Navigation. While previous studies focused only
on ads displayed on the main page UI [8], our preliminary
study on the AndroZoo dataset reveals that over 28% of ads
appear in UIs other than the main page. User interaction data
from the Rico dataset also indicates that, on average, a user
must engage in 8 interactions to reach a UI containing ads .

5

To scale up the exploration to a large number of apps while
still maintaining high coverage of ads, we adopt a random
exploration method combined with a depth-first exhaustive
search strategy. This strategy is shown in previous studies to
be more effective in finding deeper exploration paths that are
more likely to identify more ads [11], [32], [45]. Other more
complex strategies such as program analysis techniques [9],
[10] or UI model refinement [11]–[13] require heavier weight
computation during UI exploration and cannot easily scale to
a large number of apps. Specifically, our technique initiates
a recursive search of all UIs, starting from the main UI upon
app launch. It interacts with all widgets (e.g., touch, scroll, and
select). If interaction with a widget leads to navigation outside
the app (excluding Google Play), our technique returns to
the previous activity to explore another unexplored widget. If
navigation occurs within the same app, it continues interacting
with widgets in the current activity. This process continues
until all widgets in the app’s UIs have been interacted with
or until a preset timeout is reached. Following the existing
practices, we also pre-register several accounts and write
scripts to bypass login [31], since many apps cannot navigate
to the main page without passing the login.
App Promotion Ads Detection. A direct approach to detect-
ing app promotion ads is to search for ad-related keywords
in the UI hierarchies of explored UIs. However, our analysis
of the AndroZoo dataset reveals that the naming practice
of ad-related widgets actually varies across different apps
and developers, lacking a consistent pattern. Additionally,
we find that app promotion ads are displayed using more
than 15 UI widgets types (e.g., the most common ones
are View, TextView, Button). Thus, existing UI exploration
techniques [8], [14], [15] that focus on a small set of UI
widgets such as WebView and ImageView fail to detect
all the app promotion ads.

To address this challenge, we observe that all ads have the
same UI design goal: encouraging users to tap on the ads to
download promoted apps. For example, the usage of the green
“install” button of the banner ad shown in Fig. 4a, and the
orange “INSTALL NOW!” button for the intersititial ad shown
in Fig. 4c. Building on these observations, we construct a list
of ad-specific keywords containing those encouraging words
we encountered most frequently during the empirical study.
Based on this list, our technique prioritizes the exploration of
the widgets whose attributes (e.g., (text, resource-id,
and class)) contain any of these keywords.

After interacting with a widget, users are generally redi-
rected to Google Play or third-party websites for app down-
loads. Note that Google Play does not provide direct APK
downloads, and some promoted apps may be unavailable in
the market due to local policy violations. To address this, we
collect the redirection link and extract the package name of
the promoted app from the link. For third-party websites, we
manually open the link and record the package name of the
promoted app.
Dynamic Ads Capturing. We observe that when an app is
restarted, its app promotion ads may change (i.e., they promote
a different app). To investigate how the ads are dynamically

TABLE II: Attributes from different sources

Source Name Brief Description

App Market

App Name The name of the app
Developer Name The name of the developer
Reviews Count of user reviews
Downloads Count of downloads
Star Average star rating
Description Developer-provided app description
Rating Age-based content rating (e.g., Teen, 18+)
Category App category (e.g., Social, Tools)

VirusTotal
Flags Count of malware flags
Report Results of security engine analyses
URL URLs from the “Interesting String” field

Code
Manifest Content of the AndroidManifest.xml file
API Calls API calls extracted from smali code
Signature Hash of the app’s certificate signature

altered, we keep restarting an app to refresh its ads. We observe
that, within a specific time period, the total number of unique
ads obtained from an app remains constant [59]. This suggests
that ad libraries infrequently update their recommendation
lists, instead maintaining them for a period of time.

To address this challenge, we run our exploration technique
on each app within the predefined time limit (5 minutes in
our experiment), and iteratively restart the app to repeat the
detection. We record the promoted apps from the ads until no
new promoted apps are identified after a pre-defined number
of iterations (3 in our experiment) or the maximum number
of iterations is reached (20 in our experiment). We adopt
this setting because it can effectively capture most of the ads
recommended by the ad library within a time range.

B. Graph Construction

To construct an app promotion graph, we apply our ad-
oriented UI exploration technique on the seed dataset detailed
in Section VI-B. Specifically, for each promoted app, we
install the app based on the recorded package name from
the AndroZoo dataset. We then run the exploration technique
on the app to collect more app promotion ads. This process
repeats until no new apps are found in the app promotion ads.
With the collected app promotion ads, we are able to construct
an app promotion graph to map out the promotion relationships
within the ecosystem.

To facilitate a more in-depth analysis, we enrich the graph
by collecting additional data about each app as attributes of
the graph’s nodes. This additional data is sourced from three
distinct origins, as detailed in Table II.
App Market Attributes. To investigate the relationship be-
tween app promotion and various factors such as organization,
popularity, and functionality, we crawl the Google Play Store
pages of each app and extract information such as the name of
the app, the number of total downloads, and the app category.
VirusTotal Attributes. To construct the groundtruth of mal-
ware and PUAs in the app promotion graph, we query
VirusTotal for the security flags of each app and obtain the
corresponding vendor reports. VirusTotal requires the APK file
or its corresponding hash to perform an analysis. Hence, we
crawl the relevant SHAs from AndroZoo. Notably, multiple
SHAs may be associated with the same package name. To
ensure a conservative analysis, we select the five most recent

6

SHAs (if available) and choose the SHA with the highest
number of VirusTotal flags for our analysis.
Code Attributes. The ad libraries have unique code-level
characteristics for their special system and network behaviors
[8], [60]. Hence, we obtain the API calls from the smali
code of each app. Furthermore, we download the APK file
of the promoted app from AndroZoo and decompile it using
Androguard [61]. We next extract component names from
the decompiled manifest file. Component names reveal reused
code, such as that from the same ad library or developer. We
also extract the signature, which conveys the app’s organiza-
tional information.

V. MALWARE DETECTION AND APP PROMOTION
REASONING

As shown in Fig. 5, we introduce a pre-trained graph embed-
ding to represent each node by aggregating its neighborhood
information, i.e., app promotion relations. The pre-trained
node embedding is then used to perform two downstream
tasks: malware detection and app promotion reasoning.

A. Pre-trained Graph Embedding

For a given node a in the app promotion graph, we catego-
rize the apps’ attributes into three groups based on Table II:
textual, numerical, and categorical attributes.
• Textual attributes: Textual attributes describe the developer,

the functionality, and the purposes of an app, including the
attributes of “App Name”, “Developer Name”, and “De-
scription”. To encode these attributes, we remove stopwords,
apply stemming, and then employ the Term Frequency-
Inverse Document Frequency (TF-IDF) [62] technique to
transform them into feature vectors, denoted as vat .

• Numerical attributes: Numerical attributes represent an
app’s popularity, including the attributes of “Reviews”,
“Downloads”, and “Star”. We standardize them to form the
feature vector, denoted as van.

• Categorical attributes: Categorical attributes contain the
attribute of “Manifest”, including the activities, providers,
services, receivers, permissions, and the attributes of “Rat-
ing”, and “Signature”. We use one-hot encoding to represent
them, denoted as vac .

We also encode the attribute of “API Calls” as vaa by leveraging
the technique of MaMaDroid [28]. The feature vectors of these
four app attributes are then concatenated as the app attribute
embedding vaapp = CONCAT (vat , v

a
n, v

a
c , v

a
a).

We employ GraphSAGE [24] to aggregate app promotion
relations. Formally, for each node a, its one-hop neighbors
are denoted by N(a). We apply a mean aggregator, which
takes the element-wise mean of the app attribute embedding
vuapp, u ∈ N(a), to generate the aggregated node embedding
vnagg , which is defined as follows:

vN(a)
agg = ReLU(W1 ·MEAN(vuapp, u ∈ N(ni))) (1)

vaagg = ReLU(W2 · CONCAT (vaapp, v
N
agg(a)) (2)

where W1 and W2 are the learnable parameters of Graph-
SAGE. We compute the vaagg for each node as the pre-trained
graph embedding that represents the semantics not only from

the app attributes but also the app promotion relations, which
enables the downstream tasks on the app promotion graphs.

B. Malware Detection
Malware detection refers to detecting whether a promoted

app is PUA/malware. Conventional solutions in the industry
(e.g., VirusTotal) rely on signature analysis. Consequently,
they often fail when the apps in question are freshly developed
or recently updated, which is common for apps promoted by
ads. Moreover, existing academic Android malware detection
studies [21], [22], [28], [29] do not consider app promotion
relations, making them less effective in detecting malware
through app promotions.

To address this challenge, we leverage both app attributes
and app promotion relations from our app promotion graph
to develop a comprehensive malware detection model. Specif-
ically, we concatenate the app attribute embedding vapp and
the pre-trained node embedding vagg to form a unified feature
vector for each app. This feature vector captures both the app
attributes and the promotion relations. We further concatenate
the united feature vectors for both the advertiser app and
the promoted app as the final vector to enhance the app
promotion information. Due to the nature of the app promotion
ecosystem, our input data are imbalanced, and benign apps
take a majority of them. To mitigate this issue, we used
Random Forest [27] as our final classifier. As an ensemble
method, Random Forest combines the results of multiple
decision trees, thereby reducing noise and overfitting caused
by the imbalanced data.

C. App Promotion Reasoning
The app promotion graph contains rich information on app

attributes and app promotion relations. To reveal how such
information contributes to promoting specific apps, especially
malware, ADGPE transforms the app promotion graph into
a promotion inference graph (PIG) and establishes a path
inference model to infer malware promotion mechanisms.
Particularly, this path inference model works together with our
malware detection model to enhance ADGPE’s capability in
analyzing app promotion ads, and we summarize the benefits
of our path inference model as the following two aspects:
• Enhancing Explainability in Malware Detection: existing

AI techniques for malware detection suffer from a lack of
explainability [63]. Our path inference model addresses this
gap by inferring malware promotion mechanisms (e.g., ad
libraries, shared developers). The observed recurring mech-
anism increases the confidence of our malware detection.

• Predicting Missing App Promotion Links: Without access
to the complete list on the ad server, our UI exploration
technique is limited in capturing all app promotion links.
Moreover, even when such links are identified, the process
can be time-consuming. Our path inference model steps in
to predict these missing links, streamlining the construction
of the app promotion graph. Inferring unseen malware pro-
motion paths also aids in identifying malware with similar
promotion mechanisms.

PIG Construction. We build the PIG by extracting the app
attributes as entities and adding the relations as denoted in

7

Malware Detection Model

Malware

Detection

Random

Forest

 App Promotion Graph

App promotion relations

E
m

be
dd

in
g

E
m

be
dd

in
g

Policy

Network

Policy

Network

Policy

Network

Source Entity Inference Path for Explaination

Malware Promotion Link

Relation to infer

Path Inference Model

Pre-trained Graph Embedding

Reward

... ...

promote-app

https://admob-
gmats.uc.r.apps
pot.com/

?promote-app

access-URL

access-URL

promote-app

Textual Attributes
App name, Developer name, Description TF-IDF

Standardization

One-hot
encoding

App attributes

embedding

Reviews, Downloads, Star

Manifest, Signature, Rating

com.energysh.onlinecamera1
Numerical Attributes

Categorical Attributes

API calls vector

Aggregated Node

Representation

!

!

?

Fig. 5: Overview of malware detection and promotion reasoning
TABLE III: Promotion Inference Graph (PIG) relations

Relation Definition

R1: promote-app An app promotes another via app promotion
ads

R2: has-sig An app has a digital signature, verifying its
authenticity and integrity

R3: has-manifest An app has a manifest file containing ac-
tivities, providers, receivers, services, and
permissions

R4: access-URL An app has access to a URL
R5: isin-category An app belongs to an app category in

Google Play
R6: VT-flag A security engine flags an app as malware
R7: create-app A developer creates an app
R8: develop-category A developer creates an app belonging to a

category
R9: use-URL A developer creates an app which accesses

a URL

Table III. Formally, we define PIG = (E,R), where E is the
set of entities and R is the set of relations.
Path Inference We train a path inference model to infer the
malware promotion mechanisms and predict missing links over
PIG, as shown in Fig. 5. Following the model structure of
Multi-Hop [64], our model employs a reinforcement learning
algorithm [65]. This is designed to infer the destination entity
ed ∈ E based on the input source entity es ∈ E and the
relation rq ∈ R we desire to infer. At each time point t, the
model decides an entity et ∈ E and the relation rt ∈ R that
leads to et. Eventually, the model outputs an inference path
(es, r1, e1, ..., rt, et, ..., rd, ed) to connect es and ed, where the
relation between es and ed aligns with rq .

We use word2vec [66] to convert the indices of the source
entities and relations into a vector form. We then augment
the entity representation by concatenating the vectors of app
entities with our pre-trained graph embedding vagg . For other
entities and relations without vagg , we append vectors of zeros

to maintain a uniform representation.
During the training time, we employ a policy network [65]

to output entities and relations for each time point t. Specif-
ically, the input of the policy network consists of the pair
of relation and entity (et, rt) and the hidden state ht−1,
which represents the search history (es, r1, e1, ..., rt−1, et−1).
Given the desired relation rq , the policy network then samples
the pair of relation and entity (et+1, rt+1) for the next
time point and outputs the search history ht. This process
repeats until it reaches the destination entity ed. To ensure
accurate path-finding, the policy network gets a reward of 1
for observed triplets (es, rq , ed) in the PIG. Otherwise, it gets
an approximated soft reward [64]. Soft rewards account for
the app promotion graph’s dynamic and incomplete nature,
enabling the model to identify unseen paths in training,
enabling the model to predict missing links. Eventually, the
traversed relations and entities constitute the inference path
(es, r1, e1, ..., rt, et, ..., rd, ed), explaining the potential reason
for app promotion.

During the inference time, we input pairs of source entities
and relations. The path inference model encodes them through
the policy network, then performs a breadth-first search to
decode and find destination entities and generates the inference
paths. If the output entities contain malware, we review the
inference path and identify the promotion mechanisms. To
diversify destination entities, we apply a post-processing tech-
nique [64] that computes a list of unique destination entities
and assigns the maximum score among all paths leading to
each unique entity. The final outputs are the top-ranked unique
destination entities with the inference path.

VI. EVALUATION SETUP

A. Research Questions
We seek to evaluate the effectiveness of ADGPE in con-

structing the app promotion graph and detecting the ad-

8

promoted malware. Specifically, we aim to answer the fol-
lowing research questions:
• RQ1: How effectively can ADGPE detect malware pro-

moted by ads?
• RQ2: How apps, especially malware, are promoted in the

constructed app promotion graph?
• RQ3: How the apps with app promotion ads found by

ADGPE evolve across time? Among these apps, are there
any new apps that have not been scanned by VirustTotal?

• RQ4: How effectively can ADGPE build the app promotion
graph?

• RQ5: How effectively can ADGPE’s path inference model
predict promotion links? Can these predicted links be used
to reason about how apps are promoted through ads?

We next present our dataset and implementation, and then
describe our evaluation findings in detail.

B. Dataset

Seed Dataset. We collect apps from AndroZoo as our study
subjects since AndroZoo is well-maintained and regularly
updated with various versions of apps. Within our affordable
effort, we target the apps released from January 1st, 2018 to
February 3rd, 2023. Following the practice of the existing
works [8], [67], we curate the dataset for three app classes
based on the malware flags from VirusTotal: (1) Malware,
which is flagged by at least 10 engines; (2) PUAs, which are
flagged by 1-9 engines; and (3) Benign Apps, which are not
flagged by any engine. By distinguishing between “PUA” and
“malware”, we can analyze how potentially harmful apps are
exploited to promote those with actual malicious behaviors,
gaining more understanding of the app promotion ecosystem.
In total, we construct a seed dataset consisting of 36, 000 apps,
with 12, 000 for each app class.
App Promotion Graph Dataset. Table IV shows a summary
of our dataset. Out of the 36, 000 seed apps, we successfully
executed 15, 344 apps on our devices. As some apps were
released as early as 2018, they are not properly upgraded for
the recent Android versions and cannot be executed. Most of
the other apps failed the executions as they crashed during the
launch. In the executed apps, our UI exploration technique
identifies 2, 420 apps that have app promotion ads and further
collects 3, 859 additional apps promoted by them. Among
these, there are 271 apps that not only have app promotion
ads but are also promoted by other apps.

In total, our constructed app promotion graph consists of
6, 008 nodes/apps, including 464 malware, 1, 042 PUAs, and
3, 961 benign apps. Note that the total number of apps (6, 008)
is not a sum of the number of apps (5, 467) in the malware,
PUA, and benign classes. This discrepancy is due to some
promoted apps (541) not being archived in AndroZoo at
the time of our analysis, which we will further elaborate in
Section VII-C. From these apps, our technique collects 18, 627
instances of app promotion ads. In particular, 22.2% of the
ads are linked to malware (520) and PUAs (3, 616), while the
remaining ads are tied to benign apps (13, 054). Additionally,
our technique records screenshots, timestamps, and interaction

TABLE IV: Dataset summary

Seed Apps 36, 000 # Apps Executed 15, 344

Apps Having App Promotion Ads 2, 420 # Apps Being Promoted 3, 859

Nodes of App Promotion Graph 6, 008 # Links of App Promotion Graph 18, 627

traces during app exploration to confirm and evaluate the
collected app promotion ads.
Malware Detection Dataset. Our malware detection model
is trained and tested on the app promotion graph with 5, 467
nodes, i.e., the number of nodes that have VirusTotal labels,
and 18, 627 links, using stratified 10-fold cross-validation. The
path inference model, based on a graph with 127, 100 entities
and 565, 739 relations, is split in an 80:10:10 ratio for training,
validation, and testing.

C. Implementation

We implement the ad-oriented UI exploration technique
upon DroidBot [31], which has been well-maintained up to
November 2023. DroidBot is compatible with all Android API
versions and offers an interface for implementing customized
exploration strategies. Since ad libraries employ emulator
detection mechanisms to prevent fraudulent ad traffic, showing
only test ads on emulators, we conduct our app exploration
on real devices. Specifically, we use six Samsung Galaxy
A13 smartphones running Android 11 for our research, which
extends over a period of more than three months. We use
mitmproxy to record the redirection links after interacting with
UI widgets [68]. We leverage networkx [69] to build the app
promotion graph.

To construct the pre-trained graph embedding, we use
two GraphSAGE [24] convolution layers with 128-dimension
embedding. The dropout rate for each layer is 0.5. We apply
the Adam optimizer [70] with learning rate of 0.01 and weight
decay of 0.0005. We follow the model architecture in Multi-
Hop [64] to implement the path inference model. Each edge is
regarded as bidirectional. We only keep the top-256 neighbors
for each entity with the highest PageRank [71] scores to
prevent GPU memory overflow. The embedding size of all
entities and relations is 200. Xavier initialization [72] is used
for initializing all neural network layers within the model.
The SOTA embedding model, DistMult [73], is employed to
attain the soft reward. We apply a three-layer LSTM to encode
hidden states, each with a dimension of 200. We apply the
Adam optimizer with a learning rate of 0.001 and a mini-
batch size of 32. The dropout rate for the neural layers is set
at 0.1. The decoding breadth-first search size is 128.

VII. RESULTS

A. RQ1: Malware Detection

Comparison to Baselines. We compare ADGPE’s perfor-
mance against the five security engines of VirusTotal with
the best F1 scores. Additionally, we compare ADGPE with
three state-of-the-art (SOTA) malware detection approaches:
MaMaDroid [28], DroidEvolver [29] and ANDRUSPEX [30].
For a fair comparison, we re-implement these approaches
using their open-source code and employ Random Forest
classifiers, aligning with their original configurations.

9

TABLE V: Comparison of malware detection baselines and
ablation study. The −promotion denotes ADGPE trained
without app promotion relations. The →DGI, →GRACE,
and →MVGRL denote ADGPE with the embedding method,
GraphSage, replaced with DGI, GRACE, and MVGRL, re-
spectively

Approaches Accuracy Precision Recall F1 score

Baselines

Symantec 96.99 81.66 69.01 74.80
Lionic 96.72 74.64 74.64 74.64
McAfee 95.99 69.56 67.60 68.57
Avira 94.26 53.57 84.50 65.57
K7GW 93.63 50.41 85.91 63.54
DroidEvolver [29] 75.48±7.12 72.92±7.96 70.93±11.39 71.21±6.96

MaMaDroid [28] 79.38±7.33 75.48±6.32 78.41±9.54 76.58±6.14

ANDRUSPEX [30] 95.15±1.24 95.32±1.14 88.79±3.19 92.48±3.19

Ablation
Study

− promotion 96.29±1.07 95.27±3.68 86.01±7.23 90.14±7.23

→DGI [74] 97.47±0.61 99.10±2.19 91.43±6.82 94.96±6.82

→GRACE [75] 97.45±0.66 99.82±0.55 91.43±6.64 95.30±6.64

→MVGRL [76] 97.38±0.65 98.57±2.48 90.90±7.27 94.40±7.27

ADGPE 97.74±0.62 99.44±1.67 91.78±7.02 95.31±7.02

0 5 10 15 20 25 30
Mutation Rate

0

20

40

60

80

100

F1
 S

co
re

ADGPE (node mutation)
ANDRUSPEX (node mutation)
ADGPE (link mutation)
ANDRUSPEX (link mutation)

Fig. 6: Robustness comparison for ADGPE and ANDRUSPEX

As illustrated in Table V, ADGPE outperforms all the
compared baselines, achieving a 97.74% accuracy, a 99.44%
precision, a 91.78% recall, and a 95.31% F1 score. In contrast,
though the five security engines achieve high accuracy, all of
the baselines suffer from low precision, recall, and F1 score
values, suggesting a poor performance in malware detection.
The superior performance of ADGPE can be attributed to
“App Market” attributes, which are among the most important
features of its random forest classifier. For example, some
malware is excluded from the Google Play store or exhibits
distinctive features such as low star ratings. Overall, these find-
ings demonstrate the superiority of ADGPE over commercial
security products and SOTA malware detection approaches.

Ablation Study. We conduct an ablation study to measure the
importance of using app promotion relations and compare the
effectiveness of different embedding methods for the promo-
tion relations, i.e., DGI [74], GRACE [77], MVGRL [75]. As
shown in Table V, using app promotion relations helps detect
extra malware samples, as it significantly increases the recall
of ADGPE from .01% to 91.78%, and F1 score from 90.14%
to 95.31%. Furthermore, while all of them significantly exceed
the performance of ADGPE trained without app promotion
relations, GraphSage, adopted by our approach, outperforms
other embedding methods, These results demonstrate that app
promotion relation is an indispensable feature in detecting ad-
promoted malware.

TABLE VI: Statistical analysis of app promotions by hop dis-
tance and app class. Dst/Src represents the destination/source
of an app promotion

App Promotions Promotion Probability (%)

Dst
Src Benign PUA Malware Benign PUA Malware

Hop=1
Benign 8, 206 3, 052 1, 796 72.53 64.57 69.45
PUA 2, 997 1, 320 736 26.49 27.92 28.46
Malware 111 355 54 0.98 7.51 2.09

Hop=2
Benign 14, 735 10, 046 2, 918 73.08 70.82 70.64
PUA 5, 248 3, 656 1, 133 26.03 25.77 27.43
Malware 181 484 80 0.90 3.41 1.9

Hop=3
Benign 20, 686 15, 089 4, 250 73.41 70.93 71.55
PUA 7, 276 5, 685 1, 601 25.82 26.72 26.95
Malware 216 500 89 0.77 2.35 1.50

Hop=4
Benign 26, 407 18, 384 5, 501 74.19 71.50 73.35
PUA 8, 915 6, 809 1, 903 25.05 26.48 25.37
Malware 272 518 96 0.76 2.01 1.28

Hop=5
Benign 30, 731 20, 497 6, 282 74.25 71.75 73.35
PUA 10, 353 7, 539 2, 185 25.01 26.39 25.51
Malware 306 532 98 0.74 1.86 1.14

Robustness Analysis. To evade detection, attackers can ma-
nipulate the node attributes (e.g., by changing app descriptions
of malware) or links (e.g., by letting malware promote benign
apps). We therefore evaluate the robustness of ADGPE by
mutating nodes and links. Specifically, we apply Gaussian
noise to node attributes and perform random link swapping
based on the out-degree of each node at rates of 1%, 5%,
10%, 20%, and 30%. As shown in Fig. 6, for node mutations,
ADGPE maintains high F1 scores, with a slight drop from
94.29% at 1% to 91.26% at 30%. In contrast, link muta-
tions significantly affect performance, decreasing F1 scores
from 93.76% at 1% to 78.16% at 30%. This degradation is
more profound in ANDRUSPEX [30], whose F1 score drops
from 92.26% at 1% to 59.95% at 30%, demonstrating that
ADGPE outperforms ANDRUSPEX in adversarial settings. To
defend against such attacks, we can also integrate adversarial
training mechanisms by incorporating synthesized adversarial
examples in the training data to mitigate the impacts of these
attacks.
Case Study on Detected Malware Besides identifying mal-
ware promoted via ad libraries, ADGPE additionally identifies
malware promoted via custom-made ads, which are overlooked
by prior studies [8], [15], [78]. For example, ADGPE identifies
a magnet searcher app, available on Google Play [79], as
malware. Noteworthy, this app itself does not exhibit any
malicious behavior. However, clicking on any search result
within the app redirects users to a third-party website where
they are prompted to download a malicious downloader [80].
This suggests that the magnet searcher app, which seems
harmless on the surface, is actually a malware dropper. This
strategy allows it to bypass traditional malware detection
models. By using the app promotion graph, ADGPE is able
to detect these hidden threats effectively.

B. RQ2: Malware Promotion

Overall Statistics. To understand how different app classes
are promoted in ads, we conduct a statistical analysis of the
constructed app promotion graph and quantify the likelihood
of an app class promoted by another app class within k hops

10

in the app promotion graph by computing the corresponding
promotion probability. For example, the promotion probability
of a PUA (P) directly promoting malware (M) at Hop = 1
is computed as P(P → M) = |P→M|

|P→M|+|P→P|+|P→B| , where
|P → M| represents the number of ads in PUAs that promote
malware, |P → P| represents the number of ads in PUAs that
promote PUAs, and |P → B| represents the number of ads
in PUAs that promote benign apps. This yields a promotion
probability of 7.51% = 355

3052+1320+355 . Note that we restrict
our analysis to at most 5 hops, as extending beyond this limit
shows marginal changes in discovering ads promoting new
apps.
Malware Promotion. As evidenced by the Hop = 1 sec-
tion of Table VI, merely P(B → M) = 0.98% of ads
within benign apps directly promote malware. In contrast,
P(B → P) = 26.49% benign apps promote PUAs, which
have a substantially larger probability, P(P → M) = 7.51%,
to further promote malware. This reveals a covert malware
promotion route in the app promotion graph. Moreover, our
dataset reveals that PUAs either directly (Hop = 1) or
indirectly (Hop > 1) promote the vast majority of malware:
90.46% (484/535) within two hops and 99.25% (532/535)
within five hops. These findings clearly show that engaging
with PUAs through app promotions significantly increases the
risk of malware installation.

To better illustrate the risk of malware promotion in ads,
we estimate the probability for users to encounter malware
in the Google Play market, and compare it to the probability
of encountering malware from app promotion ads. Using a
conservative calculation, we find that merely 0.002% of all
apps (11, 014 out of 5, 151, 555) released on the Google
Play market from January 1, 2018, to February 3, 2023,
are malware. Considering that Google Play downloads are
predominantly from popular apps [81], the actual probability
of encountering malware there is even lower than 0.002%.
In contrast, the probability of users encountering a malware
promoted by app promotion ads is significantly higher: 7.51%
from PUAs, 2.09% from malware, and 0.98% from benign
apps. While these probabilities are not very high, due to
the huge user base of Google Play [36], [82], a handful of
malware, such as trojan, can easily harm millions of users. As
the probability of encountering malware through ads exceeds
the Google Play market rates by over 100 times, our findings
demonstrate that app promotions pose a significant security
risk to the users, and more regulations should be applied to
vet the apps being promoted in ads.
Case Study. We further conduct a case study on what are the
unwanted behaviors of the promoted PUAs and malware, as
well as the strategies employed in their promotions.
• Trojan: More than half (53%) of the PUAs/malware are

labeled as trojans by VirusTotal. Interestingly, many are
labeled as trojans primarily due to the presence of code
obfuscation techniques, such as the use of the “jiagu” library,
rather than any malicious behavior identified based on our
manual analysis. However, our investigation did uncover
a subset of genuine trojans (93 in total), all from the
developer “lomol language” or “lomol translator.” These

(a) Trojan Dropper (b) Trojan (c) Aggressive Ad-
ware

Fig. 7: Case study on malware promotion

apps typically masquerade as dictionaries or language trans-
lators. For instance, one app disguises itself as a Chinese
dictionary and employs code obfuscation techniques that
hinder static analysis [83]. By executing the app, we observe
that the app scans network information (e.g., reading files
under the /sys/class/net/directory), and system
information (e.g., executing the shell command ls /), and
try to gain root access by executing su.
Promotion Strategy: These “lomol” apps adopt a unique
promotion strategy by developing custom-made app pro-
motion ads and using their own ad library (please refer to
Fig. 7b for an example) instead of employing the common
ad libraries.

• Aggressive Adware: Approximately one-third (32%) of
PUAs/malware within the app promotion graph are labeled
as adware by VirusTotal, primarily due to their aggressive
advertising behaviors. Intriguingly, we observe that adware
providing similar functionality such as wallpaper download-
ing and barcode scanning often shares common package
names and UIs. For instance, we identify a cluster of 59
PUAs/malware with package names incorporating the title
of a popular game followed by terms like “guide,” “trick,”
or “hint” (see Fig. 7c). Additionally, in another group of
13 PUAs/malware, each adware provides downloads of
wallpapers related to well-known movies or anime (e.g.,
Venom, Sonicex).
Promotion Strategy: The main activity names of these
apps all contain the string “AppsGeyser”, a platform that
advertises itself as a rapid app creation tool [84]. This find-
ing suggests the mass-production strategy employed by ad
monetizers, leveraging streamlined app creation processes
and distributing through app promotion ads to target specific
user demographics, such as children and enthusiasts of
games and cartoons.

• Rogue Security Software: There are five PUAs with “fan-
cyclean” included in their package names, all developed by
“Fancy Mobile Apps”. These apps pretend to be security
engines or phone cleaners but force users to watch 30-
second video ads upon performing almost every operation
(see Fig. 1).

To verify whether these apps provide the promised func-
tionality, we deploy one of the PUAs, namely “Fancy Se-

11

curity & Antivirus”, on a testing phone that we deliberately
install viruses, and run the app to scan the phone. We find
that the app does not actually scan the phone and simply
overlooks the installed viruses. Note that McAfee reported
a similar group of “HiddenAds” malware in 2022 [85].
Interestingly, the “fancyclean” apps in our dataset not only
exhibit similar behaviors but also have similar package
names, app names, and icons to the malware in the report.
Promotion Strategy: We find that the “Fancy Mobile Apps”
developer employs a centralized promotion strategy. The
developers leverage their most popular flagship app, “Fancy
Battery: Cleaner, Secure” with a Facebook profile to attract
traffic and promote other apps [86]. Although it has been
removed from Google Play, cached data reveals that this
flagship app receives over 13 million downloads.

C. RQ3: Temporal Analysis
We conduct a temporal analysis to understand how app

promotion ads evolve over time. Initially, 1, 334 apps were
identified to promote either PUA or malware in Feb 2023.
Note that the other part of this paper relies on data and findings
from this February experiment. We reran the ad-oriented UI
exploration technique in August 2023, updating our dataset
based on the AndroZoo database, which is refreshed daily.
Overall, out of the initial 1, 334 apps, 734 apps still have app
promotion ads, while the total number of promoted apps has
dropped from 3, 212 to 1, 228. The amount of ads promoting
benign apps, PUAs, and malware has decreased by roughly
30%, 45%, and 61%, respectively. This is mainly because the
developers stopped maintaining the app promotion ads, often
due to the release of newer versions or the apps being removed
from Google Play. For instance, the Chinese dictionary trojan,
mentioned in RQ2, was found to promote 107 unique apps
before its update. However, in August, the February version
of the app displayed no app promotion ads while the latest
version, released in August displayed such ads.
Zero-Day Apps. Additionally, we discover 190 apps uploaded
to Google Play in February with no VirusTotal labels (i.e., this
field is set to null) profiled by the AndroZoo dataset, acquiring
label values by August. Consequently, the security status of
these apps was uncertain in February, leading us to categorize
them as zero-day apps. Within this group, 20 apps have gained
over one million downloads, and five have even more than 10
million. Moreover, 64 apps, constituting over one-third of the
zero-day apps, have either fewer than 1, 000 downloads or
have already been removed from the marketplace. Among the
zero-day apps, we notice an uptick in chatbot apps leveraging
GPT technology: 18 are identified in our dataset, and five
have crossed the one million downloads. Despite their pop-
ularity, user reviews reveal significant concerns about these
chatbot apps, particularly regarding their premium services,
which include issues like high costs, convoluted unsubscription
procedures, and subpar customer service (see Fig. 8). Some
are even labeled as scams or fleeceware by VirusTotal.
Late-Detection Malware. Furthermore, we apply ADGPE’s
malware detection model on the new dataset generated by
this temporal analysis. ADGPE successfully identifies 28
late-detection malware that were labeled as benign apps by

Fig. 8: A user review for “Ask AI - Chat with Chatbot”
complaining about the subscription issue

0 5 10 15 20 25
Time (Hour)

0

25

50

75

100

125

150

175

Nu
m

be
r o

f A
ds

ADGPE
ADGPE(bfs)
Droidbot
Monkey
MadDroid

Fig. 9: Unique ads collected by time

VirusTotal in February, but later were reclassified as mal-
ware/PUAs in August. For instance, ADGPE detects a barcode
scanner malware, “QR Scanner Rewards”, promoted by several
PUAs via ad libraries like Google AdMob and AppLovin.
This malware exhibits behaviors identical to the malware that
infected 10 million users, as documented in a 2021 security
blog [87]. Additionally, the PUA named “Open Chat GBT - AI
Chatbot App”, released in February, was marked as benign but
subsequently labeled as fleeceware in August as user reports
of its fraudulent premium service increased. Notably, this app
is promoted by one of the “lomol” trojans, which additionally
promotes five malware and eight PUAs. These findings show
that app promotion ads have become a fertile ground to
distribute PUAs/malware.

D. RQ4: App Promotion Graph Construction

To evaluate the efficiency of ADGPE in constructing the app
promotion graph, we compare ADGPE with general-purpose
UI exploration approaches such as Monkey [32], Droid-
Bot [31], and ADGPE implemented with breadth-first strategy
(coined as ADGPE (bfs)). We also reproduce two SOTA
ad detection approaches: MadDroid [8] and DARPA [33].
MadDroid uses breadth-first search to detect ads in WebView,
ImageView, or ViewFlipper. DARPA leverages YOLO5 [88] to
detect encouraging patterns of ads. Since DARPA lacks a UI
exploration component, we manually labeled screenshots of
app promotion ads from 30 apps within our affordable efforts
and applied DARPA to detect ads within these images. Our
comparisons use the same dataset from AndroZoo as the one
used in Section III-C.
Ad Units. We further evaluate the effectiveness of each
approach in collecting ads based on the diversity of ad types
and the total number of ad units. Ad units are placeholders
for developers to show ads. The content within an ad unit
can change over time, but the number of ad units in an app is
determined by the source code and thus remains constant [39].

12

TABLE VII: Comparison of ad coverage measured by col-
lected ad units and ad types

Approaches Ad Units Ad Types

Inherent Pop-up Custom-Made

Droidbot [31] 76 27 38 9
Monkey [32] 71 26 34 11
DARPA [33] 8 8 0 0
MadDroid [8] 75 32 39 6
ADGPE (bfs) 131 52 58 15
ADGPE 165 76 71 17

TABLE VIII: Comparison of different link prediction models
under two conditions

Approaches w/o pre-trained embedding pre-trained embedding
Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR

DistMult [73] 36.9 61.1 45.5 40.9 62.9 48.6
Complex [90] 37.8 60.0 45.4 33.8 59.1 42.4
Conve [91] 34.4 56.1 41.7 36.1 56.0 42.6

Path Inference 58.2 66.6 61.3 59.5 67.4 62.4

Additionally, we manually verify the number of ad units and
the presence of each ad type in each app as ground truth.

The results in Table VII reveal that ADGPE finds the most
ad units (165), which achieves 117.1% improvements over
MadDroid, 132.4% over Monkey, and 26.0% over ADGPE
(bfs). Besides inherent ads and pop-up ads, ADGPE also is
more effective in finding custom-made ads (17), which are at
least 54.5% better than MadDroid and Monkey.
Efficiency. Fig. 9 shows the number of unique app promotion
ads collected over time by each approach. It can be seen
that ADGPE significantly outperforms DroidBot and Monkey
in collecting more ads with less time used, and performs
slightly better than ADGPE (bfs). Specifically, ADGPE finds
54 ads within 10 hours, which is 20% more than ADGPE
(bfs) (43 ads), 37% more than Droidbot (34 ads), 24% more
than MadDroid, and 50% more than Monkey (27 ads).
App Promotion Ads in the Wild. We also conduct a case
study on app promotion ads in the wild. These ads direct
users outside Google Play and thus we need to manually
download the promoted apps. Within our affordable efforts, we
focus on a group of underground apps [89], as their ads and
corresponding download links are usually hardcoded and thus
easy to detect. Specifically, we adopt the same strategy to build
the app promotion graph and start from two seed apps. We
obtain a graph of 37 apps consisting of 21 PUAs/malware (5
gambling, 11 pornographic, 1 trojan, 4 adware). Interestingly,
we notice that a scam gambling app can be reached by both
seed apps, potentially revealing an interconnected underground
profit network. This finding demonstrates the capability of
ADGPE ad-oriented UI exploration technique in detecting app
promotion ads in the wild and its usability in studying real-
world problems such as the underground economy.

E. RQ5: App Promotion Reasoning

To evaluate the effectiveness of ADGPE in reasoning app
promotion, we compare its performance with three SOTA
link prediction models (DistMult [73], ComplEx [90], and
ConvE [91]) across two conditions (with and without the

pre-trained graph embeddings). We employ two widely used
metrics as follows:
• Hit@K represents the proportion of times that the ground

truth item appears in the top K output of the model.
• Mean Reciprocal Rank (MRR) calculates the average of the

reciprocal of the ranks of the ground truth items, with higher
scores indicating better performance.
Table VIII shows the results of our evaluation. First, we

observe that the performance with pre-trained embedding
is better than without pre-trained embedding, which shows
that integrating app promotion relations into the entity rep-
resentation captures more information about app promotion,
thereby enabling better inference. Furthermore, Table VIII
demonstrates that the path inference model outperforms the
SOTA embedding models, achieving a Hit@1 of 59.5%, a
Hit@10 of 67.4%, and an MRR of 62.4%. Notably, the path
inference model secures a lead of 45.48% in Hit@1 and
28.40% in MRR relative to the best-performing SOTA model
(i.e., DistMult).
Aiding UI Exploration. To evaluate the effectiveness of the
path inference model in the wild, we use the model to predict
the app promotion links in the test set, which are masked in
the training process. In the total 907 unique app promotion
links, the model successfully predicts 318 of them (35.06%),
indicating its potential to predict the promotion links that
are not found by UI exploration. To further evaluate the
effectiveness of our prediction results in facilitating our UI
exploration, we measure the effort required to identify the
318 links. We do this by computing the average number of
clicks made during the ad-oriented UI exploration using the
recorded clickTrace for each link. On average, the ad-oriented
UI exploration requires 18.3 clicks to identify a predicted link.
Surprisingly, ADGPE’s path inference model can even predict
a link about an appwall ad by Google AdMob that requires
54 clicks to obtain. Given that the inference time of the path
inference model is negligible compared to the resources and
the time spent on UI exploration, these results demonstrate
the model’s effectiveness in augmenting ADGPE’s ad-oriented
UI exploration. This demonstrates the promising direction
of integrating AI to aid program analysis, consistent with
previous work [16], [53], [92], [93].
Uncovering Malware Promotion Mechanisms. We examine
the inference paths and uncover two typical malware promo-
tion mechanisms: custom-made ad-based promotion mecha-
nism, which refers to app promotion ads hardcoded in the
app’s program, and ad library-based promotion mechanism,
which relates to the app’s interactions with ad servers. Fig. 10
illustrates these promotion mechanisms.

The custom-made ad-based promotion mechanism stems
from shared developers, signatures, or manifest compo-
nents among multiple apps. Such common factors lead the
apps to exhibit similar code structures that tend to pro-
mote similar apps through app promotion ads. For in-
stance, our model infers that a language learning app
“Learn Norwegian-Norwegian Tr” promotes malware “Ger-
man English Dictionary-Ge” because both “Learn Norwegian-
Norwegian Tr” and “Learn Turkish-Turkish Transl”, another

13

has-manifest has-manifest

create-app create-app

promote-app

promote-app

com.streann.

streannott.selfie_ads.

SelfieAdCreateActivity

Zavarise

Apps

Manifest

Developer

Mod-Tweak CheatMods Master Hack PCH+ - Real Prizes,

Fun Games

BTCC - Trade

Bitcoin & Crypto

Mulher de OraçãoPremier Online

has-sig f8cc4329d728802490b712f
10f4de468f03e7424

Signature
German English

Dictionary | Ge

Learn Turkish |

Turkish Transl

Learn Norwegian |

Norwegian Tr

promote-app

promote-app

promote-app

promote-apphas-sig

?

?

?

?? !

!

(a) Custom-made ad-based propagation
promote-app

promote-app

promote-app

access-URL

access-URL

access-URL

access-URL

access-URL

access-URL

https://
googlemobileadssdk.page.link/

admob-android-register-test-device

https://applift-a.apptornado.com

https://d.applovin.com/

URL

URL

URL

TeraBox: Cloud
Storage Space

TeraBox: Cloud
Storage Space

Poshmark - Sell &
Shop Online

Strike! Ten Pin
Bowling

Purer FileManager

HSC MCQ Bangla
Application

Soothing Sounds

RCCG Sunday
School Lesson

HSC Phycology All
Chapter MCQ

promote-app

promote-app

promote-app

? ?

?

!

(b) Ad library-based propagation

Fig. 10: Examples of malware/PUA propagation mechanisms

language learning app, share the same signature and are devel-
oped by the same developer “lomol translator”. As a result,
both language learning apps share the same code structure
related to app promotion and are inclined to promote the same
apps.

The ad library-based promotion mechanism stems from the
common URLs associated with ad libraries (e.g., AdMob) or
ad promotion companies (e.g., Applovin) that are accessed by
the apps. For example, a Sunday school learning app “RCCG
Sunday School Lesson” and a file management app “Purer
FileManager” access the same URL related to an ad promotion
company AppTornado. Meanwhile, the “Purer FileManager”
promotes a malicious cloud storage app “TeraBox: Cloud
Storage Space.” Based on such observation, the model con-
cludes that “RCCG Sunday School Lesson” is highly likely
to promote “TeraBox: Cloud Storage Space”. This network
promotion mechanism reveals the interconnected nature of app
promotion graphs, as different apps would access the same ad
server through common URLs. These findings indicate that
the path inference model is effective in explaining the reason
for malware promotion, thereby enhancing the explainability
for malware detection.

Through analyzing the promotion paths of 950 verified
malware/PUA in PIG, we found that the majority of adver-
tiser apps were in the education (27.7%) and books (14.6%)
categories. The majority of promoted malware/PUA apps were
in the education (12.6%), entertainment (11.4%), and books
(11.4%) categories. Among all these promotion paths, 697
paths (73.4%) used custom-made ads for promotion, while
253 paths (26.6%) used ad libraries for promotion.

VIII. DISCUSSION

Implications. Our findings reveal a concerning result that
many benign apps are directly or indirectly involved in the pro-

motion of malware, indicating inadequate vetting performed
by ad libraries and app markets. To address this, we advocate
more rigorous vetting processes, stricter developer policies,
and the adoption of open-source ad libraries [94]. Meanwhile,
users should exercise caution and if necessary, employ security
tools to vet the recommended apps before installation.
Limitations. The limitations of our app promotion graph
construction are two-fold. First, our technique struggles with
ads that appear after complex human interactions, such as ads
that appear upon game failure [95]. We partially address this
by expanding our seed app dataset. Second, false positives may
arise, for instance, when a user is directed to Google Play
for non-ad-related reasons like clicking a Facebook sharing
button when Facebook is not installed. The main limitation of
our path inference model is its lack of consideration for ad
targeting, which some apps use to deliver personalized ads.
While integrating personalized data like location and device
information into our model could enhance its ability to detect
and analyze such ads, emulating user profiles is a complex
task and would require separate research efforts [14], [58].
Future Works. Our future works are three-fold. First, we plan
to develop a unified mobile ads testing tool that uses static
analysis [96], [97] to guide the UI exploration technique. This
technique will further leverage large language models [98]–
[100] to interact with the ads that require complex user inter-
action. Second, we plan to establish a long-term monitoring
system, which allows us to track the changes and emerging
trends in the app promotion ecosystem. This will also facilitate
the app community to develop more effective countermeasures
against potential threats. Additionally, we plan to explore the
Chinese app promotion ecosystem which is distinct due to
the absence of an official app market, reliance on its own
ad libraries, and the common practice of directing users to
developer-specific websites for app downloads.

IX. RELATED WORK

Mobile Advertisements Identification. Previous research on
mobile ads identification can be categorized into two types:
identifying ad libraries, and identifying ad contents. For ad
libraries identification, many studies compared the package
names with a whitelist of collected ad libraries [101]–[103].
Recent works focused on using clustering-based methods to
detect such libraries and achieve very high accuracy [6], [7].
However, ad content is dynamically generated and cannot be
obtained via static analysis. Dynamic testing for UI explo-
ration is a major approach for ad content identification [16]–
[19], [104]. For example, MadDroid combined breadth-first
UI exploration with rule-based HTTP hooking to extract
ad content [8]. Researchers also leveraged computer vision
techniques to detect button edges [15] or ad-related visual pat-
terns [33] to recognize ad content. However, these techniques
are biased to specific ad types, resulting low effectiveness in
detecting app promotion ads. ADGPE gains insights from both
our preliminary study and the design of existing techniques [8],
[15], [33].
Malicious Advertisements Detection. The most pertinent pre-
vious research to our work is malicious mobile advertising. Ex-
isting studies analyzed deceptive ad contents [8] and malicious

14

destinations (e.g., files, apps, and external websites) triggered
by mobile ads [15]. However, these studies mainly examined
the malicious behaviors of ad libraries, and none of them
have specifically studied malware promotions through mobile
ads. Another line of related work is graph-based Android
malware detection. GNNs have gained prominence in this area
due to their strong capabilities in representing structural data.
APIGraph employed official Android API documentation to
construct a relation graph and utilizes TransE [20] to learn
the graph embeddings, which are subsequently used for API
clustering and malware detection [22]. Both HinDroid [21] and
Hawk [105] constructed a heterogeneous information network
to model the relationship of malware based on API calls
and app attributes. ADGPE diverges from these approaches
by incorporating the app promotion relations. Moreover, the
embedding trained by ADGPE serves more downstream tasks,
such as promotion path inference.
Graph Path Inference. Reinforcement learning [106] (RL)
is commonly used for path inference in graphs, treating the
task as a Markov decision process. DeepPath [65] was the
first RL-based model to find representative paths between
entity pairs and employed a path ranking algorithm for train-
ing. Furthermore, MINERVA [76] learned how to guide the
graph depending on the input entity-relation pair to find
predictive paths where the second entity is unknown and
must be acquired by inferring. Multi-Hop [64] proposed two
improvements over MINERVA: reward shaping which uses
soft rewards to capture triple semantics, and action dropout
which enables more effective path exploration. We build our
path inference model upon Multi-Hop to infer app promotion
paths and explain malware promotion mechanisms.

X. CONCLUSION

We introduce a novel approach, ADGPE, that synergisti-
cally integrates app UI exploration with graph learning to auto-
matically collect app promotion ads, detect malware promoted
by these ads, and explain the malware promotion mechanisms
employed by the detected malware. Our analysis of 18, 627
app promotion ads reveals a heightened risk for downloading
apps via app promotion ads, which is hundreds of times higher
than the likelihood of downloading malware from Google Play.
Popular ad libraries are exploited by malicious developers to
distribute a variety of malware. Our evaluations on real apps
show that our malware detection model outperforms existing
models in detecting ad-promoted malware, and our path infer-
ence model further reveals two primary malware promotion
mechanisms. These findings demonstrate the effectiveness of
combining dynamic program analysis with graph learning in
studying malware promotion.

ACKNOWLEDGMENTS

Xusheng Xiao’s work is partially supported by the National
Science Foundation under the grant CCF-2318483. Toby Jia-
jun Li’s work was supported in part by an AnalytiXIN Faculty
Fellowship, an NVIDIA Academic Hardware Grant, a Google
Cloud Research Credit Award, a Google Research Scholar
Award, a Google PSS Privacy Research Award, NSF Grant
2341187, and NSF Grant 2326378. Any opinions, findings,

and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views
of the sponsors.

REFERENCES

[1] N. Viennot, E. Garcia, and J. Nieh, “A measurement study of google
play,” in Proceedings of the ACM International Conference on Mea-
surement and Modeling of Computer Systems (SIGMETRICS), 2014,
pp. 221–233.

[2] B. Liu, B. Liu, H. Jin, and R. Govindan, “Efficient privilege de-
escalation for ad libraries in mobile apps,” in Proceedings of the
Annual International Conference on Mobile Systems, Applications, and
Services (MobiSys), 2015, pp. 89–103.

[3] “APP Lovin Success Stories,” 2024. [Online]. Available: https:
//www.applovin.com/success-stories/

[4] Google AdMob, “Admob advantages,” 2024. [Online]. Available:
https://admob.google.com/home/admob-advantage/

[5] T. with Google, “How people discover, use, and stay engaged with
apps,” 2023. [Online]. Available: https://www.thinkwithgoogle.com/
qs/documents/331/how-users-discover-use-apps-google-research.pdf

[6] Z. Ma, H. Wang, Y. Guo, and X. Chen, “Libradar: Fast and accurate
detection of third-party libraries in android apps,” in Proceedings of the
International Conference on Software Engineering Companion (ICSE-
C), 2016, pp. 653–656.

[7] M. Li, W. Wang, P. Wang, S. Wang, D. Wu, J. Liu, R. Xue, and W. Huo,
“Libd: Scalable and precise third-party library detection in android
markets,” in Proceedings of the IEEE/ACM International Conference
on Software Engineering (ICSE), 2017, pp. 335–346.

[8] T. Liu, H. Wang, L. Li, X. Luo, F. Dong, Y. Guo, L. Wang,
T. Bissyandé, and J. Klein, “MadDroid: Characterizing and detecting
devious ad contents for android apps,” in Proceedings of the ACM Web
Conference (WWW), 2020, pp. 1715–1726.

[9] X. Gao, S. H. Tan, Z. Dong, and A. Roychoudhury, “Android testing
via synthetic symbolic execution,” in Proceedings of the ACM/IEEE
International Conference on Automated Software Engineering (ICSE),
2018, pp. 419–429.

[10] N. Mirzaei, S. Malek, C. S. Păsăreanu, N. Esfahani, and R. Mahmood,
“Testing android apps through symbolic execution,” ACM SIGSOFT
Software Engineering Notes, vol. 37, no. 6, pp. 1–5, 2012.

[11] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based GUI testing of android apps,”
in Proceedings of the ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2017.

[12] T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y. Yao, Q. Zhang, J. Lu, and
Z. Su, “Practical GUI testing of android applications via model abstrac-
tion and refinement,” in Proceedings of the International Conference
on Software Engineering (ICSE), 2019.

[13] D. Ran, Z. Li, C. Liu, W. Wang, W. Meng, X. Wu, H. Jin, J. Cui,
X. Tang, and T. Xie, “Automated visual testing for mobile apps in an
industrial seting,” in Proceedings of the International Conference on
Software Engineering (ICSE), 2022, pp. 55–64.

[14] S. Nath, “Madscope: Characterizing mobile in-app targeted ads,” in
Proceedings of the Annual International Conference on Mobile Sys-
tems, Applications, and Services (MobiSys), 2015, pp. 59–73.

[15] V. Rastogi, R. Shao, Y. Chen, X. Pan, S. Zou, and R. D. Riley, “Are
these ads safe: Detecting hidden attacks through the mobile app-web
interfaces,” in Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2016.

[16] C. Hu and I. Neamtiu, “Automating gui testing for android applica-
tions,” in Proceedings of the International Workshop on Automation of
Software Test (AST), 2011, pp. 77–83.

[17] S. Nath, F. X. Lin, L. Ravindranath, and J. Padhye, “Smartads: bringing
contextual ads to mobile apps,” in Proceedings of the Annual Inter-
national Conference on Mobile Systems, Applications, and Services
(MobiSys), 2013, pp. 111–124.

[18] B. Liu, S. Nath, R. Govindan, and J. Liu, “Decaf: Detecting and
characterizing ad fraud in mobile apps,” in Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
2014, pp. 57–70.

[19] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “Puma:
Programmable ui-automation for large-scale dynamic analysis of mo-
bile apps,” in Proceedings of the Annual International Conference on
Mobile Systems, Applications, and Services (MobiSys), 2014, pp. 204–
217.

15

https://www.applovin.com/success-stories/
https://www.applovin.com/success-stories/
https://admob.google.com/home/admob-advantage/
https://www.thinkwithgoogle.com/_qs/documents/331/how-users-discover-use-apps-google-research.pdf
https://www.thinkwithgoogle.com/_qs/documents/331/how-users-discover-use-apps-google-research.pdf

[20] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko,
“Translating embeddings for modeling multi-relational data,” Proceed-
ings of the Advances in Neural Information Processing Systems (NIPS),
vol. 26, 2013.

[21] S. Hou, Y. Ye, Y. Song, and M. Abdulhayoglu, “Hindroid: An intel-
ligent android malware detection system based on structured hetero-
geneous information network,” in Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD), 2017, pp. 1507–1515.

[22] X. Zhang, Y. Zhang, M. Zhong, D. Ding, Y. Cao, Y. Zhang, M. Zhang,
and M. Yang, “Enhancing state-of-the-art classifiers with api se-
mantics to detect evolved android malware,” in Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2020, pp. 757–770.

[23] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[24] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Proceedings of the Advances in Neural
Information Processing Systems (NIPS), vol. 30, 2017.

[25] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” arXiv preprint arXiv:1810.00826, 2018.

[26] W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, and
J. Leskovec, “Strategies for pre-training graph neural networks,” arXiv
preprint arXiv:1905.12265, 2019.

[27] T. K. Ho, “Random decision forests,” in Proceedings of International
Conference on Document Analysis and Recognition (ICDAR), 1995,
pp. 278–282.

[28] L. Onwuzurike, E. Mariconti, P. Andriotis, E. D. Cristofaro, G. Ross,
and G. Stringhini, “Mamadroid: Detecting android malware by building
markov chains of behavioral models (extended version),” ACM Trans-
actions on Privacy and Security (TOPS), vol. 22, no. 2, pp. 1–34, 2019.

[29] K. Xu, Y. Li, R. Deng, K. Chen, and J. Xu, “Droidevolver: Self-
evolving android malware detection system,” in Proceedings of the
IEEE European Symposium on Security and Privacy (EuroS&P), 2019,
pp. 47–62.

[30] Y. Shen and G. Stringhini, “Andruspex: leveraging graph representation
learning to predict harmful app installations on mobile devices,” in
Proceedings of the European Symposium on Security and Privacy
(EuroS&P), 2021, pp. 562–577.

[31] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Droidbot: a lightweight ui-guided
test input generator for android,” in Proceedings of the IEEE/ACM
International Conference on Software Engineering Companion (ICSE-
C), 2017, pp. 23–26.

[32] Google, “UI/Application Exerciser Monkey,” 2023. [Online]. Available:
https://developer.android.com/studio/test/other-testing-tools/monkey

[33] Z. Cai, Y. Nan, X. Wang, M. Long, Q. Ou, M. Yang, and Z. Zheng,
“DARPA: Combating asymmetric dark ui patterns on android with
run-time view decorator,” in Proceedings of the Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2023, pp. 480–493.

[34] G. A. H. Center, “ How the Google Ads auction works,” 2023. [Online].
Available: https://support.google.com/google-ads/answer/6366577

[35] Facebook, “Facebook ads: About ad auctions,” 2023. [Online].
Available: https://www.facebook.com/business/help/430291176997542

[36] G. Help, “Google Ads Help Center: About App campaigns,”
2023. [Online]. Available: https://support.google.com/google-ads/
answer/6247380.

[37] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library
detection in android and its security applications,” in Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2016, p. 356–367.

[38] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes, “Keep me updated:
An empirical study of third-party library updatability on android,”
in Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2017, p. 2187–2200.

[39] G. A. Help, “Ad units, ad formats, & ad types,” 2023. [Online].
Available: https://support.google.com/admob/answer/6128738?hl=en

[40] M. B. H. Center, “Types of Meta ad formats,” 2023. [Online]. Avail-
able: https://www.facebook.com/business/help/1263626780415224?id=
802745156580214

[41] A. Support, “Ad Formats,” 2023. [Online]. Available: https://support.
applovin.com/hc/en-us/articles/11259746423565-Ad-Formats

[42] “Google AdMob: Get Started,” 2024. [Online]. Available: https:
//developers.google.com/admob/android/quick-start

[43] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input genera-
tion for android: Are we there yet?(e),” in Proceeding of the IEEE/ACM

International Conference on Automated Software Engineering (ASE),
2015, pp. 429–440.

[44] P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyandé, and J. Klein,
“Automated testing of android apps: A systematic literature review,”
IEEE Transactions on Reliability (ToR), vol. 68, no. 1, pp. 45–66,
2018.

[45] Y. Ma, Y. Huang, Z. Hu, X. Xiao, and X. Liu, “Paladin: Automated
generation of reproducible test cases for android apps,” in Proceedings
of the International Workshop on Mobile Computing Systems and
Applications (HotMobile), 2019.

[46] Appium, 2023. [Online]. Available: https://appium.io
[47] G. for Developers, “UI Automator,” 2023. [Online]. Available: https://

developer.android.com/training/testing/other-components/ui-automator.
[48] S. Son, D. Kim, and V. Shmatikov, “What mobile ads know about

mobile users.” in Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2016.

[49] Q. A. Chen, Z. Qian, and Z. M. Mao, “Peeking into your app without
actually seeing it:ui state inference and novel android attacks,” in
Proceedings of the USENIX Security Symposium (USENIX Security),
2014, pp. 1037–1052.

[50] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2012, pp. 95–109.

[51] M. D. Ernst, R. Just, S. Millstein, W. Dietl, S. Pernsteiner, F. Roesner,
K. Koscher, P. Barros, R. Bhoraskar, S. Han, P. Vines, and E. X. Wu,
“Collaborative verification of information flow for a high-assurance app
store,” in Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2014, pp. 1092–1104.

[52] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck, “Appcontext:
Differentiating malicious and benign mobile app behaviors using
context,” in Proceedings of the International Conference on Software
Engineering (ICSE), 2015, pp. 303–313.

[53] S. Xi, S. Yang, X. Xiao, Y. Yao, Y. Xiong, F. Xu, H. Wang, P. Gao,
Z. Liu, F. Xu, , and J. Lu, “DeepIntent: Deep icon-behavior learning
for detecting intention-behavior discrepancy in mobile apps,” in Pro-
ceedings of the ACM Conference on Computer and Communications
Security (CCS), 2019.

[54] K. Xu, Y. Li, R. H. Deng, and K. Chen, “DeepRefiner: Multi-layer
android malware detection system applying deep neural networks,” in
Proceedings of the IEEE European Symposium on Security and Privacy
(EuroS&P), 2018.

[55] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of android apps for the research community,” in
Proceedings of the IEEE/ACM Working Conference on Mining Software
Repositories (MSR), 2016, pp. 468–471.

[56] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan, Y. Li,
J. Nichols, and R. Kumar, “Rico: A mobile app dataset for building
data-driven design applications,” in Proceedings of the Annual ACM
Symposium on User Interface Software and Technology (UIST), 2017,
pp. 845–854.

[57] K. Pearson, “X. on the criterion that a given system of deviations from
the probable in the case of a correlated system of variables is such that it
can be reasonably supposed to have arisen from random sampling,” The
London, Edinburgh, and Dublin Philosophical Magazine and Journal
of Science, vol. 50, no. 302, pp. 157–175, 1900.

[58] T. Book and D. S. Wallach, “An empirical study of mobile ad targeting,”
arXiv preprint arXiv:1502.06577, 2015.

[59] N. Vallina-Rodriguez, J. Shah, A. Finamore, Y. Grunenberger, K. Pa-
pagiannaki, H. Haddadi, and J. Crowcroft, “Breaking for commercials:
characterizing mobile advertising,” in Proceedings of the Internet
Measurement Conference (IMC), 2012, pp. 343–356.

[60] R. Shao, V. Rastogi, Y. Chen, X. Pan, G. Guo, S. Zou, and R. Riley,
“Understanding in-app ads and detecting hidden attacks through the
mobile app-web interface,” IEEE Transactions on Mobile Computing
(TMC), vol. 17, no. 11, pp. 2675–2688, 2018.

[61] A. Desnos and G. Gueguen, “Androguard documentation,”
2018. [Online]. Available: ObtenidodeAndroguard:https://androguard.
readthedocs.io/en/latest

[62] A. Kao and S. R. Poteet, Natural language processing and text mining.
Springer Science & Business Media, 2007.

[63] J. Gerlings, A. Shollo, and I. Constantiou, “Reviewing the need for ex-
plainable artificial intelligence (xai),” arXiv preprint arXiv:2012.01007,
2020.

[64] X. V. Lin, R. Socher, and C. Xiong, “Multi-hop knowledge graph
reasoning with reward shaping,” in Proceedings of the Conference on

16

https://developer.android.com/studio/test/other-testing-tools/monkey
https://support.google.com/google-ads/answer/6366577
https://www.facebook.com/business/help/ 430291176997542
https://support.google.com/google-ads/answer/6247380.
https://support.google.com/google-ads/answer/6247380.
https://support.google.com/admob/answer/6128738?hl=en
https://www.facebook.com/business/help/1263626780415224?id=802745156580214
https://www.facebook.com/business/help/1263626780415224?id=802745156580214
https://support.applovin.com/hc/en-us/articles/11259746423565-Ad-Formats
https://support.applovin.com/hc/en-us/articles/11259746423565-Ad-Formats
https://developers.google.com/admob/android/quick-start
https://developers.google.com/admob/android/quick-start
https://appium.io
https://developer.android.com/training/testing/other-components/ui-automator.
https://developer.android.com/training/testing/other-components/ui-automator.
Obtenido de Androguard: https://androguard. readthedocs. io/en/latest
Obtenido de Androguard: https://androguard. readthedocs. io/en/latest

Empirical Methods in Natural Language Processing (EMNLP), 2018,
pp. 3243–3253.

[65] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Reinforcement learning, pp. 5–
32, 1992.

[66] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[67] Y. Ishii, T. Watanabe, F. Kanei, Y. Takata, E. Shioji, M. Akiyama,
T. Yagi, B. Sun, and T. Mori, “Understanding the security management
of global third-party android marketplaces,” in Proceedings of the ACM
SIGSOFT International Workshop on App Market Analytics (WAMA),
2017, pp. 12–18.

[68] A. Cortesi, M. Hils, T. Kriechbaumer, and contributors, “mitmproxy:
A free and open source interactive HTTPS proxy,” 2023. [Online].
Available: https://mitmproxy.org/

[69] A. Hagberg, P. Swart, and D. S Chult, “Exploring network struc-
ture, dynamics, and function using networkx,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

[70] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[71] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bring order to the web,” technical report, Stanford University,
Tech. Rep., 1998.

[72] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the International
Conference on Artificial Intelligence and Statistics (AISTATS), 2010,
pp. 249–256.

[73] B. Yang, W.-t. Yih, X. He, J. Gao, and L. Deng, “Embedding entities
and relations for learning and inference in knowledge bases,” arXiv
preprint arXiv:1412.6575, 2014.

[74] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D.
Hjelm, “Deep graph infomax,” arXiv preprint arXiv:1809.10341, 2018.

[75] K. Hassani and A. H. Khasahmadi, “Contrastive multi-view repre-
sentation learning on graphs,” in Proceedings of the International
Conference on Machine Learning (ICML), 2020, pp. 4116–4126.

[76] R. Das, S. Dhuliawala, M. Zaheer, L. Vilnis, I. Durugkar, A. Krishna-
murthy, A. Smola, and A. McCallum, “Go for a walk and arrive at the
answer: Reasoning over paths in knowledge bases using reinforcement
learning,” in Proceedings of the International Conference on Learning
Representations (ICLR), 2018.

[77] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang, “Deep graph
contrastive representation learning,” arXiv preprint arXiv:2006.04131,
2020.

[78] Y. Zhao, T. Liu, H. Wang, Y. Liu, J. Grundy, and L. Li, “Are mobile
advertisements in compliance with app’s age group?” in Proceedings
of the ACM Web Conference (WWW), 2023, pp. 3132–3141.

[79] Google Play, “The magnet searcher,” 2024. [Online]. Available:
https://play.google.com/store/apps/details?id=cili.niao.search.bt.ci.li

[80] The distribution site, “The malicious downloader promoted by the
magnet searcher,” 2024. [Online]. Available: https://apk.apkdownqd6.
top/

[81] N. Zhong and F. Michahelles, “Google play is not a long tail market:
An empirical analysis of app adoption on the google play app market,”
in Proceedings of the Annual ACM Symposium on Applied Computing
(SAC), 2013, pp. 499–504.

[82] Yahoo, “Android apps with 2.5 million downloads are showing ads
with display off — delete these now,” 2023. [Online]. Available: https:
//www.yahoo.com/lifestyle/android-apps-2-5-million-192411303.html

[83] Google Play, “The trojan disguising as a Chinese dictionary,” 2024.
[Online]. Available: https://play.google.com/store/apps/details?id=com.
qiushui.android.app.chdir

[84] AppsGeyser, “No code app maker: AppsGeyser,” 2024. [Online].
Available: https://appsgeyser.com/

[85] McAfee, “Similar rogue security softwares reported by McAfee,”
2024. [Online]. Available: https://www.mcafee.com/blogs/other-
blogs/mcafee-labs/new-hiddenads-malware-that-runs-automatically-
and-hides-on-google-play-1m-users-affected/

[86] Facebook, “The Facebook profile of “Fancy Battery: Cleaner,
Secure”,” 2024. [Online]. Available: https://m.facebook.com/p/Fancy-
Battery-100070380125569/

[87] Malwarebytes, “Same malicious behaviours reported
by Malwarebytes,” 2024. [Online]. Available:
https://www.malwarebytes.com/blog/news/2021/02/barcode-scanner-
app-on-google-play-infects-10-million-users-with-one-update

[88] G. Jocher, “YOLOv5 by Ultralytics,” May 2020. [Online]. Available:
https://github.com/ultralytics/yolov5

[89] Z. Chen, J. Liu, Y. Hu, L. Wu, Y. Zhou, Y. He, X. Liao, K. Wang, J. Li,
and Z. Qin, “Deuedroid: Detecting underground economy apps based
on utg similarity,” in Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA), 2023, pp. 223–
235.

[90] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard,
“Complex embeddings for simple link prediction,” in Proceedings of
the International Conference on Machine Learning (ICML), 2016, pp.
2071–2080.

[91] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel, “Convolutional
2d knowledge graph embeddings,” in Proceedings of the AAAI Con-
ference on Artificial Intelligence (AAAI), vol. 32, no. 1, 2018.

[92] C. Liu, H. Wang, T. Liu, D. Gu, Y. Ma, H. Wang, and X. Xiao, “Promal:
precise window transition graphs for android via synergy of program
analysis and machine learning,” in Proceedings of the International
Conference on Software Engineering (ICSE), 2022, pp. 1755–1767.

[93] D. Adamo, M. K. Khan, S. Koppula, and R. Bryce, “Reinforcement
learning for android gui testing,” in Proceedings of the ACM SIGSOFT
International Workshop on Automating Test Case Design, Selection,
and Evaluation (A-Test), 2018, pp. 2–8.

[94] “Ethical Ad Server,” 2024. [Online]. Available: https://ethical-ad-
server.readthedocs.io/en/latest/.

[95] G. Xu, Y. Hu, Q. Guo, R. He, L. Li, G. Xu, Z. Han, and H. Wang,
“Dissecting mobile offerwall advertisements: An explorative study,”
in Proceedings of the International Conference on Software Quality,
Reliability, and Security (QRS), 2020, pp. 518–526.

[96] X. Xiao, X. Wang, Z. Cao, H. Wang, and P. Gao, “Iconintent: automatic
identification of sensitive ui widgets based on icon classification for
android apps,” in Proceedings of the International Conference on
Software Engineering (ICSE), 2019, pp. 257–268.

[97] A. Rountev and D. Yan, “Static reference analysis for gui objects in
android software,” in Proceedings of the Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO), 2014,
pp. 143–153.

[98] OpenAI, “Chatgpt: Applications, opportunities, and threats,” arXiv
preprint arXiv:2304.09103, 2023.

[99] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language
models are few-shot learners,” Proceedings of the Advances in Neural
Information Processing Systems (NIPS), vol. 33, pp. 1877–1901, 2020.

[100] Y. Wang, Y. Zhang, Y. Li, and X. Liu, “A bibliometric review of
large language models research from 2017 to 2023,” arXiv preprint
arXiv:2304.02020, 2023.

[101] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe exposure
analysis of mobile in-app advertisements,” in Proceedings of the ACM
Conference on Security and Privacy in Wireless and Mobile Networks
(WiSec), 2012, pp. 101–112.

[102] T. Book, A. Pridgen, and D. S. Wallach, “Longitudinal analysis of
android ad library permissions,” arXiv preprint arXiv:1303.0857, 2013.

[103] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalability
simultaneously in detecting application clones on android markets,” in
Proceedings of the International Conference on Software Engineering
(ICSE), 2014, pp. 175–186.

[104] V. Rastogi, Y. Chen, and W. Enck, “Appsplayground: automatic security
analysis of smartphone applications,” in Proceedings of the ACM Con-
ference on Data and Application Security and Privacy (CODASPY),
2013, pp. 209–220.

[105] Y. Hei, R. Yang, H. Peng, L. Wang, X. Xu, J. Liu, H. Liu, J. Xu,
and L. Sun, “Hawk: Rapid android malware detection through het-
erogeneous graph attention networks,” IEEE Transactions on Neural
Networks and Learning Systems (TNNLS), pp. 4703–4717, 2021.

[106] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of Artificial Intelligence Research (JAIR),
pp. 237–285, 1996.

17

https://mitmproxy.org/
https://play.google.com/store/apps/details?id=cili.niao.search.bt.ci.li
https://apk.apkdownqd6.top/
https://apk.apkdownqd6.top/
https://www.yahoo.com/lifestyle/android-apps-2-5-million-192411303.html
https://www.yahoo.com/lifestyle/android-apps-2-5-million-192411303.html
https://play.google.com/store/apps/details?id=com.qiushui.android.app.chdir
https://play.google.com/store/apps/details?id=com.qiushui.android.app.chdir
https://appsgeyser.com/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/new-hiddenads-malware-that-runs-automatically-and-hides-on-google-play-1m-users-affected/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/new-hiddenads-malware-that-runs-automatically-and-hides-on-google-play-1m-users-affected/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/new-hiddenads-malware-that-runs-automatically-and-hides-on-google-play-1m-users-affected/
https://m.facebook.com/p/Fancy-Battery-100070380125569/
https://m.facebook.com/p/Fancy-Battery-100070380125569/
https://www.malwarebytes.com/blog/news/2021/02/barcode-scanner-app-on-google-play-infects-10-million-users-with-one-update
https://www.malwarebytes.com/blog/news/2021/02/barcode-scanner-app-on-google-play-infects-10-million-users-with-one-update
https://github.com/ultralytics/yolov5
https://ethical-ad-server.readthedocs.io/en/latest/.
https://ethical-ad-server.readthedocs.io/en/latest/.

	Introduction
	Background and Threat Model
	Motivation of AdGPE
	Risks in App Promotion Ads
	Graph Learning with App Promotion
	Characterizing Challenges for App Promotion Ads

	App Promotion Graph Construction
	Ad-Oriented UI Exploration
	Graph Construction

	Malware Detection and App Promotion Reasoning
	Pre-trained Graph Embedding
	Malware Detection
	App Promotion Reasoning

	Evaluation Setup
	Research Questions
	Dataset
	Implementation

	Results
	RQ1: Malware Detection
	RQ2: Malware Promotion
	RQ3: Temporal Analysis
	RQ4: App Promotion Graph Construction
	RQ5: App Promotion Reasoning

	Discussion
	Related Work
	Conclusion
	References

