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Abstract—This paper investigates the fundamental estimation
problem in local differential privacy (LDP). We categorize
existing estimation methods into two approaches, the unbiased
estimation approach, which, under LDP, often gives unreasonable
results (negative results or the sum of estimation does not equal
to the total number of participating users), due to the excessive
amount of noise added in LDP, and the maximal likelihood
estimation (MLE)-based approach, which, can give reasonable
results, but often suffers from the overfitting issue. To address
this challenge, we propose a reduction framework inspired
by Gaussian mixture models (GMM). We adapt the reduction
framework to LDP estimation by transferring the estimation
problem to the density estimation problem of the mixture model.
Through the merging operation of the smallest weight component
in this mixture model, the EM algorithm converges faster and
produces a more robust distribution estimation. We show this
framework offers a general and efficient way of modeling various
LDP protocols. Through extensive evaluations, we demonstrate
the superiority of our approach in terms of mean estimation,
categorical distribution estimation, and numerical distribution
estimation.

I. INTRODUCTION

Local Differential Privacy (LDP) [18], [32] has been used
as one of the standards for collecting large amounts of private
user data. In an LDP protocol, an individual perturbs a
sensitive record locally, and reports a noisy version to the
aggregator; the aggregator collects all sanitized records and
computes the statistical results. Keeping private data within
the user’s device, LDP demonstrates its advantages in enabling
privacy-preserving data analysis without involving trustworthy
data collectors. LDP techniques have been deployed by com-
panies like Google [22], Apple [2], Microsoft [17].

A series of LDP protocols with different data types and anal-
ysis purposes have been proposed [22], [30], [47], [6], [14].
And their LDP aggregation methods can be categorized into
two approaches: unbiased estimation and maximal likelihood
estimation (MLE). (1) The unbiased estimation approach aims
to derive an unbiased estimation of the true distribution. The
knowledge of the random perturbation process, represented by
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a matrix G, is utilized. Gi,j is the probability that the i-th input
is perturbed to the j-th output. Thus given a hypothetical input
distribution w, Gw gives the expected perturbation results
E [ ω̃ ]. As a result, applying the inverse matrix to ω̃ gives us
the unbiased estimation of w as E

[
G−1ω̃

]
= G−1E [ ω̃ ] =

G−1Gw = w. However, due to the presence of independent
noise in each value of ω̃, this approach may yield unreasonable
estimates and distributions. For example, no guarantee of non-
negativity or summation to n (total number of participating
users), and empirical corrections are generally required [48],
[23]. (2) And the MLE approach seeks to find the distri-
bution that maximizes the likelihood of the observed LDP
results. This approach employs the construction of a likelihood
function for w and uses an expectation maximization (EM)
algorithm to maximize it. The characteristic of this approach
is imposing constraints on the estimated values, resulting in
smaller overall errors especially when there exists substantial
noise [35].

Unfortunately, when attempting to extend the principles of
MLE to a broader range of LDP tasks, it encounters the chal-
lenge of overfitting to noisy data. The constraints associated
with forming a distribution, alongside the impact of noisy
data, appear to introduce extra errors (e.g., bias) to the result,
particularly when involving many values to be estimated. To
address this overfitting issue, Li et al. [34] incorporate a
smoothing strategy which imposes smoothness assumptions
on the original values. Specifically, in each EM iteration, a
smoothing step is applied to the continuous distribution results
obtained in the M-step, resulting in improved performance
in numerical distribution estimation. However, selecting the
smoothing parameter and determining the termination con-
dition for EM remain challenging tasks, and the smoothing
technique cannot be applied to categorical value estimation
scenarios.

Our research reveals that one of the primary causes of over-
fitting in EM for LDP data is the excessive number of param-
eters. In machine learning, regularization terms are commonly
employed to penalize excessive parameterization. However,
incorporating regularization terms into EM, such as adding
in the maximum likelihood function, seems hard to realize.
Therefore, we propose leveraging the reduction idea, initially
developed for the Gaussian mixture model (GMM) [11], [40],
to solve this problem. Reduction is a principled framework
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used in EM algorithms to reduce the number of parameters
by iteratively merging or eliminating components that share
similar characteristics or contribute minimally to the overall
likelihood of the data. We find that this reduction framework is
particularly suitable for LDP estimation, as the large size of w
leads to small true counts for many values. Their estimations,
having a high probability of being covered by noise, become
more effectively addressed through elimination or merging. To
use the reduction framework, we adapt the GMM framework
to tailor it to the LDP perturbation process (since the random
perturbation also creates distributions, although not necessarily
following Gaussian).

Our new framework is general and allows the modeling of
different LDP protocols. We apply our method to state-of-
the-art LDP protocols for different tasks, including one-step
basic LDP tasks such as frequency estimation of categorical
values, mean estimation of numerical values, and multi-step
LDP tasks such as the conditional estimation on key-value
data. These tasks serve as building blocks for complicated
tasks (e.g., trajectory synthetics [15], graph [55]), and recent
LDP poisoning attacks [10], [33] also focus on them). By
incorporating our method, we improve all these existing state-
of-the-art LDP protocols. Moreover, reduction also improves
efficiency: compared to the standard EM algorithm whose
running time is proportional to the squared input space,
reduction, since it eliminates or merges the estimation of some
input variables through the EM process, can greatly reduce the
running time in practice.

We conducted evaluations on synthetic and real-world
datasets. In terms of mean estimation, our reduction framework
applied to the existing method PM [45] consistently achieves
the lowest mean absolute error (MAE) compared to its original
estimation method. This improvement is particularly signifi-
cant, with a 70% decrease in MAE, in scenarios with limited
data and privacy budget. Regarding frequency estimation, the
standard FOs such as GRR [30] and OLH [47], combined with
our framework perform comparably to its original unbiased
estimation method with consistency-based post-processing
method [48], when data and privacy budget are sufficient. But
in the opposite case, say ε = 0.5, combining with our frame-
work also provides a relatively 10% ∼ 30% improvement.
For numerical distribution estimation, we further apply our
reduction framework to Laplace mechanism, PM and SW [34].
After evaluating several metrics (e.g., wasserstein distance,
variance), the distribution obtained from our MR reduces the
error by 30% compared to EM. As for conditional mean
estimation tasks which involves multi-types data, we apply
our framework to PCKV [24] and observed a improvement
of 40% in mean squared error when ε = 1. In summary,
we conclude that MLE with our reduction framework is the
preferred choice when the input domain is large (e.g., many
values need to estimate) or there exists substantial noise (low
ε or insufficient number of users).

To summarize, the main contributions are:
• We summarize the two current LDP aggregation estimation

methods and highlight the bottleneck in the application of

EM-based MLE is overfitting. To address this challenge, we
leverage the reduction idea and propose a mixture reduction
framework, incorporating an LDP mixture model to enhance
the effectiveness of EM-based MLE.

• We demonstrate the application of our model as a post-
processing step to mean estimation, frequency estimation,
and numerical distribution estimation tasks, which are the
most fundamental and serve as the building blocks of many
complicated tasks in LDP field. And we provide access to
our code1.

• We theoretically analyze the mean square error of our
method, demonstrating that our reduction framework is
the preferred choice when the input domain is large or
substantial noise exists. Evaluating our method with both
synthetic and real-world datasets, we show that in scenarios
with insufficient privacy budget or number of users, our
method can reduce the mean absolute error by up to 70%.

II. BACKGROUND

A. Local Differential Privacy

Throughout the paper, we assume there are many users
and an untrusted aggregator. The aggregator’s goal is to learn
information about users’ values. But as the aggregator is
untrusted, users apply Local Differential Privacy (LDP) before
sending their data to the aggregator.

Definition 1 (LDP). A randomized function Ψ(·) satisfies ε-
local differential privacy if and only if for any possible pairs
of x and x′ in the domain X , and for any possible output x̃,
we have:

Pr [Ψ(x) = x̃] ≤ eε · Pr [Ψ(x′) = x̃] (1)

B. LDP Mechanism for Categorical Values

The most basic tools in LDP are mechanisms that can
estimate the distribution of users’ values. In these mechanisms,
users perturb their values locally, and send them to the server.
The server, on query of some target value, can output the
frequency of that value. These mechanisms are thus also called
frequency oracles (shortened as FO’s).

Generalized Randomized Response (GRR). This FO proto-
col generalizes the randomized response technique [49]. Here
each user with private value x ∈ X sends the true value x with
probability p, and with probability 1 − p sends a randomly
chosen x̃ ∈ X s.t. x̃ ̸= x. More formally, the perturbation
function is defined as

∀x∈X Pr
[
ΨGRR(ε)(x) = x̃

]
=

{
p = eε

eε+K−1 if x̃ = x,

q = 1
eε+K−1 if x̃ ̸= x.

(2)

This satisfies ε-LDP since p
q = eε.

To estimate the frequency of a target value α (i.e., the ratio
of the users who take α as private value to the total number

1https://github.com/yyt20080808/LDP-EM-MR
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of users), one counts how many times α is reported, denoted
as

∑n
i=1 1x̃i=α, and then computes

f̂α =

∑n
i=1 1x̃i=α/n− q

p− q
. (3)

In [47], it is shown that this is an unbiased estimation of
the true count, and the variance for this estimation is

Var[f̂α] =
K − 2 + eε

(eε − 1)2 · n
. (4)

The accuracy of this protocol deteriorates fast when the
domain size K increases.

Optimized Local Hashing (OLH) [47]. This protocol deals
with a large domain size K by first using a hash function to
map an input value into a smaller domain of size K∗ (typically
K∗ ≪ K), and then applying randomized response to the
hashed value in the smaller domain. The reporting protocol is

ΨOLH(ε)(l) := ⟨H,ΨGRR(ε)(H(l))⟩,

where H is randomly chosen from a family of hash functions
that hash each value in X to {1 . . .K∗}. ΨGRR(ε) is given
in Equation 2, while operating on the domain {1 . . .K∗} and
K∗ is ⌈eϵ + 1⌉. The variance is

Var[f̂α] =
4eε

(eε − 1)2 · n
. (5)

Compared with Equation (4), the factor K − 2 + eε is
replaced by 4eε. This suggests that for smaller K (such that
K − 2 < 3eε), one is better with GRR; but for large K, OLH
is better and has a variance independent of K.

C. LDP Mechanism for Numeric Values

We assume the numerical values are all in the range of
[−1, 1]. For the case where the value range is different, we can
first map the domain into [−1, 1]. After the result is obtained,
we can map it back to the original domain.

Stochastic Rounding (SR). In detial, this method uses
stochastic rounding to estimate the mean of a numerical
domain [19]. We call it Stochastic Rounding (SR). The main
idea is to round x to x

x =

{
1 w/p (x+ 1)/2,

−1 w/p (−x+ 1)/2,
(6)

and then perturb x to x̃ with binary randomized response.
Formally, the perturbation function is defined as

Pr
[
ΨSR(ε)(x) = x̃

]
=

{
eε−1
2eε+2x+ 1

2 if x̃ = eε+1
eε−1 ,

1−eε

2eε+2x+ 1
2 if x̃ = eε+1

1−eε .

The SR method is unbiased in that E[x̃] = x. The variance

is
(

eϵ+1
eϵ−1

)2

− x2. Recently, Zhao et al. [54] extends the SR

from two outputs to three outputs, and it shows that the three
outputs have a smaller worst-case variance than the two when
ε > 0.69.

Piecewise Mechanism (PM) [45]. In this method, the
output domain is continuous and in the range of [−C,C]

where C = exp(ε/2)+1
exp(ε/2)−1 . For each x ∈ [−1, 1], there is an

associated range [ℓ(x), r(x)] close to x, such that, with a
higher probability p, the output value x̃ is in [ℓ(x), r(x)], and
with a lower probability q, x̃ is outside the range:

Pr
[
ΨPM(ε)(x) = x̃

]
=

{
p if x̃ ∈ [ℓ(x), r(x)],
q if x̃ ∈ [−C, ℓ(x)) ∪ (r(x), C].

(7)
PM sets ℓ(x) = C+1

2 x − C−1
2 and r(x) = ℓ(x) + C − 1,

and satisfies ε-LDP by setting q = p/eε. It is also shown to
be unbiased and its variance is x2

eε/2−1
+ eε/2+3

3(eε/2−1)2
.

Square Wave mechanism (SW) [34]. The perturbation part
of SW is similar to PM. And the output field of SW is fixed to
[−b, 1+ b], where b is correlated to the privacy budget. Given
a record x, the pdf of SW’s perturbation step is

Pr
[
ΨSW(ε)(x) = x̃

]
=

{
p · eε if x̃ ∈ [x− b, x+ b],
p otherwise.

where p = 1/(2beε + 1). At last, they proved that when the
parameter is set as:

b =
εeε − eε + 1

2eε(eε − 1− ε)
,

the upper bound of mutual information between the input
and output is maximized. Moreover, this method combines a
estimation step (Expectation Maximization), and can be used
to estimate numerical distributions. With the distribution, the
mean is indirectly obtained.

D. Notations

Throughout the paper, we use “tilde” to denote perturbed
values by LDP, “hat” or “widehat” to denote the estimated
results. For example, x is a user’s private numerical value,
and x̃ is the perturbed value; µ is the ground-truth mean of all
users’ values, and µ̂ is the estimated mean. We also use bold
letters to denote vectors, such as w. And use wi to denote the
i-th value in w.

III. STATISTICAL INFERENCE METHODS UNDER LDP

We focus on addressing the fundamental estimation prob-
lems on the aggregator side in the context of LDP. LDP
aggregation methods can be categorized into two approaches.
The first one tries to derive an unbiased estimation, and the
second one aims at finding the distribution that most likely
leads to the observed LDP reports. We now discuss them in
more detail.

1. Unbiased Estimation. Although we do not know the
true distribution w, we know the random perturbation pro-
cess, which can be represented as a matrix G. Thus, given
any hypothetical input distribution w, we can compute the
expected perturbation results E [ ω̃ ] = Gw, where ω̃ denotes
the perturbation results. Therefore, fundamentally, deriving an
unbiased estimation is equivalent to solving matrix inversion
problem ŵ = G−1ω̃, as we can show that

E [ ŵ ] = E
[
G−1ω̃

]
= G−1E [ ω̃ ] = G−1Gw = w.
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The matrix often becomes too large when the output al-
phabet has many possibilities. Fortunately, in LDP, there are
specific patterns in the random perturbation process that allows
us to derive simpler estimation processes, as in Equation 3.

Post-processing Method. Observing the unbiased estimation
may provide unreasonable results (e.g., Equation 3 may give
negative values due to noise), one can apply post-processing
calibration algorithms to revise and improve accuracy, most
of which are based on consistency and some assumptions.
Specifically, consistency means that each estimated value is
non-negative and their sum is 1. To attain non-negativity, a
common approach involves the implementation of significance
threshold [22], [47] to discard negative and tiny-value esti-
mates. To ensure that the estimated frequencies sum to one,
one can use a normalization algorithm, such as the addition of
a small value, denoted by δ, to all elements within the vector
ω̃. Normsub and Basecut [48], [14] are the typical consistency-
based methods currently. Recently, Fang et al., [23] assume
the existence of continuity or smoothness in adjacent values
of the original frequency distribution, and employ convolution
techniques (Improved Iterative Wiener (IIW) filter algorithm)
to smooth the frequency estimation results. The above post-
processing methods are empirically useful and are mostly
applied to frequency estimation tasks on categorical data.

2. Maximal Likelihood Estimation (MLE). This approach
finds a distribution that most likely leads to the observed
LDP results. Specifically, given any hypothetical input ŵ, the
random perturbation process G and the observed perturba-
tion results ω̃ (here ω̃ is the histogram of observed reports
{x̃1, . . . , x̃n}), one can derive the likelihood (probability) of
G turning ŵ into ω̃. That is,

L(ŵ) = Qn(ω̃; ŵ) (8)

where the term Qn(ω̃; ŵ) represents the joint probability mass
(or density) function for n random variables which construct
a histogram ω̃. The MLE is to find the values of the model
parameters ŵ that maximize the above function, while the ŵ
satisfies consistency constraints.

argmax
ŵ

L(ŵ) s.t.
∑

ŵi = 1, ŵi ≥ 0

Expectation-maximization (EM) algorithm [7], [16] is the
general approach to optimize the above. Briefly speaking, EM
iteratively invokes (1) an E-step that estimates the likelihood
given ŵ and (2) an M-step to update ŵ that maximize the
likelihood function (by taking the derivative of the likelihood
function).

Discussion. The estimation problem is particularly important
in the LDP settings (in the central DP setting, we typically
do not need estimation because the observation is usually
an unbiased estimation; for example, Laplace and Gaussian
distributions are symmetric). Essentially, unbiased estimation
approach is equivalent to applying the MLE independently
to each value in w, and thus the whole may produce an
unreasonable distribution (e.g., sum not to n and negative

values). And the accumulated error across all values may be
large, especially when the number of users or ε is small. And
EM-based MLE naturally deliver a distribution, while each
value is not guaranteed to be unbiased. Therefore, we can
consider the former as an unconstrained MLE and the latter as
a constrained MLE. Typically, EM-based MLE is considered
when the simple form of unbiased estimation (i.e., Equation 3)
cannot be directly derived and when it is desirable to keep the
overall error smaller.

Nevertheless, it is essential to acknowledge the drawbacks
associated with MLE. As the number of values in w increases,
the consistency constraint inherent in EM-based MLE also
extends its impact to a greater set of values. In such scenarios,
the iterative process of EM also involves a larger number
of parameters, making it susceptible to overfitting to noisy
data. For instance, when employing Gaussian Mixture Models
(GMMs) as a part of the EM algorithm, an overemphasis on
maximizing the likelihood can lead to overfitting, resulting
in an excessively large number of components, each having
small covariance [29], [11]. Additionally, in the LDP protocol
SW [34] for numerical distribution estimation, the over-fitting
issue cause the output continuous distribution to be overly
spiky. In an attempt to address this, the authors introduced
a smoothing step after each M-step in the EM algorithm.
However, this will also lead to the phenomenon of over-
smoothing, and it is not suitable to other types of LDP tasks
such as frequency estimation. Moreover, there is currently no
generalized framework for EM-based MLE in most of existing
LDP protocols.

In this paper, we aim to explore the broad applicability of
EM-based MLE on basic LDP protocols, while addressing the
challenge of overfitting issues.

IV. EM WITH REDUCTION

In this section, we propose to leverage the reduction
idea [11], [40], originally from the Gaussian mixture model
(GMM) [38], to solve the overfitting problem (we call our
solution mixture reduction, abbreviated as MR). Reduction is
a principled framework used in EM algorithms to reduce the
number of parameters by iteratively merging or eliminating
components that share similar characteristics or contribute
minimally to the overall likelihood of the data. In particular,
we find it well-suited for EM-based LDP estimation, since
many values’ true counts are small when the size of w
increases, and their estimations are more likely to be covered
by noise, and are better eliminated or merged. To use the re-
duction framework, we adapt the GMM framework to tailor it
to the LDP perturbation process (since the random perturbation
also creates distributions, although not necessarily following
Gaussian). Then, we apply the reduction operation during the
EM procedure.

A. Reduction

Reduction in EM arises in the context of Gaussian Mixture
Models (GMMs) [38], which assumes observed data is sam-
pled from a mixture of different Gaussian distributions, and
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tries to estimate the unknown weights of each distribution.
When there are too many possible Gaussian components,
naively running EM will lead to overfitting problems, and the
intuition behind reduction is to focus on significant compo-
nents and ignore components whose estimated weights are
small. Generally, pruning and merging are the two primary
operations for reducing the number of components [11], [40]
in Gaussian. Pruning entails removing a specific component
from the mixture, while adjusting the weights of the remaining
components to ensure the integrated mixture sums up to
unity. Merging involves consolidating two or more similar
components into a single component, such as (π′, µ′, σ′2) ←
{(π1, µ1, σ

2
1), (π2, µ2, σ

2
2)} for Gaussian.

We give the reduction algorithm with EM in the Algo-
rithm 1. It starts by initializing the mixture model with K
components. It then iteratively uses a predefined strategy to
decrease the number of components, and re-estimates the mix-
ture model using the EM algorithm. While the EM algorithm
in LDP demonstrates convergence, it is crucial to note that
the reduction operation does not inherently possess the con-
vergence property. Consequently, the algorithm’s convergence
is tracked through the computation of the change in Bayesian
Information Criterion (BIC) [41], [36], denoted as ∆ℓ, which
is a pervasively used tool in statistical model selection. The
BIC quantifies the trade-off between model fit and complexity
using the formula BIC = −2 log(L) + K ′ log(n), where L
represents the likelihood function, n is the number of samples
and K ′ is the remained number of components. A model
with a lower BIC value is considered to be a better-fitting
model, striking an optimal balance between fit and complexity.
The termination of Algorithm 1 also occurs when the change
in BIC surpasses a specified threshold, signifying negligible
improvement. In such cases, the last operation of reduction
should be cancelled.

Remark. Overfitting is a well-studied issue in machine
learning, and there, a popular solution is to use regularization.
For example, we can suggest a penalized log-likelihood as

logL(ŵ) = logQn(ω̃; ŵ)− λΩ(ŵ),

where Ω(ŵ) represents ℓ1 or ℓ2 regularization term. Unfortu-
nately, in the LDP setting, the ℓ1 regularization term has no
effect because there is a constraint that the sum of elements in
ŵ is fixed to one. This constraint also diminishes the efficacy
of ℓ2 regularization. Thus, we choose the reduction strategy.

B. LDP Mixture Model

In order to execute the reduction operation, it is necessary
to first adapt the Gaussian mixture model to the LDP mixture
model:

Definition 2 (LDP Mixture model). A LDP mixture model is
represented by a convex combination of component densities
or distributions. It consists of proportions or weights (denoted
as π) for each component, satisfying πk ≥ 0 and

∑
πk = 1.

The mixed probability mass function, denoted as ϕ(x̃;π,α),

Algorithm 1 Mixture Reduction Algorithm
Input: Noisy data x̃1, x̃2, . . . , x̃n, number of components K, min

number of components Kmin, threshold τ
Output: A simplified mixture model

1: Initialize mixture model with K components, K′ ← K
2: while K′ > Kmin do
3: Compute ŵ1, ŵ2, . . . , ŵK′ with EM (Algorithm 2)
4: Select components {k∗, ...} based on a strategy
5: Apply reduction operation
6: Compute change in BIC: ∆ℓ← BICnew − BICold
7: if ∆ℓ > τ then
8: Break
9: Update K′

10: return Mixture model with K′ components

is obtained by summing the weighted contributions of each
component density Pr [Ψε(αk) = x̃] for k = 1 to K.

ϕ(x̃;π,α) =

K∑
k=1

πkPr [Ψε(αk) = x̃] (9)

where the Pr [Ψε(αk) = x̃] represents the probability mass
function of the perturbation that generates report x̃ from the
private data x = αk in LDP protocols.2

Mixture models have a flexible and probabilistic nature,
which can preserve important characteristics for the data after
reduction, and we can use the metrics derived from GMM
to judge the reduction effect. Specifically, assuming that the
input space for users’ private data consists of K distinct
values α1, α2, . . . , αK , and the data of n users in total form a
normalized frequency histogram w. The perturbation process
for each private data can be viewed as a sample x̃ drawn
from a perturbation function Ψε(x) with the private data x
(x ∈ {α, . . .}) and the privacy budget ε as input.

And the objective is to fit the observed data. Thus, the log-
likelihood function is the objective function to optimize:

logL(ŵ) =

n∑
i=1

log
( K∑

j=1

ŵjPr [Ψε(αj) = x̃i]
)

(10)

For the mixture model with cleared likelihood function,
the expectation-maximization algorithm only needs to find the
weights of the mixture model, since the shapes of components
are clearly fixed in perturbation functions.

Reduction Operations. Pruning means removing an LDP
component from the target log-likelihood function. In general,
in the absence of any prior knowledge, a greedy strategy is
used to continuously select and remove the component with
the smallest weight. In the final results, those estimates that
are eliminated will be replaced with zeroes. So, the pruning
operation is more suitable for distributions with many zeros.

In addition, merging is a more general operation that
combines multiple components into a single component.

2If the LDP protocol incorporates continuous perturbation methods (such as
Laplace), the component can be substituted with a probability density function.
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Algorithm 2 Expectation-Maximization Algorithm
Input: Noisy data x̃1, . . . , x̃n, number of components K, initialized

weights ŵ, perturbation functions of LDP.
Output: Estimates for weights ŵk.

1: Initialization:
2: Calculate the initial log-likelihood L(ŵ) by Equation 10.
3: repeat
4: (E-step)
5: for i← 1 to n do
6: for k ← 1 to K do
7: Calculate the posterior probability

γik ←
ŵkPr [Ψε(αk) = x̃i]∑K
j=1 ŵjPr [Ψε(αj) = x̃i]

8: (M-step)
9: for k ← 1 to K do

10: Update the weights

ŵk ←
1

n

n∑
i=1

γik

11: Calculate the log-likelihood L(ŵ).
12: until convergence criterion is met

The following is a merging step, (w12,Ψε(α12)) ←
{(w1,Ψε(α1)), (w2,Ψε(α2))}:

w12 = w1 + w2

Pr [Ψε(α12) = x̃] =

2∑
i=1

wi

w12
Pr [Ψε(αi) = x̃] .

Since the components’ weights are all influenced by the
noise, we only merge small weights components and assume
wi

w12
= 1/2. Then, the strategy for selecting merged com-

ponents is to choose those that are as close or similar in
properties as possible, such as selecting the components with
the lowest weights, or based on adjacency information. In the
remaining sections, we assume no prior knowledge about the
data distribution (e.g., many zeros). Therefore, we default to
using only the merge operation and not using pruning.

Proposition 1. The mean squared error of our reduction
algorithm (Algorithm 1), which involves a total of t times
merging operations where each merging operation merges
h1, . . . , ht mixture components, is given by:

MSEOurs =
K ′

K
MSEEM +

1

K

t∑
i=1

hiσ
2
i . (11)

where σi is the variance of the true weights of the components
merged at the i-th operation.

We defer the proof to Appendix B. The first term in
Equation (11) is the estimation errors when the EM algorithm
executes for remaining (or non-merged) components and the
newly generated components, it is of order O(n−1). The
second term is the error introduced by the merging operation
on the estimates of the merged components.

Roughly speaking, when the variance of the merged
weights is much smaller than the EM estimation error (or

1
K

∑t
i=1 hiσ

2
i < K−K′

K MSEEM), our algorithm performs bet-
ter. When many values need to estimate (large K), it is more
likely that some values will be close to each other, resulting
in a small variance among the true weights of the merged
components. Moreover, the MSE of EM can also be quite
large when data size n is small or when the ε is insufficient.
To summarize, when these conditions are met,

MSEOurs ≈
K ′

K
MSEEM.

V. APPLYING EM REDUCTION

In this section, we investigate the employment of EM-based
MLE with MR, on different state-of-the-art LDP protocols.

A. Categorical Data

Specifically, in the case of GRR (described in Section II-B),
we refer to Algorithm 2 where the target output ŵ represents
the estimated frequency for each category value. The term
Pr [Ψε(αj) = x̃i] takes the value p as defined in Equation 2
when x̃i is the true answer. Since the output domain and input
domain are the same, we can represent the transformation (also
perturbation) probabilities from an input αj to any output x̃i

equal to αi using a matrix G ∈ [0, 1]K×K . Thus, the space
for storing is O(K2).

To our knowledge, there is no existing research that applies
the EM algorithm to handle the noisy data produced by the
OLH mechanism, particularly due to its infinite output domain.
However, we find it also applicable within our framework.
For any noisy data ⟨Hi, x̃i⟩, one need to get its likelihoods
to all components (all possible α). For example, the term
Pr [Ψε(⟨Hi, αj⟩) = ⟨Hi, x̃i⟩] takes the value eε

eε+K∗−1 when
hash matches x̃i = Hi[αj ], or otherwise takes value 1

eε+K∗−1 .
In this situation, there are totally nk values should be pre-
calculated. And these values need to be used multiple times in
the EM algorithm, storing them would require approximately
O(nK) space.

Reduction. The above-discussed protocols can be directly
equipped with mixture reduction algorithm. When no prior
knowledge is available, it is common to employ a greedy
strategy to select those LDP components with the smallest
weights, and merge them. This corresponds to lines 4 ∼ 5 of
Algorithm 1. Note that a threshold should be applied to prevent
the merging of actually frequent items (or components) with
relatively low estimated results. In the Base-cut method [48],
they employ such a threshold. Additionally, for any value
whose original count is 0, the probability that it will have an
estimated frequency less than 2σ (σ is the standard deviation
of LDP mechanism, as in the Equation 4) is at most 95%.
Consequently, when observing an estimated frequency above
2σ, the probability that the true frequency of the value is 0, is
at most 5%. In our approach, we use the merge operation for
values that are likely to be covered by the noise. Given that the
noise level is approximately up to 2σ (related to n and ε), we
empirically set this threshold (denoted by τ ) to 2σ. When the
data size (n) is small, the noise level of the EM algorithm tends
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to be high. Our strategy merges more components, as many
are likely noise-dominant, resulting in less error compared to
the EM algorithm. As n increases, fewer components will
be selected for merging, and the overall estimation aligns
more closely with EM. If there is prior knowledge about the
distribution (like sparsity), one can manually choose those that
are more likely to have lower original values.

Additionally, merging two components at one time, be-
comes computationally inefficient when the number of initial
components K is large. Thus, we suggest two approaches
to accelerate the process. First, employing the binary search
concept to progressively select and retain components with
the highest weights, or alternatively, merging at most half
of the components with weights below τ in each step. This
will reduce the number of merging step invocations from
O(K) to O(logK). Second, when initializing the number of
components, pre-selecting and merging the components whose
corresponding unbiased estimation results are negative or tiny
small, will reduce the size of K.

Selection of Perturbation Methods. According to the
Cramer-Rao lower bound theorem, the MLE accuracy is higher
when the fisher information is larger. To investigate the factors
influencing the estimated results in Algorithm 2, we first
differentiate the log-likelihood function (Equation 10) twice
with respect to each ŵj , and get

n∑
i=1

Pr [Ψε(αj) = x̃i]

(
∑K

k=1 ŵkPr [Ψε(αk) = x̃i])2
. (12)

To satisfy LDP, it is clear that for any output x̃, there
exist constraints that Pr[Ψε(αi)]=x̃

Pr[Ψε(αj)]=x̃ ≤ eε. Assuming no prior
knowledge and considering a uniform distribution for w, we
have:

−∂2L

∂ŵ2
j

=

n∑
i=1

K2Pr [Ψε(αj) = x̃i]

(
∑K

k=1 Pr [Ψε(αk) = x̃i])2
(13)

Then, the accuracy of the estimator is influenced by the ratio
between a sample’s contribution to its true component and its
contributions to other components. For protocols like GRR,
where

∑K
k=1 Pr [Ψε(αk) = x̃i] = 1, and Pr [Ψε(αk) = x̃i] is

bounded by O( ε
ε+K ), and Var[ŵj ] is O( K

ne2ε ). Similarly, the
variance of OLH by EM is bounded by O( 1

ne2ε ). This indicates
that the selection of perturbation methods also depends on ε
and K.

B. Numerical Data

We observe that using MLE for SR is almost equivalent to
its unbiased estimation because SR constrains the input and
output domain to {−1, 1} (just two components in EM), and
the only two components do not need reduction. Consequently,
we focus on other mechanisms introduced in Section II-C.
Interestingly, we also observe that PM and SW actually
belong to the same category of perturbation mechanisms. The
key distinction lies in the inference method employed by
each mechanism: PM utilizes a formula for mean estimation
because of its special parameter setting towards unbiasedness,

Algorithm 3 Mixture Reduction for PM
Input: Noisy data {x̃1, x̃2, . . . , x̃n}, number of components K, min

number of components Kmin, weight threshold τ
Output: A simplified Mixture model

1: Initialize the mixture model ŵ1, ŵ2, . . . , ŵK

2: Set K(1) ← K, t← 1
3: while K(t) > Kmin do
4: Compute weights of ŵ1(t) , ŵ2(t) , . . . , ŵK(t)

5: for each component ŵk(t) in remaining set do
6: if {ŵk(t) , ŵk+1(t) , . . . , ŵ

(t)

k+⌈K/2t⌉} all exist then
7: Compute their sum Sk ←

∑
ŵk(t)

8: Sk∗ ← minK(t)

k=1 Sk

9: if Sk∗ < τ then
10: Merge the k∗-th component and its neighbors
11: K(t+1) ← K(t) − ⌈K/2t⌉+1
12: Re-estimate the mixture model
13: ∆ℓ← BICnew − BICold
14: if ∆ℓ < 0 then
15: Break
16: t = t+ 1
17: return Mixture model with K(t) components

while SW employs MLE for density. To facilitate a more com-
prehensive comparison between the two inference methods
within the context of the same perturbation algorithm, we first
introduce the steps of combining PM with a mixture model.

PM Mixture Model. To model the PM’s noised reports
for numerical estimation, a crucial preliminary step is dis-
cretization, where the input and output domains are divided
into equal-width ranges or bins denoted as Bin

j and Bout
ℓ .

Each input bin can be seen as a distinct value α, and its PM
perturbation process corresponds to a specific PM component,
characterized by a matrix M ∈ [0, 1]

K×K that represents the
transformation (perturbation) probabilities from an input bin j
to any output bin ℓ. The element Mℓ,j indicates the probability
Pr

[
x̃ ∈ Bout

ℓ | x ∈ Bin
j

]
, which is obtained by integrating the

PM’s probability density function over the interval of Bout
ℓ ,

Mℓ,j =

∫
x̃∈Bout

ℓ

pdf(x̃|x ∈ Bin
j ) dx̃. (14)

Referring to the outlined Algorithm 2, for each noisy value
generated by PM, the term Pr [Ψε(αj) = x̃i] takes the value
Mℓ,j if x̃i falls within the output bin Bout

ℓ . And the n
noised reports can form a histogram ω̃, and we can derive
the likelihood of M turning ŵ into ω̃ (see Equation 8).
Subsequently, utilizing the computed weights ŵ, the center
of the estimated mixture model can serve as a mean estimator
for the population mean, in the form of a weighted average of
the means of each of the individual PM components.

Reduction. Here the parameter K in PM-EM is set to 1024,
following a common practice in SW [34]. Given that the
large value of K, we use a binary search selection strategy
similar to that for discrete data but with a sliding window
to merge components with similar weights (Lines 5 ∼ 8 of
Algorithm 3), leveraging the continuous nature of the data
to merge components associated with small-value ranges. At
each step, we retain half of the range with the larger values,

7



TABLE I
SUMMARY OF METHODS IN EM-BASED MLE

Methods Description Pre-process Probability mass or density function Time complexity

GRR FO in small K scenario - Equation (2) O(K2 log(K)I)

OLH FO in large K scenario hash matching eε

eε+K∗−1
if hash matches O(nK log(K)I)

PM & SW numerical FO and mean estimator binning Equation (7) and (14) O(K2 log(K)I)
Laplace numerical perturbation binning the pdf of Laplace distribution O(nK log(K)I)

Gaussian (ε, δ)-LDP for high-dimensional data binning the pdf of Gaussian distribution O(nK log(K)I)
PCKV-PM key-value data analysis binning joint pmf from the combination of PM and FOs O(Kd2 log(d)I)

discarding the other half whose sum of weights is less than a
threshold. This threshold τ (Line 9 of Algorithm 3) is also
related to the twice standard deviation, which is the same
as that in category protocols. Since there is no unbiased
estimation of ŵi in PM (or SW), we use the Cramer-Rao
lower bound [43] (e.g., the inverse of Equation (13)) to obtain
a reference value for its standard deviation.

Naturally, for PM, it is important to determine when to
use the sample mean estimator (unbiased estimation, 1

n

∑
x̃)

and when to use the EM-based estimator (
∑

ŵkûk). Then,
we use an example in Figure 1 to show that the EM-based
estimator is suitable in small sample situations. The intuition
is that the aggregated LDP data given in Fig 1(b) is like an
under-sampling of a mixed distribution given in Fig 1(c). EM-
based MLE facilitates noise smoothing by implicitly padding
the data, and as a result, the revised distribution given in
Fig 1(d) is more likely to provide a better mean result. In our
experiments, we observed that when the dataset size exceeds
300, 000 and the privacy budget ε is greater than 2, the use of
unbiased estimation can have a superior result.

-1 0 1

(a) Original true distribution w

-C 0 C

(b) Observed distribution ω̃

-C 0 C

(c) Ideal noisy distribution Mw

-C 0 C

(d) Estimated distribution of the mix-
ture model

Fig. 1. Examples to show the model parameter estimation can handle small
sample problems: (a) shows the original distribution; (c) is the ideal or
expected noised output using PM when ε = 0.5 and n → ∞, and it equals
Mw; (b) is the noised distribution from n = 2000 observed reports; and (d)
is the mixture model distribution estimated by Algorithm 3.

Laplace and Gaussian Mechanisms. The Laplace mech-
anism is commonly employed in central DP to protect nu-
merical values by adding a sample σ ∼ lap(∆f/ε) from

the Laplace distribution. In the case of pure LDP for mean
estimation, the sensitivity ∆f = 2 if we scale the overall
input domain to [−1, 1]. Furthermore, we can also apply the
EM algorithm to Laplace noised reports through discretization,
similar to PM with EM. In addition, the Laplace mechanism
is well-suited for graph analysis under ε-edge LDP [26], [25],
where the sensitivity for degree estimation of a single user for
edge LDP is 1. Specifically, if a user’s degree is x ∈ R, the
reported value would be x + lap(1/ε), which satisfies edge
LDP. By applying EM to the aforementioned Laplace noised
reports, we can not only obtain the mean of the degrees in the
graph, as in PM, but also valuable distribution information for
each degree. Assuming the degrees are in the range [0, k− 1],
for each noised report, the term Pr [Ψε(j)] = x̃i takes the
value ε

2e
−|x̃i−j|ε, where j ∈ [0, k − 1].

Then for the Gaussian mechanism, it can be directly em-
ployed in high-dimensional data. Here the sensitivity is ℓ2 loss.
Specifically, if a user’s data is x ∈ Rd, the reported value
would be x+ N(0, σ2). The term Pr [Ψε(j)] = x̃ is replaced
by a Gaussian’s pdf (N (j, σ2)).

C. Multi-step LDP Protocols

In fact, various LDP protocols that feature a finite input do-
main and explicit perturbation probabilities can be augmented
with the EM algorithm and reduction technique. In this sub-
section, we further introduce the employment of the mixture
model for multi-step LDP protocols, particularly in scenarios
where diverse data types are involved, and the computation
entails the aggregation of multi-step LDP estimation outcomes.

We illustrate this through a case study involving key-value
data collection. In this context, each user has a private pair
(zi, xi), zi ∈ {α1, . . . , αK}, xi ∈ [−1, 1], and one of the
estimation target is the mean of each value from users whose
categorical value z = α:

µ(α) =

∑n
i=1 1zi=αxi∑n
i=1 1zi=α

. (15)

We follow the state-of-the-art method PCKV [24] (details in
Appendix D), and replace its constituent module SR with PM.
The rationale behind this substitution stems from the superior
consistency of PM in the EM algorithm, as compared to SR,
which incorporates a rounding step (Section II-C). The noised
reports are of two kinds, one is the noised category value
set {z̃1, . . .} which is used for estimating the denominator
of Equation 15. The other is the noised numerical value sets
{{x̃(α1)

1 , . . .}, . . . , {x̃(αK)
1 , . . .}}, which are used for estimat-
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ing the numerator. To satisfy LDP, numerical value sets exist
dummy values sampled from a uniform distribution, and the
percentage of dummy values corresponds to the revised result
from noised category value set. Thus, utilizing this connection
between two types of noised data, the likelihood is:

L(θ̂) = Qn(ω̃; θ̂).

• θ̂ = {ŵ(α1), . . . , ŵ(αK), f̂}.
• ŵ(α1) = {ŵ1, . . . , ŵd} represents the hypothetical numeri-

cal distribution for categorical value α1. d is used here to
denote binning number, to distinguish K.

• f̂ represents the hypothetical frequency distribution for α.
• ω̃ = {ω̃(α1), . . .} represents the histograms for each kind of

observed set.
By introducing Lagrange multipliers to enforce the sum-to-one
constraints on these hypothetical inputs, we can apply our MR
to merge PM components or FO components in estimation. It
is not limited to the aforementioned category, numerical data
types, and their combined key-value data types. Directional
data [50], location data [44], and other similar data types,
can also be subjected to analysis using a mixture model if
a suitable approach to computing the posterior probability γ
is available.

Time Complexity of Reduction procedure. The while loop
(line 2 of Algorithm 1) runs as long as K ′ > Kmin. Our
approaches discussed above will make the loop iterate approx-
imately logK times. The EM algorithm typically has a time
complexity of O(nKI), where n is the number of observed
data and I is the number of iterations until convergence. And
the selection of components involves a sorting operation, and
is typically O(K ′ log(K ′)). Thus, the overall time complexity
is O(K ′ log(K ′) log(K) + nK log(K)I) = O(nK log(K)I).
In addition, protocols with a finite of perturbation values (e.g.,
GRR, SW, and PM) can reduce the complexity by aggregating
the same observed report as O(K2 log(K)I). For key-value
protocols PCKV-PM, the number of bins d corresponds to
the number of PM components. With K FO components,
the total complexity is K times that of a single PM. Note
that the original EM algorithm has a time complexity of
O(nKI), which seems to be smaller than ours. However,
the reduction in the number of components also reduces the
number of iterations required for convergence (I), ours is faster
in practice. In the evaluation, we compared the efficiency
(iteration times) and runtime between ours and the original
EM.

Summary. Table I gives a summary of the methods discussed
in this section. For category data, there exists a pre-processing
step to transfer the noised reports to the probability of gener-
ated probability by each component. For numerical value, the
pre-processing step is binning, and it can directly use the pdf
for iteration.

VI. EVALUATION

In this section, we present the demonstration of our re-
duction technique when applied to existing LDP protocols.

We have selected mean estimation, frequency estimation, and
numerical distribution estimation as three representative types
of estimation tasks for evaluation purposes.

Firstly, regarding mean estimation, PM-MR, which applies
our MR method to the noised reports of PM, consistently
achieves the lowest Mean Absolute Error (MAE) in most
scenarios (different datasets and ε). Notably, our approach
demonstrates a 70% decrease in MAE, particularly in sit-
uations where the amount of noise is large (available data
n < 2000 or privacy budget ε < 2). Through statistical
analysis of the error in multiple mean results, we observe
that EM-based MLE (e.g., PM-EM) reduces the estimation
error by introducing bias compared to the unbiased estimation
approach (e.g., PM and SR), whereas our MR remedies the
issue of bias.

Secondly, in terms of frequency estimation, we combine
the GRR and OLH methods with our framework, respectively.
For both full-domain frequency estimation and frequent-value
estimation, our MR achieves the lowest MAE when the amount
of noise is substantial. When the amount of noise is small,
MR is comparable to the existing post-processing method
Normsub, and the MAE of the MR is lower than that of the
EM by 20% to 50%.

Thirdly, in the context of numerical distribution estimation,
we evaluate the performance of the Laplace, SW, and PM
with both MR and EM. Our evaluation considers performance
metrics, including the wasserstein distance, variance, range
query, and quantiles. The metrics show the distribution ob-
tained from MR reduces the error by 10% to 20% compared
to EM. Additionally, key-value task is placed in Appendix D.

A. Experimental Setup

Datasets and Parameters. In the experiments, we use one
synthetic and two real-world datasets, namely, S-MN, SFC,
and Income. We normalize the domain of each numerical
attribute into [−1, 1].
• Synthetic mixture of normal distributions (S-MN). We

synthesize two Normal distributions N(0.7, 0.22) and
N(0.2, 0.12), and we form a mixture of these two dif-
ferent distributions with weights (0.6, 0.4). For simulating
scenarios of insufficient users, we generate two datasets of
different sizes.

• San Francisco Employee Compensation (SFC) [42]. There
are 43, 386 records in fiscal years 2019 and 2020. We use
the “Total Compensation” as the private numeric data, and
combine attributes of age group and region as category data.

• Tax Stats (Income) [27]. This dataset is publicly available
on the website of the Internal Revenue Service. It contains
income and tax data for about 300, 000 individuals. Here we
use “total income” as the numerical value, and “ZIP code”
as the categories for frequency estimation.

Perturbation Protocols. We consider these protocols intro-
duced in Section II-B and Section II-C:
• SR and PM: Existing numerical protocols for mean estima-

tion, SR performs better than PM when ε is small.
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Fig. 2. MAE of mean estimation, varying privacy budget. (First row: low privacy budgets. Second row: large privacy budgets.)

• GRR and OLH: Existing FOs for frequency estimation, GRR
performs better than OLH when K < 3eε + 2.

• SW and Laplace: Used for numerical distribution estimation.

Estimation Methods. We compare our estimation method
with EM-based MLE as well as unbiased estimation and its
post-processing methods. Here we use suffixes below to denote
the corresponding estimation method:
• -BaseCut and -NormSub: Consistency post-processing

methods introduced in [48], which revise negative results
in frequency estimation result.

• -IIW: Recently proposed method with convolution frame-
work to suppressing the added noise [23], we get
their implementation from open source (https://github.com/
SEUNICK/LDP).

• -EM and -EMS: EM-based MLE and its combining smooth-
ing step version. The smoothing used in [34] averages
the estimates between adjacent weights, represented by the
formula ŵnew

i ← 1
4 ŵi−1 +

1
2 ŵi +

1
4 ŵi+1.

• -MR: Our proposed method. The implementation is avail-
able at https://github.com/yyt20080808/LDP-EM-MR.
In the setting of the EM algorithm for numerical protocols,

we set the number of bins (or an initial number of components)
to 1024 as in [34] and set the minimum component Kmin in
the mixture reduction step to 256. In the setting of frequency
estimation, the Kmin is also set to K/4, to prevent losing
details of the distribution. In terms of reduction strategy,
we assume that there exists no prior knowledge about the
distribution of original data, and use the greedy operations that
aim at merging the smallest weights. And τ is set to twice the
standard deviation, analyzed and explained in Section V.

Evaluation Environment. The algorithms are implemented
using Python 3.8 and Numpy 1.15, executed on a desktop
computer equipped with an Intel Core i9-10910 CPU and

64GB of memory. For each dataset and each method, we report
the average results over 100 runs.

B. Mean Estimation Accuracy

We compare our method (MR) with the below baseline
methods in terms of MAE in this task. The unbiased estimation
baselines are SR and PM, the sample mean of their LDP
reports represent unbiased estimation. The EM-based MLE
methods chosen are SW-EMS and our modified method PM-
EM. SR-EM is not selected in this context because SR’s
LDP noise reports have only two output values, and the
results obtained with the EM method are identical to unbiased
estimation. Specifically, we conduct an evaluation of the mean
on four different datasets by setting ε within the range of 0.1
to 3.0, as depicted in Figure 2. The first row displays the
results of the low privacy budget scenario, while the second
row illustrates the large privacy budget scenario.

Influence of ε and Size of Dataset. In an overall view of
Figure 2, our PM-MR consistently achieves the smallest MAE
across all values of ε. When the privacy budget is small, the
MAE of MR is reduced by more than 70% compared to other
methods. For example in Fig 2(f), the MAE of PM-MR at
ε = 1 is 0.004, and its corresponding unbiased estimation
method, PM, has an MAE of 0.022. When the privacy budget
is larger, the accuracy gap between PM-MR and the unbiased
estimation methods, PM, and SR, gradually close to the same
level, but MR still outperforms PM-EM. Take the number of
users into consideration, when the number of users is small
and the privacy budget is small (Fig 2(a) and Fig 2(b)), the
EM-based MLE methods (PM-EM, SW-EMS, PM-MR) have
overall advantages over unbiased approaches. As the number
of users increases and the privacy budget increases, the error
of unbiased estimation results decreases more significantly,
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becoming gradually better than EM-based MLE. In Fig 2(h),
when ε = 3, the MAE of MR, PM-MR, and PM are basically
at the same level because the noise is minimal.

Comparing Methods in Terms of Bias. Figure 3 illustrates
the distribution of ERRORs for each estimation method. We
plot the error (denoted as ERROR, µ− µ̂) distribution for the
100 runs estimated by each methods, as the box plot. The
horizontal green line at ERROR = 0 represents the baseline.
If a method’s blue square (mean of the errors) is close to the
baseline, it indicates that the estimation of this method tends
to be unbiased. A large distance between the bottom and top
of the box indicates a large variance, and vice versa. In short,
a small gray range and a blue square close to 0 suggest a small
overall error.

Based on Figure 3, it is evident that the mean estimates
derived through the mixture model (SW-EMS and PM-EM)
tend to be biased, as indicated by their blue squares being
significantly distant from zero. And the blue squares for
the unbiased estimates (PM and SR) are very close to the
0-baseline. Comparing Fig 3(c) with Fig 3(d), an increase
in privacy budget reduces the variance of all methods and
reduces the bias of EM-based MLEs. Then, as demonstrated
in Fig 3(a), in the setting of smaller n and ε, and the bias
is not as noticeable when compared to the variance for EM-
based MLE. Thus, the whole error of EM-based MLE method
is comparatively smaller than unbiased approach (SR or PM),
which agrees with the observations in Figure 2.

At last, in all sub-figures, we observe that MR has less bias
than the methods using -EM and -EMS and less variance than
the unbiased estimation, suggesting that the estimate are more
accurate.

C. Frequency estimation Accuracy

The unbiased estimation baselines for this task are GRR
and OLH. Additionally, we employ post-processing methods
Normsub, Basecut as well as IIW to enhance the estimations,
respectively. The EM-based MLE baselines include GRR-
EM and our modified method OLH-EM. Our methods are
OLH-MR and GRR-MR. We calculate the MAEs for both
the full-domain frequency estimation tasks and frequent-value
frequency estimation tasks and set ε to {0.5, 1, 2}.
Full Domain Accuracy. Fig 4(a)(b)(e)(f) compare the full-
domain accuracy of our MR with other methods. Our proposed
GRR-MR and OLH-MR consistently outperform the baselines
in most scenarios. In comparison to the EM method, MAE
is reduced by 10% ∼ 30%, and in comparison to unbiased
estimation methods, MAE is reduced by approximately 50%.
Unbiased estimation shows the highest MAE, as full-domain
estimation considers the error across the entire distribution,
and the unbiased approach is likely to get an unreasonable
distribution. Additionally, because adjacent frequency values
do not exhibit enough smoothness in these two real datasets,
the -IIW method does not demonstrate its advantages, which is
consistent with its paper’s conclusion. In Fig 4(b) and Fig 4(f)
where there is a larger number of individuals and candidate

items (Income dataset with K = 300 and n = 300, 000),
our MR exhibits a reduction in MAE ranging from 20% to
30% compared to EM. The reason is that a larger number of
parameters (K = 300) increases the risk of overfitting to noise,
while our reduction can decrease the number of parameters in
EM. This is consistent with our Proposition 1.

Frequent-value Accuracy. Fig 4(c)(d)(g)(h) show the com-
parison on only frequent values. Here, we take the estimates
of the top 10% of candidates with the largest actual frequency
values for MAE comparison. In all four subfigures, when
ε ≤ 1, our MR performs best, consistent with the full domain
conclusion. However, when the ε is large (= 2), the unbiased
estimation methods of OLH and GRR are the ones with the
minimum MAE, followed by our MR. The reason stated in
[23] is that the post-processing method would actually amplify
noise to the high frequent values. And this is the common
limitation of post-processing methods on unbiased estimation
and ours.

D. Numerical Distribution Accuracy

Metric. We measure the distance between two density
distributions, denoted as w and ŵ. Here we use Wasserstein
distance (WD) because it is the cost of moving the probability
mass (or density) from one distribution to another distribution.
In this paper, our estimated numerical distribution is discrete.
So for a cumulative function P :[0, 1]d × B → [0, 1]d that
takes a distribution w and a value β, and output P(w, β) =∑β

i=1 wβ , the ℓ1 loss of Wasserstein distance is

W1(w, ŵ) =
∑
β∈B

|P(w, β)−P(ŵ, β)|.

Then we also measure the variance (Var), quantiles (Quan),
and range query (RQ) between the estimated distribution and
real distribution.

Numerical Distribution. The Figure 5 shows the compar-
ison of errors between using EM and MR for distribution
estimation, under the perturbed data of three protocols (the
Laplace method, PM, SW method). Overall, employing MR
for distribution estimation results in a noticeable reduction of
errors, exceeding 10% across multiple metrics compared to
EM. The results are consistent and stable across two datasets
with varying numbers of users and distributions. Among the
four metrics, the most significant reduction in error is observed
in the variance, indicating that MR’s estimation is more
accurate in identifying the concentration of the distribution.
Regarding the influence of different protocols, SW and PM
belong to the same type of perturbation protocol, leading to
similar estimation results with MR. Since Laplace method is
not designed for distribution estimation task, its errors remain
higher, whether using EM or MR.

E. Efficiency comparison between MR and EM

We empirically conduct a comparative analysis of the con-
vergence behavior and execution time between the original
EM algorithm and the MR framework using two real-world
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Fig. 3. Box plots of mean estimation errors for all methods. (a) and (b) are S-MN datasets with different user populations, and their privacy budgets are the
same (ε = 1.5). (c) and (d) are conducted on SFC with different ε. The bottom and top of the box represent the first and third quartiles, respectively. The
red line inside the box represents the median, while the blue square represents the mean. And red circles are outliers.

GRR GRR-BaseCut GRR-NormSub GRR-IIW GRR-EM GRR-MR

0.5 1 2

10 2M
AE

(a) SFC (full, K = 60)

0.5 1 2
10 3

10 2

M
AE

(b) Income (full, K = 300)

0.5 1 2

10 2

M
AE

(c) SFC (frequent)

0.5 1 2

10 2

M
AE

(d) Income (frequent)

OLH OLH-BaseCut OLH-NormSub OLH-IIW OLH-EM OLH-MR

0.5 1 2

10 2

3 × 10 3

4 × 10 3

6 × 10 3

M
AE

(e) SFC (full, K = 60)

0.5 1 2

10 3

M
AE

(f) Income (full, K = 300)

0.5 1 2

10 2

3 × 10 3

4 × 10 3

6 × 10 3

M
AE

(g) SFC (frequent)

0.5 1 2

10 3

M
AE

(h) Income (frequent)

Fig. 4. MAE of frequency estimation results, for full domain and frequent-value estimation on S-MN and Income datasets, varying ε.

datasets, as shown in Figure 6 and Table II. We focus on the
full-domain frequency estimation and track their MAEs during
successive EM iterations. Convergence is deemed attained
when the error curve stabilizes and assumes a horizontal tra-
jectory. Due to space issues, we only present the convergence
analysis for the OLH-EM and OLH-MR methods because they
have significantly longer run times.

In Fig 6(a) and Fig 6(b), we notice that a larger value
of ε leads to fewer iterations for convergence. For example,
with ε = 0.75, the line of OLH-EM requires over 8000
iterations to stabilize, whereas in Fig 6(b) (ε = 3), only 1000
iterations suffice. Furthermore, in cases where the reduction
step is effective, as seen in Fig 6(c) (4000 iterations), OLH-
MR achieves quicker convergence compared to OLH-EM (e.g.,
8000 iterations versus 20000). This acceleration is attributed
to the merging of components in EM, which reduces the
model complexity. Then, in the Income dataset, the OLH-
EM requires a matrix of size 300000× 300 (n×K) to store
the transformation (perturbation) probabilities, while GRR-EM

only needs 300 × 300 (K2). Each iteration of EM will use
this matrix once, explaining the significantly slower runtime
of OLH-EM compared to GRR-EM, as illustrated in Table II.

In addition, for the numerical protocols including PM, SW,
and Laplace, we find PM and SW are quite similar to GRR,
because their outputs are all bounded and belong to the class
of random response. So the running time difference of PM and
SW with EM and MR is similar to that of GRR with EM and
MR. And for the Laplace mechanism, since Laplace’s output
is unbounded, we should calculate every sample’s posterior
probability for each component. And Laplace-MR only takes
30% time compared to Laplace-EM.

VII. DISCUSSIONS

When to Use Our Method. At the high level, when the input
domain is large (e.g., many values need to be estimated) or
there exists substantial noise (low ε or small n), our method
often yields more accurate results than EM. For more precise
guidance for various settings (different ε, user counts n, and
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TABLE II
RUNTIME TABLE (SECONDS) OF -EM AND -MR ON DIFFERENT DATASETS,

VARYING ε.

method ε
0.75 1 2 3

SFC

GRR-EM 19 12 9 6
GRR-MR 10 5 4 4
OLH-EM 765 502 115 58
OLH-MR 311 204 83 37

Laplace-EM 2317 931 416 125
Laplace-MR 1156 665 306 90

Income

GRR-EM 23 17 12 7
GRR-MR 11 8 5 4
OLH-EM 15684 6482 1126 154
OLH-MR 2837 1697 279 67

Laplace-EM 12317 8152 2516 823
Laplace-MR 5457 3003 1026 412

data distributions). We suggest a bootstrap-based heuristic
approach: (1) The collector can generate a synthetic dataset
based on estimations using our method. (2) Simulate the whole
process to compare different methods. And finally (3) select

the best inference method for statistical tasks.

Employing Our Method in the Shuffle Model. Shuffle
DP [9], [13] provides a level of privacy and data utility that
lies between DP and LDP. Specifically, each user first applies
LDP perturbation to their own data, encrypts it, and sends
it to a shuffler. The shuffler then shuffles the data to break
the correspondence between user IDs and data, and sends the
shuffled result to the server. The server decrypts the data and
performs the analysis. The inclusion of the shuffler provides a
privacy amplification effect for the task of LDP collection [12].
Our MR estimation framework is applied directly on the server
side, enabling the direct enjoyment of privacy amplification
benefits, particularly in scenarios with small sample sizes.

Limitations. Our framework has only been validated through
simulations on real-world datasets, limiting practical evalu-
ation. The use of the EM algorithm with LDP protocols
that produce unbounded outputs (e.g., OLH, Laplace) leads
to higher time complexity for large datasets (n) or high-
dimensional data (K) compared to matrix-based methods,
reducing efficiency in real-time applications. Additionally, we
do not account for prior knowledge of the data distribution to
enhance performance. For instance, when handling datasets
with smooth distributions, methods such as IIW [23] or
EMS [34] may yield better results than ours.

VIII. RELATED WORK

Differential privacy [20] is a strong privacy standard that
provides semantic, information-theoretic guarantees on indi-
viduals’ privacy. So far, most existing works focus on the
centralized setting, i.e., they assume there exists a trusted
data curator who collects and possesses the private genuine
information of individuals. As for the local setting, i.e., there
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is no such data curator. Kasiviswanathan et al. [31] system-
atically investigate the framework of local differential privacy
and connect it to the classical randomized response technique
[49], which is now the foundation.

Categorical Frequency Oracle. The building block of
categorical data collection is the frequency oracle, where each
user possesses a categorical value, and the aggregator aims
to estimate the frequency of all values within the domain.
There have been several methods [22], [30], [47], [6], [52],
[46], [5], [1] handling this tasks. To further improve the
utility, one can apply post-processing calibration algorithms to
revise the frequency results, most of which are based on con-
sistency [22], [48], some smoothness assumptions and prior
knowledge [23], [28]. In addition, the EM-based MLE [35],
[21], [3] serves as an alternative method capable of identifying
a reasonable distribution that is most likely to generate the
observed FO results. We equipped our framework on the SOTA
FO mechanisms (GRR [30] and OLH [47]) for analysis.

Numerical Data Collection. Recent work on numerical
data collection under LDP mainly focuses on two tasks,
mean estimation [4] and distribution estimation. In [19], the
authors propose the stochastic rounding (SR) technique to
estimate the mean. Wang et al. [45] propose the piecewise
mechanism (PM) for mean estimation. In [34], the authors
propose the square wave mechanism and explore the use of
EM for distribution estimation. These three methods have been
discussed in Section II-C and compared in the experiments.

Over-fitting Issues in EM. Over-fitting occurs when the
model learns to fit the training data too well, capturing
noise or random fluctuations in the data rather than the
underlying patterns. Reducing model complexity [11], [40]
and regularization [53], [37] are two major ways to prevent
overfitting in the EM algorithm for GMM. In the context of
LDP, previous work [35] has explored the use of the EM
algorithm in GRR, and states that the consistency property
makes this method suitable for small sample situations. They
also claimed that the EM results need a correction based on
Rilstone et al. [51], which also mitigates the EM overfitting
problem. In addition, the correction step requires an inverse
matrix G−1, which requires the input alphabet size to be
equal to the output alphabet size. Li et al. [34] proposed to
use smoothing to solve the overfitting problem, and can be
applied to numerical settings. In our paper, we also discuss
the use of the EM algorithm in hash-based protocols whose
output alphabet size is not constrained, and adopt the reduction
method for alleviating the overfitting issue.

IX. CONCLUSIONS

Our work introduces a reduction framework to address
overfitting in maximum likelihood estimation (MLE) for Local
Differential Privacy (LDP) data. Evaluations using synthetic
and real-world datasets reveal that MLE with reduction can
outperform unbiased estimation methods in fundamental LDP
tasks, especially in scenarios with limited data and privacy
budgets.
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[22] Ú. Erlingsson, V. Pihur, and A. Korolova. Rappor: Randomized
aggregatable privacy-preserving ordinal response. In Proceedings of
the 2014 ACM SIGSAC conference on computer and communications
security, pages 1054–1067, 2014.

[23] H. Fang, L. Chen, Y. Liu, and Y. Gao. Locally differentially private
frequency estimation based on convolution framework. In 2023 IEEE
Symposium on Security and Privacy (SP), pages 2208–2222. IEEE,
2023.

[24] X. Gu, M. Li, Y. Cheng, L. Xiong, and Y. Cao. PCKV: Locally
differentially private correlated key-value data collection with optimized
utility. In 29th USENIX Security Symposium (USENIX Security 20),
pages 967–984. USENIX Association, Aug. 2020.

[25] J. Imola, A. R. Chowdhury, and K. Chaudhuri. Robustness of locally
differentially private graph analysis against poisoning. arXiv preprint
arXiv:2210.14376, 2022.

[26] J. Imola, T. Murakami, and K. Chaudhuri. Locally differentially private
analysis of graph statistics. In 30th USENIX Security Symposium, pages
983–1000, 2021.

[27] IRS. Statistics of income. [EB/OL]. https://www.irs.gov/statistics.
[28] J. Jia and N. Z. Gong. Calibrate: Frequency estimation and heavy

hitter identification with local differential privacy via incorporating
prior knowledge. In IEEE Conference on Computer Communications
(INFOCOM), pages 2008–2016, 2019.

[29] C. Jin, Y. Zhang, S. Balakrishnan, M. J. Wainwright, and M. I. Jordan.
Local maxima in the likelihood of gaussian mixture models: Structural
results and algorithmic consequences. Advances in neural information
processing systems, 29, 2016.

[30] P. Kairouz, S. Oh, and P. Viswanath. Extremal mechanisms for local
differential privacy. J. Mach. Learn. Res., 17(1):492–542, jan 2016.

[31] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and
A. Smith. What can we learn privately? In 2008 49th Annual IEEE
Symposium on Foundations of Computer Science, pages 531–540, 2008.

[32] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and
A. Smith. What can we learn privately? SIAM Journal on Computing,
40(3):793–826, 2011.

[33] X. Li, Z. Li, N. Li, and W. Sun. On the robustness of ldp
protocols for numerical attributes under data poisoning attacks.
https://arxiv.org/abs/2403.19510, 2024.
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APPENDIX A
DERIVATION OF THE EM ALGORITHM

First of all, the LDP mixture model is defined as Equation 9,
where
• x̃i is the i-th noised report.
• θ = {ŵk, αk}Kk=1 are the parameters for the model.
• K is the number of components.
• g(x̃;αk) is the pdf or pmf (Pr [Ψε(αk) = x̃i]) of perturba-

tion that generates x̃.
The E-step is responsible for calculating the posterior proba-
bilities of each data point belonging to each LDP component.
Let γik denote the posterior probability that data point x̃i

belongs to the k-th LDP component. We use these probabilities
to obtain a lower bound on the log-likelihood function. By
introducing Lagrange multipliers to enforce the sum-to-one
constraint on γik, we can express the lower bound as follows:

J(θ, θ(t)) =

n∑
i=1

K∑
k=1

γik [log ŵk + log g(x̃i;αk)]

where θ(t) represents the current parameter estimates at it-
eration t. To find γik, we use the responsibility formula,
which represents the probability of the k-th LDP component
generating data point x̃i:
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γik =
ŵk · g(x̃i;αk)∑K
j=1 ŵj · g(x̃i;αj)

The M-step is responsible for updating the parameters based
on the posterior probabilities calculated in the E-step. Here we
only consider ŵk, and set the derivative of J with respect to
ŵk to zero and solve for ŵk:

ŵnew
k =

1

n

n∑
i=1

γik

The EM algorithm alternates between the E-step and the
M-step until convergence. And the following proof shows that
algorithm converges to MLE.

Proof. To prove the EM algorithm converges to the maximum
likelihood estimator, it is enough to show the loglikelihood
function, Equation 10, is concave [8]. As the second partial
derivative of this function is Equation (12), where the term
Pr [Ψε(αj) = x̃i] is positive and fixed, and the value of deriva-
tives is always negative. Thus, L(ŵ) is concave function.

APPENDIX B
PROOF OF THE PROPOSITION 1

To derive the overall error, we first need the lemma below
to show the MSE of the original EM algorithm on LDP
estimations.

Lemma 1 (from [35]). According to the theory of Rilstone et
al. [39], the mean squared error of EM-based MLE is

MSEEM = E[||( 1
n

n∑
i=1

(−Q−1 1

ŵTgi
gi)||22] +O(n−3/2).

where gi = (Pr[Ψ(α1) = x̃i], . . . ,Pr[Ψ(αK) = x̃i])
T ∈

RK×1 is the likelihood vector of noise sample x̃i for
each model in the mixture, and it is constant, Q =
E[− 1

n

∑
i=1

1
(ŵT gi)2

gig
T
i ] ∈ RK×K is the expectation of the

second derivative of the log-likelihood function.

Since the log-likelihood logL(ŵ) (see Equation (10)) can
be written by matrix like

∑n
i=1 log ŵgi, the term 1

ŵT gi
gi is

the first derivative of log-likelihood function (= ∇L(ŵ; x̃i)).
−Q−1 is the inverse of Fisher information matrix, which pro-
vides the lower bound of the covariance matrix (i.e., Crámer-
Rao inequality [43]). Therefore, the MSEEM is influenced by
ε (the value in g) and n.

Then, for our proposed Algorithm 1, the mean squared
errors incurred in estimation are combined with two parts: (1)
the errors of the EM algorithm executed, which provide the
estimations for the weights of remaining components (denoted
by wr), and (2) the errors incurs for the merged weights
(denoted by w \wr). Thus,

MSEOurs =
1

K
(E[||ŵ −w||22]) =

1

K
E[

K∑
i=1

(ŵi − wi)
2]

=
1

K

∑
wi∈wr

E[(ŵi − wi)
2]+

+
1

K

∑
wj∈w\wr

E[(ŵj − wj)
2]

(16)

Step 1. MSE of Remaining Weights.
Let the number of remaining components be Kr. Based on

Lemma 1, the first term in Equation (16) equals to

E[
∑

wk∈wr

(
1

n

n∑
i=1

−Q−1
k

1

(ŵTgi)
gik)

2] +O(n− 3
2 ).

When K is large or ε is small (values in gi is almost
uniformly distributed), the original EM algorithm has almost
the same MSE for each ŵ, so the first term approximates
Kr

K MSEEM.

Step 2. MSE of Merged Weights.
Consider that there exists a single merging step that com-

bines a set of mixture components, denoted by S, with size hm,
into a single component. The corresponding merged weight,
denoted by ŵnew, is given by ŵnew =

∑
wj∈S ŵj . The ŵj

is asymptotically unbiased, E[ŵi] = wi ifn → ∞. And we
have E[ŵnew] =

∑
wj , Var [ŵnew] = Var

[∑
wi∈S ŵi

]
=∑

wi∈S Var [ŵi]+2
∑

wi,wj∈S Cov(ŵi, ŵj). For most ŵi and
ŵj , they are negatively correlated because the sum of all ŵi

is constrained to be 1, resulting in a negative covariance term.
So Var [ŵnew] ≤

∑
wi∈S Var [ŵi].

Denote the variance of ŵnew as σ2
m. In the final estimation

results, our algorithm assigns the value w̄new = ŵnew

hm
to those

merged weights. Thus, the MSE for the merged components
depends on the error of the assigned w̄. And its variance is
Var[w̄new] = Var

[
1
hm

ŵnew

]
=

σ2
m

h2
m
.

Based on MSE, which is the combination of variance and
bias: E[(ŵj−wj)

2] = Var(ŵj)+(E[ŵj ]−wj)
2. We can write

MSE(ŵj) =
σ2
m

h2
m

+ (

∑
wi∈S wi

hm
− wj)

2

Therefore, the overall error of merged components∑
wj∈S

E[(ŵj − wj)
2] =

∑
wj∈S

(
σ2
m

K2
m

+ (
1

hm

∑
wk∈S

wk − wj)
2)

=
σ2
m

hm
+

1

hm

∑
(w − wi)

2

=
σ2
m

hm
+ Var[wj ]

The first term approximates the variance of ŵi, wi ∈ S, and
we can also approximate it to the MSE of ŵi because MSE is
larger than the variance. The final number of components is
K ′, which includes Kr remaining components and the newly
generated components. After one merging operation, K ′ =
Kr+1. The second term of the above equation represents the
variance of the true distribution of the values of the merged
components, denoted by Var(w) = σ2. In the end, we get:

MSEOurs =
K ′

K
MSEEM +

hm

K
σ2

To generalize the given formula to a scenario with a total of
t merging times, where each merging time involves merging
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h1, . . . , ht mixture components, we can revise the equation as
follows:

MSEOurs =
K ′

K
MSEEM +

1

K

t∑
i=1

hiσ
2
i

Note that the MSEEM in the above equation is the value
corresponding to the remaining components after updating the
model parameters as described in Lemma 1. Actually, the con-
tribution of each observed data to the remaining components
remains unchanged during the merging operation. When the
true values of the selected components’ weights are small,
the covariance (non-diagonal values in Q) between remaining
component and merged component is negligible, we assume
that the MSE of the updated model is approximately equal to
the MSE of the original EM model.

APPENDIX C
ADDITIONAL EXPERIMENTS
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Fig. 7. MAE of frequency estimates, for domain size of K = 100 in uniform
dataset, varying ε.

Worst-case Scenario. The worst-case scenario refers to
the situation where the original dataset follows a relatively
uniform distribution, which is considered in the minimax
analysis of existing solutions [52]. Figure 7 empirical compare
the accuracy of different post-processing methods with EM-
based MLEs on a uniform dataset (n = 50000, K = 100,
and for all fα ≈ 0.01). We can see that our estimation
method, MR, achieves lower MAE than EM on both GRR and
OLH protocols. And EM-based MLE is better than unbiased
estimations (Non-process in figure). In addition, because the
uniform dataset is definitely smoothing, -IIW performs as well
as the -EMS (EM-based MLE with smoothing technique in M-
step).

Bias Comparison of the Frequency Estimation Task.
Figure 8 demonstrates the comparison between the true dis-
tribution and the estimated distributions on two datasets. In
order to decrease random errors, we use the average of the
three estimates of each estimation to judge its unbiasedness
property. It can be found that the distribution of EM has a
bias compared to the true distribution. There is a negative bias
for high-frequent values and a positive bias for low-frequent
values, whereas MR reduces the amount of bias introduction
to some extent compared to EM (the red line is closer to
the black line). The reason for the bias introduction is the
normalization and non-negative nature attached to EM-based

MLE methods. As can be seen from the subplot comparisons
(e.g., Fig 8(a) and Fig 8(c)), the amount of bias is related to
the noise introduced by the protocol (OLH-MR has less bias
than GRR-MR when K > 3eε + 2).

Impact of Data Sizes in Numerical Distribution. Figure 9
illustrates the comparison between estimated distributions of
-MR and -EM across different data sizes. As the data size
increases from 1, 000 to 300, 000, the advantage of -MR over
-EM in the four metrics decreases. Notably, at n = 300, 000,
the estimation results for both PM and SW perturbed data are
similar between EM and MR. This is because, as n grows,
the amount of noise becomes smaller, and the number of
noise-dominant components selected by our MR algorithm
also decreases, aligning the overall estimation results more
closely with EM.

APPENDIX D
EM-BASED MLE FOR KEY-VALUE DATA

PCKV. This is the state-of-the-art method on key-value
data collection for conditional estimation. The unary encoding
version of PCKV encodes a key-value pair to a length d vector
where the k-th position is (1, v). Then it perturbs the key and
value in a correlated manner, each with ϵ1 and ϵ2. For example,
if the value of the key is unchanged after OUE perturbation,
then use SR to perturb the real value v; otherwise, randomly
select a value in the output domain. In this evaluation, we
replace its constituent module SR with PM, and apply our
LDP mixture model to get the conditional density and mean.
In this task, for each “key”, only a portion of values are real
and valid. The accuracy of conditional estimation is bounded
by O

(
1
f2

)
, which means there exists significant noise.

Conditional Estimation Accuracy. We use the dataset SFC
for evaluation, and treat the “Total Compensation” attribute
as the private numeric data, and “Age groups” as the keys.
Here we select the 4 different frequent candidates in SFC, and
evaluate the mean squared error (MSE) of their conditional
mean estimates. The Figure 10 shows the results for existing
methods PCKV-OUE and PCKV-GRR [24], and our method
PCKV-EM and PCKV-MR (described in Section V-C).

When ε is set to 0.25 or 0.5, the MSE of conditional mean
on low frequent key (0.03, 0.06) is too much. Considering the
overall domain size is just 2, the value of MSE that is up to
0.2 (almost 0.25 in Fig 10(a) and Fig 10(b)) shows that the
estimated values are significantly different from the true value.
But it can be reduced to half using a mixture model (the MSE
of PCKV-MR is only a half compared to others).

When ε is set to 1 or 2, the MSE of conditional mean
on low frequent keys (0.03, 0.06) is

(
fhigh
flow

)2

times that of
high frequent keys, which aligns with the analysis of PCKV.
Additionally, our PCKV-MR method consistently outperforms
others.

We believe that the reason for this is that the key-value
data collection is often insufficient for the data. Each user
only provides one key-value pair, and if there are ten keys,
on average there are only n/10 valid data points for each key.

17



0 10 20 30 40 50 60
Index

500

0

500

1000

1500

2000

2500

3000

Va
lu

e
true count
ours
EM estimated count
unbiased estimated count

(a) SFC (GRR, ε = 1)

0 50 100 150 200 250
Index

2000

0

2000

4000

6000

8000

10000

12000

14000

Va
lu

e

true count
ours
EM estimated count
unbiased estimated count

(b) Income (GRR,ε = 3)

0 10 20 30 40 50 60
Index

500

0

500

1000

1500

2000

2500

3000

Va
lu

e

true count
ours
EM estimated count
unbiased estimated count

(c) SFC (OLH, ε = 1)
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Fig. 8. Comparison of average estimated counts for unbiased approach and EM-based MLE approach.
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Fig. 9. Comparing EM, MR method for numerical distribution on S-MN, with fixed ϵ = 1, varying the size of dataset.
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Fig. 10. Mean squared error of conditional mean estimates in SFC, Varying ε and f .

Therefore, using EM can provide more accurate estimation
results, and our MR can further improve the results.

APPENDIX E
DETAILS OF POST-PROCESSING METHODS IN EVALUATION

Post-processing is useful since the output of frequency
oracles can be quite noisy: negative frequencies or outputs that
sum to more the number of inputs. We adopt these techniques:

(1) Basecut. When estimating the whole domain, we sort our
frequency estimates in decreasing order and keep them until
we get a total frequency, which is n. At this point, we round

every remaining estimate down to 0.

(2) Normsub. We round negative estimates to 0. For the rest
of the values, we add/subtract some constant δ to ensure that∑

v∈D>0
(f̃α + δ = n where D>0 = α : f̃α > 0.

(3) IIW. Employ convolution techniques to modify the
frequency estimation results and smooth the adjacent estimated
frequencies.

(4) EMS. This method adds a smoothing step on the values
of w at the M-step, like

ŵnew
i ← 1

4
ŵi−1 +

1

2
ŵi +

1

4
ŵi+1.
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