
Do (Not) Follow the White Rabbit: Challenging the
Myth of Harmless Open Redirection

Soheil Khodayari†, Kai Glauber*, and Giancarlo Pellegrino†

†CISPA Helmholtz Center for Information Security, *Saarland University
{soheil.khodayari, pellegrino}@cispa.de, s9kaglau@stud.uni-saarland.de

Abstract—Open redirects are one of the oldest threats to web
applications, allowing attackers to reroute users to malicious
websites by exploiting a web application’s redirection mechanism.
The recent shift towards client-side task offloading has intro-
duced JavaScript-based redirections, formerly handled server-
side, thereby posing additional security risks to open redirections.
In this paper, we re-assess the significance of open redirect
vulnerabilities by focusing on client-side redirections, which
despite their importance, have been largely understudied by
the community due to open redirect’s long-standing low impact.
To address this gap, we introduce a lightweight, static-dynamic
system, STORK, that detects open redirect vulnerabilities by
extracting and using vulnerability indicators, which is designed
with scalability and cost reduction objectives. Applying STORK
to the Tranco top 10K sites, we conduct a large-scale measure-
ment, uncovering 20.8K open redirect vulnerabilities across 623
sites and compiling a catalog of 184 vulnerability indicators.
Afterwards, we use our indicators to mine vulnerabilities from
snapshots of live webpages, Google search and Internet Archive,
identifying additionally 326 vulnerable sites, including Google
WebLight and DoubleClick.

Then, we explore the extent to which their exploitation can
lead to more critical threats, quantifying the impact of client-
side open redirections in the wild. Our study finds that over
11.5% of the open redirect vulnerabilities across 38% of the
affected sites could be escalated to XSS, CSRF and information
leakage, including popular sites like Adobe, WebNovel, TP-Link,
and UDN, which is alarming. Finally, we review and evaluate the
adoption of mitigation techniques against open redirections.

I. INTRODUCTION

HTTP redirections are commonly used to guide users from
one resource to another. While traditionally employed by
server-side programs to signal the new or temporary locations
of web resources (i.e., 3xx HTTP responses [1]), web applica-
tions nowadays also utilize them within client-side JavaScript
programs, supporting functionalities such as redirecting to a
landing page after a successful login and navigating to user-
specific dashboards. Often, the target destination is specified
through a URL parameter, which the web application employs
to direct users. However, when this parameter is not adequately
validated, the web application becomes susceptible to an open
redirection vulnerability.

Open redirect vulnerabilities have been somewhat under-
studied by the research community, which has primarily fo-

cused on their detection via indicators, searching for destina-
tion URLs in the query strings of links, i.e., [2, 3]. The lack
of interest in these vulnerabilities could be attributed to the
relatively low prevalence, only making up 1% of the 237,470
CVE entries, compared to Cross-Site Scripting’s 37%1, and
limited exploitation scenario, where attackers use vulnerable
sites to mask malicious URLs [5, 6], like phishing links [7–
9], without directly harming the vulnerable site itself. Vul-
nerability disclosure programs, including reputable ones like
Google [10] and Microsoft [11], often do not consider reports
of open redirects as qualifying issues eligible for rewards. In
rare instances, attackers can leverage open redirects to esca-
late to more severe threats, such as XSS via javascript
URIs [12–14] or request forgery [15–17].

This paper re-evaluates the long-standing low security risk
of open redirections by focusing on client-side open redirects
at scale, exploring the extent to which their exploitation
can lead to more significant threats. The cornerstone of our
study is the detection of open redirects on websites in a
lightweight manner, reducing the cost to detect significant and
impactful vulnerabilities arising from client-side open redirect
variants. While client-side static analysis has proven valuable
in numerous studies of client-side vulnerabilities, such as
client-side Cross-Site Request Forgery (CSRF) [16, 18] and
DOM clobbering [19], employing static analysis techniques to
process hundreds of thousands of pages is generally resource-
intensive, resorting to sampling strategies as a compromise
between the breadth of coverage and the feasibility of the
study within a reasonable timeframe. For instance, previous
work [16] analyzed 39% of the 867K collected webpages,
underscoring the limitations of relying solely on static analysis
for large-scale studies. Previous works have demonstrated that
manually-curated indicators could serve as a cost-effective
method for identifying open redirection vulnerabilities [2, 3];
however, achieving a comprehensive list of indicators through
manual analysis is challenging in practice.
Our Approach. In light of this, we propose a novel cost-
reduction methodology, named STORK, that combines both
ideas, offering a lightweight detection trade-off compared to
the costly static analysis. First, we use static analysis on a
subset of pages to find client-side open redirects, and confirm
the vulnerabilities with test payloads dynamically. From the

1We conducted a case-insensitive keyword search of xss and open
redir in the CVE database [4].
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confirmed cases, we extract indicators that we use as search
keywords to find other candidate webpages from the larger
dataset, which we confirm with test payloads. Mining with
indicators offers remarkable flexibility, enabling us to expand
our search to additional datasets and open redirect variants,
such as Google search via Google dorking [20–22] or Internet
Archive [23], and detecting both client-side and server-side
open redirections.

Starting from the 867K pages collected in [16], we define
and execute search queries on a subset (339K pages) to iden-
tify open redirect vulnerabilities by constructing and traversing
JavaScript property graphs [18]. We derived indicators by
grouping vulnerable URLs based on similarities, considering
features like syntax and injection points (e.g., path or query
parameter). We found 20.8K confirmed open redirections
across 623 websites, and extracted 184 indicators. We then
use the identified indicators to search for matching URLs
in the remaining 528K pages, in Google Search, and in the
Internet Archive considering the top 10K domains. This way,
indicators narrowed down the test set from about 4M pages
we collected to only 214K, from which we confirmed 375
ulnerabilities via dynamic testing, including popular sites like
Google WebLight, Starz and DoubleClick. Our study reveals
that open redirect vulnerabilities are widespread, impacting
∼8.7% of the top 10K websites.

Then, we conducted a comprehensive exploitability and
threat escalation analysis using both automatic and man-
ual testing, covering DOM-based XSS [24, 25], client-side
CSRF [18, 26], and information leakage [17], revealing that
client-side open redirects could have broader implications.
Particularly, we constructed proof-of-concept exploitations for
332 sites, including popular sites like Adobe, WebNovel, TP-
Link, UDN, Lexmark, and VK. Overall, our results illustrates a
concerning landscape, where about 11.5% of the open redirect
vulnerabilities could be escalated to more critical threats.

Finally, we examined the array of mitigation strategies
utilized by websites with closed redirections. Through semi-
automated analysis of 4K sites, we identified six distinct types
of mitigation techniques, with redirect notice pages, input
validation, and Content Security Policy [27] being the most
widely adopted countermeasures.
Insights. Our comparison of indicator-based vulnerability de-
tection with static analysis suggests that it is about 100 times
faster and uses 13 times less storage than static analysis,
making it highly scalable. However, we found that indicators
may result in more false negatives, which is influenced by
how effectively crawlers capture various URL parameters
linked to different code execution paths, since indicators
operate at the URL level. For instance, when using the JAW
crawler [18], we observed a 76% false negative rate of open
redirects. Although static analysis detects more open redirect
vulnerabilities, indicator-based findings have a higher rate of
XSS escalations (22% vs. 8%). Furthermore, we found that
indicators can identify vulnerabilities static analysis misses,
which is primarily caused by limitations of static analysis (e.g.,

Listing 1: A simplified client-side open redirect vulnerability derived from
lexmark.com.
1 function printView(url){
2 if (url.indexOf('lexmark.com') > 0){
3 let loc = window.location
4 let sep = (loc.search === "")? "?": "&"
5 let query = loc.search + sep + "view=print"
6 loc = url + query
7 window.location.replace(loc)}
8 } // [...]
9 window.addEventListener('hashchange', (e) => {

10 var h = window.location.hash.slice(1)
11 if(h.indexOf("print;") > 0){
12 var url = h.split(";")[1]
13 printView(url)
14 }});

handling dynamic features like reflection). Overall, our results
show that indicators could serve as a valuable trade-off and
enable us to cast a wider net.

In summary, this paper makes the following contributions:
• We present STORK, a cost-reduction method to detect

open redirects by extracting and using vulnerability indi-
cators, uncovering 20.8K vulnerabilities across 623 sites,
and a catalog of 184 indicators divided in nine groups.

• We use our indicators to mine vulnerabilities from top
10K live websites, Google search and Internet Archive,
identifying 375 additional vulnerabilities in 326 sites,
highlighting the potential of our indicators for vulnera-
bility discovery.

• We quantify the impact of open redirections in the wild,
showing that over 11.5% of the vulnerabilities across 38%
of the affected sites could be escalated to XSS, client-side
CSRF and information leakage.

• We review and evaluate the adoption of open redirect
mitigations in the wild, identifying redirect notice pages,
input validation, and CSP as the most common counter-
measures.

II. BACKGROUND

Before presenting our study, we first introduce and dissect
open redirect vulnerabilities (§II-A), and then, we present the
threat model of this work (§II-B).

A. Open Redirect Vulnerability

Open redirect vulnerabilities [2, 3, 28, 29] originate when
web applications use untrusted inputs in HTTP requests (e.g.,
URL query parameters’ values) to forward users to a desti-
nation resource. If such request parameters are not (properly)
validated, attackers can redirect users to arbitrary external Web
resources, such as phishing, malware, and other malicious
content [2, 3, 7, 28–31]. Both client-side and server-side
programs can perform redirections. For example, server-side
code can use the Location [32] or Refresh [33] HTTP
response headers to trigger an HTTP redirect. Client-side
redirects, however, occur via JavaScript code or the HTML
meta tag.

Listing 1 shows a real snippet of vulnerable client-side code
(disclosed and patched), which uses URL hash fragments to
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Fig. 1: Example exploitation of a client-side open redirect vulnerability.

open a destination webpage suitable for printing. In more
details, the code first listens for changes in the URL fragment
through an event listener (line 9). Whenever the fragment
changes, it checks if it contains the constant string "print;"
(line 11), retrieves the string after it in the fragment (line 12),
and calls the function printView() by passing this value
(line 13). The function printView() accepts a protocol-
relative URL, attempts to check if the URL belongs to a trusted
domain (line 2), modifies it by appending the query parameter
view=print, and redirect the current page to the resulting
value, i.e., the variable loc (lines 3-7). The vulnerability
originates in the assignment in line 7 because attackers can
control the value of variable loc through the webpage URL
hash fragment, and ultimately pick the destination webpage of
their choosing because the code does not correctly validate the
URL string passed as input to the printView() function but
use it as a part of the destination of the redirect, e.g., attackers
may bypass the validation check in line 2 with a URL payload
like lexmark.com.evil.com.

B. Threat Model

In this paper, we consider a regular web attacker [34, 35]
who can exploit open redirect vulnerabilities by injecting
attack payloads containing malicious URLs as the destination
target of HTTP redirections in trusted URLs, and lure victims
into visiting them, which is in line with prior research [2, 3,
18, 19, 24, 36, 37]. The injection can happen by manipulating
various JavaScript input sources, including the URL, window
name, document referrer, and postMessages.

There are two attack models depending on the input source.
First, a web attacker can craft a malicious URL, belonging to
the origin of the honest but vulnerable web site, that when
visited by a victim leads to a redirection to an attacker-
controlled domain. Alternatively, for window name, document
referrer, and postMessages, a web attacker can control a
malicious page and use browser APIs to trick the vulnerable
JavaScript of the target page to cause the HTTP redirection.
Attacks. Open redirect vulnerabilities are commonly abused as
a part of social engineering attacks, such as phishing. However,
as we will show in §VI, the risk and impact may extend
further in the context of client-side code vulnerabilities. In
this paper, we study to what extent we can escalate client-side
open redirect vulnerabilities, focusing on three critical classes
of Web attacks: Cross-Site Scripting (XSS), request forgery
and sensitive information leakage.

Firstly, client-side open redirections can be escalated
to arbitrary code execution if the attacker can choose
the javascript scheme as the destination target of
the redirect. For instance, as illustrated in Listing 1, an
attacker could achieve XSS by choosing the attack payload
javascript:alert(document.cookie+"lexmar-
k.com"). Figure 1 demonstrates this attack scenario.
Furthermore, if the redirection URL contains sensitive
information such as authorization codes or OAuth
tokens [15, 38], attackers may exploit the redirection chain
to steal such data. Finally, recent studies (e.g., [39, 40]) have
demonstrated that applications may employ GET requests to
implement state-changing operations (e.g., deleting an entry
from database). This enables attackers to abuse client-side
open redirect vulnerabilities to generate arbitrary forged
requests to state-changing endpoints, achieving client-side
CSRF [18, 26]. In comparison, server-side redirects can be
abused for phishing [2, 28, 29] and SSRF attacks [41, 42].
In this paper, however, we focus on escalations of client-side
open redirects, which has been largely dismissed by prior
work [2, 3].

C. Open Redirect vs. Request Hijacking

As discussed in §II-A, open redirect vulnerabilities can
impact both server-side and client-side programs. Client-side
open redirects are a specific instance of request hijacking
vulnerabilities [16]. Request hijacking occurs when an attacker
manipulates inputs to request-sending APIs, such as the re-
quest URL and body. When these manipulated inputs lead
to a top-level navigation to a different domain, it constitutes
a client-side open redirect. Although recent research [16]
have explored request hijacking, they have not covered the
detection of server-side open redirects and their defenses, nor
extensively analyzed the exploitability of forgeable, top-level
client-side requests for open redirections, particularly on a
large scale. This paper extends the existing knowledge by
studying both client-side and server-side open redirect variants,
demonstrating that the indicators we identify for client-side
open redirects are not only effective but also applicable
to server-side redirections, providing a more comprehensive
understanding of open redirects across different programming
contexts.

III. OVERVIEW

This section provides an overview of our methodology
(§III-A) and a brief description of our approach (§III-B).

A. Methodology

Step 1–Vulnerability Detection and Indicators. The first part
of our paper studies the correlation between URL structure
and open redirect vulnerabilities in real websites, extracting
various patterns that could indicate the presence of vulnera-
bilities. In particular, we focus on two main aspects: (i) build-
ing a lightweight framework to characterize client-side open
redirect vulnerability patterns leveraging static and dynamic
analysis, and instantiating the framework against in-the-wild
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websites to create a catalog of these indicative patterns; (ii)
reviewing existing vulnerability reports and CVEs to identify
past instances of open redirects and their patterns, enriching
our list of indicators also with patterns of server-side open
redirects. We show that a significant fraction of the open
redirect vulnerabilities converge toward a few distinct patterns.
We address this step in §IV.
Step 2–Vulnerability Mining and Prevalence. After creating
a comprehensive database of vulnerability indicator patterns,
we use them to extract potential candidates of new vulnerabili-
ties from public data archive repositories (i.e., Internet Archive
and Google Search). Then, we use dynamic analysis to confirm
the presence of the vulnerability, uncovering the potential
of vulnerability mining for scaling up and detecting new
vulnerabilities in a lightweight manner. Finally, we quantify
the prevalence of open redirects in the wild using snapshots of
live websites leveraging indicator-based vulnerability mining.
Step 3–Exploit Analysis and Escalation. After mining open
redirects from public data, we study the impact and severity
of the discovered vulnerabilities. In particular, we study the
variety of threats that arise from open redirects and explore to
what extent we can escalate them to more severe attacks like
cross-site scripting, request forgery, and sensitive information
leakage. While open redirects have been commonly abused as
a part of social engineering attacks (e.g., phishing), we show
that the risk and impact could go further as they could be
directly exploitable themselves. We present this step in §VI.

B. Our Approach: STORK

In this section, we present an overview of the design
and implementation of STORK, a framework to study open
redirect vulnerabilities at scale, providing a fast and cost-
effective trade-off to pure static analysis. Figure 2 presents
an overview of our approach. Broadly, it has three main
components corresponding to each of the steps outlined in
§III-A: 1 : automatic extraction of vulnerability indicators,
2 : vulnerability mining using indicators, and 3 : exploitation

analysis performing run-time tests for attacks.
Given a list of sites as input, STORK can collect the

snapshots of their webpages, or reuse existing snapshots. Then,
it performs static analysis by constructing a property graph
model, tracing data flows from program inputs to JavaScript
instructions that trigger a redirection. Afterwards, it confirms
the presence of an open redirect vulnerability by conducting
run-time monitoring tests, and employs confirmed vulnera-
bilities to extract indicators by grouping vulnerable URLs
together based on their similarity. With a catalog of indicators
at its disposal, STORK mines potential vulnerabilities from
snapshots of webpages, such as those in the Wayback ma-
chine or Google archived pages, and verifies the presence of
open redirection via dynamic testing. Lastly, we examine the
potential escalation of the open redirect vulnerability to more
critical vulnerability classes either automatically or manually,
e.g., DOM-based XSS by dynamically testing a dictionary of
benign attack payloads.

IV. VULNERABILITY INDICATORS

The first part of this paper intends to extract vulnerability
indicators by detecting and studying real open redirect vulner-
abilities in web applications. We first present our vulnerability
detection pipeline (§IV-A), and then describe how we instan-
tiated it at scale to identify vulnerability indicator patterns in
the wild (§IV-B), i.e., step 1 of Figure 2.

A. Vulnerability Detection

Starting from a website, STORK creates a graph-based
model of the program and use it to perform static analysis,
finding unvalidated data flows from JavaScript program inputs
to instructions that trigger a redirection. Given the data flow
and the webpage URL, it generates a set of candidate test
cases. Finally, it executes the test case dynamically to see
whether it can observe the client-side redirect at runtime,
eliminating potential false positives. The details follow.
IV-A1 Data Collection. STORK can gather the client-
side code of web applications for security testing. In this
study, we reused the crawler and dataset (i.e., snapshots of
webpages) provided by prior work [16]. The crawler is based
on Playwright [43] and an instrumented version of Firefox
(v98.0.2) [44, 45]. When provided with a domain as input, it
employs a depth-first strategy to navigate webpages, halting
its exploration either when no new URLs are discovered or
after visiting a maximum of 200 URLs per site. Throughout
this exploration, it gathers webpage resources (e.g., scripts),
DOM snapshots, and network messages [18, 19].
IV-A2 Static Analysis. After gathering the client-side code
of web applications, we model them as a Code Property
Graph (CPG)[18, 46]. CPGs are graph-based representations
of a program, amalgamating various code representations to
capture both syntactical and semantical aspects. CPGs unify
different models, including the Abstract Syntax Tree (AST),
Control Flow Graph (CFG), Call Graph (CG), Program De-
pendence Graph (PDG), and Event Registration, Dispatch, and
Dependency Graph (ERDDG). These models depict the hierar-
chical structure of a program’s syntax, the order and conditions
governing the execution of program instructions, the function
call relationships, the data flow and control dependencies
within program statements, and event-driven control transfers,
respectively. In this paper, we extend and use the static analysis
engine of JAW [18] to create a CPG for each webpage. We
import each CPG into a Neo4j [47] graph database, which we
can query using the Cypher language [48] for security testing.
We made several enhancements to JAW for improved control
and data flow analysis capabilities. For example, we added
support for arrow function expressions [49] and asynchronous
setInterval() calls [50], improving the precision of PDG
edges and call graph. Additionally, we introduced handling
for the globalThis object [51] to improve pointer analy-
sis operations. Furthermore, we added support for promise-
based callbacks via methods like Promise.then() [52],
which improves control transfer modeling and def-use analysis
tasks [53]. Finally, to improve scalability, we implemented
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Fig. 2: Overview of STORK. The figure shows the pipeline to (i) detect open redirect vulnerabilities via program analysis and extract vulnerability indicators,
(ii) using fast indicator searches for vulnerabilities, and (iii) analysis of the exploitability of the confirmed open redirections for escalation to critical attacks.

several optimizations by migrating part of the call graph
generation (e.g., resolving aliased pointers) to C++. Overall,
these modifications addressed several of the shortcomings of
JAW, enabling more precise analysis and improved scalability
in the construction of CPGs.

Then, we frame the task of open redirect vulnerability detec-
tion as a graph traversal problem on CPGs, where we intend to
trace data flows originating from attacker-controllable inputs,
such as URL parameters, hereafter sources, to JavaScript in-
structions that cause a redirection or navigation event, hereafter
sinks. We extracted the list of sources/sinks by reviewing the
Web API specifications [54], including all sources and redirec-
tion sinks in related work [16, 18, 24, 36, 45, 55] and testing
tools [44, 56–59], resulting in a comprehensive list (Table II).
To accomplish this task, we created a series of queries to
identify each source and sink in the CPG. Afterwards, we
conduct backward data flow analysis from sinks to sources
(i.e., program slicing [60]), determining whether a source value
reaches a sink instruction. This component outputs the set of
potential data flows found and the injection point for each flow,
which we verify via dynamic analysis, as discussed next.
IV-A3 Test Generation and Attack Techniques. Given
a potential data flow, the goal of this step is to prepare
candidate test URLs or test webpages (e.g., for postMessage-
based redirects) for dynamic vulnerability confirmation. Note
that in case of test webpages, they open the target webpage via
window.open() API [61]. Therefore, we can use browser
APIs to insert the input, e.g., set the name of the opened
window via window.name API [62] or send postMessages
to it [55, 63].

To do this, STORK inserts test payloads in the injection
point. In particular, STORK uses a pre-defined list of payloads
that we manually compiled, covering a comprehensive array
of attack techniques. We systematically reviewed academic
literature [2, 64–67], HackerOne vulnerability reports [68],
the CVE database [4, 69], Stack Exchange [70] and Dev [71]
security communities, and other non-academic resources (see,
i.e., [7, 15, 28–31, 33, 72–77]), looking for open redirect
attack payloads and general URL filter bypass techniques. We
consider in scope those techniques that can be exploited by a

Total Unique P1 P2

Webpages 1,034,521 867,455 339,267 528,188

Scripts 46.1 M 36.7 M 11.5 M 25.2 M
Lines of Code 129.8 B 104.1 B 32.4 B 71.7 B

Legend: Pi= Portion i .

TABLE I: Statistics of the dataset for the top 10K sites.

standard web attacker [34, 35]. In total, our review identified
26 distinct techniques, which we further grouped into eight
categories based on their similarity (e.g., the component they
target like URL path vs. scheme, or the type of the operation).
Table X of Appendix A summarizes our findings. For each
potential data flow, STORK generates test URLs or webpages
with a payload from each of the 26 techniques in Table X.
IV-A4 Dynamic Verification. Given a set of test URLs
or webpages associated with each dataflow, this component
examines them to confirm the presence of open redirect vul-
nerabilities. Specifically, the test payloads contain the address
of a local server that the verifier controls and a unique ID.
To execute the tests, the verifier visits the test URL or page
in a browser, and subsequently checks whether it receives a
request on the local server with a matching ID and if the
target webpage frame redirected to it. If these conditions are
met, the data flow is flagged as an open redirect vulnerability.
Conversely, if all the generated tests for a specific data flow
fail, the verifier dismisses it as a false positive.

B. Vulnerability Indicators and Prevalence

In this section, we conduct the largest-to-date study to detect
open redirect vulnerabilities in the wild, with the overarching
goal to identify and extract indicator patterns from real vul-
nerabilities. The rest of this section details statistics about the
dataset and the analysis steps.
IV-B1 Data Collection and Processing. In this paper, we
reused the snapshots of webpages provided by prior work [16],
which is based on the Tranco site list downloaded on Sept.
29, 2022 (ID: N7QWW) [78], and collected in Oct. 2022
during a six week period. The dataset contains a total of
1,034,521∼1M webpages across top 10K sites. These 1M
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pages contained around 46.1M scripts with over 129.8B LoC.
Page de-duplication enabled us to focus on pages with unique
sets of scripts and reduced the size of the dataset by about
17%, that is, out of the total 1M webpages, 867,455 pages
were unique. We divided this dataset in two portions, one
for extracting patterns of vulnerabilities, and the other one
for searching the presence of the vulnerable patterns, which
we call P1 and P2, respectively. The first portion P1 contains
a maximum of 50 pages per site that have the highest fre-
quency of dynamic data flows [44], resulting in a dataset of
339,267 webpages with 32.4B LoC, which is similarly to prior
work [16]. The second portion P2 contains 528,188 pages with
71.7B LoC. Table I summarizes the dataset statistics.
IV-B2 Program Analysis. Given as input the P1 dataset,
STORK performs static analysis for vulnerability discovery.
We processed an average of 34 scripts and 95K LoC per page,
generating 339K HPGs. Afterwards, STORK performed graph
traversals to detect data flows from JavaScript program inputs
to redirection instructions. In summary, STORK identified an
average of five redirection sinks and 65 sources per webpage,
totaling about 22.3M sources and 1.7M sinks. Among these,
static analysis found a total of 25,990 potential data flows
from sources to sinks, of which about 80% (i.e., 20,898) have
been confirmed via dynamic testing. In summary, these vul-
nerabilities affected 11,155 webpages across 623 websites, of
which 20,471 flows across 599 sites originate from URL-based
sources (e.g., query parameters), whereas 427 flows across 39
sites are from non-URL sources (e.g., postMessages). Table II
summarizes the results.
IV-B3 Analysis of Vulnerabilities. We found that a small
fraction of vulnerable redirections (i.e., 427 or about 2%
of cases) originate from sources other than webpages’ URL
parameters, which cannot be detected by traditional detection
approaches based on URL parameter fuzzing (e.g., [2, 3]).
In comparison, STORK’s SAST component can detect them,
and STORK’s DAST component can verify them. In con-
trast, about 98% of open redirections originate from URL
sources. As we will show next in §IV-B4, these vulnerabilities
can be largely detected by pattern-based searching provided
that a comprehensive list of indicative patterns is available.
For example, Table IX (appendix) presents the top 10 URL
query parameter keys featuring the highest number of distinct
domains utilizing the parameter for (open) redirections. We
observed that the most prevalent parameter in open redirects
is url which is used by 102 domains across 1,224 unique
URLs, followed by domain and redir keys across 52 and
39 domains, respectively. Consequently, these indicators can
be leveraged to search for potential open redirects, reducing
the overall effort for program analysis.
IV-B4 Pattern Extraction and Indicators. After identifying
open redirects, we group them together to extract common
patterns. In addition to the vulnerabilities we discovered in
this section, we manually analyze existing vulnerability reports
from the MITRE CVE database [4, 69], which we collected
in §IV-A3, and extract the affected URLs from each report.

This can augment our dataset with information about server-
side open redirects. In total, we identified 687 CVEs for open
redirect vulnerabilities, of which in only 460 cases, we were
able to retrieve the affected endpoint, either directly from the
report or by following the links provided.

To extract vulnerability indicators, we grouped the URLs
together based on their similarity by abstracting away the
specific domain affected, and considering the syntax, injection
point and the position (e.g., path or query parameter), and the
values of the redirection parameters, decomposing URLs to
their building block components.

Starting from the 20,471 confirmed URL-based open redi-
rections we discovered, and the 460 past CVEs of open
redirections, we extracted a total of 184 concrete vulnerability
patterns, of which 95 are new (i.e., discovered exclusively
using our dataset). We grouped these 184 concrete patterns
into nine distinct categories by abstracting away the specific
redirection parameter in the URL (e.g., “next” vs. “redirect”).
Our results show that out of these nine indicator patterns, three
are new (as we found no existing CVEs revealing similar
structural pattern), two include new variants (as the general
structure is the same, but the specific redirection parameter in
the URL is different), and the remaining four are similarly to
the known cases (i.e., both the general structure and redirection
parameters match to known cases). We further grouped these
nine patterns into three different classes based on the position
of the redirection parameter in the URL (i.e., query parameter,
path or fragment). Table III summarizes the results.
IV-B5 Analysis of Indicators. Unsurprisingly, we observed
that a significant fraction of the vulnerabilities occur when
using query parameters for redirections. Particularly, open
redirects via pattern A1 are the most widespread, being present
on more than 14,201 vulnerabilities across 402 sites and 382
existing CVEs. In comparison, vulnerabilities relying on the
URL path segments for redirections demonstrated a moderate
level of presence, with the most popular being pattern B1
representing 948 vulnerabilities across 147 sites and 35 CVEs.
We observed that a significant fraction of the open redirect
vulnerabilities affecting client-side code (i.e., 12.4%) rely on
hash fragments. The widespread usage of URL parameters for
redirections, coupled with a wide variety of potential vulner-
abilities, presents a tantalizing attack surface for hackers. The
remainder of this paper is dedicated to using these indicators
for mining vulnerabilities from snapshots of webpages.
IV-B6 Coverage of Indicators. We found that the CDF
tracking the growth of indicator patterns across randomly-
ordered vulnerable webpages in P1 dataset reaches saturation
at about 66%, suggesting that our patterns are comprehensive
(see Figure 3 of Appendix A). Furthermore, as we will show in
§V-C, our baseline experiments did not reveal false negatives
due to missing patterns, further reassuring comprehensiveness.
However, we do not claim nor guarantee that our patterns are
exhaustive, as they are influenced by crawling coverage (e.g.,
deep and authenticated states) and limitations of static analysis
(e.g., handling dynamic JavaScript features).
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Sink / Source loc.href loc.hash loc.search doc.uri Flows Verified win.name doc.ref pMsg Flows Verified Total Verified Pages Sites

win.open() 17,321 2,078 1,120 55 20,574 16,480 21 76 3 100 86 20,674 16,566 8,846 455
win.loc 862 53 42 10 967 743 12 16 1 29 10 996 753 543 168
frame.src 41 261 7 0 308 202 16 8 35 59 51 367 253 202 29
loc.href 2,654 178 186 1 3,019 2,597 34 89 0 123 78 3,142 2,675 1,627 302
loc.replace() 381 12 8 0 401 358 3 0 7 10 2 411 360 281 62
loc.assign() 70 5 72 0 147 91 251 3 0 254 200 401 291 184 13

Total 21,329 2,587 1,434 66 25,415 20,471 337 192 46 575 427 25,990 20,898 11,155 623

TABLE II: Summary of the vulnerable data flows found by STORK. Columns represent different client-side sources. The left part shows flows originating
from URL parameters, while the middle part shows flows originating from other sources like window name and postMessages (i.e., pMsg column).

V. VULNERABILITY MINING

In this section, we leverage the vulnerability indicators we
discovered in §IV to mine potential vulnerabilities from public
data archive repositories in a cost-effective way, as shown in
step 2 of Figure 2. Our primary focus is on data platforms
such as Google Search and Internet Archive. Additionally, we
demonstrate the versatility of our technique by applying it on
live websites (i.e., the second portion of the dataset), quantify-
ing the prevalence of open redirect vulnerabilities in the wild.
Finally, we study the cost-benefit trade-offs of indicator-based
and static analysis-based vulnerability detection, showing that
indicator-based scanning is up to 100x faster, and can detect
vulnerabilities static analysis misses, but may also introduce
more false negatives. Our results emphasize the effectiveness
of indicator-based vulnerability scanning as a lightweight
method for detecting open redirects at scale, including both
client-side and server-side variants.

A. Indicator Mining

Having compiled an extensive catalog of vulnerability in-
dicator patterns, we now employ these patterns to identify
potential candidates of zero-day open redirect vulnerabilities.
We searched the Internet Archive and Google page snapshots
for our indicator patterns for pages archived within the past
two months (June 2023 - July 2023), and use the resulting
URLs as candidates for security testing. We used archives
to collect a large pool of URLs (not webpages), on which
we searched our indicators, and conducted our experiments
exclusively on live webpages of archive URLs.
V-A1 Data Collection and Mining. For each vulnerability in-
dicator pattern, we created a corresponding regular expression
and a Google dork query [21, 22]. First, for each of the top
10K websites, we applied the regular expressions to search
for matching patterns on Internet Archive and (snapshots of)
live websites (i.e., P2 in Table I). For Internet Archive, we
relied on the CDX server API [23] for our search. Second,
for each website, we use the Google Custom Search JSON
API [20] to look for the dorks that we created. The custom
search API, limited to returning a maximum of 10 results per
query request, guided our study with the understanding that
an attacker would aim for cost-effectiveness when exploiting
this method, aligning with our threat model of §II. At the
time of writing this paper, Google’s Custom Search JSON
API provides 100 search queries per day for free, and charges

about 5 USD per 1000 queries [79]. Accordingly, we opted to
submit only one request per Dork query and site, enabling us
to utilize the free tier and minimize additional costs, totaling
no more than 50 USD for 10K sites.
V-A2 Overview of Query Results. Table IV shows the
number of candidate URLs found for open redirects within the
top 10K sites across the three considered data sources. In total,
our queries identified about 4M candidate URLs, the majority
of which belonged to Internet Archive. URL de-duplication in
each data source enabled us to reduce the number of candidate
URLs substantially to as few as 215K cases (see Appendix D).
However, we observed that a small fraction (i.e., 0.5%) of the
unique URLs from different data sources are also duplicates
of one another, further reducing results to 214K unique cases.
Table XI (Appendix A) presents the distribution of these URLs
across different vulnerability patterns.

B. Vulnerability Verification

After identifying candidate URLs for open redirects, we
perform run-time tests to eliminate false positives, as shown in
step 2 of Figure 2. We follow a similar approach presented
in §IV-A3. Specifically, for each URL, we test one payload for
each of the 26 attack techniques in Table X, i.e., we put the
payload in the injection point according to the vulnerability
patterns of Table III, and subsequently examine whether it
causes the page to redirect to our web server. As soon as a
payload goes through in one of the tests, we mark the endpoint
as vulnerable. If all of the test cases fail, we exclude the
candidate URL from the output.
V-B1 Overview of Vulnerabilities. In total, our vulnerability
mining approach combined with dynamic testing uncovered
375 new open redirect vulnerabilities across 326 websites, of
which the majority (i.e., 70% or 265) were discovered using
Internet Archive URLs. Upon examining vulnerabilities iden-
tified through simultaneous analysis of multiple data sources,
we found six instances where a vulnerable URL occurred in
both the Internet Archive and our live website crawl. We refer
interested readers to Table XI of Appendix A.
V-B2 Analysis of Type of Redirects. Manual analysis of the
375 vulnerabilities indicated that 204 cases involved client-
side redirects, of which the overwhelming majority (i.e., 202)
were JavaScript-based, and the remaining two employed meta
tags for redirection. In contrast, we observed that 171 vulner-
abilities occurred due to server-side redirections. This finding

7



Type ID Pattern Params Count New Example CVEs Vulns Sites

Query ¶ A1 ?P=CONST R1 109 59 ?next=example.com 382 14,201 402
A2 ?CONST=https%3A%2F%2F | www. | DOMAIN.PSL - 3 0 ?xyz=https%3A%2F%2Fexample.com 12 2,360 91

Path ¶ B1 /P/https%3A | DOMAIN.PSL R2 17 1 /callbackUri/www.example.com%2Findex 35 948 147
B2 [/CONST]/https%3A/P R3 13 0 /https%3A%2F%2Fexample.com/submitUrl 23 260 24
B3 /CONST/https%3A | DOMAIN.PSL - 2 0 /index.php/example.com%2Findex 2 122 7
B4 /https%3A/CONST/ - 1 0 /https%3A%2F%2Fexamle.com%2Findex/get 6 31 3

Hash ¶ C1 #P=CONST R4 35 35 #ajaxUI=example.com/profile/index 0 2,207 108
¶ C2 #CONST=https:// | DOMAIN.PSL - 2 2 #u=https://example.com 0 311 26
¶ C3 #https:// | DOMAIN.PSL - 2 2 #example.com/profile/index 0 31 2

Total 184 95 460 20,471 599

TABLE III: Open redirect indicator patterns for vulnerability mining, grouped by the URL segment responsible for the redirection. The table shows the
number of vulnerabilities matching each pattern. Rows marked with ¶ represent new patterns, whereas ¶ marks variants where a known pattern is observed
with a new parameter as in Table VIII. Legend: P= values in “params” column; Ri= row i in Table VIII; CONST= constant string 6= P; []= optional part;
|= OR operator.

Source URLs Unique
S1: Internet Archive 4,001,896 188,403
S2: Google Cache 2,313 1,237
S3: Live Crawl 29,294 26,163

Total 4,033,503 214,645

TABLE IV: Candidate URLs found for open redirects in top 10K sites.

is not surprising, because the study of open redirect CVEs
in §IV-B4 showed that our automatically-generated catalog of
client-side indicators are a superset of the server-side variants.
In line with this finding, experimental results demonstrate that
our indicators can capture both client-side and server-side open
redirect variants.
V-B3 Precison of Vulnerability Indicators. We observed that
about ∼4% of the sites that matched our indicator mining
queries (Cf. Table III) were open redirect vulnerabilities. When
looking at candidate URLs, almost 2 of every 1K candidate
URLs was an open redirect, which increased to a rate of up
to 18 per 1K URLs for the Google search API. Therefore,
only a small fraction of cases matching indicators represent
actual vulnerabilities. However, indicators reduced the search
space significantly. For example, for live sites (P2 dataset
in Table I), indicators quickly narrowed the testing scope
from 528K webpages to about 26K candidates, resulting in
a significant optimization factor of ∼20 for dynamic testing.

In general, precision of indicator patterns themselves is
not a major concern, because our dynamic indicator-based
vulnerability scanning approach does not produce any false
positives. Specifically, following the approach described in
Sections IV-A4 and V-B, STORK verifies potential open
redirect vulnerabilities by conducting runtime tests using the
payloads enumerated in Table X. STORK uses a Playwright-
controlled browser [43] to visit a target URL containing a
test payload, and flags it as an open redirect vulnerability
only when it detects that the target webpage redirected to an
arbitrary, controlled page at runtime. To demonstrate that this
approach is robust to false positives, we manually analyzed all
the 375 vulnerabilities identified in §V-B1. In particular, we
manually loaded the URL containing the found attack payload
via the automated approach in the browser, and checked

whether the redirection happens and is open to arbitrary
destinations. The results confirmed that there are no false
positives. This finding was expected, as contrary to static
analysis, dynamic analysis techniques (e.g., [2, 3, 57, 58])
typically produce little-to-no false positives.

C. Cost-Benefit Analysis

The main contribution of indicators is enabling larger-
scale analyses compared to costly static analyses. However,
indicator-based, dynamic vulnerability scanning may also
result in false negatives. In this section, we evaluate and
compare the cost-benefit trade-offs between using indicator-
based vulnerability mining and static analysis methods for
identifying open redirects. Our methodology is as follows.
We chose 50 applications at random from the P2 dataset in
Table I, encompassing a total of 42,288 webpages (hereafter
P ′2), and compare the analysis and verification time, storage
requirements, and performance of each approach.
V-C1 Performance. After analyzing 42,288 URLs, static
analysis identified 58 potentially vulnerable data flows, with 46
of these dynamically confirmed as open redirects, translating
to a false positive rate of about 20%. These vulnerabilities
impacted 46 pages across eight applications. In comparison,
indicator-based vulnerability scanning immediately narrowed
the scope to 3,011 candidate URLs for testing, and found
sixteen cases as open redirects across six applications. Notably,
five out of these sixteen vulnerabilities were exclusively found
by indicators, not detected by static analysis due to the
absence of call and PDG edges in CPGs, and because one
of the five vulnerabilities was a server-side open redirect.
This shows an important advantage of indicators—they can
uncover security flaws that client-side static analysis might
miss. When looking at individual vulnerabilities, indicators
also showed high false negatives compared to static analysis
(i.e., 76%). We found that these FNs arise because indicators
operate at URL level and their optional parameters (e.g., query
and hash) are missing from the URLs collected by the crawler
or archives, which can trigger different code execution paths.
However, static analysis can capture code paths that use these
parameters, finding the vulnerabilities. However, this should
not overshadow the broader perspective in terms of trade-

8



offs. First, when looking at vulnerable applications, half of
the applications found vulnerable via static analysis were also
detected through indicators. Second, indicators excel in testing
a wider range of applications potentially at risk, which static
analysis alone might overlook. Consequently, indicators can
play a crucial role in complementing static analysis, helping
to cast a wider net and pinpointing applications that warrant
a more in-depth examination.
V-C2 Analysis Time. The main benefit of vulnerability mining
over static analysis is highlighted by the significant differences
in runtime costs. Specifically, running the JAW static analysis
pipeline to construct a CPG and execute analysis queries took
an average of 34m 52s for one webpage, and about 1,024 days
for the whole P ′2 (we used 100 parallel executions to do this
in 10 days). Accordingly, running static analysis for the entire
P2 would require an estimated 12,789 days with sequential
execution (or ∼127 days by 100 parallel instances). In stark
contrast, mining all indicator patterns on entire P ′2 and P2

were accomplished in about 29m and 58m, respectively 2.
V-C3 Verification Time. The verifier performs between one
and 26 tests per URL and needs 10 seconds per test. On
P ′2, verifying static analysis results took about 1.5h, whereas
indicators needed 217h (or ∼2h with 100 parallel executions).
V-C4 Storage Requirements. In terms of storage needs, static
analysis demonstrated a considerably higher demand as well.
The average size of a CPG and its corresponding query results
was 29.5 MB, cumulatively amounting to 1.1 TB for the P ′2
dataset. Extrapolating these figures, processing the P2 dataset
is estimated to require about 14.8 TB of disk space. On the
other hand, the vulnerability mining method required only 25
GB of space for the entire P2.

These comparisons highlight the substantial advantages of
vulnerability mining in terms of both speed and resource
utilization, making it a suitable trade-off for larger-scale
security assessments, which can provide a lowerbound on the
number of affected sites.

VI. EXPLOIT ANALYSIS AND ESCALATION

Starting from the vulnerabilities we discovered in Sec-
tions IV and V, we now examine their susceptibility to
more critical exploitation scenarios including XSS, informa-
tion leakage, and request forgery attacks, as described in our
threat model of §II-B. Particularly, we discovered a total of
20,898 open redirections across 623 sites in §IV through static-
dynamic program analysis, and 375 vulnerabilities within 326
sites in §V through vulnerability mining, summing to 21,273
vulnerabilities across 872 unique websites.

A. Methodology

VI-A1 Cross-Site Scripting. To assess the potential for DOM-
based XSS exploitations, we employed an automatic approach,
where we tested the susceptibility of each vulnerable endpoint
against a subset of the attack techniques outlined in Table X,

2Runtimes are based on the following configuration: Ubuntu 18.04, AMD
EPYC 7H12 processor with 256 CPU cores and 2 TB RAM.

SAST Mining Total
Threat Vuln. Sites Vuln. Sites Vuln. Sites
DOM-based XSS 1,845 212 84 78 1,929 290

Client-side CSRF 36 33 6 6 42 39
Information Leak 2 2 1 1 3 3

Total 1,883 247 91 85 1,974 332

TABLE V: Summary of exploitations created for open redirect vulnerabilities.
SAST and mining refer to steps 1 and 2 of Figure 2, respectively.

specifically those capable of leading to DOM-based XSS. For
each vulnerability, we loaded the webpage in Playwright [43],
inserted the attack payload at the injection point, and verified
whether the payload executed as intended. We note that we
used a benign attack payload based on the ‘‘debugger;"
JavaScript instruction, which serves as a breakpoint pausing
the execution of client-side code.
VI-A2 Request Forgery and Information Leakage. To ex-
amine potential escalations to request forgery and information
leakage attacks, we employed a manual approach. Due to the
large number of confirmed vulnerabilities—21K open redirects
across 872 websites—it was infeasible to manually create
xploits for each one. Instead, we focused on demonstrating
the potential for escalation by examining a random subset,
where we aimed to maximize the coverage across various sites.
Therefore, we randomly selected up to two vulnerabilities from
each of the 872 affected websites, giving us a total of 1,744
vulnerabilities to analyze.

For each attack scenario, we conducted specific tests. For
example, we looked for server-side endpoints that could lead to
security-sensitive state changes (e.g., modifying user settings)
for client-side CSRF. For information leakage, we examined
the redirect request for the presence of sensitive data like
authorization keys, and OAuth tokens. Due to ethical consider-
ations, we excluded testing requests and functionalities where
we could not control the impact (e.g., publicly accessible
content), and use our own test accounts exclusively.

We note that identifying request forgery and information
leakage exploits automatically poses a non-trivial challenge,
demanding a deep understanding of each specific application
to pinpoint target endpoints for request forgery considering
the request semantics, or the presense of sensitive infor-
mation. Moreover, it involves assessing whether the client-
side requests induce server-side state changes. Finally, in
an automated setting, guaranteeing ethical compliance and
preventing unintended server-side interactions or state changes
is challenging. For these reasons, we opted for a systematic
manual approach where we can strictly control our tests.

B. Results

We now provide an overview of the exploitation results for
the vulnerabilities, following the methodology in §VI-A.
VI-B1 Cross-Site Scripting. In total, we automatically tested
DOM-based XSS escalations for 21,273 open redirects across
872 as shown in Sections IV and V. Our analysis revealed that
about 9% of the vulnerabilities across 33.2% of the affected
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Listing 2: Open redirect vulnerability in adobe.com escalated to DOM XSS.
1 class i {
2 constructor(n, /* [...] */){
3 this._injector = n;
4 /* [...] */}
5 navigate(n){
6 const w = this._injector.get("w"),
7 x = n.queryParamMap.get("externalUrl"),
8 k = n.queryParamMap.get("windowTarget"),

// _self
9 d = n.queryParamMap.get("rel");

10 if(x.indexOf('adobe.com') != -1)
11 w.open(x, k, d);}}
12 n = {};
13 s = location.search;
14 n.queryParamMap = new URLSearchParams(s);
15 n.w = window;
16 x = new i(n);
17 x.navigate(n);

sites could be escalated to DOM-based XSS attacks, which is
alarming. When comparing static analysis-based and indicator-
based approaches, static analysis identified approximately two
orders of magnitude more vulnerabilities across nearly double
the number of sites. However, only around 8% of these
vulnerabilities could be exploited for XSS. In contrast, more
than 22% of the vulnerabilities identified through the indicator-
based approach could be exploited for XSS, indicating a higher
prevalence of XSS escalations among indicator-based findings.
VI-B2 Request Forgery and Information Leakage. In to-
tal, we discovered 42 client-side CSRF and three cross-site
information leakage vulnerabilities, suggesting that over 2.4%
and only about 0.2% of the open redirects can be escalated to
request forgery and information leaks. Despite their relatively
lower incidence compared to XSS, these exploitations could
still led to critical consequences like account takeover and
unauthorized changes to account settings, compromising the
integrity of the applications’ databases. Table V provides a
summary of our findings.

C. Case Studies

We present a few manually vetted case studies of the
confirmed attacks (disclosed and patched), with additional case
studies in Appendix B,
Adobe. Listing 2 shows a DOM XSS exploitation of a
client-side open redirect vulnerability in adobe.com. The
vulnerability originates in line 11, where the code employs
the window.open() API to redirect the current window
to a destination controlled by the attacker, which is read
from the top-level URL query parameters, specifically the
externalUrl key. The code attempts input validation in
line 10 by checking if the destination string contains the
string ‘adobe.com’ using the indexOf() function. However,
this check is insufficient: (i) an attacker can achieve open
redirection to a domain like adobe.com.attack.com,
bypassing the indexOf() check, and (ii), there is no check
against the javascript: scheme, enabling attackers to
escalate it to a DOM XSS.

Listing 3: CSRF escalation of an open redirect vulnerability in webnovel.com.
1 /* extract a query parameter value from URL */
2 function u(e) {
3 r = new RegExp("(ˆ|&)" + e + "=([ˆ&]*)(&|$)",

"i"),
4 t = new RegExp("[A-Za-z]"),
5 n = window.location.search.substr(1).match(r);
6 if (null != n) {
7 var o = n[2];
8 return t.test(o) ? n[2] : parseInt(n[2]);}
9 return null; }

10 /* check destination URL */
11 function isValidUrl(e) {
12 a = !!/ˆ\/[ˆ/]*/.test(e); //

protocol-relative URIs
13 b = !!e.match(/ˆhttps?:\/\/[ˆ.]*?\.webnovel\.

com($|\/.*|\?|#)/);
14 return a || b;}
15 /* redirection */
16 var c = {
17 code: u("code"),
18 ticket: u("ticket"),
19 guid: u("userid"),
20 forceRedirect: u("forceRedirect"),
21 redir: decodeURIComponent(u("redirectUrl") ||

"")}
22 r = c.redir;
23 r && isValidUrl(r)? location.assign(r):
24 location.href = "/";

WebNovel. Listing 3 illustrates a simplified open redirect
vulnerability in webnovel.com that we escalated to client-side
CSRF. The open redirection takes place in line 23 using the
location.assign() API whose parameter r is retrieved
from the redirectUrl query parameter in line 21 using the
function u defined in line 2. The code validates the variable
r in line 23 using the isValidUrl function, checking if
the destination satisfies one of the two properties: (i) it starts
with //, or (ii) it belongs to the webnovel.com domain.
Condition (i) allows open redirection abusing protocol-relative
URIs, e.g., //attack.com, whereas, XSS exploitation is not
possible as javascript URIs are not allowed. However,
further investigation revealed that WebNovel employs state-
changing GET requests to save modifications to user account
settings. This discovery enabled us to forge the redirection
request, establishing a client-side CSRF attack vector that
empowers attackers to manipulate user account settings. We
note that the advantage of a client-side open redirect is that it
triggers a top-level, same-site request, resulting in client-side
CSRF [18, 26], compared to cross-site requests in traditional
CSRF attacks. State-changing GET requests triggered via
cross-site resources are prevented by SameSite cookies [39].
However, GET requests triggered via client-side open redirects
can bypass SameSite cookie protections.
VK. We identified an open redirect vulnerability in vk.com,
which can be escalated to DOM-based XSS. The vul-
nerable URL includes a query key to, specifying the
destination for the final redirect (e.g., attack.com).
Upon receiving such a request, the application sets a
cookie, remixsec_redir=attack.com, through the
Set-Cookie HTTP response header. Subsequently, the
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Tool Ref. Method Vuln. Conf. FP FN
Joern: v1.1.1277 [80, 82] Static 11 2 9 1
JAW: v1 [18] Static 5 3 2 0
JAW: v2 (TheThing) [19] Hybrid 5 3 2 0
JAW: v3 (Sheriff) [16] Hybrid 4 3 1 0
BlackWidow: v1.3 [81] Dynamic 1 1 0 2
Foxhound: v98.0.2 [44, 45] Dynamic 72 2 70 1

STORK Hybrid 3 3 0 0

TABLE VI: Comparison of indicator-based vulnerability scanning with
XSS detectors. Legend: Vuln= potential vulnerabilities; Conf.= manually
confirmed; FP= false positive; FN= false negative.

client-side code reads the value of the remixsec_redir
cookie and additionally checks if the URL contains another
query parameter, away, with a non-empty token value. If this
condition is met, it redirects the current page to the value of
remixsec_redir (i.e., attack.com or a javascript
URI). This way, an attacker can also implant a persistent DOM
XSS attack vector, and exploit it only later on to attack a victim
(i.e., when the away parameter is present).

D. Comparison with XSS Detectors

We compared DOM XSS detection between indicator-based
vulnerability scanning described in §VI-A and XSS detection
methods on the P ′2 dataset in §V-C (42K webpages of 50
random applications). We considered the following state-of-
the-art detectors as baselines: dynamic taint-tracking [24, 36,
45] using Foxhound [44, 45], JAW engine versions one to
three [16, 18, 19], Joern [80], and BlackWidow [81].

Table VI summarizes the results. Overall, the indicator-
based approach and static analysis based on JAW found
three DOM XSS vulnerabilities. In contrast, other approaches
discovered less true positive vulnerabilities. Specifically, Fox-
hound identified 72 potentially sensitive data flows, but only
two were confirmed as XSS after manual analysis. The high
FP rate stems from the fact that Foxhound only detects the
presense of data flows that may lead to XSS but does not verify
whether these flows are actually attacker-controlled. Foxhound
missed one XSS data flow, as it could not trigger the vulnerable
execution path (branches). BlackWidow identified only one
true positive vulnerability because its test payloads failed to
detect other vulnerable injection points. Finally, Joern did not
find one XSS vulnerability due to a missing call graph edge
for the Function.call() instruction.

VII. DEFENSES IN THE WILD

We identify and study the various mitigation techniques
deployed in the wild to address open redirect vulnerabilities.
We intend to have a look at the subset of candidate redirection
URLs found via indicator pattern mining that were not vul-
nerabilities (e.g., closed redirections) and investigate potential
mitigations employed by websites.

Starting from the results in Table XI, there are 7,719
websites where we identified a candidate URL matching our
indicators, but we did not observe an open redirect during
automatic run-time experiments (refer to §V-B). To identify

Ó Mitigation Domains Pct.
#1: Redirect Notice 2,178 54.4%
#2: Input Validation 1,051 26.2%
#3: Content Security Policy 416 10.4%
#4: Security Tokens 112 2.8%
#5: Captcha / reCaptcha 43 1.0%
#6: Link Shimming 14 0.3%

No Redirect 186 4.6%

TABLE VII: Mitigation techniques employed by websites.

the mitigation strategy, we randomly selected 4K of the 7.7K
sites, and investigated one random candidate URL per site
semi-automatically.

The examination of the 4K sites revealed six different
mitigation techniques, outlined in Table VII. We found that
57% of the cases (i.e., 2,292 sites) used client-side redirects,
whereas 38% of sites employed server-side redirection, and in
the remaining 5%, we did not observe any redirection. In the
following, we discuss each mitigation technique.
Redirect Notice. We observed that more than half of the non-
vulnerable sites display a redirection warning to the user. In
the majority of these cases (i.e., 84.5%), intermediate human
interaction is necessary before the redirection occurs, such as
a button click or entering an input. However, in the remaining
15.5% of cases, the redirection happens automatically after
a certain period (e.g., 120 seconds), and the user can only
expedite the redirection by, for example, clicking on a button.
While the risk is negligible, it’s worth noting that these cases
could lead to open redirection after a certain amount of
time automatically if the user leaves the webpage open. To
determine if a webpage had a redirect notice, we loaded the
page via Playwright using an automated script, and then vet
manually whether we can see a notice, after which our script
opens up the next site.
Captcha. In addition to redirect notices, we observed another
form of intermediate interaction utilized by websites before
redirecting users to specified targets: captchas. We found that
about 1% of the sites display a captcha page before redirection,
including popular sites like Amazon. To identify these cases,
we followed a similar methodology as that of redirect notices.
Input Validation. These checks involve examining user-
provided data to ensure it adheres to expected formats or
constraints before using it as a part of the redirect destina-
tion [45, 83]. To detect the presence of these checks, we tested
the redirection automatically by setting a URL belonging to
the domain of the site under test. If the redirection happens
automatically, we confirm the presence of a input validation
routine, as it did not work for an external domain in our
previous analysis. Also, we manually looked at the client-
side code for about 10% of these pages to identify the
variety of checks happening in client-side. Overall, our anal-
ysis revealed that more than a quarter of the non-vulnerable
websites (i.e., 1,051) implemented input validation, including
various validation checks in client-side JavaScript program
inputs, such as hard-coded equality conditionals, whitelists,
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length validations, checks for data types and formats, use of
regular expressions for pattern matching, input sanitization
routines to filter out potentially malicious JavaScript content,
URL substring searches, and other string manipulation and
comparison operations.
Content Security Policy (CSP). CSP [27] can mitigate the
impact of client-side open redirects when attackers can control
the value of JavaScript instructions that trigger page naviga-
tion, such as location.assign() API [84]. For example,
CSP can be configured to restrict the domains to which a
page can be redirected, particularly using the navigate-to
directive [85], thereby mitigating the risk of redirections to
external domains. We collected the CSP policies automatically
and confirmed that over 10% of the non-vulnerable sites adopt
a CSP policy blocking the redirection.
Link shimming. Link shimming [86] refers to a technique
where an application transforms its URLs in a way that
allows it to intercept and analyze the traffic before redirect-
ing the user to the intended destination. When a request is
intercepted, the service cross-checks the URL against internal
lists of malicious domains and external partners’ lists. Then,
the service redirects the user to an intermediate page to
confirm the redirection, similarly to a redirect notice, and if
the request seems suspicious, warns the user about it. We
identified 14 websites in our dataset (i.e., 0.3%) with this
behaviour, the majority of which are social media platforms.
For example, link shim traffic for Facebook is transferred to
l.facebook.com.
Security Tokens. We discovered that a small portion of the
sites (2.8%) employed tokens to allow or block redirections to
external domains. These are cryptographic tokens, nonces that
expire after a single use, or time-synchronized tokens that re-
main valid for a specific period, allowing multiple uses within
that timeframe before expiration. While the risk is marginal,
the latter cases could still be abused for open redirections
within their small validity window, affecting popular sites like
AliExpress and Samsung.

VIII. RELATED WORK

Open Redirect Vulnerabilities. Unvalidated redirects have
been the focus of several research efforts in the past. Shue
et. al. [2] presented the first set of manually-curated heuristics
to identify potential open redirect vulnerabilities and used
dynamic analysis to test them. The authors demonstrated that
open redirects were ubiquitous in the wild back in 2008.
Almost seven years later, Wang et. al. [3] quantified the
prevalence of unvalidated redirects leveraging a custom black-
box scanner and showed that many websites are still affected
by this security flaw. Since then, open redirect vulnerabilities
have been attracting the attention of the security community,
with researchers exploring the attack surface [72, 75, 87],
testing strategies [56, 59, 73], and mitigation techniques [28–
31, 74]. More recently, multiple works [17, 88] studied secu-
rity flaws affecting OAuth 2.0 implementations concerning the
validation of the redirect URI parameter. In parallel with prior

research efforts, our study reveals that unvalidated redirects
persist as a prevalent security concern in the wild, even after
nearly a decade. Our work goes beyond mere prevalence
measurement by extracting vulnerable patterns and showcasing
how attackers can escalate these vulnerabilities. In addition,
we demonstrate how adversaries can actively search for these
vulnerabilities in public data repositories.
Indicator-based Vulnerability Discovery. Scanning programs
for indicators to identify potential vulnerabilities has been
considered by several researchers in the past (e.g., [89–92]).
Broadly, we can divide these techniques into two classes:
metric-based and pattern-based techniques. Metrics-based ap-
proaches use machine learning models to predict vulnerable
code locations in the source code, using features like static and
execution code complexity [93, 94], token frequency [95, 96],
dependency relationships [97], and developer activity met-
rics [98–100]. These approaches are typically heavy and apply-
ing them to the context of web applications requires training
datasets. Instead, we focused on lightweight approaches next
to costly static analysis to enable larger-scale analyses. Con-
versely, pattern-based techniques rely on syntax and semantics
of vulnerable programs to extract a pattern, which is used to
identify potentially vulnerable code, typically through static
analysis [19, 46, 101, 102]. However, existing pattern-based
solutions for open redirects [2, 3] propose hand-crafted lists of
indicators. In contrast, we automatically extract patterns using
a novel, static-dynamic methodology.
Program Analysis for Security Testing. The field of pro-
gram analysis for security testing has witnessed significant
attention in the last decade. Researchers proposed various
techniques to examine the security posture of software appli-
cations, including static analysis [46, 103, 104], dynamic anal-
ysis [24, 36, 37, 45, 55, 63, 105], and hybrid approaches [18,
19, 106, 107]. For example, Lekies et al. [24] modified the
JavaScript engine in Chromium to enhance it with taint-
tracking capabilities, focusing on the detection of DOM-based
XSS. Melicher et. al. [25] adopted a similar methodology,
but employed a new strategy to verify if a data flow could
indicate a DOM XSS vulnerability. Similarly, Steffens et al.
investigated the prevalence of persistent [37] and postMessage-
based XSS [55] through dynamic taint tracking and forceful
execution, respectively. Klein et al. [45] adopted a combined
approach involving dynamic taint tracking and symbolic string
analysis, focusing on the robustness of custom sanitization
functions deployed on the Web. Khodayari and Pellegrino
proposed a hybrid system, JAW [18], to study client-side CSRF
vulnerabilities in JavaScript programs. Saxena et al. introduced
Kudzu [106], a tool that combines taint tracking and symbolic
execution to detect source-sink data flows in the client-side
of web applications. Other works studied code-less injection
attacks using both static and dynamic approaches, such as
script gadgets [36], DOM Clobbering [19], and mutation-based
XSS [108]. Our work uses and extends these techniques by
applying them to the problem of open redirections on the Web.
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IX. CONCLUSION AND DISCUSSION

In this section, we summarize our findings and discuss their
wider implications.

A. Re-evaluating the Risk and Lessons Learned

This section re-evaluates the risk posed by open redirects
by contextualizing our findings alongside previous research.
However, we note that a direct comparison with prior work
is challenging because of potentially different methodologies,
tools, and snapshots of the Web.
Prevalence. Our study reveals that open redirect vulnerabili-
ties are widespread, impacting approximately 8.7% of the top
10K websites, totaling over 21.2K instances. In comparison,
recent research [16] discovered that client-side CSRF vulner-
abilities affect about 9% of the websites, with over 72.3K
instances, whereas code-less injection attacks, particularly,
DOM Clobbering [19] and script gadgets [36] are present on
9.8% (9.4K instances) and 19.8% (285.8K instances) of top
5K sites, respectively. Accordingly, client-side open redirect
vulnerabilities have a high incidence rate similarly to other
client-side web vulnerability classes.
Impact and the Role of Modern Redirection APIs. Our
work shows that modern JS redirection APIs can lead to signif-
icant vulnerabilities, challenging the long-standing perception
of open redirects as low-impact. Specifically, we showed
that ∼38% of sites that have an open redirect vulnerability
(i.e., 3.3% of the top 10K sites) can be leveraged for more
critical attacks. For example, JS redirection APIs trigger top-
level requests, thereby bypassing SameSite cookie protections
for CSRF, and support the javascript: request scheme,
thereby posing the risk of XSS. Also, our work shows that
attackers can abuse fast indicator searches to find such high-
impact open redirects with comparatively less effort.
Severity. We found that almost one out of ten open redirects
can be escalated to DOM-based XSS, which corresponds to
about 2.9% of the top 10K websites. In comparison, recent
research by Melicher et. al. [25] showed that ∼3.6% of the
top 10K domains are vulnerable to DOM-based XSS through
dynamic taint tracking. We showed that the impact of open
redirect extends even further, as we exploited 2.6% of the
open redirections for request forgery and information leakage
attacks, demonstrating an alarming landscape.

B. Effective Defenses

Our study reveals that a significant fraction of websites
with closed redirections (∼54%) incorporate an intermediate
human interaction step, such as a redirect notice, to warn
users of the redirection request. While redirect notices are
beneficial, their efficacy is threatened by the risky and rather
common practice of time-budgeted notices, whose expiration
results in an automatic redirect (occurring in ∼15% of cases).
Furthermore, they are not sufficient to prevent redirections to
JavaScript-based URIs, leaving the potential for escalations to
DOM XSS attacks in the case of client-side redirects.

Our findings indicate that ∼25% of the websites with closed
redirects validate the destination of redirections, addressing,
among others, the risk of DOM XSS. Furthermore, an addi-
tional 10% implement a CSP policy that can act as a defense-
in-depth and mitigate the impact of a potential DOM XSS
exploitation, which is promising. However, we also observed
that ∼13.2% of the sites that found to be vulnerable to open
redirect via static analysis and that can also be escalated
to XSS (i.e., 28 out of 212), have indeed adopted a CSP
policy in another webpage but not the vulnerable one, which
could have mitigated XSS exploitation, further highlighting the
importance of consistent adoption of security policies across
webpages [39, 109, 110]).

Finally, we observed that the efficacy of defenses is largely
influenced by the use cases of redirections in web appli-
cations. Validating destinations for redirection services such
as link shorteners [111], advertisement services [112] or
social networks, which serve diverse purposes, presents greater
challenges (see, e.g., [86]) compared to application-specific
functionalities with a restricted set of possible redirection
endpoints, such as post-login redirects or OAuth redirection
URIs [17]. For instance, while such services often need to omit
HTTP referer headers to mitigate the risk of privacy issues
or cross-domain information leakage [113, 114], application-
specific redirections may require the use and forwarding
of the referer to implement defense-in-depth, e.g., for
CSRF [115].

C. Ethical Considerations

Our experiments on live websites are limited to user ac-
counts that we created exclusively for this purpose, such as
manual tests for state-changing operations. During our testing
process, we followed the guidelines provided by the web-
site’s vulnerability disclosure programs on Bugcrowd [116]
and HackerOne [117] to maintain testing transparency and
uphold responsible research practices. To mitigate any poten-
tial impact on resource servers during dynamic analysis, we
minimized the testing load by implementing a round-robin
strategy, where we tested a single URL from each unique
domain before moving on to the next domain. Additionally,
we rigorously imposed limits on our testing, conducting a
maximum of 250 requests per day and domain. We responsibly
disclosed all the vulnerabilities we detected to the affected
parties following best practices [118]. We provide details about
our notification campaign in Appendix A.

D. Open Science

We publicly release our catalog of vulnerability indicators
and the STORK framework3.

E. Weighing the Testing Trade-Offs

In this paper, we showed the trade-offs between static
analysis and indicator-based scanning to detect open redirects.
We found that while static analysis can identify more vulnera-
bilities and is more precise, it also requires significantly more

3https://github.com/SoheilKhodayari/STORK
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time and storage. In comparison, indicator-based approaches
are roughly 100 times faster and need 13 times less storage,
demonstrating their benefit in scaling up. Indicators can detect
vulnerabilities missed by static analysis, and they can play a
crucial complementary role. Notably, half of the applications
identified as vulnerable through static analysis were also
detected by indicators, helping to pinpoint applications that
need more in-depth testing. Given that the cost of indicator-
based mining is significantly lower than fully-fledged static
and dynamic analysis, and considering their concerning ex-
ploitation potential as shown in §VI, adversaries can actively
search for these vulnerabilities in public data repositories.
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and W. Joosen, “Tranco: A research-oriented top sites ranking hardened
against manipulation,” in NDSS Symposium, 2019.

[79] Google Programmable Search Engine Pricing. [Online]. Available:
https://developers.google.com/custom-search/docs/overview

[80] Joern jssrc2cpg library. [Online]. Available: https://github.com/joernio
/joern/tree/master/joern-cli/frontendjssrc2cpg

[81] B. Eriksson, G. Pellegrino, and A. Sabelfeld, “Black widow: Blackbox
data-driven web scanning,” in IEEE Symposium on Security and
Privacy (SP). IEEE, 2021.

[82] Joern engine. [Online]. Available: https://github.com/joernio/joern
[83] M. Alkhalaf, T. Bultan, and J. L. Gallegos, “Verifying client-side input

validation functions using string analysis,” in 2012 34th International
Conference on Software Engineering (ICSE), 2012.

[84] Location: assign() method. [Online]. Available: https://developer.mozi
lla.org/en-US/docs/Web/API/Location/assign

[85] Content Security Policy: navigate-to directive. [Online]. Available:
https://csplite.com/csp123/

[86] F. Li, “Shim shimmeny: evaluating the security and privacy contri-
butions of link shimming in the modern web,” in USENIX Security
Symposium, 2020.

[87] Pentester Land Open Redirect Cheetsheet. [Online]. Available: https:
//pentester.land/cheatsheets/2018/11/02/open-redirect-cheatsheet.html

[88] R. Yang, G. Li, W. C. Lau, K. Zhang, and P. Hu, “Model-based
security testing: An empirical study on oauth 2.0 implementations,”
in Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security, 2016.

[89] X. Du, B. Chen, Y. Li, J. Guo, Y. Zhou, Y. Liu, and Y. Jiang,
“Leopard: Identifying vulnerable code for vulnerability assessment
through program metrics,” in IEEE/ACM 41st International Conference
on Software Engineering (ICSE). IEEE, 2019.

[90] N. Medeiros, N. Ivaki, P. Costa, and M. Vieira, “Vulnerable code
detection using software metrics and machine learning,” IEEE Access,
2020.

[91] F. Yamaguchi, K. Rieck et al., “Vulnerability extrapolation: Assisted
discovery of vulnerabilities using machine learning,” in 5th USENIX
Workshop on Offensive Technologies (WOOT 11), 2011.

[92] K. Z. Sultana, V. Anu, and T.-Y. Chong, “Using software metrics for
predicting vulnerable classes and methods in java projects: A machine
learning approach,” Journal of Software: Evolution and Process, 2021.

[93] S. Moshtari, A. Sami, and M. Azimi, “Using complexity metrics to
improve software security,” Computer Fraud & Security, vol. 2013,
2013.

[94] Y. Shin and L. Williams, “An initial study on the use of execution
complexity metrics as indicators of software vulnerabilities,” in Pro-
ceedings of the 7th International workshop on software engineering
for secure systems, 2011.

[95] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Predicting
vulnerable software components via text mining,” IEEE Transactions
on Software Engineering, 2014.

[96] Y. Zhang, D. Lo, X. Xia, B. Xu, J. Sun, and S. Li, “Combining software
metrics and text features for vulnerable file prediction,” in 2015
20th International Conference on Engineering of Complex Computer
Systems (ICECCS), 2015.

[97] V. H. Nguyen and L. M. S. Tran, “Predicting vulnerable software
components with dependency graphs,” in Proceedings of the 6th
International Workshop on Security Measurements and Metrics, 2010.

[98] M. Gegick, L. Williams, J. Osborne, and M. Vouk, “Prioritizing soft-
ware security fortification throughcode-level metrics,” in Proceedings
of the 4th ACM workshop on Quality of protection, 2008.

[99] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indicators of
software vulnerabilities,” IEEE transactions on software engineering,
2010.

[100] Y. Shin and L. Williams, “Can traditional fault prediction models be
used for vulnerability prediction?” Empirical Software Engineering,
2013.

[101] F. Yamaguchi, M. Lottmann, and K. Rieck, “Generalized vulnerability
extrapolation using abstract syntax trees,” in Proceedings of the 28th
annual computer security applications conference, 2012.

[102] J. Vanegue and S. K. Lahiri, “Towards practical reactive security audit
using extended static checkers,” in 2013 IEEE Symposium on Security
and Privacy, 2013.

[103] M. Backes, K. Rieck, M. Skoruppa, B. Stock, and F. Yamaguchi,

15

https://neo4j.com/
https://neo4j.com/developer/cypher/
https://neo4j.com/developer/cypher/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/API/setInterval
https://developer.mozilla.org/en-US/docs/Web/API/setInterval
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/globalThis
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/globalThis
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/then
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/then
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API
https://portswigger.net/support/using-burp-to-test-for-open-redirections
https://portswigger.net/support/using-burp-to-test-for-open-redirections
https://portswigger.net/burp
https://portswigger.net/burp
https://www.zaproxy.org/
https://www.zaproxy.org/docs/alerts/10028/
https://www.zaproxy.org/docs/alerts/10028/
https://developer.mozilla.org/en-US/docs/Web/API/Window/open
https://developer.mozilla.org/en-US/docs/Web/API/Window/open
https://developer.mozilla.org/en-US/docs/Web/API/Window/name
https://developer.mozilla.org/en-US/docs/Web/API/Window/name
https://www.blackhat.com/docs/us-17/thursday/us-17-Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-In-Trending-Programming-Languages.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-In-Trending-Programming-Languages.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-In-Trending-Programming-Languages.pdf
https://www.agarri.fr/docs/AppSecEU15-Server_side_browsing_considered_harmful.pdf
https://www.agarri.fr/docs/AppSecEU15-Server_side_browsing_considered_harmful.pdf
https://hackerone.com/hacktivity/overview?queryString=open+redirect+AND+disclosed%3Atrue
https://hackerone.com/hacktivity/overview?queryString=open+redirect+AND+disclosed%3Atrue
https://cwe.mitre.org/data/definitions/601.html
https://security.stackexchange.com/
https://security.stackexchange.com/
https://dev.to/t/security
https://book.hacktricks.xyz/pentesting-web/open-redirect
https://book.hacktricks.xyz/pentesting-web/open-redirect
https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/11-Client-side_Testing/04-Testing_for_Client-side_URL_Redirect
https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/11-Client-side_Testing/04-Testing_for_Client-side_URL_Redirect
https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/11-Client-side_Testing/04-Testing_for_Client-side_URL_Redirect
https://blog.intigriti.com/hackademy/open-redirect/
https://www.virtuesecurity.com/kb/url-redirection-attack-and-defense/
https://www.virtuesecurity.com/kb/url-redirection-attack-and-defense/
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Open%20Redirect
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Open%20Redirect
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/Open%20Redirect
https://github.com/cujanovic/Open-Redirect-Payloads
https://developers.google.com/custom-search/docs/overview
https://github.com/joernio/joern/tree/master/joern-cli/frontendjssrc2cpg
https://github.com/joernio/joern/tree/master/joern-cli/frontendjssrc2cpg
https://github.com/joernio/joern
https://developer.mozilla.org/en-US/docs/Web/API/Location/assign
https://developer.mozilla.org/en-US/docs/Web/API/Location/assign
https://csplite.com/csp123/
https://pentester.land/cheatsheets/2018/11/02/open-redirect-cheatsheet.html
https://pentester.land/cheatsheets/2018/11/02/open-redirect-cheatsheet.html


“Efficient and Flexible Discovery of PHP Application Vulnerabilities,”
in Proceedings of the 2nd IEEE European Symposium on Security and
Privacy, 2017.

[104] F. Al Kassar, G. Clerici, L. Compagna, D. Balzarotti, and F. Yamaguchi,
“Testability Tarpits: the Impact of Code Patterns on the Security Testing
of Web Applications.” in NDSS Symposium, 2022.

[105] G. Pellegrino, M. Johns, S. Koch, M. Backes, and C. Rossow,
“Deemon: Detecting CSRF with dynamic analysis and property
graphs,” in ACM CCS, 2017.

[106] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song,
“A symbolic execution framework for javascript,” in IEEE Symposium
on Security and Privacy, 2010.

[107] A. Alhuzali, R. Gjomemo, B. Eshete, and V. Venkatakrishnan,
“NAVEX: Precise and scalable exploit generation for dynamic web
applications,” in USENIX Security Symposium, 2018.

[108] M. Heiderich, J. Schwenk, T. Frosch, J. Magazinius, and E. Z. Yang,
“mXSS Attacks: Attacking Well-secured Web Applications by Using
innerHTML Mutations,” in CCS, 2013.

[109] S. Calzavara, T. Urban, D. Tatang, M. Steffens, and B. Stock, “Rein-
ing in the Web’s Inconsistencies with Site Policy,” in Network and
Distributed Systems Security Symposium, 2021.

[110] A. Mendoza, P. Chinprutthiwong, and G. Gu, “Uncovering HTTP
Header Inconsistencies and the Impact on Desktop/Mobile Websites,”
in World Wide Web Conference, 2018.

[111] F. Klien and M. Strohmaier, “Short links under attack: geographical
analysis of spam in a url shortener network,” in Proceedings of the
23rd ACM conference on Hypertext and social media, 2012.

[112] P. Papadopoulos, N. Kourtellis, and E. P. Markatos, “The cost of digital
advertisement: Comparing user and advertiser views,” in World Wide
Web Conference, 2018.

[113] Cross-domain referer leakage. [Online]. Available: https://portswigger.
net/kb/issues/00500400 cross-domain-referer-leakage

[114] B. Krishnamurthy, K. Naryshkin, and C. Wills, “Privacy leakage vs.
protection measures: the growing disconnect,” in Proceedings of the
W2SP Conference, no. 2011, 2011.

[115] X. Likaj, S. Khodayari, and G. Pellegrino, “Where we stand (or fall):
An analysis of csrf defenses in web frameworks,” in Proceedings of
the 24th International Symposium on Research in Attacks, Intrusions
and Defenses, 2021.

[116] Bugcrowd. [Online]. Available: https://www.bugcrowd.com
[117] Hackerone. [Online]. Available: https://hackerone.com
[118] B. Stock, G. Pellegrino, C. Rossow, M. Johns, and M. Backes, “Hey,

you have a problem: On the feasibility of large-scale web vulnerability
notification,” in USENIX Security Symposium, 2016.

[119] Domain Spoofing in Redirect Page Using RTLO. [Online]. Available:
https://hackerone.com/reports/299403

[120] Google DoubleClick Open Redirect. [Online]. Available: https:
//packetstormsecurity.com/files/129113/

[121] Open Redirect Vulnerability (OBB-2066676). [Online]. Available:
https://www.openbugbounty.org/reports/2066676/

APPENDIX

A. Additional Evaluation Details

Vulnerability Notification and Vendor Feedback. The open
redirect vulnerabilities identified in this paper impact 872
websites, of which for 332 sites we created an exploit. Our
notification process began in June 2023, aligning with the dis-
covery of these vulnerabilities, adhering closely to established
vulnerability notification best practices [118]. Prioritizing our
reports based on known exploits, we sent an initial notification
containing the vulnerability description and proof-of-concept
exploits, with monthly subsequent reminders. As of the pa-
per’s writing, all 332 sites with created exploits have been
notified at least once, with 71 confirming the issues and 49
successfully patching them, including popular platforms like
TP-Link, Adobe, Starz, and WebNovel. For the remaining
open redirects, we needed to contact 540 sites, for which

# Pattern ID Params Count New

1 A1 ACTION, action url, affiliateRedirectURL,
away, back url, backTo, backURL, base, burl,
call url, callback url, cburl, callbackLocation,
came from, clickurl, continue, ct0, current page,
data, dest, destino, domain, ext, externalRedirect,
externalUrl, fail, forward, FORWARD URL,
gHomePage, go, goto, home, hostname, intentUrl,
jump, jump url, layer, link, linkAddress,
linkback, lite url, location, login, login[redirect],
login redirect url, logout, mgnlReturnTo, net,
oadest, old, origin, originUrl, page, pagina,
path, post logout redirect uri, previousUrl,
promerium redirect url, purl, qurl, rd, recurl,
redirect, redirect to, redirect to, redirect uri,
redirect url, redirectID, redirectOk, redirectto,
redirectUri, redirectUrl, ref, refer, referer,
referurl, request, request uri, RequestedPage,
resizewidgeturl, ret url, RetourUrl, return,
return uri, return url, returnto, ReturnUrl, reurl,
rurl, send, sendTo, service, sp url, src, st.link,
submit-url, success, target, target link uri,
target url, TargetURL, to, uri, url, urlRedirect, v,
view url, next, next

109 59

2 B1 action, callbackLocation, cont, forward, goto, link,
loc, location, next, redir, redirect, referurl, return,
targetUrl, targetAction, view, callbackUri

17 1

3 B2 advance, callback, callbackUri, ext, fetch, go, goto,
redir, ref, return, submitUrl, view, redirect

13 0

4 C1 ajaxUI, action, backTo, backurl, continue,
dest, destino, domain, ext, forward, forward url,
gHomePage, go, goto, home, location, next, origin,
page, recurl, redirect, redirect to, redirect uri,
redirect url, redirectTo, RedirectUrl, referer,
return uri, return url, returnto, returnUrl, src, to,
uri, url

35 35

TABLE VIII: The complete list of parameters for vulnerability indicator
patterns in Table III. Parameters marked in cyan color are newly observed, as
we did not find them during our review of existing vulnerability reports.

# Key Domains URLs
1 url 102 1224
2 domain 52 766
3 redir 39 891
4 redirect 26 427
5 next 17 245
6 to 14 192
7 r 12 204
8 cburl 9 38
9 redirect uri 9 135
10 returnto 6 121

TABLE IX: Top 10 URL query parameter keys with the highest number of
distinct domains that use the parameter for (open) redirections.

we sought the support of our national CSIRT in January
2024. We observed that site operators are generally reluctant
to address open redirections unless they are shown to have
broader impacts. At the time of writing this paper, only 18
sites decided patching among the 540 sites where we found
no escalations of open redirects.

B. Additional Case Studies

We present additional case studies of the confirmed attacks.
OK. We found an open redirect vulnerability in ok.ru. through
a query parameter named st.link. We exploited this vul-
nerability to leak OAuth tokens, resulting in user account
takeover. OAuth [17] is a mechanism through which users
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.
Category Attack Technique Example \ w References
URI schemes URL (Identity) evil.com 7 [2, 3, 28, 30, 31, 69, 74, 87]
(Basic) Data data:text/html;base64,XSS-payload 7 [76, 87]

JS javascript:alert(1)// 7 [72–74, 76, 87]

Scheme Use Backslash https:\\evil.com 7 7 [67, 76]
Escape Slash https:\/\/evil.com 7 7 [76]
No Slashes []evil.com 7 7 [87]
Relative URI []//evil.com 7 [29, 76, 87]
Encode Colon https%3A//evil.com 7 [64, 87]
Encode Slash https:%2F%2Fevil.com 7 [64, 67, 87]
Encode Specials https%3A%2F%2Fevil.com 7 [64, 87]

Netloc Unicode Dot Encoding https://evil%E3%80%82com 7 [87]
Unicode Normalization https://evil.com/s.trusted.com 7 [76]
Right-to-Left Override trusted.com@%E2%80%AE@moc.live 7 [77, 87, 119]
Prepend Whitelist trusted.com.evil.com 7 7 [76, 77, 87]
Prepend Authentication trusted.com@evil.com 7 [67, 76, 77, 87]

Path Directory Confusion evil.com/path/www.trusted.com 7 [76, 77]

Query Parameter Pollution redir=trusted.com&redir=evil.com 7 [76, 87]

IP Decimal 1.2.3.4 7 [2, 66, 87]
Dotless Decimal 16909060 7 [66, 87]
Hex 0x01.0x02.0x03.0x04 7 [66]
Dotless Hex 0x01020304 7 [66]
Octal 0001.0002.0003.0004 7 [66]
Dotless Octal 0x01020304 7 [66]

Injection Null Byte evil%00.com 7 [76, 77]
CRLF java%0d%0ascript%0d%0a:alert(1) 7 [65, 72, 76, 77]

Other Alternating Caps jAvAsCrIpT:alert(1) 7 [72]

TABLE X: Overview of open redirect attack techniques. The examples redirect trusted.com to evil.com with an IP of 1.2.3.4. The column \ marks
techniques that may bypass server-side filters whereas w shows techniques bypassing client-side input validation checks. The 7 symbol marks applicable
attack techniques.

Candidate 	 Vuln.

Source Pattern URLs Sites URLs Sites

Internet Archive A1 162,562 6,108 205 171
A2 15,675 1,270 44 37
B1 8,445 965 12 8
B2 1,502 417 3 1
B3 198 44 1 1
B4 21 5 0 0
Total 188,403 8,045 265 218

Google Search A1 661 371 12 11
A2 380 123 7 7
B1 121 56 2 2
B2 49 12 0 0
B3 17 5 0 0
B4 9 2 1 1
Total 1,237 569 22 21

Live Crawl A1 19,210 2,045 40 37
A2 2,866 706 15 15
B1 404 210 4 4
B2 18 10 0 0
B3 2 4 1 1
B4 1 1 0 0
C1 2,786 828 24 23
C2 655 399 8 6
C3 223 155 2 2
Total 26,163 3,089 94 88

Total 214,645 8,045 375 326

TABLE XI: Overview of vulnerability mining results.

can provide service providers with access tokens for specific
scopes via an identity provider. We found that ok.ru allows its
users to authenticate via mail.ru identity provider which works
with a redirect_uri parameter (see, e.g., [17, 74, 88]).

Fig. 3: Growth of indicator patterns across vulnerable webpages in P1 dataset.

Once the user grants the requested permissions to the service
provider, the identity provider sends an authorization code to
the specified destination in the redirect_uri. However,
mail.ru checks that the redirect_uri value belong to the
ok.ru site before sending the authorizaiton code. To bypass
this check, we can exploit the open redirect vulnerability in
ok.ru to chain the redirects and forward the request to an
attacker-controlled domain, stealing the authorization code left
in the request referrer HTTP header.
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Listing 4: Excerpt of a client-side open redirect vulnerability in tp-link.com
escalated to DOM XSS.
1 let $url = new URLSearchParams(location.search).

get('url');
2 let $params = location.hash.slice(1).toLowerCase

();
3 let $product = params.match('&pview=true');
4 if($product && screen.width<=1024){
5 // $url: javascript:alert(1);
6 location.href=$url;}

Listing 5: Excerpt of a client-side open redirect vulnerability in udn.com
escalated to DOM XSS.
1 var toUrl = document.URL;
2 var whereIs = toUrl.indexOf("redir=");
3 whereIs_end = toUrl.indexOf("&site=");
4 if ( whereIs_end == -1 || whereIs_end < whereIs

){
5 whereIs_end=toUrl.length; }
6 url=toUrl.substring(whereIs+6,whereIs_end);
7 setTimeout("window.location=url",1000);

Google WebLight and DoubleClick. We found a vulner-
abilitiy in weblight where a URL query parameter u was
not validated and allowed redirection to arbitrary domains.
Similarly, we found an open redirection in the DoubleClick
advertising service where the destination of a query parameter
adurl was not validated before redirection. However, while
confirming the open redirection in DoubleClick, we realized
that it is a known issue (see, e.g., [120, 121]) which Google
decided not to patch.
TP-Link and UDN. Listing 4 shows a simplified version of an
inline script vulnerable to client-side open redirect vulnerabil-
ity that we found in tp-link.com. The vulnerability affects the
product view functionality of the store. The program initially
extracts the value of the url query parameter in line 1,
examines the necessity of the product view functionality based
on a flag in the URL fragment (lines 3-4), and subsequently
employs it as the value for location.href in line 6.
However, a notable input validation vulnerability exists as the
code does not sanitize the url value against javascript:
URIs, making it possible to acheive DOM XSS attacks.

A similar vulnerability affects udn.com, as illustrated
in Listing 5. Here, the code reads the value of the query
parameter redir in line 2 and subsequently sets the value
of window location to the read value after one seconds using
the setTimeout instruction (line 7). Similarly to TP-Link,
it can be exploited for arbitrary client-side code execution.

C. Mitigating Escalations

In this section, we examine cases where we were unable to
escalate a confirmed client-side open redirect vulnerability to
XSS. Our goal is to identify potential mitigation strategies to
counteract escalations. To do that, we manually analyzed all
JavaScript-based open redirections we found via vulnerability
mining in §V-B. Out of the 375 open redirect URLs, 202 are
JavaScript-based, and among them, 108 cannot be exploited
for XSS attack. By examining these 108 URLs, we found
two mitigating reasons. First, CSP can mitigate the escalation

of client-side redirections to XSS attacks by disallowing
javascript: URIs. We found that CSP blocked the major-
ity of the XSS escalations (i.e., 83 out of 108 or 76%), whereas
the remaining webpages (24%) had proper input sanitization
procedures that stopped the injection of inline JavaScript code.

D. URL De-duplication

In §V-A, we performed URL de-duplication to limit our
results to unique endpoints only. To do that, we used a
heuristic-based approach to detect dynamic URL components
(e.g., numbers in the path) by comparing the syntax and value
of discovered URL elements with one another. We classified
a URL component as dynamic if the prefix and the suffix (if
present) of the component remained constant, while the value
of the component changed in candidate URLs. We observed
that this heuristic is conservative, as its application, following
manual review of 1000 random URL groupings, revealed
little-to-no false positives in our dataset (rate of 1/1000). In
summary, we considered the following types: (i) NUMBER for
all strings that represent a number; (ii) RESOURCE for all
strings that contain a dot and the latter part is a valid MIME
type (e.g., “image.png”); (iii) SIMPLE for all strings that only
contain alphanumeric characters; (iv) COMPOSITE for every
string that contains a dash or underscore (e.g., “blog-title”);
and (v) COMPLEX for every string not meeting any of the
criteria before (e.g., “%46%4F%4F”). If multiple predicates
match, we choose the type corresponding to the first match.
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