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Abstract—Zero-knowledge (ZK) proofs have been increasingly
popular in privacy-preserving applications and blockchain systems.
To facilitate handy and efficient ZK proof generation for normal
users, the industry has designed domain-specific languages (DSLs)
and ZK compilers. Given a program in ZK DSL, a ZK compiler
compiles it into a circuit, which is then passed to the prover
and verifier for ZK checking. However, the correctness of ZK
compilers is not well studied, and recent works have shown that
de facto ZK compilers are buggy, which can allow malicious users
to generate invalid proofs that are accepted by the verifier, causing
security breaches and financial losses in cryptocurrency.

In this paper, we propose MTZK, a metamorphic testing
framework to test ZK compilers and uncover incorrect compila-
tions. Our approach leverages deliberately designed metamorphic
relations (MRs) to mutate ZK compiler inputs. This way, ZK
compilers can be automatically tested for compilation correctness
using inputs and mutated variants without requiring manual
intervention. We propose a set of design considerations and
optimizations to deliver an efficient and effective testing framework.
In the evaluation of four industrial ZK compilers, we successfully
uncovered 21 bugs, out of which the developers have promptly
patched 15. We also show possible exploitations of the uncovered
bugs to demonstrate their severe security implications.

I. INTRODUCTION

Zero Knowledge (ZK) cryptographic proof systems [48]
have a wide range of applications in various fields. From the
privacy perspective, Zero Knowledge Proof (ZKP) systems are
used to provide confidential computation and data sharing in the
financial and healthcare sectors [49], [45], [80], [5], where they
can facilitate verifying transactions without revealing sensitive
information. Moreover, a promising trend is to use ZKP systems
to achieve scalability in blockchain systems [37], [22], where
they allow users to create private transactions and scale the
blockchain with protocols like zkRollups [23].

Given the general difficulty of writing ZK programs in
circuit representation, the community has developed domain-
specific languages (DSLs) and ZK compilers to automatically
translate a program P written in DSLs into circuit R. Neverthe-
less, there is no decision procedure for proving P , R for an
arbitrary computation P [83]. That is, existing ZK compilers
are facing an intractably hard problem and are prone to bugs.
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Moreover, de facto ZK compilers often comprise dozens to
hundreds of thousands of lines of code [105], [19], covering a
complex compilation and optimization pipeline, including the
compiler frontend, backend, and circuit generation component.
All these sophisticated components make ZK compilers a highly
complex system that demands careful design consideration.
Notably, since ZK compilers have been applied in various
sensitive scenarios, from financial sectors to blockchain systems,
the correctness of ZK compilers is of paramount importance.
Bugs in ZK compilers, in turn, can lead to privacy leakage [62]
and financial losses [8], [97], [55] of several million dollars
worth of cryptocurrency.

This work presents MTZK, the first automated, systematic
metamorphic testing (MT) framework for ZK compilers. MTZK
tackles black-box scenarios, allowing testing of commercial,
off-the-shelf ZK compilers and holistically uncovering bugs in
the full pipeline of ZK compilers. Instead of capturing obvious
“crash” behaviors (as conventional software fuzzing does),
MTZK uncovers incorrect compilation outputs (logic bugs)
residing in the complex compilation pipeline of ZK compilers.
This is achieved by performing MT, an invariant property-
based testing method that relies on mutation rules referred to
as metamorphic relations (MRs). MT alleviates the difficulty
of determining the expected outputs of test inputs (which often
requires human annotation and is often prohibitively expensive)
by verifying the target software’s behavior consistency under
MR-mutated test inputs. As a result, ZK compiler testing
becomes substantially more flexible without requiring manual
intervention.

We design two novel MRs to transform ZK programs and
check ZK compiler output consistency with respect to the
original and mutated ZK programs. Our MRs are designed
as semantics-preserving, meaning a seed ZK program and
its mutated version should have identical output. These two
MRs are, however, tailored to mutate certain ZK program
features that impose a major “stress” on the compilation and
optimization pipeline of ZK compilers and, thus, are more
likely to expose bugs. By applying our semantics-preserving
MRs on ZK programs, we can expose ZK compiler bugs
by automatically checking the output consistency of circuits
compiled from ZK programs and their mutated versions.

We implement MTZK targeting four state-of-the-art ZK
compilers: ZoKrates [105], Noir [64], Cairo [21], and Leo [4].
MTZK generates 30K ZK programs in total to test ZK
compilers. During our testing campaign, we detected 21 bugs in
total, 15 of which have been responsibly fixed by the developers.
Moreover, we also make the first attempt to launch hazard
analysis towards the uncovered ZK compiler bugs and show
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def main(
  private field w,
  public field u){
  field t = w - 1;
  t = t * w;
  if (u != 0)
    t = t % u;
  assert(t == 0);
}
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...
varN == 0
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Fig. 1: High-level workflow of the ZK compilers and the proof systems.

that many of our bugs can presumably induce severe security
breaches, e.g., backdoors can be stealthily inserted by the ZK
compiler in the compiled ZK applications. In sum, we make
the following contributions:

• This work introduces a new focus to launch systematic testing
for ZK compilers. We design testing methods to expose logic
bugs in ZK compilers. The detected bugs are highly critical
and can largely change the behavior of compiled ZK circuits,
leading to security breaches.

• Our framework, MTZK, performs MT to test ZK compilers.
Two novel MRs are designed to mutate ZK programs and
stress ZK compilers. We incorporate various design principles
and optimizations to deliver effective testing.

• We tested four industry-leading ZK compilers and found
21 bugs, 15 of which have been promptly fixed. We also
analyze the security implications of the uncovered bugs and
find that many can lead to severe security breaches. As proof
of concept, we demonstrate examples of exploitation of the
uncovered bugs.

Artifact Availability. We release and will maintain the codebase
of MTZK at [110] to boost future research.

II. PRELIMINARY

ZK Systems. In general, the goal of a ZK system is to allow
users to prove statements while using but not revealing some
secret information. Such a process generally contains two
parties: a prover and a verifier. The goal of the prover is
to generate proof that he or she knows a secret witness w
satisfying a constraint C(u,w) for some public parameters u
that are known by both the prover and the verifier. The verifier
will then verify the proof (with high probability) if and only if
the prover actually knows the secret witness w satisfying the
constraint. We further say the proof system is zero knowledge
if the verifier cannot learn anything about w other than the fact
that C(u,w) is satisfied.

Take a bank system as an example: a bank enforces that any
customer must own over 1,000$ in order to open a credit card.
The prover is the customer, and the verifier is the bank. The
customer proving process aims to prove the relation C(u,w) :
w � u without revealing the customer’s assets. Throughout the
paper, we will use the symbol w to denote the private inputs
of the prover, and u to denote the public inputs.

The “Runtime” column of Fig. 1 depicts a typical workflow
of ZK systems. First, the prover and the verifier take as input the
encoding of a constraint C that they want to prove, and engage

in a ceremony to set up common parameters (omitted in Fig. 1).
Next, based on the common parameters and public inputs u, the
prover generates a proof ⇡ as a testimonial to private inputs w.
The verifier will take the public input u and verify the proof ⇡.
The verification passes if and only if ⇡ indicates that w satisfies
the constraint C(u,w). To ease presentation and use common
notations, we state that the C(u,w) = SAT (or UNSAT) if the
constraint is satisfied (or not satisfied) under public inputs u
and private inputs w, and accordingly, the verification passes
(or fails).

Existentially Quantified Circuits (EQC). In general, constraint
C is represented in a special format of arithmetic circuits
named EQC. EQCs are circuit-like, meaning they comprise
connections between wires and signals and cannot contain loops
or branching. In addition, EQCs are existentially quantified:
they can contain variables whose value depends on the other
variables in the circuit to make the overall output of the circuit
true. Take a boolean circuit with the form 9A s.t. A_B as an
example. In this case, the boolean variable A is existentially
quantified. When B is false, A must be true to make the
constraint satisfied. In the context of ZK systems, the constraint
C is typically expressed as follows:

9w s.t. C(u,w) = SAT (1)

The secret w in Eq. (1) is existentially quantified. EQC is
particularly suitable for ZK systems since the prover should
not directly reveal the secret w to the verifier but rather prove
that there exists a w satisfying the constraint C.1

ZK Protocols. ZK protocols are the core of ZKP systems. They
are the algorithms that allow the prover to generate a proof ⇡
and specify the details of the proving and verification stage. To
date, major ZK protocols include SNARKs [51], STARKs [11],
and Halo2 [15]. Different ZK protocols feature different proof
sizes and verification times.

ZK protocols are typically designed to work with EQCs.
Different ZK protocols may have different requirements for
EQCs’ formats. For instance, SNARKs require the EQCs to be
in the form of rank-1 constraints (R1CS) [51], while STARKs
accept Algebraic Intermediate Representation (AIR) [11], and
Halo2 [15] requires PLONK [44] format. Fig. 1 shows the
EQC format of the two protocols, in which R1CS represents
EQCs as a matrix multiplication form of AZ � BZ = CZ
while PLONK represents EQCs as a table.

1For simplicity, we assume “the prover can prove that there exists w” is
equivalent to “the prover knows such w” in this paper.
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ZK DSLs and Compilers. Directly writing EQCs in the format
of R1CS or PLONK is tedious and error-prone. To ease the
burden of writing EQCs, the community has developed DSLs
like Zokrates [34], Cairo [47], Noir [64], and Leo [28], to allow
users to write their computation in a DSL program. Given a
DSL program P that takes public inputs u and private inputs
w and outputs y, the ZK compiler compiles P into an EQC
C(u,w, y), such that the following property holds:

P (u,w) = y () 9w s.t. C(u,w, y) = SAT (2)

Here, we slightly abuse the notion of C to take three inputs
instead of two. Moreover, to ease presentation, this paper refers
to EQCs as “executables,” and the process of proving and
verifying the satisfiability of EQCs as “execution.”

ZK DSL Fig. 1 presents a DSL program from the Zokrates
language, which is heavily inspired by Rust. The source
program in the example takes as input a public input variable
u and a private input variable w. The type of input variables
is field, a type representing finite field numbers and being
widely used in ZK systems. Public variables are visible to
both the prover and the verifier, while the private variables are
provided by the prover and are not visible to the verifier. Instead
of writing circuit-like constraints directly, developers of ZK
applications can declare the constraints that should be satisfied
to yield an SAT result in verification in the high-level DSL
with the assert statements. The constraints in the DSL would
later be compiled into constraints in C in the EQC format. We
denote the set of constraints in the high-level program P as
�1(u,w),�2(u,w), . . .. For instance, the sample program in
Fig. 1 computes that w⇥ (w� 1) mod u (or w⇥ (w� 1) when
u = 0), and asserts the result to be zero.

The program output y is made up of the return value from
the return statement and, more importantly, the boolean values
of all the assert statements indicating whether the constraints
are satisfied. In the sample program of Fig. 1, the output y
consists of merely the boolean value of the assert(t == 0)
statement, as the program’s return type is void.

ZK Compiler Frontend. As depicted in Fig. 1, compiling a ZK
program P involves a complex compilation and optimization
pipeline. P is first parsed into an abstract syntax tree (AST). ZK
compilers perform type checking and semantic analysis on the
AST to ensure the program is well-formed. Notably, one core
task of type checking is to mark the visibility of variables, i.e.,
whether a variable is public or private. Typically, information-
flow (taint) analysis is performed to identify all variables
directly or indirectly derived from the private inputs [91]. The
AST would then be transformed into a frontend intermediate
representation (IR) that is suitable for frontend analysis and
optimization. The IR is then sent to a “flattener” to convert into
the circuit format. Because circuits are stateless, the flattener
first transforms the IR into the static single assignment (SSA)
form, unrolls loops, inlines all functions, and also transforms
if-statements into conditional selectors. The output from the
flattener is further optimized by the frontend optimizer, which
performs optimizations like common subexpression elimination,
constant propagation, and bit reorganization.

ZK Compiler Backend. After the frontend stage, the program
is now in an Algebraic Circuit Representation, as shown in
the second column of Fig. 1. Such representation can declare

circuit signals with = and specify the constraints between them
with ==. The backend optimizer then optimizes the circuit
representation. The constraint checking under ZK is highly
costly and is at least three orders of magnitude slower than
directly checking the constraints without ZK [107]. Hence, it
is crucial for the optimizer to reduce the number of constraints.
Various optimization strategies are implemented at this step.
For instance, the linearity reduction optimization [81] reduces
the number of constraint variables in the R1CS system; the
liveness analysis [47], [19] would remove unused constraints.
The optimized circuit finally goes through an arithmetization
process to lower integers and arrays to finite field numbers that
EQCs can accept.

III. MOTIVATION

Challenges in Developing Correct ZK Compilers. The
computation theory has proved that:

There is no decision procedure for proving C(u,w, y) ,
P (u,w) = y for an arbitrary computation P [83].2

In complexity-theoretic terms, the circuit C(u,w, y) is non-
deterministic, while the program in the high-level language
P (u,w) = y is deterministic [6]. Intuitively, given a concrete
circuit C and the value of u, y, the value of w can only be
“guessed,” e.g., by brute-forcing all possible w to find a concrete
value of w that satisfies the constraints enforced by C; in
contrast, given the high-level program P and the inputs u,w,
the value of y can be readily obtained by executing the program
and obtaining its execution output.

According to the theorem, ZK compilation faces an in-
tractably hard problem, and therefore, it is challenging to verify
if compiled circuits conform to the semantics in high-level ZK
programs. Thus, developing correct ZK compilers is difficult,
and developers have limited tools to check the correctness of
compiled executables. To the best of our knowledge, systematic
and automated approaches to testing ZK compilers are lacking.

Vulnerability & Significance. Given the industrial adoption
of ZK protocols in critical scenarios (e.g., Ethereum), bugs
related to ZK proofs can lead to severe consequences, such as
catastrophic monetary loss. A bug [55] in ZCash [117] results
in generating infinite ZCash coins. Also, a bug in implementing
constraints [8] in Aztec [9], a popular L2-chain network on
Ethereum, could allow attackers to spend a banknote multiple
times. The severity of those bugs demonstrates the significance
and urgency of designing a specific method to detect ZK-
specific bugs.

ZK compilers are a critical component in ZK systems. High-
level source programs of ZK applications are compiled into
circuits by ZK compilers. Bugs in ZK compilers can thus lead
to a well-formed high-level program being compiled into an
incorrect circuit, which can result in security vulnerabilities in
the ZK system. Compiler bugs can lead to backdoors [106]
or exploits [53], [54]. As such, it is crucial to ensure the
correctness of ZK compilers.

2Although it is possible to prove the equivalence for a specific computation
in an ad-hoc manner, e.g., enumerating all possible u,w, y, for proving all
computations, the problem is undecidable.
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Motivating Example. We examplify how ZK compiler bugs
can lead to incorrectly accepted proofs with a real bug found
by MTZK in Fig. 2. In the given example, the program takes
two inputs a and b, both of which are of type field, which
is special data type representing a finite field element. The
variable a is private and is provided by the prover, while b is
public and is pre-agreed upon by both parties. The program has
a constraint enforcing that the value of a should be less than
that of b. During runtime execution of the program, the prover
proves to the verifier that the input value of a is less than that
of b. The program is then compiled into a ZK circuit by the ZK
compiler. Despite the source code program being well-formed,
the ZK compiler incorrectly compiles the program, leaving
an exploitable backdoor in the compiled circuit. A malicious
prover can fake a proof that a is less than b, while in reality, a is
greater than b. The verifier, however, accepts the invalid proof,
leading to a security breach. The root cause of the backdoor
in the compiled circuit is not in the source code but in the
compiler itself. As such, it is crucial to develop systematic
testing approaches to detect bugs in ZK compilers.

fn constraint_lt(a: private field, b: public field) {
assert(a < b);

}

Fig. 2: A motivating example of a ZK compiler bug.

Contributions. Given the importance of ZK compilers and
the lack of systematic testing approaches, we propose MTZK,
the first systematic testing framework for ZK compilers. To
comprehensively stress-test ZK compilers, MTZK features MRs
that focus on ZK-specific features, including the constraint and
private data aspects, as mutating them can effectively exert
pressure on many ZK-specific optimizations and translations,
as well as the standard optimization routines. We test four
widely used industrial ZK compilers (see Section VI), and
we illustrate potential exploitations to demonstrate the severity
of the uncovered bugs. We believe that our work can help
developers improve the robustness of ZK compilers and enhance
the security of ZK systems.

IV. OVERVIEW OF MTZK

A. Study Scope

The proposed MTZK tests the correctness of ZK compilers.
In general, MTZK is able to uncover two types of bugs
(although its main focus is on the second type):

1) Compilation failures. This type of error has noticeable
symptoms, such as throwing exceptions or causing crashes.
These failures may lead to memory-based exploitations or
denial-of-service (DoS) when the compiler is accessible by
attackers. They are, however, easier to detect (e.g., using
fuzzing) because of their obviously erroneous behaviors.

2) Logic errors. This type of bug does not directly lead to
crashes or exceptions. Instead, it causes the compiler to
generate incorrect executables. Such errors can be very
dangerous since they can cause the verifier to accept invalid
proofs and thus induce security breaches. Overall, while we
also detect compilation failures, our focus is on logic errors
due to their stealthiness and higher severity.

B. Testing Oracle Design

Challenges. A key challenge in detecting logic errors is the
lack of ground truth (i.e., testing oracle). According to the
theorem mentioned in Section III, it is generally impossible to
determine whether a generated EQC C from the ZK compiler
is equivalent to the high-level program P for every possible
P (except relying on extensive manual inspection, which is
prohibitively expensive). In this work, we adopt metamorphic
testing (MT) [26] as an automated method to detect logic errors
in ZK compilers. MT is a testing technique that alleviates the
testing oracle issue by checking properties that must hold for
the correct implementation of the program. For instance, an
algorithm P that finds the shortest path in an undirected graph
with only positive edge weights must satisfy a property that
the shortest path from A to B discovered by P should be the
same as the shortest path from B to A. We can thus test P
by checking if it always satisfies the property with randomly
decided inputs A and B; violations of the property indicate
bugs in P . In short, this property and its derived testing oracle
are referred to as metamorphic relation (MR). In this paper,
we identify two novel MRs in the context of ZK programs and
use them to detect logic errors in ZK compilers.

MR Design. We design two MRs to detect logic errors in ZK
compilers. The primary purpose of ZK systems is to prove the
satisfiability of constraints over program inputs without leaking
the private inputs. Thus, our MRs are particularly designed to
mutate the constraints in ZK programs and visibility (i.e., a
variable is public or private) of ZK program variables, with the
expectation that the MRs can effectively stress the compiler
to uncover more severe bugs. Technically speaking, an MR is
composed of a mutation and its associated invariant property.
We now introduce the two MRs in detail.

MRSIM : Satisfiability-Invariant Mutation (SIM) This MR in-
serts a set of always-satisfied constraints w.r.t. inputs into
the source program and asserts that the execution of the
compiled program should also yield SAT. Given the constraint
�1,�2, . . . ,�n in the source program P and its corresponding
compiled constraint C in the executable, when all the � yield
SAT under inputs u,w, C should also result in SAT. Formally:

n̂

i=1

�i(u,w) = SAT =) C(u,w) = SAT (3)

The format of � and C are highly different (assert statements
in Rust-like ZK programs vs. EQC), and ZK compilers usually
perform a series of non-trivial transformations to compile � to
C. Also, since the number of constraints in EQC significantly
affects the proving and verification speed, ZK compilers employ
a series of optimization passes to reduce the number of
constraints. Given that said, MRSIM faces obstacles in its
implementation (since we cannot automatically evaluate the
satisfiability of constraints in ZK high-level programs); see our
solution in Section V.

MRIVM : Information Visibility Mutation (IVM). This MR mu-
tates the visibility of program variables and asserts that
the program’s functionality should not be affected. Given
the public inputs u and private inputs w, when exchanging
the input visibility, i.e., specifying u as private and w as
public, the semantics of the program should be unchanged.
MRIVM mutates the visibility of the inputs and asserts that
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the functionality of the program should not be affected. As
introduced in Section II, ZK compilers implement a set of
compilation and optimization passes to perform information
flow (taint) analysis and identify variables that are “tainted” by
private inputs; those tainted ones are also marked as private data.
Moreover, ZK compilers enforce different compilation/optimiza-
tion schemes for public and private data, and computations
involving private data are typically much more complex to
optimize than those involving public data. This way, by mutating
the input visibility, we anticipate effectively stressing the
analysis routines of the compiler and their subsequently applied
compilation/optimization passes.

C. Usage Scenario and Clarification

Main Audiences. The main audiences of this work are ZK
compiler developers and vendors. Our work helps them to
test their compilers before release. As shown in Section VII,
developers of ZK compilers responsibly responded to our bug
reports and promptly fixed the bugs, indicating the utility of
our work. MTZK uncovers subtle logic errors in ZK compilers,
which are hard to find with existing fuzzing testing techniques.
The findings are highly critical and often indicate potential
attack vectors that malicious users can exploit in compiled ZK
executables [55], [7]. MTZK is, however, not designed to be
used by malicious users to exploit ZK compilers. We provide
further clarification on the ethical concerns in Appendix B.

Compiler Bugs vs. Application Bugs. We are aware of recent
advances in detecting bugs in ZK applications [108], [75].
However, they neglect the bridge (i.e., ZK compilers) between
high-level ZK programs and their compiled circuits. Even if the
high-level ZK programs are correct, the compiled circuits may
still be incorrect due to stealthy bugs in ZK compilers. Our
work opens a new frontier in testing ZK compilers, which are
highly complex and hard to verify. Application bugs stem from
errors or flaws in the source code written by developers, such as
misuse of certain components or misspecification of constraints.
Compiler bugs, on the other hand, arise from errors in the
compiler software itself. Due to the distinct nature of the two
types of bugs, they require different approaches to detect. While
application bugs primarily affect the functionality of a single
program, compiler bugs have the potential to introduce errors
in any program compiled using the faulty compiler, making
their impact more widespread and challenging to isolate.

Another recent work by Pailoor et al. [83] captures under-
constrained R1CS circuits. Although an under-constrained
circuit can be due to both application and compiler bugs, all
the eight bugs they found are application bugs. In contrast,
by designing a testing pipeline tailored for ZK compilers,
our approach effectively detects 21 compiler bugs. Moreover,
Detection techniques for under-constrained R1CS circuits
cannot be directly applied to other protocols like PLONK [83],
[95]. MTZK is agnostic to the underlying ZK protocols since
it is a black-box testing tool, and our four testing targets cover
three different ZK protocols (see Section VI). In addition,
MTZK is able to capture a variety of logic bugs other than
underconstraints, as shown in Section VII. We provide a further
comparison of our bugs with those found by ZK application
bug hunters in Appendix A.

Fuzzing vs. Metamorphic Testing. Fuzzing is widely adopted
in software testing [115]. However, fuzzing relies on obvious

symptoms (e.g., crashes or memory access violations) to detect
bugs. Without explicit oracle, fuzzing cannot detect logic
errors, which can be more subtle and dangerous. In contrast,
metamorphic testing (MT) [25] is equipped with carefully
designed MRs as testing oracles and has helped to reveal
numerous logic bugs in production compilers like GCC [67],
[68], [98]. MTZK thus employs MT to detect logic errors in
ZK compilers.

EMI vs. ZK-Specific MRs. Equivalence Modulo Inputs
(EMI) [67], [68], [98] is an impactful MT technique that
performs semantics-preserving transformations towards seed
programs and checks equivalence of outputs from the mutants.
Despite its success in finding bugs in production compilers
like GCC and LLVM, we clarify that EMI is not effective at
detecting bugs in ZK compilers due to the unique features
of ZK programs. The dead code insertion strategy, i.e., a
representative mutation of EMI, typically requires pinpointing
uncovered code components in a program and inserting code
that should not be executed. However, ZK programs require
special syntax/semantics and will always execute both branches
(no “uncovered code”). Moreover, ZK programs focus on
proving constraints, while EMI mutates program control/data
flow without introducing any constraints. Note that a ZK
program without any constraint will trivially pass verification
and thus cannot help uncover any compiler logic bug. Overall,
based on ZK’s unique computation paradigm, we introduce
two novel MRs tailored for ZK compilers in Section IV-B.

White-Box vs. Black-Box. MTZK considers a black-box
testing scenario where we mutate ZK compiler inputs and check
compiler output consistency (using our MRs in Section IV-B)
to decide whether the compiler is buggy. We clarify that “black-
box” does not necessarily mean that the source code of the
compiler is not available, but instead, we do not rely on the
compiler’s internal implementation details. ZK compilers vary
significantly in terms of the ZK protocols they support, the
programming languages in which they are developed, and
the compilation and optimization routines they employ. The
black-box view enables us to test any ZK compiler without
huge engineering efforts to adapt our tool to the compiler’s
internal structure. Such a setting is also aligned with many
existing testing tools for software compilers [114], [98]. We
leave the exploration of white-box testing (e.g., relying on
certain coverage criteria in the compiler codebase) for future
work.

Testing vs. Verification. To the best of our knowledge, MTZK
is the first testing approach toward ZK compilers, addressing a
timely demand of our community and industry. MTZK shares
a similar testing-based approach with quality assurance tools
for critical systems, such as CPUs [56], [46], databases [89],
[59], [60], [90], and operating systems [65], [16], to detect
errors instead of proving their absence. MTZK cannot offer
a formal guarantee: when MTZK has no findings, we cannot
conclude that a ZK compiler is free from bugs. Nevertheless,
the testing approach delivered by MTZK is precise and speedy,
with almost no false positives. More importantly, as a testing
tool, MTZK provides defect-triggering inputs, which enable
developers to debug and fix the uncovered bugs (see Section VII
for details). In contrast, we notice emerging research that
aims to formally verify the correctness of ZK compilers [41],
[82], [28] (details in Section IX). As a common and textbook-
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level concept, testing and verification are two complementary
approaches to software quality assurance. The former is more
practical and scalable, while the latter is more rigorous (but may
have false positives). Overall, our work meets the high demand
for testing ZK compilers, especially given that modern ZK
compilers can easily have over 100K lines of code with complex
compilation and optimization routines. These features make the
formal verification of ZK compilers extremely challenging.

V. DESIGN OF MTZK
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Compile & 
Execute

IR Mutation
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Programs

Compile & 
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Fig. 3: The testing pipeline of MTZK.

Design Overview. Fig. 3 shows the testing pipeline of MTZK,
which consists of three testing stages (shown in blue boxes):

¿ Random Program Generation. This phase randomly gener-
ates source programs of ZK DSLs. To enhance generality and
ease the implementation, we first perform the generation using
our customized IR, and then concretize the IR code into the
specific syntax of a target ZK DSL. The details of our designed
IR are in Section V-A. The randomly generated programs do
not contain any constraint statements.

¡ Testing with MRSIM . This phase uses MRSIM ; it mutates
programs generated in ¿ and inserts constraints that are
determined to yield an SAT result. To do so, we first compile
and execute the program from ¿, and profile the variable
values. We then propose a set of rules (given in Section V-C)
to generate such constraints based on the profiled values.

¬ Testing with MRIVM . This testing stage employs MRIVM ;
it mutates the information visibility of variables in the mutated
ZK program from MRSIM (i.e., the output programs of ¡).
Following the definition of MRIVM , we mutate the information
visibility of the program input variables and assert that the
mutated programs retain the original constraint-checking results
(i.e., SAT). If the proof given by the prover is rejected by the
verifier (i.e., “UNSAT”) in the verification phase, we deem it
a bug in the ZK compiler.

We will send the resulting programs from each of the three
phases to the tested ZK compiler for compilation and execution.
If a crash or exception is detected, we deem it a compilation
failure; rather, if the compiler outputs violate either MRSIM

or MRIVM , we deem it a logic error.

A. IR Design

This paper first defines a general IR �gen that subsumes
mainstream ZK DSL features. We then define the program
generation strategy over the IR, and finally, we concretize each
IR program into the target DSL. The syntax of the �gen is
demonstrated in Fig. 4. It supports basic data types ', e.g.,
field, that frequently appear in ZK programs. Operations
on the data types are also supported, including arithmetic

Program P ::= s;P | s;
Statement s ::= if e then {s⇤} else {s⇤} |

for x in n..n {s⇤} | vd
x = e | assert e

VarDef vd ::= let x : ⌧ = e
Variable x ::= valid variable name
BinaryOp ⌦ ::= + | � | ⇥ | div | mod |

< | > |  | � | == | 6=
& | | | � | ^ | _

UnaryOp ⇧ ::= ¬ | � | bit not
BasicType ' ::= int | uint | bool | field
PrivacyType ✏ ::= public | private
Type ⌧ ::= {⌫ : ' | ⌫ : ✏}
Value v ::= true | false | n
Number n ::= 0 | 1 | �1 | 2 | �2 | . . .
Expression e ::= v | x | e1 ⌦ e2 | ⇧ e

Fig. 4: Syntax of the �gen.

operations (e.g., addition +), bit-wise operations (e.g., exclusive-
or �), as well as logic operations. The IR subsumes most of
the commonly seen statements, including variable declaration
(let x : ⌧ = e), and control flow statements (e.g., if and for).

ZK DSLs have a clear distinction over the information
visibility of the variables: ZK protocols enforce that all private
variables, including explicitly declared ones and intermediate
variables, are only visible to the prover and should be protected
with cryptographic primitives during the ZK protocol execution.
Contrarily, public variables are visible to both the prover and
the verifier. To accommodate the distinction between different
information visibility levels, the type system of �gen is designed
as a refinement type system [109], [42]. A refinement type ⌧
has the form {⌫ : ' | ⌫ : ✏}, where ⌫ is a symbolic placeholder
for the variable name, ' is the basic type of the variable, and
✏ encodes the visibility of the variable. The privacy type ✏ can
be either public or private, indicating whether the variable
is public or private. For instance, the type {⌫ : int | ⌫ :
private} indicates that the variable is an integer and is private.
The refinement type notations in �gen facilitate designing an
information visibility mutation scheme (as in MRIVMdiscussed
in Section V-D) to effectively change the visibility of the
variables in ZK programs.

B. Program Generation

We generate IR code following the IR �gen and then
implement a translator to concretize each generated IR code
into a ZK program based on the grammar of the target ZK
DSL. Program generation produces programs by recursively
applying production rules of the syntax grammar starting from
a start symbol. In our case, the syntax grammar is �gen, and
the start symbol is P . We now describe the internals of our
program generator used to produce programs in �gen.

Local Context Compatability. To ensure a variable is defined
before use, our program generator maintains a type context �,
which stores a mapping from the variable name x to its type
⌧ :

� ::= {x1 : ⌧1, x2 : ⌧2, . . .} (4)
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When the generator refers to a variable name, it consults the
context to determine the variable type under the current scope.
We use the notion �(x) = ⌧ to denote that the variable x has
type ⌧ in the context �. We must ensure that any reference to
a variable lies within its scope. Denote the type context at line
l as �l, and the domain of the types of a context at line l as
dom �l:

dom �l = {v | v : ⌧ 2 �l} (5)

Given the line l that defines a variable x with type ⌧ , the
context �l should contain the mapping x : ⌧ , i.e., �l(x) = ⌧ .
Furthermore, the contexts between lines l and l+ 1 satisfy the
following relationship:

8v 2 (dom �l \ dom �l+1) \ {x},�l(v) = �l+1(v) (6)

Variables should only be referenced if they are within the
domain of the type context. Let vars(e) be the set of variables
referenced in an expression e. The expression e is semantically
valid only if vars(e) ✓ dom �l.

Type-Guided Expression Generation. Semantically valid
programs require valid types for operations. Our preliminary
study showed that generating expressions blindly can result
in many type-invalid statements that are rejected by the ZK
compiler frontend, thus wasting testing effort. Hence, we
propose a type-guided expression generation strategy to ensure
the type validity of generated expressions.

To ensure the generated expressions are well-typed, our
program generator adopts a type-guided generation approach to
generate expressions. When generating a statement, the genera-
tor first randomly selects a type ⌧ as the target expression type,
then recursively produces well-typed candidate expressions
compatible with the target type. MTZK uses a depth parameter
to limit the maximum depth of the generated expression to
avoid combinatorial explosion. The default maximum depth is
2, but can be configured by the user.

A simplified version of type-guided expression generation
is shown in Algorithm 1. The procedure accepts the target type
⌧ and the remaining expression depth d as arguments. If the
remaining depth is 0 (a leaf node), it returns a random constant
value with type ⌧ . Otherwise, the SELECTOP procedure
randomly selects an operator op conforming to the target type
⌧ . The procedure NUMOPDS then determines the number of
operands nopd based on the operator op (unary, binary, etc.), and
generates each operand opdi recursively with its corresponding
type ⌧opd. Finally, it constructs an expression expr that applies
the operator op to all of its operands opdi.

Algorithm 1 Type-Guided Expression Generation
1: function GENEXPR(⌧, d)
2: if d = 0 then
3: return GENCONST(⌧)

4: op SELECTOP(⌧)
5: nopd  NUMOPDS(op)
6: for i 1 to nopd do
7: ⌧opd  OPDTYPE(op, ⌧, i)
8: opdi  GENEXPR(⌧opd, d� 1)

9: expr  op(opd1, . . . , opdnopd )
10: return expr

Considerations for Program Validity. ZK DSLs have a set
of requirements for a program to be valid. For instance, the

division operator requires the divisor to be non-zero. We address
those issues by ruling out invalid programs based on runtime
exceptions. We notice that contemporary ZK compilers would
throw exceptions hinting about certain subtle invalidities in an
input program. Hence, we leverage the exception messages
to rule out invalid programs. During testing, we perform
a pre-filtering step to first compile the generated programs
and check whether the ZK compiler throws any exception.
When encountering an exception complaining about the input
invalidity, we discard the input program and do not include
it in the testing campaign. We list reasons for invalidities and
the corresponding exception message patterns in Table XV in
the appendix. After our testing campaign, we launched root
cause analysis towards the uncovered error-triggering inputs,
and we found that none of them was caused by the invalidity
issue (see Section VII-B).

C. MRSIM : Satisfiability-Invariant Mutation

Motivation. This section introduces the implementation of our
first MR, MRSIM . As encoded in Eq. 3, MRSIM aims to mutate
the randomly generated programs by inserting constraints.
It stress-tests ZK compilers’ ability to correctly compile a
ZK program, including the constraints and all involved data
and control flow, into correct constraints in low-level circuits.
As mentioned in Section II, constraints encode the “primary
functionality” of ZK programs, as ZK programs’ outputs are
typically derived from the constraints. Also, the number of
constraints is a key factor that affects the performance of
the ZK programs. Hence, correctly compiling and optimizing
constraints are the key requirements of ZK compilers.

A constraint �(u,w) in the source program specifies the
relation that should be satisfied by the public inputs u and
private inputs w. �(u,w) is typically expressed in the form of
assert e, where e is a boolean expression that (transitively)
depends on the inputs. We will use the notion C(e) to represent
a constraint statement in the source program.

Implementation Challenge. Holistically, MRSIM , as denoted
in Eq. 3, checks if constraint-checking results in the high-
level ZK program are aligned with that of the compiled EQC;
violating Eq. 3 denotes a bug. Despite its simplicity, MRSIM

is hard to implement directly, as it is challenging, if not
impossible, to automatically obtain the constraint-solving results
for arbitrary high-level ZK programs.

Thus, following the code generation phase in Section V-B,
we propose to mutate each randomly generated program by
generating and inserting constraints that are guaranteed to yield
a “SAT” verdict, i.e., the secret inputs are guaranteed to satisfy
the constraints. This way, we check if the execution of the
compiled ZK programs also yields an “SAT” constraint-solving
output. If not, we conclude that the ZK compiler has a bug.
Benefiting from our deliberately designed constraint generation
strategy (see below), we can automatically generate mutated
test inputs and assert the correctness of ZK compilers.

Satisfiability-Invariant Generation. We first introduce nec-
essary notions. Let the runtime environment that maps the
variable names to their values be V . Such a mapping can be
obtained by profiling the execution of the source program,
e.g., by printing the values of variables after each variable
assignment. Also, denote the evaluation of an expression e
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under the runtime environment V as V ` e + v. The notion of
V ` C(e) + v means that evaluating the checking C(e) under
the runtime environment V successfully yields some value v,
instead of causing a constraint failure exception.

We list MTZK’s rules for generating constraints in Fig. 5.
Overall, these rules facilitate generating the expression e in
�(e) that should lead to an SAT output during execution. C-
EQ and C-NLT state that for a variable x whose value is
v according to the runtime environment V , the expressions
x == v and ¬(x < v) should be true. C-MAX leverages the
type information and states that the value of a variable x should
not exceed the maximum value of its type. C-TAUT is based
on the tautology that the expression x == x⇥1 should always
be true. C-AND and C-OR provide methods for expression
composition. C-AND combines two true expressions e1 and e2,
and constructs a new true expression e1^e2. C-OR is based on
the intuition that in order for an OR expression to be true, only
one of the two expressions needs to be true. Hence, we can
combine a true expression e1 and another randomly generated
one e2 to form a true OR expression e1 _ e2. To clarify, the
rules in Fig. 5 are not exhaustive; in our implementation, some
rules (e.g., C-TAUT) can be initialized into several variants,
with different operators or operands. We omit details for brevity.

Fig. 6 illustrates an example of generating constraints for a
ZK program. Overall, it is challenging to obtain the satisfiability
result for arbitrary constraints in a high-level ZK program,
which may require symbolic execution and constraint-solving
techniques [17]. For instance, the control/data flow in Fig. 6
makes it non-trivial to reason about constraint satisfiability.
However, with the rules in Fig. 5, we can automatically generate
constraints that are guaranteed to be satisfiable, thus acting as
a ground truth for the compilation correctness. MRSIM inserts
constraints (the assert statements at lines 6, 9, and 12) into the
source program. The constraints at line 6 and 9 are constructed
with C-MAX and C-TAUT, respectively. Line 12 shows an
example of forming more complex constraints by combining
multiple rules. It first constructs two constraints with C-EQ and
C-NLT with the profiled value of x (76). The two constraints
are further combined with C-AND. Since all the constraints
are constructed to be satisfiable, the compiled program should
yield “SAT”; otherwise, it indicates a compiler bug.

D. MRIVM : Information Visibility Mutation

Motivation. One of the key usages of ZK protocols, as the
name “zero-knowledge” suggests, is to preserve privacy. It is
critical to avoid private information being leaked to unintended
parties while also allowing necessary public information to be
readily available to support program execution. For instance,
in a token mining application, different participants maintain
two separate sets of tokens: public tokens, whose total amount
can be visible to other participants, and private tokens, which
should only be visible to the token owner [2].

In typical ZK programs, private and public variables
are annotated with private and public types, respectively.
Overall, information visibility imposes a major influence on the
compilation pipeline: during the frontend analysis phase, ZK
compilers need to perform visibility propagation (e.g., using
taint analysis) to decide the visibility of all variables, including
the ones that are transitively reachable from others [66], [91].

�;V ` C(e) + v

V (x) = v

�;V ` C(x == v) + v0
C-EQ

V (x) = v

�;V ` C(¬(x < v)) + v0
C-NLT

�(x) = {⌫ : ' | ⌫ : ✏}
�;V ` C(x  MAX(')) + v

C-MAX

�(x) = {⌫ : ' | ⌫ : ✏}
' 2 {int, uint, field}
�;V ` C(x == x⇥ 1) + v

C-TAUT

�;V ` C(e1) + v1
�;V ` C(e2) + v2

�;V ` C(e1 ^ e2) + v
C-AND

�;V ` C(e1) + v

�;V ` C(e1 _ e2) + v0
C-OR

Fig. 5: Selected rules for generating constraints.

fn foo() {
let mut x = 81;
for i in 1..10
if x % i == 0 {

x += 1;
assert(x <= INT_MAX) // C-MAX

} else {
x -= 1;
assert(x == x * 1) // C-TAUT

}
// C-EQ C-AND C-NLT
assert(x == 76 && !(x < 76))

}

1
2
3
4
5
6
7
8
9

10
11
12
13

Fig. 6: An example of inserting constraints with MRSIM .

In the backend lowering phase, private data computations are
mapped to operations involving cryptographic primitives, thus
principally preventing information leakage from the verifier; in
contrast, public data are computed in a mundane way [91]. Thus,
by performing the information visibility mutation (MRIVM ),
we anticipate effectively stress-testing the ZK compilers’ ability
to correctly compile and optimize private and public data flows.

Implementation Challenge. Our observation shows that in-
troducing more and complex interleaving between private and
public data flows can increase the stress on ZK compilers.
To this end, one may wonder about the possibility of directly
mutating the visibility annotations (public vs. private) of local
variables declared in a ZK program. However, we notice that ZK
compilers do not allow users to directly specify the visibility of
those local variables, as their visibility must be coherent with the
visibility of variables they depend on (e.g., public/private inputs).
Thus, directly mutating local variable visibility is infeasible.

Input Extraction-Based Visibility Mutation. It is clear that the
visibility of a local variable should not change unless all of its
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fn foo() {
 let mut x = 81;
 for i in 1..10
  if x % i == 0 {
   x += 1;
  } else {
   x -= 1;
  }
}

1
2
3
4
5
6
7
8
9

(a) Original program with com-
plex data flows.

fn foo(public u, private w) {
 let mut x = 81;
 for i in 1..10
  if x % i == u { // 0 -> u
   x += 1;
  } else {
   x -= w;       // 1 -> w
  }
}

1
2
3
4
5
6
7
8
9

(b) Mutated program after extracting
variables u, w as inputs.

Fig. 7: An example of information visibility mutation.

dependencies are simultaneously changed. This is challenging
to achieve; we tentatively explored designing backward, static
taint analysis to comprehensively track the dependencies of
a local variable. We find that this approach is hard to scale
and costly, mainly because we need to perform such a static
analysis each time we mutate the visibility of a local variable.

Hence, we instead propose directly introducing extra pro-
gram inputs to assist in changing the visibility of the local
variables. Note that in this case, ZK compilers are forced
to perform extra visibility propagation (conceptually similar
to taint analysis) to decide the visibility of variables that are
transitively reachable from the newly introduced program inputs.
Formally, given a randomly selected expression e in the ZK
program, MRIVM introduces a new variable x to replace e:

� ` e : {⌫ : ' | ⌫ : ✏} V ` e + v

e[e 7! x] I = I [ {x : {⌫ : ' | ⌫ : ✏0}} I(x) = v

, where we use I to represent the set of program inputs. The
basic type ' of x is the same as e, and the visibility type ✏0

of x is randomly chosen to be either public or private. The
input x is set to hold the same value as e during runtime.3
Our intuition is that the more program inputs we introduce,
the higher the chance that we can influence the visibility of
the local variables (see below for an example). Note that the
programs generated from the random program generator and
MRSIM do not contain any program inputs, and hence, we do
not need to consider mutating the visibility of existing program
inputs. We will evaluate the effectiveness of this strategy in
Section VII-C.

Fig. 7 gives an example of MRIVM . Fig. 7a shows the
program before mutation. We omit the constraints inserted
by MRSIM for brevity. The function foo receives no inputs
(we do not generate program inputs in the random program
generation and the MRSIM mutation stages). It is clear that
the visibility of the local variable x is public because there is
no private information in the program. In order to increase the
complexity of the data flows, we introduce two new inputs u
and w to the program, where the visibilities of the two inputs
are randomly selected (u is public and w is private in this case).
We randomly replace expressions in the original program with
the newly introduced inputs and obtain the mutated program
in Fig. 7b. In particular, we will replace constant expressions

3By doing so, we ensure that the constraints generated in the MRSIM
mutation stage are still satisfiable. In addition, the value of e is unique since
the program after the MRSIM mutation does not contain any program inputs.

TABLE I: Key hyper-parameters of MTZK.

Hyper-parameter Default Value

Max #nested blocks 5
Max for-loop iterations 3
Max #statements 10
Max expression depth 2

Pr(for-loops) 0.2
Pr(if-statements) 0.2
Pr(assignments) 0.3

TABLE II: Overview of the evaluated ZK compilers.

Compiler Commit ZK Protocols Application

ZoKrates c7e4e2 (Sep 19) SNARKs [51], [27], [52] NightFall [13], [14]
Noir 91efe4 (Aug 30) PLONK [44] Aztec [9]
Cairo 0f0b37 (Oct 12) STARKs [11] Starknet [96]
Leo 9c20f4 (Sep 22) SNARKs [51] Aleo [3]

in the if-condition and the right-hand side of the assignment
statement because those expressions are more likely to influence
the data and control flow analysis for visibility propagation.
After random substitution, the visibility analysis of x is much
more complex than the original one, because x now depends
on the public input u through indirect control-flow synergy
effects through the for-loop at line 3 and an if-statement at line
4, while it is also influenced by a direct data assignment from
a private input w at line 7. By random input substitution, we
can effectively increase the complexity of the privacy-related
control and data flows, thus stress-testing the ZK compiler.

VI. IMPLEMENTATION AND EXPERIMENT SETUP

Implementation. MTZK is implemented in about 3K LOC
of Python code [110]. We allow users to configure seed
generation through hyper-parameters, including the maximum
number of statements and the probability of generating language
features. We list representative hyper-parameters and their
default values in Table I. The hyper-parameters we use during
the experiment are also given in the artifact [110] to ensure the
reproducibility of our results. The default values of these hyper-
parameters are chosen based on our experience in writing ZK
programs; we intentionally avoid excessively long compilation
and execution time while also offering testing inputs with
reasonable complexity. Also, we note that the default values
of these hyper-parameters may not necessarily be optimal, and
we recommend that users configure them to suit their needs
better in practice.

Accommodating Different ZK DSLs. Our proposed IR aims
to provide a unified representation of common features of
mainstream ZK DSLs. With extra “glue code,” the IR can
be easily translated into the concrete syntax of the tested
DSLs during the seed generation phase. We are also aware that
different ZK DSLs may have unique features and requirements
for the generated programs. For instance, the Noir DSL [64]
does not support comparison between finite field numbers,
while the ZoKrates DSL [105] can support such comparison
with certain restrictions. We further provide generation configu-
rations, e.g., allow field comparison, to accommodate the
needs of different ZK DSLs.
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TABLE III: Statistics of testing inputs.

Target ZoKrates Noir Cairo Leo

Avg. #Operations 130 247 302 122
Max #Operations 1,359 1,928 2,500 1,120
Avg. #EQC Gates 1,116 1,024 2,421 860
Max #EQC Gates 20,114 7,892 19,022 44,575

ZK compilers. We carefully review existing ZK compilers and
choose the four most popular, easy-to-use, and well-maintained
ZK compilers for our evaluation. We choose ZoKrates [104],
Noir [64], Cairo [21], and Leo [4] as our testing targets. The
details of the four testing targets are listed in Table II. All of
the four compilers are industry-level ZK compilers that are
widely used in real-world applications. For instance, ZoKrates
has been used in NightFall [13], [14] to transfer tokens on the
Ethereum blockchain; Noir is the default compiler in Aztec [9]
with over 100M$ investment [1]. The compilers are also varied
in their supported ZK protocols, covering SNARKs, STARKs,
and PLONK.

Statistics of Testing Inputs. For each of our testing targets,
we first generate 10K source programs, then mutate each with
MRSIM and MRIVM , to obtain two mutants. As such, we have
30K testing inputs in total for each of our testing targets. We
measure the maximum and average number of operations (e.g.,
additions and multiplications) in the testing inputs. We select
the number of operations as the metric because ZK compilers
typically compile the source programs into circuits, and the
number of operations in the source programs is highly correlated
with the complexity of the compiled circuits. We use the circuit
inspection tool shipped by each compiler to measure the #EQC
gates or the number of constraints in EQCs, depending on
the EQC format and the utilities of EQC inspection tools.
The statistics are in Table III. In general, a larger number of
operations and constraints indicate a higher complexity of the
testing inputs. We find that our testing inputs typically contain
hundreds to thousands of operations, reflecting the complexity
of our inputs, with the maximum number of operations reaching
2,500. The compiler-generated circuits are also highly complex
and diverse, whose size ranges from a few hundred to dozens of
thousands of gates. Overall, the statistics show that our testing
inputs are highly diverse and complicated.

VII. EVALUATION

We aim to answer the following research questions (RQs):
RQ1: Can MTZK effectively and efficiently uncover errors in
ZK compilers? RQ2: What root causes led to the failures of
the tested ZK compilers? RQ3: How does each of the three
testing stages contribute to error detection? RQ4: What are
the potential security consequences of the uncovered compiler
bugs?

A. RQ1: Testing Efficiency and Effectiveness

Testing Efficiency. All experiments are conducted on an Ubuntu
22.04 LTS server shipped with a 64-core Intel(R) Xeon(R)
6444Y CPU and 256G RAM. We empirically set the timeout to
a sufficiently large value of 30 seconds (measured in real time).
We use 32 threads to run MTZK in parallel. ZK compilers

TABLE IV: Efficiency of MTZK.

Target ZoKrates Noir Cairo Leo

Total testing time 8 hr 115 hr 3 hr 4 hr
Gen. & mut. time 105 sec 220 sec 166 sec 241 sec
Time to find the first bug 6 min 30 min 13 min 2 min
Avg. #bugs per hour 0.9 0.06 0.6 0.5

TABLE V: Discovered compilation failures and logic errors.

Testing Target ZoKrates Noir Cairo Leo Total

#Comp. Failures 1,089 3,747 119 1,761 6,716
#Logic Errors 1,504 962 675 250 3,391

Total #Errors 2,593 4,709 794 2,011 10,107

often launch multiple threads to compile and execute testing
inputs, and therefore, we sum up the time spent in all the
threads with the standard Linux utility time.

The statistics regarding the testing time of MTZK are
shown in Table IV. The reported time is the sum of time
spent on all threads. Overall, the testing input generation and
mutation (“Gen. & mut. time”) takes less than five minutes,
while the total testing time takes several CPU hours to days,
which is mostly spent on compiling, proving, and verifying
ZK circuits. The significant time cost of ZK compilations is
primarily due to the complex compilation pipeline involving
extensive optimizations and transformations across different
compiler IR layers. Also, proving and verifying ZK proofs is
computationally expensive, as it often requires a large number
of math operations, e.g., elliptic curve evaluations. As such,
ZK programs are often much slower than normal programs
(also justifying the need to continuously develop dedicated ZK
compilers). The comparatively higher testing time on the Noir
compiler can be attributed to its use of a different ZK protocol
(PLONK), which has a higher cost of proving the circuits [44].
Thanks to parallelism, the real time to execute all testing inputs
on Noir is within four hours.

MTZK is speedy at finding bugs. It finds the first bug within
2 to 30 minutes, demonstrating its efficiency in bug detection.
During the entire testing campaign, MTZK discovers 0.5 bugs
per hour across four compilers on average. MTZK has a lower
bug discovery rate over the Noir compiler than the other three
compilers due to Noir’s high circuit proving overhead. The
efficiency of MTZK mainly comes from its effective test case
generation pipeline, which generates diverse and complex ZK
programs (see Table III) that can stress-test the compilers. As
discussed in Section IV-C, MTZK is a testing-based method.
In line with other testing tools, MTZK does not guarantee that
all bugs or a given specific bug will be found. Nonetheless,
MTZK is efficient and can uncover bugs in ZK compilers in a
timely manner. Also, as shown later in Section VII-B, MTZK
offers nearly no false positives and uncovers error-triggering
inputs that are helpful for developers to debug and patch bugs.

Discovered Errors. We report the number of discovered errors
in Table V. Overall, MTZK finds a large number of errors
in all of our testing targets, with hundreds to thousands of
errors in each of the four compilers. We further break down
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Fig. 8: Line coverage trend of the four ZK compilers.

all the error-triggering inputs into compilation failures and
logic errors. MTZK shows promising abilities in detecting
both compilation failures and logic errors and is able to detect
hundreds to thousands of both types of errors in all settings.
MTZK typically uncovers more compilation failures than logic
errors, which is expected because compilation failures are
relatively easier to trigger. We find that compilation failures are
normally caused by incorrect handling of the input programs,
while logic errors are generally induced by subtle buggy
optimizations and transformations. For instance, some logic
errors in ZoKrates are only triggered when the value of a
variable does not change in two consecutive iterations of a
loop. Such error-triggering conditions are strict and hard to
meet. In contrast, a compilation failure is triggered when the
private inputs of a ZK program exceed the misconfigured bit
width of the compiler. Such observation highlights the difficulty
of detecting logic errors in ZK compilers. Still, MTZK detects
over 3K logic errors in total, demonstrating its effectiveness.

Code Coverage. We launch the testing campaign for 24 hours
and measure the line coverage of the tested ZK compilers.
We exclude components that are not closely related to ZK
compilation, e.g., the utility functions and debugging code.
The coverage trend with regard to testing time is shown
in Fig. 8. After 24 hours, MTZK achieves 39.7%, 40.1%,
38.0%, and 55.2% line coverage on the Leo, ZoKrates, Cairo,
and Noir compilers, respectively. The coverage achieved on
ZK compilers is already high, given that ZK compilers are
developed with dozens of thousands of lines of code [105], [19]
and contain both general-purpose and ZK-specific optimizations.
The coverage on the Cairo compiler is relatively lower and
only increases by 1.5% after 24 hours of testing. This can be
attributed to the fact that the Cairo compiler has the largest code
base among the four compilers, making it difficult to thoroughly
test the compiler. Still, MTZK is seen to be successful in
uncovering nearly 800 error-triggering inputs in the Cairo
compiler.

Comparison with Baselines. MTZK is the first to system-
atically test ZK compilers, and we find no direct counterpart
for comparison. Nevertheless, given the technical similarity
between MTZK and traditional C compiler testing, we compare
MTZK with two mainstream testing techniques: Random
Program Generation (RPG) and EMI. RPG is a representative
testing method to uncover compilation failures, while EMI
employs exquisitely designed testing oracles to detect logic
bugs in compilers. Both methods have uncovered thousands of
bugs in production compilers [114], [98], [67]. We implemented

TABLE VI: Testing results of RPG and EMI.

Target RPG EMI

#Err. Inp. #Bugs #Err. Inp. #Bugs

ZoKrates 0 0 0 0
Noir 605 2 876 2
Cairo 598 2 22 2
Leo 0 0 0 0

Total 1,203 4 898 4

both for ZK compilers. For EMI, we implemented the two most
representative EMI mutations, i.e., dead code insertion [67]
and live code mutation [98]. Since ZK programs have a unique
execution paradigm enforcing simultaneous execution of both
branches in an if-statement, dead code insertion requires special
handling. As a workaround, we use ternary expressions to
simulate dead code insertion of EMI.

We set up the comparison experiment with the same setting
in Section VI for both RPG and EMI. The experiment results
are shown in Table VI. Both methods uncover significantly
fewer error-triggering inputs than MTZK. They uncover four
bugs each, while MTZK uncovers 21 bugs in total. All the
bugs uncovered by RPG and EMI are compilation failures. The
inability of RPG and EMI to uncover logic bugs is due to
the lack of constraints in their generated programs. Without
constraints, a ZK program will trivially pass the verification
and is not helpful in detecting logic bugs. Also, compiling
ZK programs without constraints will be much easier, thus not
stress-testing ZK compiler optimizations and undermining the
overall bug detection capability. The inability of RPG and EMI
to generate ZK-specific features highlights the need for the
two ZK-oriented MRs of MTZK. By generating sophisticated
constraints and data visibility, MTZK has a higher effectiveness
in terms of overall bug discovery and is able to uncover both
compilation failures and logic errors.

Answer to RQ1: MTZK successfully uncovers 10K error-
triggering inputs in industry-level ZK compilers with high
efficiency and good line coverage.

B. RQ2: Bug Characteristics and Root Causes

Error Deduplication and Bug Analysis. To understand the root
causes of the uncovered error-triggering inputs, we manually
debug and analyze the tested ZK compilers. Since multiple
error-triggering inputs may be due to the same underlying
bug, we first group the error-triggering inputs according to
their erroneous behaviors and stages, and then analyze the root
causes of each group to ensure the uniqueness of the bugs.
In total, we obtain 34 groups of error-triggering inputs. Two
authors with expertise in compiler design and ZK systems
perform the manual analysis independently on all the groups
and then discuss together to reach an agreement on the identified
root causes. This step is costly, and it takes more than half a
month to finish. We then report all of our findings to the ZK
compiler developers to seek further confirmation.

False Positive Analysis. During the root cause analysis, we
find several false positives (FPs), i.e., testing inputs that trigger
errors in the compiler but are not due to bugs. Overall, we
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find less than 3% of FPs in the total error-triggering inputs.
FPs are typically caused by early timeout (recall that we set
the timeout to 30 seconds, but some testing inputs may take
longer to finish). We also find a few FPs caused by insufficient
stack size since our seed program generator also occupies part
of the stack space. However, although these testing inputs
do not uncover logic errors, the excessively long compilation
and execution time or large stack size consumption could also
be a problem for compilers; in certain scenarios, overly long
processing time or resource consumption may cause DoS or
so-called performance bugs [116], [61]; we leave it as future
work to investigate such issues.

TABLE VII: Bug status.

Target ZoKrates Noir Cairo Leo Total

Total Bugs 7 7 5 2 21
Confirmed Bugs 4 7 5 0 16
Fixed Bugs 3 7 5 0 15

Status and Distribution of Uncovered Bugs. Table VII shows
the status of all the bugs we discovered. After deduplicating the
10K error-triggering inputs, we find 21 bugs in total. Through
rigorous cross-checking from two experts and developer confir-
mation, all 21 bugs are distinct and are confirmed to be real
bugs. ZoKrates and Noir have the highest number of bugs, with
7 bugs each. We have reported all the 21 bugs to the developers
of the corresponding ZK compilers. The developers are highly
responsive to our findings and immediately confirmed 16 of
the reported bugs after receiving our reports. Moreover, 15 of
16 confirmed bugs have been fixed by the time of writing. The
developers have assigned the rest of the bugs to the respective
code writers for further investigation. We also characterize the
distribution of our uncovered bugs in terms of the compilation
pipeline. The distribution is illustrated in Table VIII. Overall,
the bugs span across the whole compilation pipeline. The
frontend and the circuit generation phases are seen to contain
the highest number of bugs. The frontend performs a diverse
set of optimizations, such as dead code elimination, whereas
the circuit generation converts the low-level IR into EQCs.
Thus, those two phases are highly complex and are prone to
bugs.

TABLE VIII: Bug distribution in the compilation pipeline.

Target ZoKrates Noir Cairo Leo Total

Frontend 2 4 2 2 10
Circuit Opt 0 3 2 0 5
EQC Gen 5 0 1 0 6

TABLE IX: Lines of code changes to fix bugs.

Target ZoKrates Noir Cairo Leo Agg.

Avg. Patch Lines 451 522 71 NA 345
Max Patch Lines 858 1,489 106 NA 1,489

Bug Patch Complexity. We report the bug-fixing efforts in
terms of the number of changed lines in Table IX. The “Agg.”

column means the average (maximum) number of lines of code
changes across all the ZK compilers. Patching our uncovered
bugs is seen to be a challenging task. In ZoKrates and Noir,
the average lines of bug patches are around 500, with the
maximum reaching 1,489. In addition, we find that all the
compiler bugs require at least dozens of lines to fix. The level
of patch complexity reflects the sophistication of ZK compilers.
ZK compilers are typically highly complex, with extensive
frontend and backend optimizations and transformations. As
such, a seemingly small bug may be due to the synergy of
multiple components in the compilation pipeline. For instance,
a bug in the ZoKrates compiler can be triggered by one line of
code. However, its bug fix patch takes over 300 lines of code
to implement and spans across the frontend transformation and
the circuit lowering components. The complexity of the bug
patches also reflects the high quality of our uncovered bugs.

fn main() {
 let a: u4 = -1;
 assert(a == 15);
}

1
2
3
4

Fig. 9: Bug1 example code.

Case Study. We present
two representative bug ex-
amples, One of which is a
logic error that leads to the
rejection of a valid proof,
while the other is a compiler
crash. We also illustrate the
root causes of the two bugs,
respectively.

Bug1: Incorrect Handling of Underflow. Fig. 9 presents a code
snippet triggering a logic bug in the Noir compiler. Unlike
traditional C programs, in which the behavior of integer
underflow is undefined, ZK languages typically specify that after
an integer underflow, the integer value becomes the maximum
value of the integer type. In Fig. 9, the program first declares
a 4-bit unsigned integer variable a at line 2. The variable
a is assigned with -1, which, as a result, incurs an integer
underflow. According to the semantics specification, the value
of a should be 15. Thus, the constraint in line 3 asserting a is 15
should be satisfied (SAT). However, the proof is rejected during
verification, indicating that the constraint in line 3 is unsatisfied
(UNSAT). Such an issue is caused by a regression bug in the
Single Static Assignment (SSA) transformation, and the value
of a becomes the maximum value of the type field after the
underflow. The Noir developer marks this as a high-priority
bug [93], [63], and a patch is immediately released.

Bug2: Erroneous Active Variable Analysis. Fig. 10 illustrates
a bug in the Cairo compiler that causes a compiler crash. The
source program declares a mutable variable x and initializes
it to 1 in the first line. Since x > 1 is true, the body of the
if-statement at line 3 will be executed, and so will the loop at
line 4. It can be easily checked that the if-condition at line 5
holds, and the loop will exit to enter another if-statement at
line 11. Because x is still 1, the if-condition at line 11 will be
true, and the constraint checking in line 12 asserting that x ==
1 should be SAT. Ideally, the execution of the generated circuit
should yield an SAT result. However, the compiler crashes
with an error message complaining about illegal access to a
memory region. We find that the compiler crashes because of
the erroneous active variable analysis. The compiler incorrectly
marks x as an inactive variable after the loop at line 4, and thus
the placeholder for x is not allocated in the circuit. As such, the
constraint in line 12 asserting x == 1 leads to illegal memory
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TABLE X: #Bugs when applying testing stages separately.

Target Prog Gen. MRSIM MRIV M Total

ZoKrates 0 1 2 3
Noir 2 2 2 6
Cairo 2 1 NA 3
Leo 0 1 1 2

Total 4 5 5 14

TABLE XI: #Bugs when using three testing stages cumulatively.

Target ZoKrates Noir Cairo Leo Total

Prog. Gen. 0 2 2 0 4
Prog. Gen.+MRSIM 1 4 5 1 11
Prog. Gen.+MRSIM+MRIV M 7 7 5 2 21

access. Bug2 can only be triggered from synergy effects of the
loop and three if-statements, thus is challenging to detect.

Answer to RQ2: MTZK successfully uncovers 21 bugs, out
of which 11 have been fixed. Such observation demonstrates
the effectiveness of MTZK in finding ZK compiler bugs.

C. RQ3: Effectiveness of Each Testing Stage

To investigate the effectiveness of each testing stage, we
apply each of the three testing stages separately. Table X shows
the number of bugs discovered by each of the three testing
stages. For MRSIM and MRIVM , we apply the corresponding
mutations towards seed programs generated by random program
generation (“Prog Gen.”). For a fair comparison, we avoid seed
programs that already trigger errors before the mutation. We
do not perform information visibility mutation (MRIVM ) on
the Cairo compiler because the compiler does not support
information visibility annotations. Rather, privacy-related oper-
ations are handled by programmers in the upper-level ZK-based
applications, such as Starknet [96], that use the Cairo compiler.
Thus, we mark the corresponding entry as “NA” in Table X.

All three testing stages uncover a non-trivial number of bugs
in the ZK compilers. Also, the three stages find a comparable
number of bugs when applied individually. However, it does not
necessarily mean that the three stages are equally effective in
uncovering bugs. Random program generation can only uncover
compilation failures since it does not generate constraints, which
are essential to capture logic bugs in ZK compilers. The three
testing phases, when used individually, uncover fewer bugs than
when combined together (14 vs. 21). By inspecting additional
bugs found by combining the three stages, we find that MRSIM

and MRIVM achieve a plausible synergistic effect: without
generating diverse and complex constraints from MRSIM ,
mutating variable visibility alone (as done by MRIVM ) does
not help to stress-test compilation for constraints; and without
mutating variable visibility, MRSIM alone cannot effectively
alter the compiled EQCs.

We further show the combined effectiveness when using
three testing stages cumulatively in Table XI. We find that
adding more stages in the testing pipeline does not necessarily
lead to a linear increase in the number of uncovered bugs:
combining all the three stages finds nearly two times the

TABLE XII: Potential exploitation types for uncovered bugs.

Exploitation Denial-of- Malicious Unapparent
Type Service User Inputs Exploitations

Bug Count 11 6 6

number of bugs found by using only the first two stages. This
observation suggests that the three stages are complementary
to each other and can be used together to achieve a synergistic
effect in practice.

Answer to RQ3: All three testing stages are effective in
uncovering errors in ZK compilers, and we recommend
using all of them for a “synergistic effect” in practice.

D. RQ4: Security Implications of Bugs

Threat Model. We consider three threat models in our hazard
analysis. Each of the three threat models considers a different
type of adversary to exploit the uncovered bugs. We now
introduce the threat model for each of the exploitation types.

Malicious User Inputs. This type of attack assumes that a
malicious user learns that a target ZK compiler contains a
critical logic bug, and confirms that the ZK application will be
ill-compiled because of such a bug. By deliberately crafting
malicious inputs, the attacker can construct proofs that should
not be accepted by a correct verifier, but instead pass the
verification due to the presence of the compiler bug. By cheating
the ZK application, the user can gain unwanted privileges
in an identity verification system [24], steal money by over-
withdrawing from a bank or blockchain [57], or counterfeit a
digital asset in a digital asset system [8], etc.

Denial-of-Service (DoS). This type of attack assumes that
developers of ZK applications can send their source code written
in ZK DSL to online deployment service providers [101], who
will compile the source code with ZK compilers in the cloud.
Due to the compiler bug, the compilation crashes the deployed
service from the service providers, thus leading to denial-of-
service attacks.

Hazard Analysis. Two authors of this paper first independently
analyze the security consequences of each bug and construct
exploits, then discuss together to reach an agreement. The
bugs are categorized into three types according to their
security implications, as shown in Table XII. The “Unapparent
Exploitations” refers to the fact that the bug has no clear
security consequences. The sum of all categories exceeds the
total number of bugs because two of the “Malicious User
Inputs” bugs can also lead to DoS attacks under certain
conditions. For instance, one such bug in the Noir compiler
can lead to stack overflow with complex control/data flow.
In short, a large portion of the uncovered bugs are seen to
have harmful consequences, especially the more severe ones
like malicious user inputs. We further classify the six bugs in
the “Malicious User Inputs” category into two types according
to the exploitation methods. The first type requires inserting
backdoors into the ZK applications, while the second type does
not require any modification to the ZK applications. Three of
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fn main() {
 let mut x: u16 = 1;
 if (x > 0) {
  loop {
   if x < 2 {
    break;
   }
   x += 1;
  };
 }
 if (x < 3 && x != 0) {
  assert(x == 1);// crash
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Fig. 10: Bug2: Crash due to
synergy of loop (line 4) with
3 if-statements (line 3, 5, 11).

fn low_income(pwd, salary){
 let m = 12;
 let avg_s = salary / m;

 // Complex data flow
 for ...
 // Stealthily set m to 0
  
 // Backdoor
 if (pwd == MAGIC)
  avg_s = salary / m;

 assert(avg_s < 100);
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Fig. 11: Backdoor attacking
example where avg s will be
0 when line 11 is triggered.

fn withdraw(account: &mut field, amount: field) {
 let savings: field = read_savings(account);
 assert(savings >= amount);
 ... // Withdraw the money
}

1
2
3
4
5

Fig. 12: An example of malicious user inputs in a banking
APP. When amount is set to the maximum value of the type
field, the constraint in line 3 will always be satisfied.

the six bugs are of the first type, and the other three are of the
second. We now give an example for each of the two types.4

Backdoor Exploitation of Divide-by-Zero. Fig. 11 shows a
backdoor exploiting the divide-by-zero bug in the compiler.
Assume a malicious developer can develop or modify the ZK
application source code, e.g., by being hired as an outsourcing
contributor or by committing code to the public repository.5
The ZK application in Fig. 11 checks whether a person is a low-
incomer. It takes the password pwd and the yearly salary salary
of the checked person (line 1), and the verification will output
SAT if the average monthly salary is less than 100 (line 13).A
malicious developer crafts a division statement at line 11 that
is disguised as a normal average calculation. The denominator
m is secretly set to 0 through a (possibly obfuscated) complex
data flow. As such, executing line 11 will stealthily assign
avg s with 0. Such a statement is further guarded by an if-
statement at line 10 so that the backdoor can only be triggered
when the password is set to a pre-defined value (i.e., MAGIC)
that is only known to the developer. After the application
is delivered to the contractor, e.g., the government, and the
malicious developer becomes a user of the application, and
can pass the low-incomer checking by triggering the backdoor
with the pre-defined password MAGIC.

Bypassing Comparision Constraints. Fig. 12 shows an exploita-
tion of an ill-compiled comparison constraint. A banking

4We view it as not an appropriate time to disclose the details of the six
bugs in this paper, as their security concerns have not yet been fully resolved
by the time of writing. Fixing those bugs requires significant changes to the
compiler, and developers are still doing internal testing on their bug patches.
We will release all bug details on [110] once all security issues are resolved.

5This assumption is reasonably achievable in practice, as major open-source
ZKP applications like Polygon [88] accept community contributions. Attackers
may stealthily insert backdoors into the committed code, as in the case of the
XZ attack [43].

application uses ZK to verify whether a user has enough savings
to withdraw a certain amount of money. The application first
reads the current savings of the user account (line 2), and
checks whether the requested withdrawal amount is within the
savings (line 3). However, due to a compiler bug, the constraint
checking in line 3 is ill-compiled, and when amount is set to
the maximum value of the type field, the constraint checking
will always be satisfied. As such, it is indicated that the user
can withdraw any amount of money from the bank, even if the
user does not have enough savings.

Answer to RQ4: MTZK uncovers many bugs that can
lead to security consequences, including denial-of-service
attacks, and more severe attacks like malicious user inputs.

VIII. DISCUSSION

Limitations of Seed Quality. Our seed generation does not
cover all features of the ZK compilers under test. For instance,
we do not generate arrays and structs, and we do not consider
advanced variable ownership features such as borrowing and
references [18]. We hypothesize that arrays and structs may not
help much in finding bugs, as the compiler will flatten them into
a sequence of variables [81]. Considering advanced variable
ownership features in code generation can be challenging [99],
and not all ZK compilers support such features. We leave
improving seed generation as future work, and we believe the
current seed generation is sufficient to uncover a large number
of bugs in ZK compilers.

Alternative Testing Methods. Since there are many ZK
compilers in the industry and academia, one may question
the feasibility of launching a differential testing approach [85],
[56] by feeding identical inputs to different ZK compilers and
checking their output consistency. Despite the simplicity of
the idea, our preliminary study illustrates that such differential
testing settings can be problematic. The reasons are two-fold.

Different Requirements on the Input Program. Different ZK
compilers may have different requirements for their input
programs. For instance, the Noir compiler requires that the
input program cannot contain the comparison between finite
field numbers, while the ZoKrates compiler can support such
comparison when at least one of the operands is not a constant.
As a result, the same input program may be rejected by one
compiler but accepted by another compiler.

Different Runtime Behaviors. ZK compilers may use different
ZK protocols as the runtime backend. For instance, Cairo-
compiled programs are executed under the zk-STARKs protocol,
while Noir-compiled programs are executed under the PLONK
protocol. Different ZK protocols have incomparable semantics
modeling the same ZK program. As a simple example, the
elliptic curve for finite field arithmetic in the Cairo compiler is
different from that in Noir. As a result, even though the same
input program is executed with the same input under the two
compilers, the execution result will be different (but both are
technically correct) due to the distinct underlying ZK protocols.

Feedback-Driven Testing. MTZK does not use any feedback
to guide test case generation. Nonetheless, it is technically
feasible to extend MTZK with feedback-driven testing tech-
niques [71], [33]. We tentatively use the erroneous behaviors
and stages of the ZK compilers as feedback to guide the test case
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TABLE XIII: Bug finding capability with erroneous stages and
behaviors of ZK compilers as feedback.

Target Without Feedback With Feedback

#Err. Inp. #Bugs #Err. Inp. #Bugs

ZoKrates 2,593 7 2,581 7
Noir 4,709 7 6,068 8
Cairo 794 5 591 5
Leo 2,011 2 1,548 2

Total 10,107 21 10,788 22

generation process. If the triggered error by a testing program
has unseen behavior or is triggered by a different testing pipeline
stage, we put the program back into the queue and mutate it
further with two MRs. Table XIII compares the bug-finding
capability of MTZK with and without feedback. Feedback
guidance incurs negligible overhead and takes nearly identical
time to complete the testing process as without feedback.
In terms of the overall bug-finding capability, we observe a
slight improvement when using feedback. Feedback-guided
testing helps to uncover one more bug. The additional bug is a
compilation failure in the Noir compiler. With feedback, MTZK
shows comparable performance in finding error-triggering
inputs as without feedback. The number of error-triggering
inputs (“#Err. Inp.”) on the Cairo, Leo, and ZoKrates compilers
is slightly reduced with feedback, possibly due to that the
feedback guidance helps to generate dissimilar error-triggering
inputs. An exception is that more error-triggering inputs are
found in the Noir compiler, which may be attributed to the
additional bug found in the Noir compiler. Overall, the feedback
guidance is seen to have a limited impact on MTZK’s bug-
finding capability. Note that interested users can further explore
more advanced feedback-guidance strategies to improve the
efficiency of MTZK, and we have released MTZK [110] to
facilitate usage and extension.

IX. RELATED WORK

Fuzzing. Fuzzing primarily targets finding crashes or memory
vulnerabilities that cause obvious misbehavior. Fuzzing has been
applied to various critical software systems, including operating
system kernels [100], [39], [16], [29], web browsers [86], and
TLS libraries [38], [94]. Fuzzing has also been applied to novel
domains, such as physical simulators [112] and Reinforcement
Learning systems [84]. However, without a clear oracle to
determine the correctness of the output, fuzzing may not be
suitable for testing ZKP compilers.

Compiler Testing. Compilers are essential software tools for
translating programs written in high-level language to low-
level executables. Traditional compilers like GCC, LLVM have
been extensively tested, with thousands of bugs uncovered
to date [114], [73], [98], [69], [67], [77], [78]. Just-in-time
(JIT) compilers such as JVM and JavaScript engines have also
been the focus of the research community [58], [12], [72],
[50]. Other compilers like shader compilers, deep learning
compilers, and Multi-Party Computation (MPC) compilers
are fruitfully tested using metamorphic testing or differential
testing as well [32], [113], [111], [70], [79], [92], [74]. Besides
discovering correctness issues, testing is also applied to identify
performance issues in compilers [76], [102], [103]. Our work is

the first to systematically test ZK compilers using metamorphic
testing, with a focus on uncovering logic bugs.

Quality Assurance for ZK. Our work focuses on testing the
correctness of ZK compilers. Another line of work focuses on
finding bugs in ZK application programs. Circomspect [30] is
a static analyzer for linting common buggy patterns, such as
unused variables, in Circom programs. Picus [87], Ecne [35],
QED2 [83], and Soureshjani et al.’s work [95] aim at dis-
covering under-constrained circuits in ZKP programs. Wen et
al. [108] study common vulnerability patterns in ZKP circuits
and propose a static analysis framework for automatically
discovering those patterns. Furthermore, Liu et al. [75] propose
a statically typed language to formally specify and check
properties of ZK applications, and Coglio et al. [31] launch
verification towards snarkVM circuits. However, all of the
existing works only focus on bugs in the ZK applications. Even
if a ZK application were bug-free, bugs in the underlying ZK
compilers could still render the compiled application program
insecure.6 Some ZK compilers have explored verifying ZK
compilers [10], [41], [82], [28], yet the verification is only
performed partially on the compilation pipeline or over a subset
of language features, due to the high complexity of compiler
verification. Industrial ZK compilers (e.g., our tested compilers)
are never comprehensively verified by those formal approaches.
In contrast, MTZK tests ZK compilers in an end-to-end and
practical manner; its seeds cover many language features, and
it uncovers bugs from the whole pipeline of commercial ZK
compilers, whose findings are responsibly and promptly patched
by the developers. [40] and [36] assess the performance of ZK
compilers, but do not study their correctness. Moreover, the
benchmarking was done on a small set of programs. To the best
of our knowledge, our work is the first to deliver systematic
and automated testing towards the correctness of ZK compilers.

X. CONCLUSION

We present MTZK to test ZK compilers. MTZK consists
of two novel MRs and a comprehensive testing pipeline to
automatically generate and mutate ZK programs. Our evaluation
of four industry ZK compilers uncovers 21 bugs, 15 of which
have been fixed. We also perform a hazard analysis of the
uncovered bugs and show possible exploitations. MTZK is
useful for ZK compiler developers to test their compilers and
subsequently prevents security breaches in ZK systems.
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TABLE XIV: Bug comparison with existing works.

Existing Work #Compiler Bugs #Overlapping with MTZK

CODA [75] 0 NA
ZKAP [108] 0 NA
QED2 [83] 0 NA

TABLE XV: Invalid program causes and their corresponding
error message patterns.

Invalid Reason Error Message Pattern

Divide-by-zero “divisor of zero”
Modulo-by-zero “remainder of zero”
Integer overflow “add/sub/mul overflow”
Unconstraint inputs “unconstrained variables”

APPENDIX

A. Comparison of Bugs with Existing Works

To provide a fair and comprehensive comparison, at this
step, we carefully reviewed previous papers related to ZK circuit
bug hunting. At our best efforts and based on the information
provided in their papers, we try to deduce whether the flaws
they have reported are related to ZK compiler bugs, as a number
of their findings are not shipped with full details. Table XIV
shows the number of uncovered ZK compiler bugs in existing
works, as well as the number of overlapping bugs with MTZK.
In short, at our best efforts, we confirm that none of them have
found any ZK compiler bugs. The rationale behind this can be
attributed to their distinct design goal of detecting bugs in ZK
applications, rather than focusing on the ZK compiler itself.

B. Security, Privacy, and Ethical Concerns

MTZK is designed to test ZK compilers and uncover
logic bugs in the ZK compilers. We follow the principle of
responsible disclosure steps [20] recommended by the ZK
compiler community, which includes reporting through private
channels and giving the maintainers a reasonable time to fix
the bugs before making them public. We also open-source
MTZK to promote the reproducibility of this research work.
Our tool is, however, not designed for malicious purposes, such
as leveraging the discovered bugs to attack ZK systems. We
emphasize that if any security vulnerabilities are discovered
during the result reproduction process, they should be reported
to the maintainers of the ZK compilers.
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