
Be Careful of What You Embed: Demystifying
OLE Vulnerabilities

Yunpeng Tian†‡, Feng Dong†‡, Haoyi Liu†, Meng Xu§, Zhiniang Peng†¶∗, Zesen Ye¶, Shenghui Li†,
Xiapu Luo∥, and Haoyu Wang†

†Huazhong University of Science and Technology∗∗, §University of Waterloo
¶Sangfor Technologies Inc., ∥The Hong Kong Polytechnic University
†{siontian, dongfeng, liuhaoyi, lishenghui, haoyuwang}@hust.edu.cn

§meng.xu.cs@uwaterloo.ca, ¶{jiushigujiu, whhhitc}@gmail.com, ∥csxluo@comp.polyu.edu.hk

Abstract—Microsoft Office is a comprehensive suite of pro-
ductivity tools and Object Linking & Embedding (OLE) is a
specification that standardizes the linking and embedding of a
diverse set of objects across different applications. OLE facilitates
data interchange and streamlines user experience when dealing
with composite documents (e.g., an embedded Excel sheet in a
Word document). However, inherent security weaknesses within
the design of OLE present risks, as the design of OLE inherently
blurs the trust boundary between first-party and third-party
code, which may lead to unintended library loading and parsing
vulnerabilities which could be exploited by malicious actors.
Addressing this issue, this paper introduces OLExplore, a novel
tool designed for security assessment of Office OLE objects. With
an in-depth examination of historical OLE vulnerabilities, we
have identified three key categories of vulnerabilities and sub-
jected them to dynamic analysis and verification. Our evaluation
of various Windows operating system versions has led to the
discovery of 26 confirmed vulnerabilities, with 17 assigned CVE
numbers that all have remote code execution potential.

I. INTRODUCTION

Object Linking and Embedding (OLE), developed by Mi-
crosoft, is a proprietary technology that facilitates the inclusion
of a diverse set of objects within the same document. OLE
enables the creation of compound documents that host an
array of data types, allowing an amalgamation of text, audio,
graphics, spreadsheets, and various other application elements
into a single cohesive unit. For instance, an Excel worksheet
embedded in a Word document allows users to seamlessly
edit the embedded data through an in-place activation within
the process group of the Word application itself instead of
launching the Excel application.

Despite its widespread usage, the design of OLE inherently
harbors vulnerabilities as it blurs the trust boundary between

‡Both authors contributed equally to this research.
* is the corresponding author.
∗∗ Hubei Key Laboratory of Distributed System Security, Hubei Engi-

neering Research Center on Big Data Security, School of Cyber Science and
Engineering, Huazhong University of Science and Technology.

first-party code and third-party code in processing the same
document. In fact, a multitude of exploits based on OLE
vulnerabilities have been disclosed over the past few years
with a vast majority leading to arbitrary code execution [1],
[2]. Unsurprisingly, such exploits have been harvested by
Advanced Persistent Threat (APT) groups for phishing and
single-click attacks [3].

This paper is dedicated to the detection of vulnerabilities
in OLE objects—more specifically—embedded objects. To
the best of our knowledge, this is the first academic work
on analyzing OLE systematically for security weaknesses.
More importantly, we note that OLE could represent a typical
architecture for large and complex software bundles with
extensible functionalities (e.g., Office or super-apps [4] such
as WeChat and Alipay)—a type of software we call super
software (or superware for short). Therefore, we hope the
paper can provide a train of thought on finding bugs in closed-
source superware through a practical case study on OLE.

Superware is characterized by its architecture which com-
prises of a core host application for foundational operations
and a potentially unbounded list of dynamically loadable
modules for additional functionalities. While extensible and
agile, this architecture poses some alarming features that make
superware vulnerable:

1) Dynamic modules might be sourced from third-party
providers, and yet, they are loaded into the same memory
space shared with the host application (first-party) and other
loadable modules.

2) User input controls which dynamic module(s) to load. For
example, a spreadsheet object in a Word document dictates
the Excel-related modules to be loaded.

3) User input may include foreign content that can be serialized
and deserialized by an external module only. The host
application, on the other hand, conducts minimal checking
on the foreign content due to lack of semantics.

All these characteristics blur the trust boundary between first-
party and third-party code in superware, which enlarges the
attack surface and exacerbates consequences of an exploit.
At the same time, they make user input for superware more
powerful (and more complex) than it appears. Essentially, a
Word document is more like an interpreted script than just
static data from a language-theoretic security perspective [5].

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.230547
www.ndss-symposium.org

Recent years have witnessed an explosion of vulnerability
finding tools themed by fuzzing [6], [7], [8], [9], [10], sym-
bolic execution [11], [12], [13], and concolic execution [14],
[15], [16], [12]; including tools tailored to the Windows
platform on which many programs are proprietary [17], [18],
[19], [20], [21], [22], [23], [24], [25]. However, the closed-
source nature of superware like OLE rules out most tools that
require source code (e.g., whitebox fuzzing).

Greybox fuzzing, which does not strictly require source
code, is not very effective in the OLE case either. For
example, WinAFL [24], paired with DynamoRio [26], has
been successful in fuzzing Windows binaries. However, it en-
counters significant difficulties in handling complex software
like Office, for at least two reasons: 1) For formats that are
highly structured, blob mutation is often less effective, and
most random inputs fail at the sanity checking phase; and
2) DynamoRio’s support on applications with graphical user
interfaces is limited.

Extracting entry points via reverse engineering is possible
but impractical facing hundreds or potentially thousands of
OLEs available on the Windows system. Furthermore, each
OLE is unique in its data processing logic. Effective fuzzing of
an OLE module requires an extensive reverse engineering on
its input format—another scalability blocker. As a result, prior
fuzzing effort on Office has largely focused on file mutation
and generation [27], [28], [29] for the host application and
less on the loadable OLE modules.

Zooming out with an abstraction, the reasons why OLE-
related vulnerabilities are hard to find with conventional tools
might also apply to other superware. In particular:

1) The potentially unbounded list of loadable module candi-
dates implies that static analysis techniques are inherently
prone to incompleteness in code discovery.

2) Naive fuzzing via random mutation of the entire user input
(e.g., an entire .docx file) is futile while structured or type-
aware fuzzing [25] requires detailed specifications of input
format which are complex and hard to reverse engineer.

3) Loadable modules can be difficult to isolate for execution
(e.g., fuzzing with harness [30]), as running a loadable mod-
ule typically requires an integrated environment, including
the host application and potentially other modules.

4) Other complications of superware, such as the closed-
source nature and scarcity of internal documentation further
amplify the difficulty of conducting thorough analyses.

The significance of these challenges is exemplified by Office
and OLE. Hence, investigating security weaknesses via the
lens of OLE serves as a case study for how to find vulnera-
bilities practically and systematically in superware.

Overview of OLEXPLORE. OLEXPLORE is our attempt to
find OLE-related vulnerabilities systematically. OLEXPLORE
consists of five components:
• A high-level input layout that loosely maps regions in

user input to their handlers (e.g., the host application or
dynamically loaded modules). Obtaining this layout requires
a modest degree of reverse engineering on Office.

• A misaligned feature that enables the loading and initial-
ization of OLE components without GUI interactions. This
avoids the need for reverse engineering and simulating GUI
interactions for each OLE component.

• A micro-snapshot fuzzer that can efficiently fuzz each OLE
component without reverse engineering the underlying input
format required by each OLE component.

• A bug oracle that scrutinizes the module loading process
and memory operations, vigilantly searching for indications
of vulnerabilities. The spectrum of monitored vulnerabilities
is meticulously curated, informed by the OLE attack surface
and a compendium of historical CVE records.

• A vulnerability analyzer that assesses the severity of iden-
tified vulnerabilities reported by the bug oracle. We use
a disguised RTF as the carrier for malicious attacks and
bypass the Protected View Mode [31] by a separate crash-
inducing bug. This is a weaponization technique that has
not been previously disclosed to the public.

While the design principle of OLEXPLORE is universal, as
detailed discussions in Section VI will show, porting it to other
superware (e.g., Alipay or WeChat) still requires manual and
even reverse engineering efforts, including:
• Identifying a feature that triggers the loading and execution

of loadable modules without GUI.
• Identifying the input-consuming function used for chunk-

by-chunk input processing (for micro-snapshot fuzzing).
The bug oracle developed in OLEXPLORE can be reused

across different superwares, as the principles of scrutinizing
the module loading process and memory operations, and
vigilantly searching for indications of vulnerabilities, are
commonly applicable in these large software systems. This
facilitates some level of automation, reducing the need for
extensive manual customization.
Summary. OLEXPLORE makes the following contributions:
• We conducted an exhaustive survey on all publicly disclosed

OLE-related vulnerabilities and delved into the fundamental
causes of these flaws. Building on the outcomes of our
investigation, we identified current attack surfaces for OLE
and employed three vulnerability patterns to evaluate the
exploitability of OLE (Section III).

• We developed OLEXPLORE1, a pioneering tool for system-
atic vulnerability detection in OLE components. Novel tech-
niques proposed in OLEXPLORE include 1) GUI-interaction
bypassing, 2) micro-snapshot fuzzing, and 3) a vulnerability
weaponization technique to bypass Office Protected View
Mode. We have privately disclosed the weaponization tech-
nique to Microsoft and this paper marks the first public
disclosure of these exploits (Section IV).

• We systematically analyzed all registered COM components
(a superset of OLE components) in popular Windows plat-
forms, identified 257 OLE components, and reported 26
bugs. Out of those, 17 vulnerabilities have been assigned

1We open source OLEXPLORE at https://github.com/WinSysSec/OLExplore
to facilitate the research in this area.

2

OLE Components

COM Components

IUnkown

IOleObject

IPersistStorage

......

Interfaces

A

B

C

D

Interfaces

COM Component

OLE Component

OLE components are COM components that expose
specific interfaces:

lPersistStorage, OIeObject

Fig. 1: OLE components are special COM components

CVE numbers, each with the potential of Remote Code
Execution (Section V).
We hope OLEXPLORE can be inspirational for finding

vulnerabilities in other superware and we endeavor to enhance
the understanding and discovery of potential security gaps in
complex software built upon dynamic library integration.

II. BACKGROUND

In this section, we present background information about
OLE and illustrate OLE vulnerabilities with a real-world case.

A. Basics of OLE

This paper focuses on OLE 2.0, the currently in-use version.
At its core, OLE 2.0 is built on the Component Object Model
(COM) and structured storage, and OLE objects are essentially
COM objects that can be embedded or linked to existing
documents. Figure 1 shows the relationship between OLE and
COM. The vision for OLE, and more fundamentally COM,
is to enable software developers to create more streamlined
and focused applications. Should developers opt to extend
services beyond core functionalities, such add-ons could be
implemented as separate modules which can be loaded into
memory only when required.

1) COM interfaces: As COM components, all OLE com-
ponents expose the IUnknown interface, which facilitates its
clients in discovering other interface pointers, including those
offering specific OLE functionalities such as IOleObject,
IOleLink, and IViewObject2.

2) Structured storage: All OLE components implement the
IPersistStorage interface for state persistence and option-
ally IPersistStream. IPersistStorage defines standard
methods for persisting object states to external storage in a way
that is agnostic to any specific storage backend. The counter-
part, i.e., the host application that processes documents with
OLE objects embedded, must hence provide the IStorage

interface to enable object data storage and retrieval. The format
and semantics of persisted data, however, is completely oblivi-
ous to the host application. As different OLE components offer
different implementations for IPersistStorage, the format
of data persisted in the storage also varies significantly.

Furthermore, based on how an OLE object is hosted at
runtime, OLE can be further categorized into two types:

In-process OLE is an OLE component that executes in the
same process as the host application. In-process OLE can be
initialized through ole32!OleLoad().
Separated-process OLE is an OLE component that executes
in a separate and standalone process. Separated-process OLE
are instantiated by ole32!OleRun().

Within OLE, objects are primarily categorized into two
types: embedded objects and linked objects. Embedded objects
are self-contained objects with all related information stored
in the host document. For instance, users can use the “Insert
Object” feature to embed a Word document (with all of its
content) directly into an Excel worksheet [32]. With this,
users can view and edit the Word document without opening
the Word application. Conversely, a linked object references
an object located in a different file or application. The OLE
object in the host document simply maintains a link rather
than enclosing the complete data. As a result, updates to the
original object are reflected in the linked object accordingly.

This paper focuses on in-process embedded objects which
draw most of the security concerns (Appendix A).

B. How OLE Works

document containing
OLE object

Step 1
doc

OLE object extracted
from doc (e.g. OLE of

a button)

OLE
Component initialized
by Office with CLSID

(e.g. DLL handling the
button)

DLL

CLSID extracted
from OLE object

OLE object extracted
from doc (e.g. OLE of

a button)

DLL

Office Application (e.g.
Word)

CLSID extracted
from OLE object

Office Application (e.g.
Word)

Step 2

Step 3
OLE Component

deserialize OLE object
from structured storage
(e.g. DLL handling the

button)

Fig. 2: Loading process of OLE objects with Office

As shown in Figure 2, loading an OLE object within
Microsoft Office involves a series of interactions between
various entities, out of which three are especially relevant here.

Step 1: Retrieve the CLSID from the document. In this
phase, the host application extracts a class identifier (CLSID)
from the document to determine which OLE module needs
to be dynamically loaded and initialized. CLSIDs can be
embedded in a wide range of document formats, including:

• Office binary formats (e.g., .doc, .xls, .ppt, .pps, etc.)
• Office OpenXML formats (e.g., .docx, .xlsx, .pptx, etc.)
• RTF format (.rtf)

The mechanisms for locating the embedded CLSIDs differ
by file format. Taking the OpenXML format as an example,

3

the embedded CLSIDs reside in a form named OLESSFormat

stored within the root directory entry, which can be inspected
and extracted using the OffVis tool [33].

Step 2: Invoke CoCreateInstance to load the mod-
ule. Creating an OLE object in the current execution con-
text requires initializing the OLE module first via the
CoCreateInstance function. This process involves loading
the DLL associated with the CLSID into the current process.
The Registry holds a mapping between CLSID to its corre-
sponding DLL under the key HKEY_CLASSES_ROOT\CLSID,
which ensures that the system can accurately identify and load
the requested DLL to unblock subsequent operations. After
the DLL is loaded, CoCreateInstance not only ensures
the module is in memory but also triggers the execution of
initialization code. Then, a designated entry function within
the loaded DLL is invoked to complete the setup process.

Step 3: Invoke IPersistStorage::Load to deserialize
the OLE object. The IPersistStorage interface includes
several methods, among which Save and Load are the most
critical, as they are responsible for serializing and deserial-
izing the persistent states of an object, respectively. Once
the DLL for an OLE object is ready, the DLL invokes the
IPersistStorage::Load method to deserialize an OLE
object from the structured storage. The Load function takes an
IStorage *pStg argument—a pointer to the actual location
of the OLE storage within the document—supplied by the host
application. Since any data embedded in the document can be
subject to attackers’ control, corrupted OLE storage serves
as the primary way to carry out exploits (such as memory
corruption and logical errors).

C. OLE Structured Storage

Compound File

DIFAT Array

FAT Array

Directory Entry Array

Mini FAT Array

Directory Entry Array

Root Directory Entry

Storage Directory Entry
(Root Storage)

Stream Directory Entry

Root Storage

Storage 1

Storage 1

Storage 2

...

Stream 1

Stream 2

...

Storage

CLSID

Stream A

Stream B

Stream

Flag
(linked/embedded object within)

User-defined data

Fig. 3: A sketch of the format of a compound document with
OLE objects embedded

Structured storage addresses the problem of storing hetero-
geneous data objects within a single file in a way that is
transparent to the code (e.g., both the host application and
OLE DLLs) that operates on these data objects.

More specifically, structured storage introduces an abstrac-
tion named “stream”, realized through the IStream interface,
and resembles traditional files which provide read and write
methods. Enclosing streams are an abstraction named “stor-
age”, described by the IStorage interface, and is analogous
to directories in a filesystem. Naturally, a storage can contain
both streams and more storages.

A compound document amalgamates a diverse set of data
types such as text, graphics, spreadsheets, audio, and video, all
of which are embedded within the document as independent
and self-contained objects. To persist multiple objects into a
single file, one can open an IStorage representing the file’s
content and save each object in a separate IStream. Figure 3
shows a sketch of the scheme of storing OLE objects in a
compound document file. While the host application is re-
sponsible for managing the root-level IStorage, the specifics
of how to read and write an IStream are delegated to each
OLE DLL which is typically encoded in the implementation
of the IPersistStream interface. Given the varied imple-
mentations of IPersistStream by different OLE DLLs, the
data formats vary significantly, and fuzz testing these formats
generally requires manual reverse engineering of the inner
structure of each IStream to build a harness.

III. OLE ATTACK VECTORS

In this section, we categorize OLE vulnerabilities based on
a comprehensive review of all known OLE-related CVEs. In
particular, we surveyed 21 OLE-related CVEs and discovered
that they can be classified into three types. Combined, these
OLE-related CVEs account for 43.23% of CVEs targeting
Office (see Appendix A for more details).

A. Type-1: Loading a COM Component Not Intended for OLE

Type-1 CVEs account for 3 out of the 21 surveyed CVEs.
In Office, a CLSID serves as an index for the OLE com-
ponent that a user wishes to initialize. Upon recognizing
a CLSID in the input document, the host application calls
CoCreateInstance to load the corresponding DLL and
trigger certain initialization functions. During this process,
memory is allocated, and the corresponding objects are in-
stantiated.

However, not all components associated with a CLSID are
OLE components. With thousands of CLSIDs existing in the
system, only a subset corresponds to actual OLE components.
This means that some COM components not intended for use
in Office might still be loaded as OLE components. While
Office already performs a series of complicated checks before
loading a COM component to ensure it is intended for OLE,
our evaluation shows that existing checks are inadequate. Fur-
thermore, if an unintended COM component fails to initialize
its memory appropriately and fails to report exceptions, it can
expose vulnerabilities such as uninitialized read.

4

1 CoCreateInstance (
2 rclsid =

{CDDBCC7C-BE18-4A58-9CBF-D62A012272CE},↪→

3 pUnkOuter = NULL,
4 dwClsContext = CLSCTX_INPROC_SERVER |

CLSCTX_INPROC_HANDLER,↪→

5 riid =
{00000000-0000-0000-C000-000000000046},↪→

6 ppv = lpTargetPpv
7)

Fig. 4: In CVE-2015-1770, a COM instance is created by
calling CoCreateInstance.

In summary, a Type-1 vulnerability can be triggered by 1)
placing a non-OLE CLSID in the input document, 2) utilizing
the content succeeding objdata within the RTF trigger, as
delineated in Section IV-B, to populate the storage for objects
of this particular CLSID type, and 3) loading the document
which might automatically trigger CoCreateInstance to run
to load and initialize the fictitious “OLE” component.

CVE-2015-1770 is a typical example of Type-1 vulnera-
bility. The root cause of this CVE stems from the improper
initialization of the COM component OSF.DLL. Despite hav-
ing a CLSID, OSF.DLL is actually not architecturally intended
to function as a loadable OLE component. More specifically,
CoCreateInstance on this component (identified by the
rclsid argument as shown in Figure 4) crashes unexpectedly
with page-heap enabled. The crash can be traced back to the
interface pointer lpTargetPpv, which is obtained during the
incorrect process of loading OSF.DLL as an OLE component.

Reverse engineering reveals that the pointer lpTargetPpv
is a 184-byte object created and partially initialized
by two subroutines: PpvPartOneInitialization

and PpvPartTwoInitialization. At offset 0x54,
it contains a pointer (lpTargetPpv->pUnkObj)
to another 116-byte object, allocated and partially
initialized by PpvOffset54UnkObjAllocAndInit and
PpvOffset54UnkObjInit. A field at offset 0x58 within
this new object remains uninitialized, causing a crash under
PageHeap when accessed.

B. Type-2: DLL Preloading Attacks
Type-2 CVEs account for 11 out of the 21 surveyed CVEs.

When the CoCreateInstance function is called, if there is a
DLL associated with the specified CLSID, the LoadLibrary

function will be invoked. If the DLL is requested while the
Registry does not hold a complete path for the DLL, Windows
searches for the required library according to a predefined
sequence of directories (i.e., DLL search order). An attacker
who gains control over any one of these directories can force
the program to load a malicious DLL, thus supplanting the
legitimate DLL that should have been loaded. This is typically
known as DLL preloading attack, and represents a pervasive
security issue for all platforms that support dynamic library
loading. Exploiting this vulnerability, an attacker can execute
arbitrary code in the host application’s privileges [34].

Attacks based on LoadLibrary. The following out-
lines the DLL search order for LoadLibrary and
LoadLibraryEx, two commonly used functions for dynamic
DLL loading:

1) The directory from which the application loaded
2) The system directory
3) The 16-bit system directory
4) The Windows directory
5) The current working directory
6) The directories listed in the PATH environment variable
Attacks based on SearchPath. There are comparable risks

when programs use the SearchPath API to locate and dy-
namically load a DLL from a path returned by SearchPath.
The following exemplifies the default search order of the
SearchPath API:
• An OLE component attempts to load xxx.dll from the

current directory.
• An Office application, such as Word, not only searches for
xxx.dll in the current directory but also loads the DLL
into the Word process. An attacker could exploit this step
by inserting a malicious DLL containing a command to run
arbitrary code, thereby accomplishing the attack.
The Windows operating system exhibits a design vulnera-

bility during the initialization of OLE components, wherein
the loaded DLLs are not authenticated, stemming from a
specific process analyzed from an attacker’s perspective. An
OLE object is a subset of COM objects, which are collections
of objects associated with CLSIDs and registered within the
operating system.

In certain instances, even if a DLL possesses an associated
CLSID in the registry, it may not be a legitimate COM com-
ponent. Despite this, CoCreateInstance continues to load
such DLLs with CLSIDs into the process, without considering
whether the DLL is genuinely related to OLE. Our primary
concern herein lies with DLL preloading attacks. Given the
significant variation in component installation across different
Windows versions, some, such as Windows Server, do not
come with certain system functional components pre-installed.
As a result, on these variants, even if a CLSID exists, the
corresponding DLL may not, leading to path searching for the
DLL. At this juncture, should an attacker provide a malicious
DLL in the anticipated path, it would be loaded, and the
malicious behavior executed. This reality constitutes a design
flaw during the initialization of OLE objects in Windows.

C. Type-3: OLE Data Parsing Error in IPersistStorage

Type-3 CVEs account for 7 out of the 21 surveyed CVEs.
Data parsing is always a hotspot of vulnerabilities. As the
input data is inherently untrusted and maliciously crafted data
can cause both memory errors and logic bugs. An analysis
of disclosed CVEs reveals that a majority of vulnerabilities
related to OLE are closely related to the implementation of
IPersistStorage::Load, which is responsible for loading
objects stored within the storage section in the input document.

Typically, data in the storage section is in binary format.
Moreover, the storage format for each OLE component varies

5

and the format is within total control of the associated OLE
itself. Due to its proprietary and intricate nature, binary storage
might accidentally conceal security exploits (i.e., security
through obscurity). Attackers can exploit specially crafted
binary storage to trigger specific vulnerabilities and execute
attacks. Consequently, systems must enforce stringent data
validation and security checks when handling storage data
from untrusted sources to mitigate threats.

It is noteworthy that storage data originates from the
IStorage parameter of function IPersistStorage. Since
code executing the IPersistStorage interface resides
within OLE components, how IStorage is handled depends
on the OLE object itself. Storage data is embedded within
document files, meaning that this parameter can be influenced
by external factors. However, an attacker may tamper with the
storage data contained in the OLE objects within a document.
When Office suites act as OLE containers processing docu-
ments containing OLE objects, they load the corresponding
OLE components and invoke the Load() method of the
OLE component’s IPersistStorage interface to parse the
storage data and initialize the object’s initial state. During this
initialization, the data source remains unverified, thus in a
potentially untrustworthy state, harboring latent security risks.

CVE-2017-11882 [35] is a notorious vulnerability related
to OLE. The underlying mechanics of this vulnerability are
not only straightforward but also robust, enabling exploitation
without user interaction or detection. Several APT groups
have added this vulnerability into their arsenal, extensively
utilizing it in spear-phishing and watering hole attacks [36].
This vulnerability resides within the Equation Editor module
EQNEDT32.exe, which was originally developed by Design
Science Inc., compiled in 2000, and later maintained by
Microsoft. Regrettably, Microsoft did not prioritize security
for this module, resulting in the flaw going undetected for
17 years. When inserting or editing equations in Office
documents, the host application invokes the EQNEDT32.exe

process via RPC to handle equation parsing and editing.
Although Office versions post-2007 replaced EQNEDT32.exe

with a built-in equation editor, all versions of Microsoft Office
(including Office 365) still support formulas initially created
with EQNEDT32.exe for backward compatibility.

The vulnerability manifests during the processing of Equa-
tion Native data streams, often containing MathType formulas
provided by the document. When parsing the font name, the
length of the name within the stream lacks proper validation,
leading to a stack overflow. An attacker could exploit this by
crafting data to overwrite the function return address, hijacking
the control flow of the application. Within the described
overflow, after the return address has been overwritten, the
contents of the string are transformed in the _strupr function
whereby, following subtraction of 0x20 from the code, the
return address is changed to the address of WinExec, thereby
achieving the invocation of WinExec. Figure 5 outlines a
typical case of exploitation.

Although both the CLSID and storage data can be supplied
by an attacker, there is a distinction in how they are used. OLE

Spam email with .docx
attachment

.docx documents
drops RTF file

HTA file retrieves LokiRTF file exploits
CVE-2017-11882 and

drops an HTA file

1 2

3 4

RTF

HTA

Fig. 5: A real-world exploitation.

containers like Office or WordPad primarily read the CLSID
to initialize an OLE component. Subsequently, storage data is
extracted from the OLE object embedded within the document
and transmitted to the OLE component for subsequent pro-
cessing. This delineates the fundamental difference between
Type-1 and Type-3 vulnerabilities.

IV. OLEXPLORE: SYSTEMATIC BUG FINDING FOR OLE

Figure 6 outlines the workflow of OLEXPLORE. The pri-
mary objective of this tool is to facilitate the efficient and
accurate detection of OLE-related vulnerabilities. Our system
functions in the following main steps:

Phase 1: Analyzing OLE components. Initially, OLEX-
PLORE identifies all CLSIDs present on the system It then
enumerates the interfaces and properties exposed by each
COM component to filter and identify OLE components,
acquiring their pertinent information.

Phase 2: Constructing an OLE runtime. OLEXPLORE uses
a GUI-free RTF-based input template to trigger various OLE
components. Upon encountering this trigger, Office will pro-
ceed to load the corresponding DLLs, thereby bypassing the
need for GUI interaction and fostering the construction of an
environment conducive to the instantiation of OLE objects
within the system.

Phase 3: Fuzz OLE-specific storage segment. During this
phase, for recognized formats, OLEXPLORE utilizes ActiveX
to generate the corresponding storage. In the case of unrecog-
nized formats, OLEXPLORE employs micro-snapshot fuzzing,
a technique that enables efficient fuzz testing of each OLE
component independently, thus obviating the need for reverse
engineering the specific input format each OLE component
necessitates.

Phase 4: Behavior Detection. Utilizing the established test-
ing framework, batch tests are conducted and abnormal events
such as DLL loading behavior as well as memory corruption
crash are monitored and logged using Process Monitor [37].

Phase 5: Vulnerability Analysis. The analysis stage involves
dissecting crash-captured dump files and validating vulnerabil-
ity exploitability through constructed proof-of-concept (PoC)

6

➋ Constructing OLE Runtime

CLSID

RTF Triger

➌ Micro-snapshot Fuzz

Office Sliced Input

ActiveX control

➍ Behavior Detection ➎ Vulnerability Analysis

Type1/3
Crash

OLEXPLORE: Auto Detection Framework

No Exception

PoC Synthesis

➊ Analyzing OLE

Registry

 COM
Components OLE Data

RTF

Enum
IOleObject
Interface

Mutation

CExposedStream::Read Hook

Load DLL

Type2 DLL load

Bypass

Delivery

Conceal

Denial-of-Service

compressed archive

remote shared
directory

format disguising

PoC

Fig. 6: Overview of OLEXPLORE

exploits. We employed a novel and not yet fully disclosed
method of vulnerability weaponization to assess the severity
of the vulnerabilities discovered.

A. Collecting OLE Components

OLEXPLORE collects registered COM components from
Windows registry key HKEY_CLASSES_ROOT\CLSID by
crawling unique CLSID identifiers and subsequently retrieve
the filesystem location(s) of the associated DLL file by reading
the InprocServer32 and LocalServer32 sub-keys.

As introduced in Section II-A, OLE components are a subset
of COM components. Specifically, a COM component may be
classified as an OLE if it implements the IOleObject inter-
face. To ascertain whether a given COM component is an OLE
component, one can systematically instantiate objects using
the list of collected CLSIDs and then enumerate each COM
component’s exposed interfaces and properties to determine
the implementation of the IOleObject interface.

The COM interfaces are declared using Microsoft Inter-
face Definition Language (MIDL). PowerShell provides a
Get-Member cmdlet [38] to list the interfaces and properties
of a component. Upon confirming that the COM component
offers the IOleObject interface, OLEXPLORE utilizes Ole-
ViewDotNet [39] to decompile the interface from the binary
file and export the declaration.

B. Constructing an OLE Runtime Environment

After collecting all OLE components available in the sys-
tem, OLEXPLORE needs to construct a runtime environment
for each OLE component. To identify Type-1 and Type-2
vulnerabilities (i.e., those can manifest upon invoking the
CoCreateInstance function), it is imperative to ask the host
application to instantiate each OLE object, during which the
host application will invoke the CoCreateInstance function.

Unfortunately, the conventional way of loading an OLE
component requires non-trivial GUI interactions (1) such as
clicking on the Insert tab, (2) clicking on Object, (3)
browsing to the OLE file, and (4) clicking OK to confirm2.

2See this Microsoft Office help manual (https://support.microsoft.com/en-
us/office/embed-or-link-to-a-file-in-word-8d1a0ffd-956d-4368-887c-
b374237b8d3a) for details on loading an OLE object.

1 {\rtf1
2 {\object\objemb{*\objclass None}
3 {*\oleclsid\
4 '7b00000000-0000-0000-0000-000000000000\'7d}
5 {*\objdata

01050000010000000100000000000000000000000↪→

6 0000000000000000000000000000
7 000000000000000000000}}}

Fig. 7: An example of an RTF document that triggers the
loading of an OLE object without requiring user interaction

It is not feasible to manually run the GUI interactions for all
OLE components found by OLEXPLORE, which is at the scale
of hundreds of not thousands.

To avoid GUI interactions in automated OLE component
initialization, OLEXPLORE exploits a “feature-not-bug” in the
current Office implementation. As reported by Steven Vittitoe
in 2015 [40], the opening of the RTF document shown in
Figure 7 results in the loading of OLE objects without user
interaction. This issue was reported to Microsoft in 2016 [41],
but Microsoft did not recognize it as a vulnerability. In
contrast, when an OLE-embedded .docx file is opened, Office
issues a warning prior to the activation of the object. For in-
stance, Office 2016 emits a warning when opening a .docx file
containing an OLE object. However, when the identical .docx
file is saved in RTF format and later opened with Office 2016,
no prompt appears for the embedded OLE object. This RTF
template serves as a highly customizable base case because
it provides a way to load and initialize an OLE component
without manual interaction. We use the RTF loading trick to
avoid graphical interactions and reduce performance overhead.
Using an AutoIT script requires waiting for Office to fully
initialize, including various UI windows. With PageHeap, this
UI initialization becomes very slow. In contrast, RTF files
bypass the UI constraints and can trigger OLE parsing without
needing full initialization.

We produced RTFs for every OLE component found in the
system. The structure of the framework is straightforward; it
merely requires the creation of an RTF document with an
embedded CLSID that resides in the system registry. This

7

approach circumvents the necessity to reverse-engineer the
GUI interfaces and the initialization functions within the OLE
component. It simulates user interactions such as opening and
closing the document, as well as actions akin to clicking or
double-clicking on the OLE object. This simulation facilitates
the loading of the OLE object by Office, alongside the as-
sociated DLLs, thus triggering the OLE-specific initialization
functions required for assembling and establishing the OLE
runtime environment.

C. Testing An OLE Component by Mutating Storage Data

Testing the IPersistStorage interface requires storage
data. However, gathering a relevant corpus presents consider-
able challenges due to the lack of previous research or public
effort on this matter. In OLEXPLORE, for OLE components
with matching ActiveX plugins, we utilize ActiveX to directly
generate storage data. For other OLE components with un-
known and customized storage formats, we employ micro-
snapshot fuzzing to automatically probe an input format.

1) ActiveX-based input generation: To build an initial cor-
pus for known storage formats, we developed 74 kinds of
ActiveX controls (e.g., the CheckBox Control with CLSID:
8BD21D40-EC42-11CE-9E0D-00AA006002F3 is related to
the module FM20.DLL). ActiveX controls, which are built on
a foundation of many lower-level objects and interfaces in
OLE [42], are a type of OLE object that can be embedded
within documents such as Word or Excel files to provide
interactive functionality.

These ActiveX controls exhibit a variety of attributes, such
as Font and Caption, which are persistently stored within
a designated storage structure. Office provides a suite of
developer tools designed for the rapid creation of various
ActiveX controls. By specifying the creation of controls such
as “Text Box” or “Button” classes, we ensured that these
controls contain unique storage formats related to their OLE
components. Once generated, the ActiveX controls are encap-
sulated within .docx documents. By decompressing these
documents, we can retrieve the corresponding binary files.

We generated batches of controls for different classes and
randomly assigned properties to them in order to extract the
storage data. This method allowed us to create a diverse and
comprehensive dataset of storage formats, which is essential
for thorough testing and analysis of OLE object vulnerabilities.

2) Micro-snapshot fuzzing: For OLE components that take
unknown formats of storage and do not have ActiveX control
support, a naive solution would be to treat the entire input
stream as a blob and apply random mutations on the blob (e.g.,
basic techniques in AFL++ [8]). However, for formats that are
highly structured, blob mutation is often less effective, and
most random inputs fail at the sanity-checking phase. The ideal
solution would be to reverse engineer the input formats and
use grammar-based input generation or mutation to generate
near-correct inputs [43] [44] [45]. However, this is not feasible
facing hundreds if not thousands of OLE components that are
close-sourced with little to no public documentation.

In OLEXPLORE, we develop a new technique, micro-
snapshot fuzzing (see details in Section IV-D), to achieve
better mutation efficiency than the plain blob mutation without
reverse engineering effort on the OLE DLLs. Micro-snapshot
fuzzing, as the name suggests, is inspired by snapshot fuzzing
which has been proven effective in stateful systems such as
network protocols [46] and operating system kernels [47]. In
fuzzing stateful systems, the fuzzer takes a snapshot whenever
an input event (e.g., one network message or one syscall)
discovers new coverage. The snapshot inherently encompasses
all previous events that lead the system to the current state,
and allows the state to be further advanced into different
possibilities when resumed and fed with different new events.

D. Micro-snapshot Fuzzing

Micro-snapshot fuzzing in OLEXPLORE divides the input
blob (which is of an unknown format) into chunks where
each chunk corresponds to an event in snapshot fuzzing.
This is achieved with the following observation on how OLE
components process input from storage.

• Input reading only occurs via one standard interface:
CExposedStream::Read(

– stream_to_read,

– receiving_buffer,

– number_of_bytes_to_read,

– number_of_bytes_actually_read)

(abbreviated as S::Read subsequently).
• Input is processed chunk-by-chunk, and each chunk is

relatively small in size (compared with the size of the
input stream)

• Input chunks are read sequentially and the OLE never
re-reads a chunk.

With these observations, we note that one chunk of input
stream is akin to one message in a network protocol or
one syscall to the kernel. If one chunk of input yields new
coverage, we can take a snapshot of the current process and
save it to the seed pool; in future fuzzing rounds, if this seed is
selected as base of mutation, the snapshot will be restored first
and we focus on mutating the next chunk to further advance
the state. However, different from snapshot fuzzing which
actually snapshot the system state (e.g., a VM snapshot in
kernel fuzzing), the snapshot in OLEXPLORE is simply an
accumulation of input chunks that lead the execution of an
OLE component into its current state. This is feasible because
OLE components do not involve multi-threading in processing
the inputs, hence, a deterministic sequence of events will lead
to a deterministic state.

And yet, one question remains: how to break the input
stream into chunks? Reverse engineering the format of the
input stream naturally reveals the chunks but is not scalable. In
OLEXPLORE, the chunk boundaries are decided by the OLE
code logic and are passively collected by OLEXPLORE.

To be more specific, every time S::Read is invoked,
OLEXPLORE identifies an input chunk by the amount of bytes
read. The second parameter of S::Read is a buffer pointer

8

designated for storing the data that is read; the third parameter
dictates the volume of data to be read; and the final parameter
is an integer pointer that yields the actual number of bytes
that have been read. For example, S::Read(_, _, 20, _)

marks a 20-byte chunk; while S::Read(_, _, 36, _)

marks a 36-byte chunk.
Snapshots are taken right before the invocation of S::Read

if new coverage is discovered between the last S::Read

and the upcoming S::Read. To illustrate the micro-snapshot
fuzzing process in OLEXPLORE,

1) select seed s as mutation base from seed pool, s is essen-
tially a snapshot of sequence [S::Read(_, _, 8, _),
S::Read(_, _, 16, _), S::Read(_, _, 12, _)]

2) after resuming s, the next chunk is marked by
S::Read(_, _, 20, _), so OLEXPLORE will gener-
ate and mutate 20-byte chunks (e1, e2, . . ., ek) and feed
to the resumed snapshot.

3) for each new event ei, OLEXPLORE will monitor its
execution until the execution hits the next Read. If new
coverage is discovered, OLEXPLORE will save s++ei as
a new seed in the seed pool.

Furthermore, OLEXPLORE follows a systematic exploration
of the input stream which is inductive in nature. More specif-
ically:

• Base case: probe for one-chunk snapshots (by mutating
the chunk marked by the first S::Read).

• Induction case: for each k-chunk snapshot:
1) resume the snapshot
2) produce (with randomness) the (k + 1)-th chunk
3) check whether the (k + 1)-th chunk yields new cover-

age, if so, save it as (k + 1)-chunk snapshot

ole32!CExposedStream
::Read

Coverage-oriented
mutation of read bytes

Hook
Module

OLE Storage Content

Read some bytes

IPersistStorage::Load()

Early return / Load complete

Mutation

Validate

Read some bytes

Mutation

Validate

Read some bytes

Mutation

Validate

Feedback
Explore deeper path

through:

...... READ COUNT

READ LENGTH

EIP

 a) Repeated reading and checking during OLE storage retrieval.
b) Terminate reading if byte check fails.

c) Retrieving storage for the OLE component ultimately entails calling ole32!CExposedStream::Read.

b)

a)

c)

Fig. 8: Illustration of micro-snapshot fuzzing

Implementation details — Figure 8 demonstrates OL-
EXPLORE’s micro-snapshot fuzzing workflow for the mod-
ule under testing. In the testing process, the fuzzer tracks
CExposedStream::Read (i.e., raw bytes read) using De-

tours [48] (which monitors and instruments API calls on Win-
dows platforms). The fuzzer monitors the DLL execution until
the next read is encountered. If new coverage is discovered
between the last read and the upcoming read, a snapshot is
taken. The next mutation will start from a snapshot. In other
words, a snapshot is a seed (in fuzzing terms) in the seed pool.

Effectively, a snapshot encompasses all chunks (in raw
bytes) that are previously read via CExposedStream::Read

by the OLE component. Therefore, replaying these chunks
essentially replays a prefix of the execution path in the DLL
(modulo concurrency) and fuzzing continues based on this
prefix. It is worth noting that while concurrency is heavily
used in Office, parsing the storage for a single OLE object is,
in fact, entirely sequential in our tested modules. Therefore,
micro-snapshot fuzzing in OLEXPLORE is designed with the
implicit assumption that input chunks are read and processed
sequentially. Each chunk of raw bytes is either generated
or mutated randomly due to the lack of type or structural
information.

To measure and track coverage of code executing during
fuzzing, the dynamically loaded DLL is instrumented with
TinyInst [49]–a binary rewriter–when loaded. TinyInst recog-
nizes basic blocks in the instruction sequence, and we hook
the first instruction of every basic block for coverage tracking.

Taking CVE-2017-11882—a vulnerability discovered
within the IPersistStorage::Load function—as a
case study, our tool OLEXPLORE monitors the affected
EQNEDT32.exe process. Within this vulnerable function, read
operations are intercepted through hook functions specific
to S::Read. The crux of the vulnerability lies in handling
Equation Native Stream Data within the document. The
program reads two structures in two phases: EQNOLEFILEHDR
and MTEFData (Equation Native Stream Data consists of
EQNOLEFILEHDR and MTEFData). In processing MTEFData,
it invokes a subroutine to iteratively read the constituent
record sub-structures, with field values dictating the function’s
execution path.

Initially, 8 bytes of data are read—which corresponds to
the first 8 bytes of the Contents data block onto the stack
via S::Read. Subsequently, the program validates the read
data to ensure a match against specific data patterns, such
as 0x12344321 and 0x08. Upon successful validation, the
remainder of the Contents data block is read; otherwise, the
process is terminated. Importantly, the data retrieval is not
performed in a single operation but in batches, coupled with
validation steps. A batch only proceeds with additional reads
if its data passes validation until all data is processed.

E. Behavior Detection

When the CoCreateInstance function is invoked in the
instantiation process of an OLE object, the system may load
additional DLLs. To capture unintended DLL loading events,
we utilized the Process Monitor [37]—a widely applied API
behavior monitoring software on the Windows platform.

Through monitoring the CreateFile API, it is possible
to detect whether any DLL file is being created or opened.

9

Should there be activity involving a DLL file at such time,
OLEXPLORE performs a scan of its function call stack in
search of the LoadLibraryEx API. The purpose behind
searching for this API lies in the fact that the presence of
LoadLibraryEx within the call stack of the DLL signifies
that the DLL has been dynamically loaded by the process.

By employing the following filtering strategies, all DLL
loading activities are meticulously captured and displayed.
For DLLs that do not exist within the system, our approach
involves monitoring instances where search results include
the phrase not found. In exploitation scenarios analyzed, it
has been observed that counterfeit DLL files can be loaded
successfully without requiring any export functions. Notably,
these incidents of successful DLL loading precede any internal
errors that may occur within the process thereafter. For DLLs
that are present within the system, OLEXPLORE examines
them to identify externally accessible export functions. The
export table enumerates every function the DLL offers to
other executables—these serve as the DLL’s entry points; only
functions in this export table are available to other executable
files. All other functions not listed remain encapsulated within
the DLL, inaccessible from outside. To validate the security
measures in place, OLEXPLORE creates a facsimile DLL,
replicating both the file name and exported function names
from the original. It then places this mock-DLL into a di-
rectory of higher priority to test whether it supersedes the
legitimate DLL in the loading sequence.

By enabling PageHeap [50], a debugging tool designed to
detect heap-related memory errors, the system can identify
more detailed memory issues, including Type-1 and Type-
3 vulnerabilities. In the event of a crash, memory context
information and function call stack details are automatically
dumped and logged within the system for subsequent analysis.
Leveraging the WinDbg [51] debugger on the Windows plat-
form, we delved into the analysis of dump files produced by
crashes. We employed WinDbg to scrutinize the crash dump
files, to further study the root cause of vulnerabilities and
identify points of exploitation. To validate the effectiveness of
these analyses, we conducted manual tests using previously
generated RTF documents, verifying potential vulnerabilities
in practice. Such a verification process aids in constructing
PoC for the vulnerabilities, thereby enhancing corresponding
security measures.

F. Vulnerability Analysis

To assess the severity of these identified vulnerabilities,
OLEXPLORE includes the process of weaponization. This
enables a comprehensive understanding of the potential im-
plications of each vulnerability and informs the development
of mitigation strategies. In OLEXPLORE, the weaponization
techniques for these vulnerabilities are innovative, featuring
concealment methods that have not been disclosed, despite the
fact that we have responsibly disclosed these vulnerabilities
and the methods of weaponizing them to Microsoft.

Post-construction, it is confirmed that 18 vulnerabilities
detected by OLEXPLORE are capable of facilitating remote

code execution for malevolent purposes while the remaining
ones can lead to at least DoS attacks. After being meticulously
crafted, these vulnerabilities could be exploited with just one
click, allowing malicious code or DLLs to execute impercep-
tibly, posing a significant threat. The complete exploitation
process comprises three sequential stages: 1) disguising the
RTF document as an alternate file format, 2) delivering a
malicious DLL in a stealthy manner, and 3) bypassing the
Protected View Mode [31] to allow OLE content to be loaded
by Office applications.

We use the Word application (i.e., Winword.exe) with Pro-
tected View Mode to conduct our tests. Protected View Mode
feature is the well-known yellow bar with an “Enable Editing”
button in MS Office. In Protected View mode, features that
may pose security or privacy risks are disabled. This includes
ActiveX controls, Object Linking and Embedding, macros, and
loading of remote resources. Protected View Mode only is en-
abled when Word, Excel or PowerPoint opens documents with
the Mark-of-the-Web (MOTW) [52]. We provide a detailed
description of the process of weaponizing vulnerabilities in
Appendix B.

V. EVALUATION

In this section, we evaluate OLEXPLORE by analyzing
all registered COM and OLE components within Windows
10, Windows Server 2019, Windows Server 2022, Windows
Server 2023, and Windows 11 environments. The operating
systems were configured to their default settings, and we
installed several commonly used applications (e.g., Visual Stu-
dio, Microsoft Exchange). The evaluations were performed on
a desktop system equipped with an Intel i9-13900H processor
and 32GB of memory. Our assessment addressed the following
research questions:
• RQ1: How effective are the most important components of

OLEXPLORE (i.e., OLE identification and storage fuzzing)?
• RQ2: How effective is OLEXPLORE on detecting vulnera-

bilities within OLE components specific to Office?
• RQ3: How precise is OLEXPLORE in detecting unsafe OLE

components?

A. RQ1: Evaluation of OLExplore’s Components

1) Identifying OLE components from COM components:
OLEXPLORE, operating under the Windows 10 environment,
enumerated and analyzed a total of 7,361 COM components.
We focus on COM components developed by Microsoft first as
non-Microsoft ones are less likely to be exploited by attackers
due to the lack of universality and stability. Microsoft COM
components derived from the Windows Software Development
Kit (SDK) were also incorporated into the screening scope
by OLEXPLORE, making them suitable for analyzing the
machines with development environments.

On Windows Server 2022 version 10.0.20348.1487, OLEX-
PLORE extracted 7,274 CLSIDs, whereas 7,369 were identified
on Windows 11, indicating small variations in the total count
of COM components across different versions of the Windows
operating systems. Among the numerous COM components,

10

TABLE I: List of vulnerabilities discovered by OLExplore

Module Vuln. Type Impact Confirmed Version Status

Windows Runtime Type-1 Remote Code Execution Windows 10 in 2021 CVE-2022-21878
Type-1 Remote Code Execution Windows 10 in 2021 CVE-2022-21888
Type-1 Remote Code Execution Windows 10 in 2021 CVE-2022-21971
Type-1 Denial of Service Windows 10 & Windows Server 2022 Confirmed
Type-1 Denial of Service Windows 10 & Windows Server 2022 Confirmed
Type-1 Remote Code Execution Windows 10 in 2021 CVE-2022-21992
Type-1 Remote Code Execution Windows 10 in 2021 CVE-2022-21974
Type-1 Remote Code Execution Windows 11 & Windows Server in 2023 CVE-2023-29366
Type-1 Remote Code Execution Windows 11 & Windows Server in 2023 CVE-2023-29367
Type-1 Remote Code Execution Windows 11 & Windows Server in 2023 CVE-2023-35313
Type-1 Remote Code Execution Windows 11 & Windows Server in 2023 CVE-2023-35323
Type-1 Remote Code Execution Windows 11 & Windows Server in 2023 CVE-2023-36704

Visual Studio Type-1 Remote Code Execution Visual Studio in 2023 CVE-2023-28296

Windows Geolocation Service Type-2 Remote Code Execution Windows Server 2019 & 2022 CVE-2023-35343

Tablet Windows UI App. Core Type-2 Remote Code Execution Windows 11 21H2 & 22H2 CVE-2023-36898

Windows UI App. Core Type-2 Remote Code Execution Windows Server 2019 & 2022 CVE-2023-36393

Windows Runtime Type-2 Remote Code Execution Windows 11 23H2 & 22H2 CVE-2024-21435

Microsoft Exchange Server Type-2 Remote Code Execution Microsoft Exchange Server 2019 CVE-2024-26198

Windows Runtime Type-2 Remote Code Execution Windows Server 2019 & 2022 Confirmed

Windows Inking COM Type-3 Remote Code Execution Almost all versions of Windows CVE-2022-23290

Windows Runtime Type-3 Denial of Service Windows 10 & Windows Server 2022 Confirmed
Type-3 Denial of Service Windows 10 & Windows Server 2022 Confirmed
Type-3 Denial of Service Windows 10 & Windows Server 2022 Confirmed
Type-3 Denial of Service Windows 10 & Windows Server 2022 Confirmed
Type-3 Denial of Service Windows 10 & Windows Server 2022 Confirmed
Type-3 Denial of Service Windows Server 2022 Confirmed

OLEXPLORE has identified 257 existing OLE components
in the system by enumerating and filtering interfaces. In
comparison to Windows 10, the quantity of OLE components
existing in Windows 11 did not exhibit any significant change

For comparison purposes, we conducted tests using
Dranzer [53], an outdated tool but still the best match we can
find, on systems with similar configurations. Dranzer found
only 5,839 COM components and failed to recognize any
OLE components within its purview. The scope of Dranzer’s
testing was largely confined to parameter testing multiple
COM components loaded within Internet Explorer, aimed at
detecting potential crash scenarios. However, given that Inter-
net Explorer is no longer supported in versions of Windows
beyond 10 and 11, the relevance of these tests has significantly
diminished. And yet, if we were to adapt Dranzer for Office,
Dranzer is still unable to detect these vulnerabilities. This
limitation arises because Dranzer’s tests focus exclusively on
the loading of ActiveX controls. Although Office does include
ActiveX capabilities, due to Microsoft’s security policies,
ActiveX parsing is disabled by default. Consequently, when
it reaches the CoCreateInstance stage, it will not proceed
with further parsing of ActiveX components.

2) Effectiveness of coverage and feedback in micro-
snapshot fuzzing: The feedback component plays a crucial
role in conjunction with snapshot fuzzing. Without feedback
and instrumentation, bypassing progressive checks via random
mutation (as in WinAFL) is almost impossible. For example,
MTEFData objects in EQNEDT32.exe are read 21 times during

the loading process and have 7 checksum fields. Due to the
presence of the feedback component, whenever a check is
passed, new code coverage is revealed and hence, the current
chunk and all previous chunks are saved as a snapshot. This
snapshot bootstraps the input mutation with a focus on either
passing the next check or testing other code logic after these
checks. This example shows that compared with blackbox
fuzzing (i.e., no feedback on the usefulness of input chunk),
coverage-guided micro-snapshot fuzzing can significantly in-
crease the chances of discovering vulnerabilities that require
passing multiple validation checks.

3) Effectiveness of micro-snapshot fuzzing in general:
We compare Type-3 bug detection with and without micro-
snapshot fuzzing. Among the 7 identified Type-3 bugs, 4
were found with micro-snapshot fuzzing in non-ActiveX
items, whereas none of these bugs could be found without
micro-snapshot fuzzing (i.e., by randomly mutating the entire
“structured storage”). As showcased in Section V-A2, the
combined use of snapshotting and coverage-guided feedback
allows for a more effective fuzzing process. Snapshotting saves
the execution context, making it easier to resume operations,
while feedback provides real-time information that guides the
mutation process, enhancing the likelihood of passing sanity
checks and uncovering complex bugs.

4) Performance of micro-snapshot fuzzing: Over a 2500-
minute testing period on inkobj.dll, the total number of
basic blocks increased from 1239 with whole-storage random
mutation (baseline) to 1639 with whole-storage mutation with

11

0 500 1000 1500 2000 2500
minutes

0

250

500

750

1000

1250

1500

1750
ba

sic
 b

lo
ck

s

1239

1695
1639

Coverage

Baseline: Fuzzing via whole-storage random mutation
Fuzzing via whole-storage mutation with feedback
Micro-snapshot fuzzing with chunk-by-chunk mutation

Fig. 9: Performance of micro-snapshot fuzzing

feedback, and finally to 1695 with micro-snapshot fuzzing with
chunk-by-chunk mutation, as shown in Figure 9.

Compared to using only feedback-based methods, the in-
clusion of micro-snapshot fuzzing does not show a significant
improvement in the total number of basic blocks covered.
However, since snapshotting saves the execution context, there
is a noticeable increase in coverage during the early testing
phases. Higher coverage is crucial because it implies a more
thorough examination of the code, potentially leading to the
discovery of edge cases and hidden bugs that might not be
detected with lower coverage. This demonstrates the superior
effectiveness of micro-snapshot fuzzing in exploring execution
paths and uncovering potential vulnerabilities.

We measured an average of 107 and 112 executions per
second on inkobj.dll and inked.dll, respectively,
where one execution spans from loading a snapshot to the
end of IPersistStorage::Load. Without snapshotting,
the rates were 375 and 472 IPersistStorage::Load
executions per second, respectively.

Although the execution rate is lower when using micro-
snapshot fuzzing, the trade-off is justified by the increased
coverage. The snapshotting approach allows for deeper explo-
ration of the code, focusing on previously unexplored paths
and increasing the likelihood of finding critical vulnerabilities
that might be missed by traditional fuzzing methods. Thus,
while micro-snapshot fuzzing incurs a performance overhead,
it substantially enhances code coverage and the effectiveness
of vulnerability discovery.

B. RQ2: Vulnerability Finding Effectiveness
Table I presents the detailed information of confirmed

vulnerabilities, with 17 of the vulnerabilities being assigned
CVE IDs. For each verified CVE, we provide the module
where the vulnerability resides, the type of vulnerability, its
impact, the affected build versions, and the assigned CVE ID.

18 vulnerabilities listed are capable of being exploited for
remote code execution. We will offer a root-cause analysis for
each type of vulnerability in the following subsections.

Type-1 vulnerability example: CVE-2022-21971.
Within the constructor CreateInstance, an instance of

a WapAuthProvider object is allocated and initialized,
occupying 0x78 bytes in memory. However, the object’s state
is not fully initialized. Upon invocation of the destructor
WapAuthProvider:: WapAuthProvider, the pointer at
offset 0x50 is released without being previously initialized.
Figure 10 displays the vulnerable code snippet exploitable for
remote arbitrary code execution.

1 void
WapAuthProvider::˜WapAuthProvider(__int64
this) {

↪→

↪→

2 void *v2; // rcx
3 void *v3; // rcx
4
5 *(_QWORD *)this =

&WapAuthProvider::`vftable';↪→

6 LocalFree(*(HLOCAL *)(this + 56));
7 v2 = *(void **)(this + 64);
8 *(_QWORD *)(this + 56) = 0i64;
9 LocalFree(v2);
10 v3 = *(void **)(this + 80); // <--

[0] uninitialized↪→

11 *(_QWORD *)(this + 64) = 0i64;
12 LocalFree(v3); // <--

[1] free↪→

13 *(_QWORD *)(this + 80) = 0i64;
14 }

Fig. 10: Simplified code snippet of CVE-2022-21971 Windows
Runtime Remote Code Execution Vulnerability

Type-2 vulnerability example: CVE-2023-35343.
Throughout the course of our testing, we have uncovered
two significant security vulnerabilities. For instance, CVE-
2023-35343 serves as a prototypical case; it constitutes
a remote code execution vulnerability pertaining to the
Windows Location Service, adversely affecting the standard
configurations of Windows Server 2019 and 2022.

Our root cause analysis found that the vulnerability
occurs when the CoCreateInstance function calls the
GetFindMyDeviceEnabled method, leading to an attempt
to load the library mdmcommon.dll with LoadLibraryW.

However, the mdmcommon.dll file does not exist within
the Windows Server environment. An attacker can exploit
this flaw by placing a malicious library file mdmcommon.dll

in the current directory, potentially triggering a remote code
execution attack. A logical error has been uncovered, and the
discovered vulnerability could be readily exploited under the
condition that the attacker manages to place both a malicious
document and a corresponding malicious DLL in the victim’s
current working directory to carry out the attack(e.g., by
placing a document and a DLL in the same zip file).

Type-3 vulnerability example: CVE-2022-23290.
While investigating the IPersistStorage interface,
we invoked the method in the interface named
CSketchInk::IPersistStreamInit_Load and performed
a memory allocation operation. However, this process
only achieved partial initialization. Upon analyzing the
function InkObj!CSketchInk::FreeStrokeList, we

12

1 HeapAlloc(*(HANDLE *)Default, *((_DWORD
*)Default + 2), 0x70);↪→

2 ...
3 v6 = *(void **)(this+0x10); //

Uninitialized pointer↪→

4 HeapFree(*(HANDLE *)Default, *((_DWORD
*)Default + 2), v6);↪→

5
6 mov rdi, qword ptr [rax+10h]
7 ds:00000158`42fcbfa0=c0c0c0c0c0c0c0c0

Fig. 11: Simplified code snippet of CVE-2022-23290 Windows
Inking COM Remote Code Execution Vulnerability

identified an issue with an uninitialized pointer. To observe
this behavior more closely, we enabled full PageHeap
and conducted a trace in WinDbg. Figure 11 illustrates
the vulnerability segment after simplifying the logic at
InkObj!CSketchInk::FreeStrokeList +0x3d and the
corresponding assembly code during single-step execution.
It is evident that accessing the allocated memory results
in abnormal values (c0c0c0c0c0c0c0c0), which likely
indicates a memory corruption issue.

TABLE II: Bug statistics by OLEXPLORE and others
Tool Crashes Bugs CVEs

WinAFL 1 1 0
WINNIE 0 0 0
OLExplore 40 26 17

During the 24-hour testing period, OLExplore triggered 40
crashes, of which 26 were confirmed as bugs. In contrast,
WinAFL only triggered a single crash, while WINNIE did
not trigger any crashes at all. These vulnerabilities are chal-
lenging to detect through conventional data mutation fuzzing
because constructing the data without knowing to maintain
equal lengths in certain parts is problematic. Furthermore, byte
misalignment often prevents the data from passing verification
checks. This difficulty in crafting suitable test cases is why
WinAFL and WINNIE were unable to achieve similar results.
Table II shows the comparison results of three tools.

Responsible Disclosure. Upon identifying vulnerabilities,
we promptly reported them to the Microsoft Security Response
Center (MSRC) with PoC exploits. In October 2021, we
submitted the first batch of vulnerabilities affecting Windows
10. These issues were progressively addressed, with patches
released by early 2022. In February 2023, we identified and
reported a second batch of vulnerabilities affecting Windows
11 and Windows Server, and these were patched throughout
the latter half of 2023. Later in 2023, we conducted a compre-
hensive screening across all scenarios, identifying additional
vulnerabilities, which were reported and subsequently patched
by Microsoft, with the final patch released in March 2024.
Throughout this process, we maintained continuous commu-
nication with MSRC to ensure timely resolution and patch
release for all reported issues.

C. RQ3: False Positives in OLEXPLORE

We conducted an in-depth investigation into the exposed
bugs and the details of vulnerability crashes. Our analysis
indicates that the majority of false positives are attributable
to null pointer exceptions on Windows systems.

TABLE III: Null pointer and vulnerability counts
Version # Crash # NULL pointer # CVE

Windows 10 12 7 5
Windows Server 2022 13 8 5

As demonstrated in Table III, on Windows 10 version
10.0.19041.1237, Type-1 and Type-3 vulnerabilities yielded
a total of 12 crash dump files. Out of these, 5 were con-
firmed as CVEs, while the remaining 7 were identified as
null pointer issues upon further examination. Similarly, on
Windows Server 2022 version 10.0.20348.1487, the count of
null pointer problems stands at 8. The rationale for classifying
these bugs as false positives rather than CVEs is rooted in their
exploitability, or lack thereof, under modern Windows and
Office mitigation mechanisms; such issues are substantially
less likely to be leveraged for security attacks.

VI. DISCUSSIONS

A. Generality of OLEXPLORE and Future Work

OLE is a typical superware architecture where third-party
modules are dynamically loaded into the same memory space
shared by the main application and other modules. External
inputs are processed by external modules solely with the main
application performing minimal checks. This paradigm applies
beyond OLE to other popular software packages as well, such
as WeChat and Alipay.

Porting OLExplore to other superware. Migrating the
collection and analysis of OLE components to certain Office-
like superware (e.g., WPS Office) does not require exces-
sive manual work since most mechanisms can be directly
ported, as these types of software directly support OLE.
However, to migrate micro-snapshot fuzzing to other soft-
ware, it is necessary to identify input-reading functions like
CExposedStream::Read (e.g., the DecodeWxam function in
WeChat that processes proprietary formats like WXAM [54]).
This still requires some manual work in reverse engineering
to confirm that inputs are processed chunk-by-chunk and
to choose the appropriate instrumentation mechanism, all of
which require manual effort. Once these aspects are verified,
the fuzzing architecture can be migrated. To find Type-1/2
vulnerabilities, manual effort is needed to identify the dynamic
module loading mechanism, especially key functions like
CoCreateInstance. The bug oracle of OLExplore can be
reused.

Reusing Attack Surface Among Large and Complex
Software Systems. It is well known that vulnerabilities in
dynamically loadable modules offer significant exploit oppor-
tunities. In fact, attack vectors discussed in Section III are also
applicable to other software systems, some of which have been
well studied. For example: Type-1 vulnerabilities (dependency

13

confusion) are common issues in supply chain security [55];
Type-2 vulnerabilities (DLL-preloading) have been highlighted
in recent studies [56] particularly in applications such as
Chrome and Adobe Reader; and Type-3 vulnerabilities, which
often involve parsing and handling of embedded objects,
are prevalent in Adobe Reader, as evidenced by CVE-2019-
8014 [57] and CVE-2021-44711 [58].

Extending OLExplore to Vulnerabilities in Linked Ob-
jects. A significant security concern titled “Moniker Magic:
Running Scripts Directly in Microsoft Office” [59] highlighted
vulnerabilities such as CVE-2017-0199, which exploit the
URL Moniker feature to load remote .hta files. These vul-
nerabilities arise from flawed design choices in the Office file
loading mechanisms and require IE10 or IE11 to be present.
The exploit can occur without user interaction, although a
dialog box appears during the process. FireEye later disclosed
details of a captured sample exploiting CVE-2017-0199 [60].
Despite patches that introduced blacklist mechanisms for un-
safe Monikers, subsequent vulnerabilities indicate that many
problematic Monikers remain unidentified.

To address these linked object vulnerabilities, OLExplore
can be extended to analyze and detect such issues. OLExplore
includes a component for collecting OLE components. By
adding features such as scanning for StdOleLink identifiers,
it can quickly identify and gather all linked objects on the
system. In future work, it is necessary to investigate the
vulnerabilities of the identified linked objects, categorize them
based on their root causes, and incorporate the corresponding
bug oracles into the OLExplore components. By enhancing
OLExplore’s capabilities to scrutinize both embedded and
linked objects, it can provide a more comprehensive security
analysis of Office documents.

VII. RELATED WORK

COM Security Enhancements. Dewey et al. [61] found
that COM has many vulnerabilities that attackers can exploit
to compromise systems. Attackers can bypass security policies
of popular applications, which allow the use of many flawed
controls. To solve this, they created COMBLOCK, a reference
monitor that ensures all COM operations follow a global
policy.

Detection of Vulnerabilities in COM Objects. Gu et
al. [62] introduced COMRACE, a tool that detects data race
vulnerabilities in COM objects. It uses static binary analysis
to identify insecure methods in COM binaries and validates
these findings with synthesized PoCs, effectively identifying
and mitigating data race vulnerabilities.

Type Confusion Vulnerabilities in COM. Zhang et al. [63]
presented COMFUSION, the first tool to find union type
confusion vulnerabilities in Windows COM. Before this, no
tools could recover union types in binaries. COMFUSION
bridges this gap, improving COM application security by
detecting and fixing these vulnerabilities.

Fuzzing Techniques for Windows. WINNIE [17] improves
Windows fuzzing by directly invoking target functions and
using an efficient fork implementation, avoiding unnecessary

GUI code. WinFuzz [19] introduces target-embedded snap-
shotting, allowing applications to snapshot themselves without
source code or kernel modifications, enhancing precision in
fuzzing.

VIII. CONCLUSION

In this paper, we introduce OLEXPLORE, a new tool
crafted for systematic detection of vulnerabilities within OLE
components for Office applications. OLEXPLORE is based on
an exhaustive analysis of historical vulnerabilities associated
with OLE components, from which we summarized three
distinct vulnerability patterns. OLEXPLORE conducts static
analysis on all COM entities available on the platform to cull
a subset of OLE components, which are then subjected to
dynamic analysis leveraging the trio of vulnerability traits for
comprehensive security evaluation. In our empirical studies,
OLEXPLORE scrutinized the attack surface of 257 OLE ob-
jects, uncovering 26 vulnerabilities, out of which 17 have been
assigned CVE numbers with remote code execution potential.

ACKNOWLEDGMENT

This work was partly supported by the National Key R&D
Program of China (2021YFB2701000), the Key R&D Program
of Hubei Province (2023BAB017, 2023BAB079), the National
NSF of China (grants No.62302181, 62072046), the Knowl-
edge Innovation Program of Wuhan-Basic Research, Huawei
Research Fund, and HUSTCSE-FiberHome Joint Research
Center for Network Security.

REFERENCES

[1] NCC Group, “Understanding Microsoft Word OLE Exploit Primitives:
Exploiting CVE-2015-1642 Microsoft Office CTaskSymbol Use-After-
Free Vulnerability,” https://research.nccgroup.com/wp-content/uploads
/2020/12/Understanding-Microsoft-Word-OLE-Exploit-Primitives-Exp
loiting-CVE-2015-1642.pdf, 2015.

[2] McAfee, “An Inside Look into Microsoft Rich Text Format and OLE
Exploits,” https://www.mcafee.com/blogs/other-blogs/mcafee-labs/an-i
nside-look-into-microsoft-rich-text-format-and-ole-exploits/, 2020.

[3] Q. Li and Q. Jin, “Needle in A Haystack: Catch Multiple Zero-days
Using Sandbox,” https://images.seebug.org/archive/Catch Multiple Zer
o-Days Using Sandbox-EN.pdf, 2019.

[4] S. Salehi, I. Miremadi, M. Ghasempour Nejati, and H. Ghafouri,
“Fostering the Adoption and Use of Super App Technology,” IEEE
Transactions on Engineering Management, 2023.

[5] F. Momot, S. Bratus, S. M. Hallberg, and M. L. Patterson, “The Seven
Turrets of Babel: A Taxonomy of LangSec Errors and How to Expunge
Them,” in 2016 IEEE Cybersecurity Development (SecDev), 2016, pp.
45–52.

[6] M. Zalewski, “Afl,” https://lcamtuf.coredump.cx/afl, 2017.
[7] Google, “ClusterFuzz,” https://github.com/google/oss-fuzz/blob/master/

docs/clusterfuzz.md, 2018.
[8] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Combining

incremental steps of fuzzing research,” in 14th USENIX Workshop on
Offensive Technologies (WOOT 20), 2020.

[9] Y. Li, S. Ji, C. Lyu, Y. Chen, J. Chen, Q. Gu, C. Wu, and R. Beyah, “V-
Fuzz: Vulnerability Prediction-Assisted Evolutionary Fuzzing for Binary
Programs,” IEEE Transactions on Cybernetics, vol. 52, no. 5, pp. 3745–
3756, 2022.

[10] Google, “Honggfuzz,” https://github.com/google/honggfuzz, 2010.
[11] P. Godefroid, M. Y. Levin, and D. Molnar, “SAGE: Whitebox Fuzzing

for Security Testing: SAGE has had a remarkable impact at Microsoft.”
Queue, vol. 10, no. 1, p. 20–27, jan 2012. [Online]. Available:
https://doi.org/10.1145/2090147.2094081

[12] The KLEE Team, “Klee,” https://klee.github.io, 2015.

14

https://research.nccgroup.com/wp-content/uploads/2020/12/Understanding-Microsoft-Word-OLE-Exploit-Primitives-Exploiting-CVE-2015-1642.pdf
https://research.nccgroup.com/wp-content/uploads/2020/12/Understanding-Microsoft-Word-OLE-Exploit-Primitives-Exploiting-CVE-2015-1642.pdf
https://research.nccgroup.com/wp-content/uploads/2020/12/Understanding-Microsoft-Word-OLE-Exploit-Primitives-Exploiting-CVE-2015-1642.pdf
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/an-inside-look-into-microsoft-rich-text-format-and-ole-exploits/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/an-inside-look-into-microsoft-rich-text-format-and-ole-exploits/
https://images.seebug.org/archive/Catch_Multiple_Zero-Days_Using_Sandbox-EN.pdf
https://images.seebug.org/archive/Catch_Multiple_Zero-Days_Using_Sandbox-EN.pdf
https://lcamtuf.coredump.cx/afl
https://github.com/google/oss-fuzz/blob/master/docs/clusterfuzz.md
https://github.com/google/oss-fuzz/blob/master/docs/clusterfuzz.md
https://github.com/google/honggfuzz
https://doi.org/10.1145/2090147.2094081
https://klee.github.io

[13] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis,” in IEEE Symposium on Security and Privacy, 2016.

[14] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM : A Practical
Concolic Execution Engine Tailored for Hybrid Fuzzing,” in 27th
USENIX Security Symposium (USENIX Security 18). Baltimore, MD:
USENIX Association, Aug. 2018, pp. 745–761. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/yun

[15] K. Weiss and J. Schütte, “Annotary: A Concolic Execution System for
Developing Secure Smart Contracts,” in Computer Security – ESORICS
2019, K. Sako, S. Schneider, and P. Y. A. Ryan, Eds. Cham: Springer
International Publishing, 2019, pp. 747–766.

[16] X. Song, Z. Wu, and Y. Wang, “Directer: A Parallel and
Directed Fuzzing based on Concolic Execution,” in Proceedings
of the 7th International Conference on Software and Information
Engineering, ser. ICSIE ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 87–92. [Online]. Available:
https://doi.org/10.1145/3220267.3220272

[17] J. Jung, S. Tong, H. Hu, J. Lim, Y. Jin, and T. Kim, “Winnie:
Fuzzing windows applications with harness synthesis and fast cloning,”
in Proceedings of the 2021 Network and Distributed System Security
Symposium (NDSS 2021), 2021.

[18] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” Acm sigplan
notices, vol. 40, no. 6, pp. 190–200, 2005.

[19] L. Stone, R. Ranjan, S. Nagy, and M. Hicks, “No linux, no
problem: Fast and correct windows binary fuzzing via target-embedded
snapshotting,” in 32nd USENIX Security Symposium (USENIX Security
23). Anaheim, CA: USENIX Association, Aug. 2023, pp. 4913–4929.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity
23/presentation/stone

[20] Google Project Zero, “Jackalope,” https://github.com/googleprojectzero
/Jackalope, 2020.

[21] J. Pan, G. Yan, and X. Fan, “Digtool: A Virtualization-Based
Framework for Detecting Kernel Vulnerabilities,” in 26th USENIX
Security Symposium (USENIX Security 17). Vancouver, BC: USENIX
Association, Aug. 2017, pp. 149–165. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity17/technical-sessions/pres
entation/pan

[22] J. E. Forrester and B. P. Miller, “An Empirical Study of the Robustness
of Windows NT Applications Using Random Testing,” in Proceedings of
the 4th Conference on USENIX Windows Systems Symposium - Volume
4, ser. WSS’00. USA: USENIX Association, 2000, p. 6.

[23] Y. Choi, H. Kim, and D. Lee, “An Empirical Study for Security of
Windows DLL Files Using Automated API Fuzz Testing,” in 2008
10th International Conference on Advanced Communication Technology,
vol. 2, 2008, pp. 1473–1475.

[24] Google Project Zero, “WinAFL,” https://github.com/googleprojectzero
/winafl, 2016.

[25] J. Choi, K. Kim, D. Lee, and S. K. Cha, “NtFuzz: Enabling Type-Aware
Kernel Fuzzing on Windows with Static Binary Analysis,” in 2021 IEEE
Symposium on Security and Privacy (SP), 2021, pp. 677–693.

[26] M. Heuse, “AFL-DynamoRIO,” https://github.com/vanhauser-thc/afl-d
ynamorio, 2018.

[27] Q. Jin, “How I Found 16 Microsoft Office Excel Vulnerabilities in 6
Months,” https://conference.hitb.org/hitbsecconf2021ams/materials/D2T
1%20-%20How%20I%20Found%2016%20Microsoft%20Office%20Ex
cel%20Vulnerabilities%20in%206%20Months%20-%20Quan%20Jin.p
df, 2021.

[28] M. Debasish, “OpenXMolar,” https://github.com/debasishm89/OpenX
Molar, 2017.

[29] Check Point, “FUZZING THE OFFICE ECOSYSTEM,” https://resear
ch.checkpoint.com/2021/fuzzing-the-office-ecosystem/, 2021.

[30] LLVM Project, “LibFuzzer,” https://llvm.org/docs/LibFuzzer.html, 2003.
[31] Y. C. Koh, “Understanding the Microsoft Office 2013 Protected-View

Sandbox,” https://labs.withsecure.com/content/dam/labs/docs/UNDERS
TANDING-THE-MICROSOFT-OFFICE-2013-PROTECTED-VIEW-S
ANDBOX-WP3.pdf, 2015.

[32] Microsoft, “Insert an object in your Excel spreadsheet - Microsoft
Support,” https://support.microsoft.com/en-us/office/insert-an-objec
t-in-your-excel-spreadsheet-e73867b2-2988-4116-8d85-f5769ea435ba,
2023.

[33] ——, “OffVis,” https://download.microsoft.com/download/1/2/7/127ba5
9a-4fe1-4acd-ba47-513ceef85a85/offvis.zip, 2011.

[34] ——, “Privileges,” https://learn.microsoft.com/en-us/windows/win32/se
cauthz/privileges, 2021.

[35] “CVE-2017-11882,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2017-11882, 2017.

[36] FireEye, “New Targeted Attack in the Middle East by APT34, a
Suspected Iranian Threat Group, Using CVE-2017-11882 Exploit,”
https://www.mandiant.com/resources/blog/targeted-attack-in-middl
e-east-by-apt34, 2017.

[37] Microsoft, “Process Monitor,” https://learn.microsoft.com/en-us/sysint
ernals/downloads/procmon, 2023.

[38] ——, “Get-Member,” https://learn.microsoft.com/en-us/powershell/m
odule/microsoft.powershell.utility/get-member?view=powershell-7.4,
2023.

[39] J. Forshaw, “OleViewDotnet,” https://github.com/tyranid/oleviewdotnet,
2014.

[40] S. Vittitoe, “Issue 514: Microsoft Office / COM Object DLL Planting
with els.dll,” https://bugs.chromium.org/p/project-zero/issues/detail?id
=514, 2015.

[41] W. Dormann, “Attacking COM via Word RTF,” https://insights.sei.cmu
.edu/library/attacking-com-via-word-rtf/, 2021.

[42] Microsoft, “ActiveX Controls Architecture,” https://learn.microsoft.co
m/en-us/windows/win32/com/activex-controls-architecture, 2019.

[43] J. Wang, B. Chen, L. Wei, and Y. Liu, “Superion: Grammar-Aware
Greybox Fuzzing,” in 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE), 2019, pp. 724–735.

[44] A. Fioraldi, D. C. D’Elia, and E. Coppa, “WEIZZ: automatic grey-box
fuzzing for structured binary formats,” in Proceedings of the 29th
ACM SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA 2020. New York, NY, USA: Association
for Computing Machinery, 2020, p. 1–13. [Online]. Available:
https://doi.org/10.1145/3395363.3397372

[45] T. Blazytko, C. Aschermann, M. Schlögel, A. Abbasi, S. Schumilo,
S. Wörner, and T. Holz, “GRIMOIRE: Synthesizing Structure while
Fuzzing,” in 28th USENIX Security Symposium (USENIX Security 19).
Santa Clara, CA: USENIX Association, Aug. 2019, pp. 1985–2002.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity
19/presentation/blazytko

[46] S. Schumilo, C. Aschermann, A. Abbasi, S. Wör-ner, and T. Holz, “Nyx:
Greybox Hypervisor Fuzzing using Fast Snapshots and Affine Types,”
in 30th USENIX Security Symposium (USENIX Security 21). USENIX
Association, Aug. 2021, pp. 2597–2614. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity21/presentation/schumilo

[47] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz,
“kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels,” in 26th
USENIX Security Symposium (USENIX Security 17). Vancouver, BC:
USENIX Association, Aug. 2017, pp. 167–182. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/
presentation/schumilo

[48] Microsoft, “Detours,” https://github.com/microsoft/Detours, 2018.
[49] Google Project Zero, “TinyInst,” https://github.com/googleprojectzero

/TinyInst.
[50] Microsoft, “GFlags and PageHeap - Windows drivers,” https://learn.mi

crosoft.com/en-us/windows-hardware/drivers/debugger/gflags-and-pag
eheap, 2022.

[51] ——, “WinDbg,” http://www.windbg.org, 2023.
[52] Outflank, “Mark-of-the-Web from a Red Team’s Perspective,” https:

//www.outflank.nl/blog/2020/03/30/mark-of-the-web-from-a-red-teams
-perspective/, 2017.

[53] D. Plakosh and W. Dormann, “Dranzer,” https://github.com/CERTCC/
dranzer, 2009.

[54] Signal Labs, “Fuzzing WeChat’s Wxam Parser,” https://signal-labs.co
m/fuzzing-wechats-wxam-parser/, 2022.

[55] S. Neupane, G. Holmes, E. Wyss, D. Davidson, and L. D. Carli,
“Beyond Typosquatting: An In-depth Look at Package Confusion,” in
32nd USENIX Security Symposium (USENIX Security 23). Anaheim,
CA: USENIX Association, Aug. 2023, pp. 3439–3456. [Online].
Available: https://www.usenix.org/conference/usenixsecurity23/present
ation/neupane

[56] C. Yu, Y. Xiao, J. Lu, Y. Li, Y. Li, L. Li, Y. Dong, J. Wang, J. Shi, D. Bo,
and W. Huo, “File Hijacking Vulnerability: The Elephant in the Room,”
Proceedings 2024 Network and Distributed System Security Symposium,

15

https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://doi.org/10.1145/3220267.3220272
https://www.usenix.org/conference/usenixsecurity23/presentation/stone
https://www.usenix.org/conference/usenixsecurity23/presentation/stone
https://github.com/googleprojectzero/Jackalope
https://github.com/googleprojectzero/Jackalope
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/pan
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/pan
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/pan
https://github.com/googleprojectzero/winafl
https://github.com/googleprojectzero/winafl
https://github.com/vanhauser-thc/afl-dynamorio
https://github.com/vanhauser-thc/afl-dynamorio
https://conference.hitb.org/hitbsecconf2021ams/materials/D2T1%20-%20How%20I%20Found%2016%20Microsoft%20Office%20Excel%20Vulnerabilities%20in%206%20Months%20-%20Quan%20Jin.pdf
https://conference.hitb.org/hitbsecconf2021ams/materials/D2T1%20-%20How%20I%20Found%2016%20Microsoft%20Office%20Excel%20Vulnerabilities%20in%206%20Months%20-%20Quan%20Jin.pdf
https://conference.hitb.org/hitbsecconf2021ams/materials/D2T1%20-%20How%20I%20Found%2016%20Microsoft%20Office%20Excel%20Vulnerabilities%20in%206%20Months%20-%20Quan%20Jin.pdf
https://conference.hitb.org/hitbsecconf2021ams/materials/D2T1%20-%20How%20I%20Found%2016%20Microsoft%20Office%20Excel%20Vulnerabilities%20in%206%20Months%20-%20Quan%20Jin.pdf
https://github.com/debasishm89/OpenXMolar
https://github.com/debasishm89/OpenXMolar
https://research.checkpoint.com/2021/fuzzing-the-office-ecosystem/
https://research.checkpoint.com/2021/fuzzing-the-office-ecosystem/
https://llvm.org/docs/LibFuzzer.html
https://labs.withsecure.com/content/dam/labs/docs/UNDERSTANDING-THE-MICROSOFT-OFFICE-2013-PROTECTED-VIEW-SANDBOX-WP3.pdf
https://labs.withsecure.com/content/dam/labs/docs/UNDERSTANDING-THE-MICROSOFT-OFFICE-2013-PROTECTED-VIEW-SANDBOX-WP3.pdf
https://labs.withsecure.com/content/dam/labs/docs/UNDERSTANDING-THE-MICROSOFT-OFFICE-2013-PROTECTED-VIEW-SANDBOX-WP3.pdf
https://support.microsoft.com/en-us/office/insert-an-object-in-your-excel-spreadsheet-e73867b2-2988-4116-8d85-f5769ea435ba
https://support.microsoft.com/en-us/office/insert-an-object-in-your-excel-spreadsheet-e73867b2-2988-4116-8d85-f5769ea435ba
https://download.microsoft.com/download/1/2/7/127ba59a-4fe1-4acd-ba47-513ceef85a85/offvis.zip
https://download.microsoft.com/download/1/2/7/127ba59a-4fe1-4acd-ba47-513ceef85a85/offvis.zip
https://learn.microsoft.com/en-us/windows/win32/secauthz/privileges
https://learn.microsoft.com/en-us/windows/win32/secauthz/privileges
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-11882
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-11882
https://www.mandiant.com/resources/blog/targeted-attack-in-middle-east-by-apt34
https://www.mandiant.com/resources/blog/targeted-attack-in-middle-east-by-apt34
https://learn.microsoft.com/en-us/sysinternals/downloads/procmon
https://learn.microsoft.com/en-us/sysinternals/downloads/procmon
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-member?view=powershell-7.4
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-member?view=powershell-7.4
https://github.com/tyranid/oleviewdotnet
https://bugs.chromium.org/p/project-zero/issues/detail?id=514
https://bugs.chromium.org/p/project-zero/issues/detail?id=514
https://insights.sei.cmu.edu/library/attacking-com-via-word-rtf/
https://insights.sei.cmu.edu/library/attacking-com-via-word-rtf/
https://learn.microsoft.com/en-us/windows/win32/com/activex-controls-architecture
https://learn.microsoft.com/en-us/windows/win32/com/activex-controls-architecture
https://doi.org/10.1145/3395363.3397372
https://www.usenix.org/conference/usenixsecurity19/presentation/blazytko
https://www.usenix.org/conference/usenixsecurity19/presentation/blazytko
https://www.usenix.org/conference/usenixsecurity21/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity21/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://github.com/microsoft/Detours
https://github.com/googleprojectzero/TinyInst
https://github.com/googleprojectzero/TinyInst
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/gflags-and-pageheap
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/gflags-and-pageheap
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/gflags-and-pageheap
http://www.windbg.org
https://www.outflank.nl/blog/2020/03/30/mark-of-the-web-from-a-red-teams-perspective/
https://www.outflank.nl/blog/2020/03/30/mark-of-the-web-from-a-red-teams-perspective/
https://www.outflank.nl/blog/2020/03/30/mark-of-the-web-from-a-red-teams-perspective/
https://github.com/CERTCC/dranzer
https://github.com/CERTCC/dranzer
https://signal-labs.com/fuzzing-wechats-wxam-parser/
https://signal-labs.com/fuzzing-wechats-wxam-parser/
https://www.usenix.org/conference/usenixsecurity23/presentation/neupane
https://www.usenix.org/conference/usenixsecurity23/presentation/neupane

2024. [Online]. Available: https://api.semanticscholar.org/CorpusID:
267621808

[57] “CVE-2019-8014,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=CV
E-2019-8014, 2023.

[58] “CVE-2021-44711,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2021-44711, 2023.

[59] H. Li and B. Sun, “Moniker Magic: Running Scripts Directly in Mi-
crosoft Office,” https://leo00000.github.io/pdf/Moniker Magic final.pdf,
2017.

[60] FireEye, “CVE-2017-0199: In the Wild Attacks Leveraging HTA Han-
dler,” https://www.mandiant.com/resources/blog/cve-2017-0199-hta-h
andler, 2017.

[61] D. Dewey and P. Traynor, “No Loitering: Exploiting Lingering Vulner-
abilities in Default COM Objects,” in NDSS, 2011.

[62] F. Gu, Q. Guo, L. Li, Z. Peng, W. Lin, X. Yang, and X. Gong,
“COMRace: Detecting Data Race Vulnerabilities in COM Objects,”
in 31st USENIX Security Symposium (USENIX Security 22). Boston,
MA: USENIX Association, Aug. 2022, pp. 3019–3036. [Online].
Available: https://www.usenix.org/conference/usenixsecurity22/present
ation/gu-fangming

[63] Y. Zhang, X. Zhu, D. He, M. Xue, S. Ji, M. S. Haghighi, S. Wen,
and Z. Peng, “Detecting Union Type Confusion in Component Object
Model,” in Proceedings of the 32nd USENIX Conference on Security
Symposium, ser. SEC ’23. USA: USENIX Association, 2023.

[64] houjingyi, “office-exploit-case-study,” https://github.com/houjingyi233/
office-exploit-case-study, 2018.

[65] Offsec, “Exploit Database,” https://www.exploit-db.com/, 2024.
[66] Google Project Zero, “project-zero,” https://bugs.chromium.org/p/projec

t-zero/issues/list, 2024.
[67] “CVE-2023-21716,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2023-21716, 2023.
[68] Microsoft, “Description of the security update for Office 2016: April

11, 2017,” https://support.microsoft.com/en-us/topic/description-of-the
-security-update-for-office-2016-april-11-2017-c4cec448-05d9-1ae2-3
7b0-869ec9a0aa71, 2017.

[69] ——, “Data Execution Prevention,” https://learn.microsoft.com/en-us/
windows/win32/memory/data-execution-prevention, 2023.

[70] Pax, “ASLR,” https://pax.grsecurity.net/docs/aslr.txt, 2023.
[71] Microsoft, “Blocking Flash, Shockwave, Silverlight controls from acti-

vating in Office Applications for Security,” https://techcommunity.micr
osoft.com/t5/security-compliance-and-identity/blocking-flash-shockwa
ve-silverlight-controls-from-activating-in/ba-p/191729, 2018.

[72] H. Li and B. Sun, “Attacking Interoperability: An OLE Edition,” https:
//www.blackhat.com/docs/us-15/materials/us-15-Li-AttackingInteropera
bility-An-OLE-Edition.pdf, 2015.

[73] UINT 42, “In-Depth Analysis of July 2023 Exploit Chain Featuring
CVE-2023-36884 and CVE-2023-36584,” https://unit42.paloaltonetwo
rks.com/new-cve-2023-36584-discovered-in-attack-chain-used-by-rus
sian-apt/, 2023.

[74] A. Sotirov, “Heap Feng Shui in Javascript,” https://www.blackhat.com
/presentations/bh-europe-07/Sotirov/Whitepaper/bh-eu-07-sotirov-WP.
pdf, 2007.

[75] Parvez, “Spraying the heap in seconds using ActiveX controls in
Microsoft Office,” https://www.greyhathacker.net/?p=911, 2015.

[76] McAfee, “Microsoft Kills Potential Remote Code Execution Vulnerabil-
ity in Office (CVE-2017-8630),” https://www.mcafee.com/blogs/other-b
logs/mcafee-labs/microsoft-kills-potential-remote-code-execution-vul
nerability-in-office-cve-2017-8630/, 2017.

APPENDIX

A. Summary of Known Office Vulnerabilities

Our work on OLE vulnerability detection is motivated by an
exhaustive analysis of all historical vulnerabilities associated
with Office products. The data comes from publicly disclosed
research [64], [3] and databases [65], [66]. These vulnerabili-
ties can roughly be categorized into 7 types based on their root
cause and Figure 12 illustrates their respective proportions in
past occurrences.

Notably, Embedded OLE Object Parsing Problems are pre-
dominant, accounting for 43.24% of the vulnerabilities, and

they continue to pose a significant risk at present. Among
the remaining vulnerabilities, 27.03% are no longer applicable
because the vulnerable applications have reached the end of
life. Additionally, 13.51% of the vulnerabilities are challenging
to exploit and are unlikely to be used in practical scenarios, as
such vulnerabilities have neither been disclosed nor captured
being exploited in the wild over the past five years.
• RTF Control Word and Open XML Tag Parsing Problems.

These two types are grouped together due to their as-
sociation with specific markers or identifiers within their
respective formats. Both require memory corruption that
necessitates precise memory control like heap feng shui
for exploitation. However, the absence of good primi-
tives for memory manipulation typically makes exploita-
tion more challenging. Despite contemporary mitigation
techniques, such vulnerabilities persist. For example, CVE-
2023-21716 [67] demonstrates a Microsoft Word remote
code execution vulnerability. Yet, as evidenced by the lack of
detected memory corruption exploits over the past five years,
these vulnerabilities are now significantly more difficult to
exploit than before.

• EPS File Parsing Problems. EPS, once supported by Office
as an image format featuring PostScript program code
which is amenable to memory manipulations, hence was
more exploitable. This attack vector, however, is no longer
present; since April 2017, Office has disabled the insertion
of EPS files into documents [68].

• Other Resource File Parsing Problems. In addition to EPS,
Office still supports the insertion of various resource files,
including 3D models, among others. A substantial number
of vulnerabilities remain active in this area. Historically,
such issues always proved similar, with updates (e.g., June
1st, 2023) temporarily disabling the functionality to insert
SketchUp graphics (.skp files) into Office. However, these
types of vulnerabilities are very scattered and small in
number and are not included in the statistics.

• Moniker Problems. Moniker is an intrinsic feature of the
Office suite, designed to facilitate linkage to various lo-

Embedded OLE object
Parsing Problem

43.24%

Moniker
8.11%

Other Office Logic
Vulnerabilities

8.11%

RTF Control Word
Parsing Problem

8.11%

Open XML Tag
Parsing Problem

5.4%

EPS File
Parsing Problem

8.11%

Embedded IE 0day
(Subset of Moniker)

18.92%

Hard to exploit
13.51%

Still dangerous
59.46%

End of life
27.03%

Fig. 12: CVEs Categorization

16

https://api.semanticscholar.org/CorpusID:267621808
https://api.semanticscholar.org/CorpusID:267621808
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8014
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8014
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44711
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44711
https://leo00000.github.io/pdf/Moniker_Magic_final.pdf
https://www.mandiant.com/resources/blog/cve-2017-0199-hta-handler
https://www.mandiant.com/resources/blog/cve-2017-0199-hta-handler
https://www.usenix.org/conference/usenixsecurity22/presentation/gu-fangming
https://www.usenix.org/conference/usenixsecurity22/presentation/gu-fangming
https://github.com/houjingyi233/office-exploit-case-study
https://github.com/houjingyi233/office-exploit-case-study
https://www.exploit-db.com/
https://bugs.chromium.org/p/project-zero/issues/list
https://bugs.chromium.org/p/project-zero/issues/list
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-21716
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-21716
https://support.microsoft.com/en-us/topic/description-of-the-security-update-for-office-2016-april-11-2017-c4cec448-05d9-1ae2-37b0-869ec9a0aa71
https://support.microsoft.com/en-us/topic/description-of-the-security-update-for-office-2016-april-11-2017-c4cec448-05d9-1ae2-37b0-869ec9a0aa71
https://support.microsoft.com/en-us/topic/description-of-the-security-update-for-office-2016-april-11-2017-c4cec448-05d9-1ae2-37b0-869ec9a0aa71
https://learn.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://learn.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://pax.grsecurity.net/docs/aslr.txt
https://techcommunity.microsoft.com/t5/security-compliance-and-identity/blocking-flash-shockwave-silverlight-controls-from-activating-in/ba-p/191729
https://techcommunity.microsoft.com/t5/security-compliance-and-identity/blocking-flash-shockwave-silverlight-controls-from-activating-in/ba-p/191729
https://techcommunity.microsoft.com/t5/security-compliance-and-identity/blocking-flash-shockwave-silverlight-controls-from-activating-in/ba-p/191729
https://www.blackhat.com/docs/us-15/materials/us-15-Li-AttackingInteroperability-An-OLE-Edition.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Li-AttackingInteroperability-An-OLE-Edition.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Li-AttackingInteroperability-An-OLE-Edition.pdf
https://unit42.paloaltonetworks.com/new-cve-2023-36584-discovered-in-attack-chain-used-by-russian-apt/
https://unit42.paloaltonetworks.com/new-cve-2023-36584-discovered-in-attack-chain-used-by-russian-apt/
https://unit42.paloaltonetworks.com/new-cve-2023-36584-discovered-in-attack-chain-used-by-russian-apt/
https://www.blackhat.com/presentations/bh-europe-07/Sotirov/Whitepaper/bh-eu-07-sotirov-WP.pdf
https://www.blackhat.com/presentations/bh-europe-07/Sotirov/Whitepaper/bh-eu-07-sotirov-WP.pdf
https://www.blackhat.com/presentations/bh-europe-07/Sotirov/Whitepaper/bh-eu-07-sotirov-WP.pdf
https://www.greyhathacker.net/?p=911
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/microsoft-kills-potential-remote-code-execution-vulnerability-in-office-cve-2017-8630/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/microsoft-kills-potential-remote-code-execution-vulnerability-in-office-cve-2017-8630/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/microsoft-kills-potential-remote-code-execution-vulnerability-in-office-cve-2017-8630/

CVE-2014-1761
CVE-2014-4114
CVE-2014-6352

CVE-2015-1642
CVE-2015-2424
CVE-2015-2545
CVE-2015-5119
CVE-2015-5122

CVE-2016-4117
CVE-2016-7193
CVE-2016-7855

CVE-2017-0199
CVE-2017-0261
CVE-2017-0262
CVE-2017-8570
CVE-2017-8759

CVE-2017-11292
CVE-2017-11826
CVE-2017-11882

CVE-2018-0798
CVE-2018-0802
CVE-2018-4878
CVE-2018-5002
CVE-2018-8174
CVE-2018-8373

CVE-2018-15982
CVE-2020-0674
CVE-2020-0968

CVE-2021-40444

CVE-2022-30190
CVE-2022-41128

CVE-2023-36884

2014

2015

2016

2017

2018 2020

2019 2021

2022

2023

No CVE Found

Fig. 13: Exploited vulnerabilities in the last 10 years.

cal or remote objects. Inherently, it does not constitute a
vulnerability. Rather, the vulnerability emerges from the
execution policy within Office applications pertaining to
files fetched from remote links. For instance, opening a
remotely loaded Excel file would typically pose no issue.
However, when the files involved are of types such as
HTA files and scripts, executing them directly can lead to
security breaches due to improper handling by the execution
policy [59]. Microsoft subsequently disabled some CLSIDs
in their fix. Vulnerabilities such as CVE-2017-0199, CVE-
2017-8570, and CVE-2017-8579 are related to this issue.

• Office Embedded IE 0-day Vulnerabilities. Derived from
moniker vulnerabilities these utilize the StdOleLink func-
tion to load HTML content, which is then processed by
the IE parsing module. Exploits like CVE-2018-8174/8373
and CVE-2020-0674/CVE-2021-40444 highlight attackers
exploiting IE’s VBScript and JavaScript 0-day vulnerabil-
ities. As of August 2019, VBScript was disabled by default,
and JavaScript followed in January 2023. The lifecycle of
these vulnerabilities has also ended and is no longer a focal
point of research.

• Embedded OLE Object Parsing Problems. CVE-2017-11882
serves as a classic example involving a vulnerability with
the Equation Editor. eqnedt32.exe lacked mitigation mea-
sures (DEP [69] & ASLR [70]) and was removed in the
public update of January 2018. Flash represented a subset
of embedded OLE objects, categorized separately due to its
significant impact. Numerous security vulnerabilities have
been identified, leading Office Monthly Channel to block
Flash execution starting in June 2018 [71]. This category
includes not only memory corruption vulnerabilities but also
logic flaws. Black Hat USA 2015 referenced these issues
during ”Attacking Interoperability: An OLE Edition” [72].
DLL preloading vulnerabilities could lead to loading DLL
files from the current working directory. Our study will place
emphasis on this class of vulnerabilities.

Figure 13 shows the exploited vulnerabilities in the last
10 years, from which we can observe a trend: the number
of exploitable vulnerabilities in the wild has decreased. One
reason is that Office vulnerabilities are becoming harder to
find and exploit due to Microsoft’s patches. Additionally,
many of these vulnerabilities have reached the end of their
lifecycle. Attackers urgently need to find a new potential

attack surface which can be exploited for Office, and OLE
type vulnerabilities cannot be easily overlooked due to their
relatively high proportion. Therefore, it is essential to conduct
security checks on OLE objects.

B. Weaponization Vulnerabilities

Disguising Document. It is essential to study the activation
mechanisms for OLE within Winword.exe since attackers
often use various document formats to launch attacks. In
the context of OLE activation, a distinct difference in user
interaction requirements can be observed.

• For documents with the .doc extension, a user must
explicitly click the OLE object to activate it.

• Documents saved in the .docx format prompt a warning
message upon an OLE object’s attempted activation.

• However, RTF documents (.rtf) facilitate a more seamless
user experience, where a single click not only opens the
document but also loads involved OLE components with-
out eliciting any warning notifications or necessitating a
secondary click for OLE activation.

Given these characteristics, attackers exhibit a preference for
utilizing RTF files as the medium of choice for their malicious
endeavors. Consequently, for the purpose of conducting our
experimental attack analysis, we have opted to select the RTF
file format as the carrier for our test attack. However, due to
the limited popularity of RTF, such attack activities can easily
attract attention, leading attackers to disguise their format.
Examples in the wild include: 1) changing .rtf to .doc, i.e., by
modifying the file extension, or 2) converting .rtf into .docx:
i.e., by embedding an RTF within a .docx file, as seen in the
PoC for CVE-2023-36884 [73].

Heap Feng Shui. In the context of Type-1 and Type-3
vulnerabilities, heap feng shui [74] is crucial. Our objective
is to ensure that the heap spraying is properly aligned with
controlled data at a known address, such as the canoni-
cal 0x0a0a0a0a, thereby circumventing mitigation strate-
gies such as ASLR. Recent techniques leverage the use of
ActiveX [75] and OLE objects [1] for heap spraying [76].
This can be achieved through the utilization of Microsoft
Common Controls COM objects, including Toolbar objects
or other OLE controls, exemplified by TabStrip objects
(as demonstrated in malware samples like CVE-2013-3906)
and bitmap images. Heap memory allocation is facilitated by
embedding a specific number of these objects into documents.

Stealthy DLL Delivery. However, for Type-2 vulnera-
bilities, the exploitation methods are notably more diverse
and innovative. We have chosen the following two methods
for carrying malicious files to conceal their presence for
imperceptible attacks:

• In a local archive scenario: An attacker might compress
a malicious DLL file along with the document. When
the victim decompresses it, the malicious document and
DLL file are both loaded. With Windows’ default settings,
hidden files are not displayed in File Explorer, allowing
attackers to exploit this feature to conceal the malicious
DLL file from users’ notice.

17

• In remote shared directories: When a user opens a
malicious document in a remote shared directory, the
malicious DLL file is also loaded from the shared direc-
tory. Attackers can modify protocols or control the shared
directory to further disguise the malicious DLL file,
making it undetectable to users. Since the shared directory
is under the attacker’s control, protocol modifications can
also render the malicious DLL files invisible to users.

In the context of Type-2 DLL Preloading Attacks, successful
exploitation requires the co-location of a malicious document
and a corresponding malevolent DLL in the same directory.
The Winword.exe process acknowledges two distinct types
of Current Working Directory (CWD):
1) Where the document is located: This directory serves as

the CWD for instances of Winword.exe that are initiated
through explorer.exe. Positioning a malevolent DLL
in this directory proves to be an effective strategy for
exploitation.

2) C:\Users\name\Documents: An internal timer within
Office applications alters the execution context after a time
span of 10 seconds. Subsequently, Winword.exe modi-
fies the current directory to C:\Users\name\Documents,
which represents the default local file location according
to Office settings. Post the directory transition, attempts at
exploitation will no longer succeed.

Bypassing the Protected View Mode. Irrespective of the
vulnerability type, whether it be Type-1 and Type-3 memory
vulnerabilities or Type-2 logic vulnerabilities, a common chal-
lenge persists: to exploit these vulnerabilities, it is imperative
for an OLE object to be loaded by Office. However, the
Protected View Mode hinders the loading of OLE objects.
Herein, we introduce an innovative technique to circumvent
the Protected View Mode—exploiting the AutoRecover feature
intrinsic to Office components. The built-in save functionality
of Office components is designed to prevent user data loss;
Office will still open any previously unintentionally closed
documents alongside any new document that is opened after
an abnormal termination. However, the Protected View Mode
only offers protection during the first opening of a document.
Thus, a program crash could be beneficial to us. The crash
terminates the running process, and the next time a new pro-
cess starts, it will not enter Protected Mode. The vulnerability
we uncovered, when combined with a DoS flaw, can easily
circumvent the Protected View Mode to enable the execution
of malicious functions. In fact, there are numerous DoS
vulnerabilities in Office (including our findings in Table I),
but Microsoft states that DoS-type vulnerabilities do not meet
the criteria for security update services and will not receive
security updates.

C. Software Fault Isolation as Defense

Common mitigations include implementing stringent
checks, such as allowlisting and sandbox isolation [31] in
Office. However, such mitigations have not been strictly im-
plemented for OLE. We can observe a more robust approach
from Internet Explorer’s handling of ActiveX controls.

Unlike with OLE, when the IE11 browser prepares
to load an ActiveX control, it first verifies an
“allowlist” within the Registry key under the path name
HKLM\Software\Microsoft\Windows\CurrentVersion\
Ext\PreApproved. The associated DLL is only loaded into
the IE process if the ActiveX control’s CLSID is present on
this list. This mechanism indicates that the loading process
for ActiveX controls in IE is selective, avoiding the loading
of unvetted components. This highlights a clear disparity
between Windows’ method of addressing the security of OLE
objects and IE’s handling of ActiveX controls. The latter
offers a more secure and filtered mechanism to prevent the
execution of unaudited code. In summary, using third-party
code without adequate verification constitutes an insecure
design practice. Conducting security tests on these types of
data is highly effective, and employing sandboxing techniques
to completely isolate them until they have been thoroughly
validated by the system or deemed trustworthy by users is
advisable.

18

	Introduction
	Background
	Basics of OLE
	How OLE Works
	OLE Structured Storage

	OLE Attack Vectors
	Type-1: Loading a COM Component Not Intended for OLE
	Type-2: DLL Preloading Attacks
	Type-3: OLE Data Parsing Error in [0.5]IPersistStorage

	OLExplore: Systematic Bug Finding for OLE
	Collecting OLE Components
	Constructing an OLE Runtime Environment
	Testing An OLE Component by Mutating Storage Data
	ActiveX-based input generation
	Micro-snapshot fuzzing

	Micro-snapshot Fuzzing
	Behavior Detection
	Vulnerability Analysis

	Evaluation
	RQ1: Evaluation of OLExplore's Components
	Identifying OLE components from COM components
	Effectiveness of coverage and feedback in micro-snapshot fuzzing
	Effectiveness of micro-snapshot fuzzing in general
	Performance of micro-snapshot fuzzing

	RQ2: Vulnerability Finding Effectiveness
	RQ3: False Positives in OLExplore

	Discussions
	Generality of OLExplore and Future Work

	Related Work
	conclusion
	References
	Appendix
	Summary of Known Office Vulnerabilities
	Weaponization Vulnerabilities
	Software Fault Isolation as Defense

