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Abstract—Use-After-Free (UAF) is one of the most widely
spread and severe memory safety issues, attracting lots of
research efforts toward its automatic discovery. Existing UAF
detection approaches include two major categories: dynamic and
static. While dynamic methods like fuzzing can detect UAF issues
with high precision, they are inherently limited in code coverage.
Static approaches, on the other hand, can usually only discover
simple sequential UAF cases, despite that many real-world UAF
bugs involve intricate cross-entry control and data flows (e.g.,
concurrent UAFs). Limited static tools supporting cross-entry
UAF detection also suffer from inaccuracy or narrowed scope
(e.g., cannot handle complex codebases like the Linux kernel).

In this paper, we propose UAFX, a static analyzer capable of
discovering cross-entry UAF vulnerabilities in the Linux kernel
and potentially extensible to general C programs. UAFX is
powered by a novel escape-fetch-based cross-entry alias analysis,
enabling it to accurately analyze the alias relationships between
the use and free sites even when they scatter in different entry
functions. UAFX is also equipped with a systematic UAF vali-
dation framework based on partial-order constraints, allowing it
to reliably reason about multiple UAF-related code aspects (e.g.,
locks, path conditions, threads) to filter out false alarms. Our
evaluation shows that UAFX can discover new cross-entry UAF
vulnerabilities in the kernel and one user-space program (80 true
positive warnings), with reasonable reviewer-perceived precision
(more than 40%) and performance.

I. INTRODUCTION

Use-After-Free (UAF) is a classic temporal memory safety
problem, despite the long history and numerous research
efforts, it is still among the most common and severe vulnera-
bility types today (e.g., consistently ranked highly in CWE top
weaknesses [1]). Due to its prevalence, many previous works

*Work partially done when the leading author was a postdoctoral researcher
at Georgia Tech.

are attempting to automatically discover UAF bugs, which can
be generally classified into dynamic and static categories based
on their methodology. A dynamic approach (e.g., fuzzing)
executes the target program with a limited set of input and
watches for the potential runtime buggy behaviors (e.g., with
the help of sanitizers such as ASan [2]). Though precise
(e.g., the reported bugs are usually true positives), dynamic
approaches generally suffer from low code/state coverage due
to their random exploration nature [3].

Alternatively, static approaches systematically scan the code
for UAFs, achieving a higher coverage. However, existing
static UAF detectors still fall short of spotting sophisticated
UAF issues. Specifically, they can be classified into two
categories:

First, most static UAF detectors [4], [5], [6], [7], [8], [9]
only support identifying simple sequential UAF bugs, where
the use happens straightly after free either within the same
function (intraprocedural) or the same call chain (interprocedu-
ral). However, as shown by both our study (§V-B) and previous
work [10], many real-world UAF cases involve complex
control and data flows across multiple entry functions (i.e., top-
level functions serving as entry points, such as Linux system
calls). For example, memory can be freed in one system call
while accessed in another, with apparently different but indeed
aliased pointers. Our study (§V-B) reveals that more than 70%
of Linux device driver UAFs found by Syzkaller [11], a most
popular 24/7 kernel fuzzer, are cross-entry.

Second, some works (only DCUAF [10] and Canary [12]
to our best knowledge) provide support for cross-entry UAF
detection, but to limited degrees. For example, DCUAF [10]
employs a coarse-grained type- and field-based alias analysis
between use and free sites, as well as a simplified FP filtering
heuristic (e.g., single-aspect lockset analysis), which can lead
to significant inaccuracies (e.g., use and free sites may be
regarded as aliased or not, incorrectly). Canary [12] is limited
to the fork()-based multi-threading model, however, most
Linux kernel cross-entry UAF issues are based on the alias
relationships centered around global variables, rendering its
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approach ineffective. We discuss in more detail and perform
comparative evaluations on these tools in §V-D.

In this paper, we propose UAFX, a static analyzer capable
of discovering complex cross-entry UAF bugs in the Linux
kernel with highly accurate cross-entry reasoning. UAFX also
has the potential to support general C programs. We employ
two novel techniques to address two key challenges in cross-
entry UAF detection, respectively:
(1) Escape-Fetch-based Cross-Entry Alias Analysis. To ac-
curately capture the cross-entry aliases, we develop an in-
novative escape-fetch analysis to track cross-entry memory
object propagation. Specifically, we model the object assign-
ment(retrieval) to(from) shared pointers as escape(fetch)
and conduct an accurate per-entry analysis (§III-C) to summa-
rize all such escape and fetch within the entry. Then, by
querying the per-entry summaries, UAFX efficiently constructs
cross-entry escape-fetch paths on-demand (§III-D), establish-
ing the cross-entry alias relationship between use and free sites
and laying the foundation for cross-entry UAF detection.
(2) Systematic Partial-Order Constraint-based UAF Valida-
tion. Confirming the use/free alias relationship is only the first
step of UAF discovery, validating the UAF issues still needs
the reasoning of many different code aspects. For example, a
flag may be set to true following a free site, while the
use site is guarded by the check of flag, preventing the
UAF. This could be further entangled with code aspects like
lock/unlock and multi-thread mechanisms. All these aspects
must be systematically reasoned about to validate the UAF,
while previous works only consider a part of them, leading to
inaccuracies. To address this problem, UAFX comprehensively
models UAF-relevant code aspects and encodes them in a
unified and extensible partial-order constraint system (§III-E),
whose feasibility can be efficiently decided (e.g., by SMT
solvers like z3 [13]), making a systematic UAF validation
framework.

We implement the prototype of UAFX and evaluate it
against both the Linux kernel and a selected user-space
program. UAFX successfully discovers unknown cross-entry
UAF vulnerabilities (80 true positive warnings) with reason-
able reviewer-perceived precision (around 40%, as detailed in
§V-A) and efficiency (§V-C). We have reported our findings
to developers and so far 37 warnings have been confirmed,
corresponding to 10 independent underlying UAF issues. We
summarize our contributions as follows:
(1) We distill two key challenges in cross-entry UAF discovery
and devise innovative techniques to effectively address them.
(2) We implement our ideas in UAFX, a prototype capable
of statically discovering cross-entry UAF bugs in the Linux
kernel and potentially extensible to general C programs. UAFX
will be open-sourced1.
(3) UAFX is evaluated in Linux kernel and a user-space C
program, successfully discovering multiple new cross-entry
UAFs with practical accuracy and performance.

1https://github.com/uafx/uafx

II. OVERVIEW

In this section, we first illustrate the major challenges
involved in cross-entry UAF detection with a motivating
example (§II-A), and then provide an overview of how UAFX
can overcome these challenges and identify the sophisticated
UAF cases, step by step (§II-B).

A. Challenges

Fig. 1 depicts cross-entry UAF examples distilled from real-
world code. There are four independently invokable entry
functions (i.e., entry0() - entry3()), entry0() allo-
cates a heap buffer (line 1) and assigns it to a global pointer
g0 (line 2), the buffer is then freed via the local pointer p (line
6) with a global indicator flag set to true (line 4), leaving
p and g0 dangling. At this point, if we execute entry1(),
followed by entry3(), the use site 1 at line 20 will cause
a UAF, because g1 is now aliased to the dangling pointer p,
though they are in different entry functions. However, figuring
out such a tangled cross-entry alias relationship is difficult:
Challenge 1: Cross-entry alias analysis for memory regions
accessed at the free and use sites.

On the other hand, though the use site 0 (line 15) tries to
dereference the same global pointer g1 as in use site 1, no
UAF happens because the global indicator set/check (line 4
and 14), together with the lock protection (line 3, 5, 13, and
16), ensures that the use site 0 cannot execute after the free
site at line 6. Missing any of the aforementioned code aspects
will make a true UAF. Reasoning about this subtly intertwined
protection is not easy even for human auditors:
Challenge 2: Validating UAF issues requires a careful and
systematic consideration of all relevant code aspects.

Ideally, the static analysis should both identify the true
positive UAF at use site 1 and avoid the false alarm at use site
0 - a difficult task due to the above challenges. In §II-B, we
will overview UAFX’s solutions to address these challenges.

B. UAFX’s Workflow

In this section, we introduce UAFX’s high-level workflow
for cross-entry UAF discovery, consisting of the below steps.
Step 1: Identify entry functions. First, we locate the entry
functions in the target program either automatically or manu-
ally (more details in §III-B). In Fig. 1, this step identifies the
four entry functions entry0() to entry3().
Step 2: Per-entry code analysis and summarization. UAFX
then individually summarizes each entry function regarding
its UAF-relevant behaviors, including both the memory object
escape/fetch and other aspects like critical regions (e.g., line 3
- line 5) and condition set/check (e.g., line 4 and 14). For the
example in Fig. 1, the object escape/fetch is summarized at
the top right corner. For example, a concrete memory object
(i.e., one with an explicit allocation site in the entry function)
is created at line 1 (i.e., c obj@1) and then is assigned or
“escapes” to the local pointer p at line 1 (edge 0⃝) and global
pointer g0 at line 2 (edge 1⃝) - note the edge directions. On
the other hand, whatever object pointed to by g0 is “fetched”
(edge 2⃝) and “escapes” to g1 (edge 3⃝) at line 10 - we
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00  entry0() {
01    char *p = malloc(...);
02    g0 = p;
03    lock(L);
04    flag = true; //Cond. Set
05    unlock(L);
06    free(p);      //* Free Site
07  }
08
09  entry1() {
10    g1 = g0;
11  }

12  entry2() {
13    lock(L);
14    if (!flag) //Cond. Check
15      *g1;     //* Use Site 0
16    unlock(L);
17  }
18
19  entry3() {
20    *g1;       //* Use Site 1
21  }

char *g0, *g1;  bool flag = false;  lock L; p

c_obj@1

g0

d_obj@10

g1

d_obj@15 d_obj@20

entry0 

L6 < L15   (UAF Definition)
L16 < L3 || L5 < L13 (Lock Semantic)
L14 < L4   (Condition Set/Check)
L2 < L10 < L15  (Pointer Propagation)
L1 < L2 < ... < L6  (Natural Sequential Order)
L13 < L14 < ... < L16 (Natural Sequential Order)

entry1 entry2 entry3 

10
5

4
2 3

Escape-Fetch Summary

Partial-Order 
Constraints for 
Use Site 0

c: concrete
d: dummy

<: happens-before

Fig. 1: Motivating UAF Examples

create a dummy object to represent it (e.g., from entry1()’s
perspective, the object’s origin is unknown) in entry1()’s
summary (i.e., d obj@10). Note that “fetches” are for objects
without locally known allocation sites, which is usually not
the case for local pointer variables, e.g., at line 2, the object
pointed to by p is known to be locally allocated at line 1, so
there is no “fetch”. UAFX tracks all local pointer propagation
to generate the final escape/fetch summary for global pointers
to facilitate cross-entry analysis.
Step 3: Cross-entry recognition of aliased free and use sites.
With the per-entry summary, UAFX can recognize the cross-
entry aliased free and use sites - potential UAF candidates.
For example, use site 1 fetches and accesses whatever object
pointed to by g1 at line 20 (i.e., d obj@20 fetched by edge
5⃝), by querying the summary in Fig. 1, we can intuitively

see that d obj@20 is aliased to the freed c obj@1 because
there is an escape-fetch path between them: 1⃝ → 2⃝ → 3⃝
→ 5⃝, where an object can first escape to a global pointer
and then be fetched by the same pointer in a different entry
function, recursively. This makes a potential UAF between the
free site (line 6) and the use site 1 (line 20). Similarly, UAFX
recognizes that the use site 0 could access the same object as
the free site (i.e., an escape-fetch path of 1⃝ → 2⃝ → 3⃝ →
4⃝), making another UAF candidate. These UAF candidates

will be further examined in the next step.
Step 4: Systematic UAF validation. This step verifies the
feasibility of UAF candidates, by considering a comprehensive
set of relevant code aspects. Our basic idea is to encode various
code aspects into a unified partial-order constraint system.
Take the candidate UAF between the free site and use site
0 as an example, its constraints are shown at the bottom right
corner in Fig. 1:
(1) By the UAF definition, the free site (line 6) must happen
before the use site (line 15), encoded as a partial-order
constraint of L6 < L15, where < means “happens-before”.
(2) Critical regions protected by the same lock are mutually
excluded, so either line 16 executes before line 3, or line 5
before line 13 (i.e., L16 < L3 || L5 < L13).
(3) Use site 0 can only be reached if the condition check
at line 14 is satisfied (flag == false), which means the

conflicting condition set at line 4 (flag = true) cannot
execute beforehand, leading to the partial-order constraint of
L14 < L4.
(4) To ensure that the free and use sites access the same object,
the expected object escape-fetch path must be fulfilled. For
example, the fetched object at the use site 0 (d obj@15) must
be the one previously escaped to g1 at line 10 (d obj@10),
meaning that the escape (line 10) should happen before the
fetch (line 15). Eventually, the escape-fetch path of 1⃝ → 2⃝
→ 3⃝→ 4⃝ is encoded in the partial-order constraint of L2 <
L10 < L15.
(5) Intuitively, the natural intra-entry-function sequential exe-
cution order should also be considered, resulting in the trivial
(but necessary) constraints as shown in Fig. 1.

All the above canonical partial-order constraints constitute
an extensible inequation system encoding various code as-
pects, whose feasibility can be decided by an SMT solver
(e.g., z3 [13]) that attempts to output a possible ordering
of relevant statements satisfying all constraints. Note the
difference between its more common usage of identifying
the value constraints for program variables, as in symbolic
execution. For the above example (e.g., between use site 0 and
free site), the solver cannot find a statement ordering satisfying
all constraints, indicating an unrealistic UAF. While the UAF
between use site 1 and the free site can successfully pass the
validation, as expected.

III. DESIGN

In this section, we detail the design of UAFX. We start with
a set of definitions to facilitate further discussions.

A. Definitions

Def. 1 : A Concrete Object. If a memory object is explicitly
allocated (e.g., via malloc()) within an entry function, we
call it a concrete object in the object escape/fetch summary of
that entry function, written as c obj.
Example. In Fig. 1, line 1 allocates a concrete object for
entry0(), denoted as c obj@1.
Def. 2 : A Dummy Object. If an entry function accesses an
object allocated outside its scope (e.g., dereference a global
pointer), the origin of the object is unknown in the function
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scope and it could potentially be one of many concrete objects
allocated elsewhere (e.g., the global pointer could be assigned
different objects depending on the code executed before that
entry function). UAFX uses a placeholder dummy object (i.e.,
d obj) to represent such out-of-scope objects in the per-entry
function summaries.
Example. At line 20 in Fig. 1, entry3() accesses an object
allocated outside its scope via g1. We use d obj@20 to
represent this dummy object in entry3()’s summary.
Def. 3 : Object Escape. We say an object escapes if it is
assigned to any global pointer within an entry function. In this
case, the object is no longer confined to that entry function and
can be accessed by other entry functions via global pointers.
We use obj → p to note that obj escapes to pointer p.
Example. At line 2 in Fig. 1, the object pointed to by
p (c obj@1) escapes to a global pointer g0, denoted as
c obj@1→ g0.
Def. 4 : Object Fetch. We say an entry function fetches an
object if for that entry, the object is a dummy object (Def. 2).
We use obj ← p to note that obj is fetched (i.e., dereferenced)
from the pointer p.
Example. At line 20 in Fig. 1, entry3() fetches the dummy
object d obj@20 from g1 for access, denoted as d obj@20←
g1.
Def. 5 : An Escape-Fetch Path. We recursively define an
escape-fetch path (“EFP ” for short) as follows.

EFP = obj0→ p0→ obj1 || EFP → pn→ objn

Basically, an EFP describes how one memory object (i.e.,
the source object) appearing in one entry function could be
eventually accessed in a different entry function invocation
(i.e., as a destination object) via a series of escape and fetch
(e.g., one entry function may first fetch an object and then
escape it again). We use Src(EFP ) to represent the source
object of the EFP and Dst(EFP ) for the destination object.
Since an EFP is composed of one or more escape-fetch
segments (e.g., obj0 → p0 → obj1), each of which contains
one escape edge and one fetch edge, EFP always has the
same number of escape and fetch edges in total.
Example. In Fig. 1, the object allocated by entry0() at line 1
(c obj@1) escapes at line 2 to the global pointer g0. It can
then be fetched by entry1() via the same g0 at line 10, into the
dummy object d obj@10. This escape-fetch path is written as
c obj@1 → g0 → d obj@10, where Src(EFP ) = c obj@1
and Dst(EFP ) = d obj@10.
Def. 6 : Cross-Entry Object Aliases. We consider two
memory objects objx and objy referenced in different entry
function invocations aliased, iff they meet one of the follow-
ing conditions:

Case 1: ∃EFP, Src(EFP ) = objx,Dst(EFP ) = objy

Case 2: ∃EFP, Src(EFP ) = objy,Dst(EFP ) = objx

Case 3: ∃EFP1, EFP2 : Src(EFP1) = Src(EFP2),

Dst(EFP1) = objx,Dst(EFP2) = objy

Intuitively, this means that either one object is aliased to the
other via an EFP (e.g., they are at the two ends of an EFP ),

or both objects originate from the same object via two EFP s,
respectively. Specifically in Case 1, we call objy is a forward
alias of objx and objx is a backward alias of objy, due to
their relative positions in the EFP . Similar definitions also
apply for Case 2.
Example. In Fig. 1, the accessed object at use site 1
(d obj@20) can be equivalent to the freed object in entry0()
(c obj@1), through the EFP: c obj@1 → g0 → d obj@10
→ g1 → d obj@20 (i.e., 1⃝ → 2⃝ → 3⃝ → 5⃝), where
d obj@20 is a forward alias of c obj@1.
Def. 7 : A Partial-Order Constraint. We use a partial-order
relationship of happens-before in our UAF validation, speci-
fying the relative execution order of two program statements.
The constraint of “stmt1 must be executed before stmt2” is
expressed as stmt1 < stmt2.

With the above definitions, we then describe the design of
each component of UAFX in the remainder of this section. As
a roadmap, the high-level architecture and workflow of UAFX
are shown in Fig. 2.

B. Entry Identifier

For cross-entry UAF detection, our first step is identifying
all entry functions of the program (e.g., the API interfaces,
the thread start points, etc.). Currently, we achieve this in a
semi-automatic way for different target software. Specifically,
we first try to automatically extract candidate entry points with
the following methods:
General Call Chain Analysis. The functions serving as entry
points usually have no further callers inside the program,
exploiting this fact, we can perform a call chain analysis of
the target program to identify those top-level callers (e.g., not
called by any other functions) as entry-point candidates.
Software-Specific Heuristics. Software may follow clear pat-
terns to define entry points, which can be leveraged as domain
knowledge. One example is kernel driver modules, which
usually encapsulate their entry points (e.g., ioctl()) into a
file_operations structure. UAFX utilizes these specific
heuristics to automatically locate entry functions whenever
possible.

After obtaining an initial list of candidate entry functions
with the above automatic methods, we then perform necessary
manual inspection to filter out superfluous entry functions
(e.g., inaccurate call graph construction due to issues like
indirect call resolution). This process takes one author about
one day for all kernel modules we test in §V.

C. Per-Entry Analysis

For each identified entry function (§III-B), UAFX individ-
ually analyzes it and summarizes all its behaviors relevant to
UAF detection. We describe the detailed code aspects we target
in this per-entry analysis as follows.
Escape/Fetch aware Points-To Records. The most essential
per-entry analysis UAFX performs is the points-to analysis
(e.g., which pointer variable points to which memory object).
While the analysis itself is conventional in general, to support
the cross-entry alias analysis, our major innovation is to make
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Points-To
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Entry Analysis (III.D)
e0() { A }

UAF Detection and 
Validation (III.E)

Input (III.B)

- entry0()
- entry1()
... 

LLVM IR & Entries

FREE0

FREE1
USE1

USE0

USE2

e1() { B }

?

Warnings

Query

Fig. 2: The Architecture of UAFX

the points-to relationship aware of the object fetch (Def. 4)
and escape (Def. 3). Specifically, besides merely recording
that a pointer p points to the object obj, UAFX also labels
the points-to edge with fetch or escape according to their
definitions previously introduced in §III-A(Def. 4, Def. 3).
This is achieved by tracking whether obj is allocated within
the current entry function and whether p is a global pointer.
For fetched object, UAFX will create a placeholder dummy
object in the per-entry summary (i.e., obj will be a d obj, see
Def. 2) to accommodate its multiple possible origins. Such
fetch/escape labels associated with the points-to records enable
us to construct the EFPs (Def. 5) in the later on-demand cross-
entry alias analysis phase.

It is worth noting that per-entry analysis does not mean
intraprocedural analysis - the entry function can also invoke
other functions, forming different call chains. UAFX, built on
top of a state-of-the-art static analyzer [14], employs a standard
top-down style context-sensitive interprocedural analysis (e.g.,
function arguments and return values can be assigned with dif-
ferent points-to records depending on calling contexts). UAFX
is also flow-, field-, and partially path-sensitive, with pointer
arithmetic handling and indirect call resolution inherited from
[14], more details can be found in §IV.
Lockset. UAFX performs a lockset analysis for each entry
function as such information is necessary for UAF validation
(e.g., our motivating example in Fig. 1). The basic idea
is to identify the pairs of lock and unlock functions (e.g.,
mutex_lock() and mutex_unlock() in the Linux ker-
nel) that operate on the same lock object (e.g., L at line 3, 5,
13, and 16 in Fig. 1), their enclosing program segments then
become competing critical regions (e.g., the execution of line 3
- 5 and line 13 - 16 in Fig. 1 cannot overlap). While traditional
lockset analysis also follows the above idea, we note that
the accuracy of lockset analysis essentially depends on the
underlying alias analysis (e.g., whether different lock/unlock
pairs use the same lock object). However, existing lockset
analysis usually employs simple alias analysis techniques (e.g.,
type-based), not to mention the inaccurate handling of cross-

entry alias relationships (e.g., imagine that in Fig. 1, L at line
3 and 13 might be different pointer variables but aliased to
each other on the cross-entry basis).

To improve the accuracy of lockset analysis in the cross-
entry scenario, we separate it into two phases: in the per-
entry analysis phase, UAFX accurately identifies all the paired
lock/unlock within the local entry functions, while in the later
UAF validation phase (§III-E), lock objects will be further
matched in a cross-entry and on-demand way (e.g., supposing
use and free sites are in different entry functions and both
enclosed with lock/unlock, UAFX will then check whether
they operate on the same lock object). This can be naturally
achieved with UAFX’s built-in escape-fetch based cross-entry
alias analysis capability. Similar to points-to records, our
lockset analysis is also interprocedural (e.g., lock in a caller
while unlock in a callee).
Condition Set/Check. Another important code aspect UAFX
analyzes is the path condition set and check, for exam-
ple, flag=true (line 4 in Fig. 1, set before free) and
if(!flag) (line 14 in Fig. 1, check before use). It is critical
to recognize the conflicting condition set and check for UAF
prevention (e.g., intentionally put by programmers), otherwise,
false alarms will rise. In general, path feasibility can be
determined with techniques like symbolic execution, however,
full-fledged symbolic execution can be very expensive due
to path explosion and complex constraints. Moreover, as we
target cross-entry UAFs, a similar problem for “lockset” again
occurs here: we have to correctly pair the set/check for aliased
conditional variables (e.g., the same global object field that
is set/checked via different but aliased pointers) even if they
scatter in different entry functions, which is also challenging
for existing symbolic executors.

To address these problems, we propose a lightweight “trait
analysis” that focuses on a simple but practical subset of
path conditions, while being able to perform the cross-entry
condition set/check matching. Specifically, UAFX only col-
lects condition checks that compare one variable against one
constant (e.g., a<1, p!=nullptr, etc.) and condition set that
assigns a constant value to a conditional (e.g., a=1). While
not complete, it is a practical design choice because many
real-world conditions, including those related to UAFs, fit this
simple scheme (e.g., a common pattern is that the pointer will
be set to nullptr upon free and checked before use), as also
observed in the previous work [14]. Simple conditions also
benefit the solving performance. Regarding the cross-entry
matching, our solution here resembles that for “lockset”: in
the per-entry analysis, UAFX records the checked/modified
conditionals within the current entry - note that this is also
interprocedural (e.g., condition set/check can scatter in callers
and callees), while in the later UAF validation phase, all
relevant condition set/check will be cross-entry matched in
an on-demand way, we provide more details in §III-D.
Thread Lifecycle Events. It is common to accelerate the
computation with multi-threading, however, it also introduces
additional complexities for UAF detection, for example, the
use and free can happen concurrently in racy threads. As a part
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of efforts to support the detection of such concurrent UAFs,
during the per-entry analysis, UAFX specifically recognizes
and records two types of thread lifecycle events:
(1) Thread creation. These are usually function calls creating
child threads, such as pthread_create() and fork().
UAFX further extracts the information of the created threads
from these events, including the thread entry function and its
arguments (that may point to certain objects). These thread
entry functions will also be individually analyzed and sum-
marized, similarly to the previously identified entry points in
§III-B.
(2) Thread join. These events ensure that the child threads
exit before a certain program location in the parent thread
(e.g., pthread_join() and wait()). UAFX will pair
each thread exit event with the creation event according to
the API specification to get a complete picture of a certain
thread’s lifecycle.
Free and Use Sites. Last but essential, we need to record
the free and use sites and their accessed memory objects for
further UAF detection. For free sites, UAFX relies on an
extensible list of free functions (e.g., free(), kfree(),
dealloc(), etc.), each function is also configured with
detailed parameter information (e.g., which parameter points
to the memory object) so that UAFX can record the freed
memory objects. For use sites, UAFX records all the memory
objects that have ever been accessed and the access locations
(e.g., load, store, function calls like memcpy(), etc.).
We will soon describe how UAFX utilizes this information
to identify UAF candidates in §III-D.

D. Demand-Driven Cross-Entry Alias Analysis

As mentioned in §II, one significant challenge in com-
plex UAF detection is to accurately identify the cross-entry
aliased use and free sites (e.g., operate on the same memory
objects). The same problem also applies to other relevant
code aspects, such as cross-entry aliased lock objects and
conditionals (§III-C). One of UAFX’s major innovations is
to address these problems with an on-demand cross-entry
alias analysis, by querying our per-entry function summary
generated previously (§III-C). In this section, we first describe
how UAFX identifies aliased use and free sites and wraps them
into initial UAF candidates (§III-D1), then discuss how we
utilize the same backbone cross-entry analysis technique for
other UAF-relevant code aspects such as lockset (§III-D2).

1) Use/Free Pairing: UAFX pairs the aliased use/free sites
and generates initial UAF candidates in several steps.
Step 1: Obtain the free sites and objects. We start by
collecting all the free sites observed during the per-entry
analysis (§III-C), as mentioned before, our function summary
also includes the objects that get freed. Our idea is to find
aliased use sites for the free sites, instead of the opposite, this
is because the number of free sites is much less than that of
the use sites (e.g., #use is about 17x more than #free in our
evaluation).
Step 2: Identify aliased used objects. Given a freed object,
UAFX then attempts to find all aliased accessed objects -

Algorithm 1: Cross-Entry Aliases Identification
Data: obj - a memory object
Result: aliases - the set of aliased objects of obj

1 getAliases(obj):
2 aliases← aliases ∪ fwdAliases(obj, ∅)
3 if obj is dummy
4 baliases← bwdAliases(obj, ∅)
5 for bobj ∈ baliases
6 aliases← aliases ∪ fwdAliases(bobj,

∅)

7 return aliases

8 fwdAliases(obj, cset):
9 for p ∈ escapesTo(obj)

10 for fobj ∈ fetches(p)
11 if fobj /∈ cset
12 cset← cset ∪ {fobj}
13 fwdAliases(fobj, cset)

14 return cset

15 bwdAliases(obj, cset):
16 for p ∈ fetchedBy(obj)
17 for bobj ∈ escapes(p)
18 if bobj /∈ cset
19 cset← cset ∪ {bobj}
20 bwdAliases(bobj, cset)

21 return cset

even in a different entry function. Our algorithm is designed
according to Def. 6 (i.e., “Cross-Entry Object Aliases”) and
sketched in Algorithm 1. Upon receiving an object (obj),
getAliases() first tries to find all its forward aliased
objects (see Def. 6) with fwdAliases() at line 2, this covers
Case 1 and 2 in Def. 6. If obj is a dummy one (Def. 2), we
need to further consider Case 3 in Def. 6, because only dummy
objects could serve as fetched objects at the right end of the
EFP (i.e., Dst(EFP ) in Case 3). To calculate the Case 3
aliases, we first obtain all the backward aliases of obj at line 4,
then for each backward alias, we collect all its forward aliases
(line 5 - 6), which will be the Case 3 aliases of obj since they
share the same EFP origin. The calculation of forward and
backward aliases is relatively straightforward. Basically, we
construct all possible EFP s (either direction) by recursively
enumerating and connecting EFP segments. Line 8 - 21
in Algorithm 1 show the simplified logic with some details
omitted (e.g., configurable threshold of EFP length, which we
currently set to 3 as the UAFs we have analyzed do not surpass
it), where escapesTo(obj) and fetchedBy(obj) return the
pointers to which the obj escapes and from which it is fetched,
respectively. Similarly, fetches(p) and escapes(p) return the
set of objects fetched by and escape to p, respectively. All
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the above information is available in our per-entry function
summaries, as described in §III-C.
Step 3: Generate UAF candidates. The previous step has
generated (cross-entry) pairs of aliased freed/used objects. In
this step, we wrap every aliased object pair, along with the
detailed EFP establishing their alias relationship and the
free/use sites with full calling context information, into a
candidate UAF case. These cases will be further examined
in the next phase (§III-E).

2) Support other Relevant Code Aspects.: Besides the es-
sential use/free alias relationship, a UAF detector needs to
consider a richer set of program semantics as mentioned in
§III-C, many of which need cross-entry alias reasoning as
well. Fortunately, UAFX’s cross-entry analysis capability is
versatile enough to suit these needs. We specifically support
two additional types of objects/variables in our prototype: (1)
lock objects, and (2) conditional variables, as both of them
may be shared across entry functions and it is critical to know
whether different occurrences are aliased or not (e.g., whether
two critical regions compete). The basic algorithm is the same
as in §III-D1 but with different memory objects to start with
(e.g., from freed object to the lock object).

Importantly, our cross-entry alias analysis is fully demand-
driven, meaning that it is only invoked when necessary for
selected target objects (e.g., the freed ones, the lock objects
relevant to the UAF case, etc.) instead of all. On the other
hand, even though UAFX is capable of constructing cross-
entry EFP s, each entry function only needs to be analyzed
once (§III-C) thanks to UAFX’s summary-based reasoning.
These design choices boost UAFX’s efficiency while still
enabling effective cross-entry UAF detection.

E. Systematic UAF Validation

The UAF candidate generation in the last phase is merely
based on the alias relationship between the free and use,
however, as mentioned in §II, to validate that the candidate
is a real UAF there are many more aspects to be consid-
ered (e.g., locks, path conditions, etc.). To comprehensively
take multiple UAF-relevant aspects into account, our major
insight is that these aspects could be uniformly translated
into partial-order constraints that restrict the relative execution
orders of different program statements. A UAF candidate in
§III-D can be a real vulnerability iff all its partial-order
constraints are satisfiable simultaneously. To fulfill this idea,
UAFX first collects all key program statements associated with
the considered code aspects (e.g., lock/unlock statements for
the “lockset” aspect), all these statements are then uniformly
numbered. Next, based on the characteristics of each aspect,
UAFX infers the required relative execution order between
different key statements and encodes them into partial-order
constraints with the statement numbers. For example, if the
free site is numbered as 0 and the use as 1, UAFX generates
the constraint 0 < 1 (Def. 7) to enforce that the use must
happen after free (i.e., UAF definition). In the remaining of this
section, we first describe all our considered code aspects and
how they are translated into unified partial-order constraints,

then discuss how UAFX can automatically find all aspect-
related program statements that are relevant to a specific UAF
candidate.

1) Code Aspects: UAFX considers the following code
aspects for UAF validation.
Use and Free Sites. As mentioned, The UAF definition
decides that the use must happen after free to illustrate the
vulnerability. UAFX accordingly generates the partial-order
constraint between the free and use statements (e.g., Fig. 1,
L6 < L15).
Lockset. Two critical regions protected by the same lock can
only be sequentially executed. UAFX identifies the lock and
unlock statements (e.g., invocation of lock/unlock functions)
of both regions and makes a constraint that one region’s lock
can only be executed after the other’s unlock (e.g., L16 <
L3||L5 < L13 in Fig. 1).
Path Conditions. If passing a conditional check is necessary
to trigger a UAF (e.g., the use site is guarded by the check),
then any assignment statement that could violate the condition
must not be executed before the condition check (without other
assignments for the same conditional in between), otherwise,
the UAF will be infeasible. UAFX captures this kind of
constraint by first locating the critical condition check that
enables the UAF (see §III-E2 and §IV for more details) and the
condition set that could affect the check (e.g., enable or “kill”),
and then generating the partial-order constraint to ensure the
condition check will not inevitably fail (e.g., L14 < L4 in
Fig. 1).

Notably, UAFX supports reasoning about the condition
set/check at the bit-level (e.g., if (v & 1), v |= 1),
which is frequently used in some programs (e.g., Linux kernel)
for memory economy.
Escape-Fetch Data Flow. The cross-entry alias relationship
(e.g., between the use and free sites) is established by the
escape-fetch path (or EFP ), which is also essential for the
UAF validity. UAFX ensures the feasibility of the EFP by
enforcing that for each EFP segment (in the form of obj0→
p → obj1, see Def. 5), the escape (obj0 → p) must happen
before fetch (p → obj1), without other assignments to p in
between. Otherwise, the fetched obj1 may not be aliased to
obj0, invalidating the whole EFP . The example partial-order
constraint belonging to this category in Fig. 1 is L2 < L10 <
L15.
Thread Lifecycle. Given the thread lifecycle events rec-
ognized in the per-entry analysis (§III-C), UAFX generates
partial-order constraints specifying that all statements of a
child thread can only execute after the thread’s creation site
(e.g., pthread_create()), but before its termination site
(e.g., pthread_join()).
Intra-Entry Sequential Order. The term “cross-entry” is
orthogonal to “multi-threaded” or “concurrency”, as the former
merely refers to the fact that the execution needs to invoke
multiple entry functions, either in one thread or multiple.
However, in either case, statements executed during an entry
function invocation should follow the natural sequential order
(micro-architecture level features like out-of-order execution
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are out of our scope). For example, in Fig. 1, when invoking
entry0() line 3 should always execute after line 2 based
on their programmed order.

UAFX gathers key program statements associated with the
above code aspects (e.g., lock/unlock function invocations,
use/free sites, etc. as aforementioned), and then arranges them
into different entry function invocations. For those belong-
ing to the same invocation, natural sequential order will be
encoded into partial-order constraints based on their relative
positions in the function (e.g., L1 < L2 < ... < L6 in
Fig. 1). More formally, we infer this order from the topological
structure of the control flow graph (CFG), if in the CFG the
statement A reaches B but not otherwise, we say A must
execute before B in the same invocation. If A and B are
mutually reachable (e.g., loop), to be conservative we will not
enforce the sequential order constraint between them, which
may result in false alarms for fewer false negatives. We leave
the better loop handling as future work.

All the above partial-order constraints make a system of
inequalities (as shown in Fig. 1), which can be solved by an
SMT solver (e.g., z3 [13]). The UAF is only feasible when
there is a solution to the system, in that case, UAFX will
issue a UAF warning with the detailed execution sequence to
trigger it (i.e., the solution generated by the solver). Otherwise,
the UAF candidate is discarded as a false alarm (e.g., no
solution for use site 0 in Fig. 1). Our approach has multiple
benefits, including comprehensiveness (e.g., support accurate
aliasing across entries), efficiency (e.g., SMT solvers are
highly optimized for such problems), and extensibility (e.g.,
more code aspects can be easily integrated).

2) Identify Relevant Program Statements: Given all the
code aspects to consider (§III-E1), there will be many asso-
ciated statements in the target program, however, to validate
a specific UAF candidate, we usually only need to consider
a small portion (e.g., not all condition set/check matter for
a certain UAF) - blindly including all statements is neither
necessary nor efficient. The problem is then how we can
automatically locate all relevant statements.

UAFX employs an iterative procedure to gradually discover
UAF-specific key statements. The initial statement set only
includes the use and free sites, then in the first iteration, all
statements directly affecting the use and free sites (e.g., a
critical condition check guarding the use site, or surrounding
lock/unlock pairs) are identified and added to the set, then
in the second iteration, UAFX recursively identifies and adds
the statements affecting the newly added ones in the last
iteration, such iterations are repeated until no new statements
can be discovered, or a configurable iteration count threshold
is reached (empirically set to 3 that suffices for UAFs we have
analyzed). This approach enables us to progressively include
only the relevant statements to the UAF case in question,
improving the validation efficiency while still comprehensively
considering different code aspects listed in §III-E1.

IV. IMPLEMENTATION

We implement a prototype of UAFX on top of SU-
TURE [14], an open-source static analyzer for C programs.
UAFX utilizes SUTURE’s high-precision pointer analysis for
LLVM IR [15], but with substantial improvements regarding
escape-fetch based cross-entry alias analysis and systematic
UAF validation (§III). Compared to SUTURE, UAFX has
12,850 lines of new code addition and 3,838 lines of deletion.
UAFX will also be open-sourced to benefit the community.
In the remainder of this section, we cover some noteworthy
implementation details of UAFX.
Recognize Critical Condition Checks. For a specific program
statement (e.g., the use site), a conditional check is critical if
it can determine whether that statement can be reached (e.g.,
in Fig. 3, line 3 is a critical check for line 4, but not for
line 7). When validating a UAF candidate, UAFX only cares
about the critical condition checks of key program statements
(§III-E2). To identify all the critical conditional checks for
a certain statement, UAFX verifies whether one subsequent
branch of the conditional check dominates the target statement
on the CFG, interprocedurally.

1 char *g = ...;
2 int foo(char **p) {
3 if (...) {
4 *p = g; //FETCH

& ESCAPE
5 return 0;
6 }
7 return 1;
8 }

9 void entry0() {
10 free(g); //FREE
11 }
12 void entry1() {
13 char *p =

malloc(8);
14 int r = foo(&p);
15 if (r) *p; //USE
16 }

Fig. 3: Example of Condition Check on Return Values

Condition Check on Return Values. A specific (and com-
mon) condition check targets the return value of a callee. We
show an example in Fig. 3. Assuming that entry0() and
entry1() cannot interleave with each other (e.g., protected
by the same lock), in that case, a less precise analysis may
conclude that the sequential invocation of entry0() and
entry1() leads to a UAF, because after the free site at line
10 within entry0(), the freed object could be fetched by g
and escapes to p in the callee foo() of entry1() (line 4),
and then accessed later in entry1() at line 15. However,
the UAF is actually impossible because as long as the fetch
& escape happens at line 4, foo() will return 0, failing the
condition check at line 15 and preventing the use site from
being reached.

UAFX can correctly filter out such potential false alarms
by comprehensively reasoning about multiple code aspects,
including the condition check on the return value. For a
conditional return value check, UAFX will dive into the callee
code and figure out the locations within the callee that once
reached, will inevitably lead to unsatisfying return values (e.g.,
once line 4 is reached, the condition check at line 15 will for
sure fail). Such information is then naturally integrated into
our partial-order constraint system. For example, in Fig. 3,
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as mentioned, line 4 must not be executed before line 15 to
trigger the use site (i.e., L15 < L4), but on the other hand,
as the fetch & escape node, line 4 must happen before line
15 (i.e., L4 < L15), immediately resulting in an unsatisfiable
constraint system that invalidates the seemingly UAF case.
Function Modeling. UAFX relies on well-defined
programming interfaces to extract program statements
related to different code aspects, as mentioned in
§III-E1. For example, the memory management interface
(e.g., malloc(), free()), locking primitives (e.g.,
mutex_lock/unlock()), and thread lifecycle
management APIs (e.g., pthread_create()). UAFX
models the semantics of these common interfaces and APIs
- a standard static analysis practice. Unseen interfaces/APIs
can be easily and flexibly supported by UAFX - we consider
it orthogonal to our core methodology (§III).
Intentionally Unsupported Features and Constructs. There
are some well-known challenging code features and constructs
for static analysis (e.g., recursive data structures like linked
lists), for which accurate and efficient static reasoning is very
difficult (e.g., differentiating elements on a linked list). As a
result, the common practice is to conservatively handle these
features (e.g., treat all list elements as aliased), however, it
tends to cause lots of false alarms (e.g., the free and use
sites are for different list elements but wrongly treated as
aliased). To mitigate this problem, UAFX first identifies UAF
candidates (§III-D1) involving below features:
(1) Recursive Data Structures. UAFX will decide whether the
freed/used object is an element of a recursive data structure
(e.g., linked lists), by inspecting whether the object pointer is
loaded from another same-typed object.
(2) Reference Count Mechanisms. Reference counting is also
a well-known challenge for static analyzers, as it is difficult
to accurately track all the counter changes happening in
different conditions and scattered at different places. UAFX
recognizes the existence of reference count mechanisms in
the UAF candidate, by looking at whether the free site is
preceded by specific function calls with indicating names such
as xxx_put().

We intentionally drop UAF candidates involving the above
features without further review to avoid excessive false alarms,
similar to previous works [4]. This will lead to false negatives,
which we try to quantify in §V-B.

V. EVALUATION

Dataset. To evaluate the efficacy and efficiency of UAFX
regarding cross-entry UAF discovery, we compile and extract
34 driver modules from the Linux kernel v5.17.11 as listed in
Table I, all in the LLVM bitcode format suitable for UAFX’s
analysis. We additionally include lrzip [16] - a popular C
program with known UAF issues according to a previous
study [17] - in our test to demonstrate that UAFX could be
applied to user-space C programs. To study whether UAFX
can re-discover known UAF bugs and facilitate its comparison
with other tools, we also collect the fixed UAF vulnerabilities
found by Syzkaller [11] in the Linux kernel device drivers

No.* Path Bitcode Size Time**

0 drivers/acpi 17 MB 3.2/2.4

1 drivers/atm 5.9 MB 0.06/0.01

2 drivers/bluetooth 9.8 MB 0.02/0.08

3 drivers/char 13 MB 0.8/0.6

4 drivers/comedi 21 MB 0.4/7.9

5 drivers/firewire 2.2 MB 0.08/0.05

6 drivers/firmware 8 MB 0.01/0.01

7 drivers/gpu/drm/i915 102 MB 33.5/0.3

8 drivers/i2c 23 MB 1/0.03

9 drivers/isdn 8.8 MB 0.04/0.01

10 drivers/mailbox 2 MB 0.01/0.01

11 drivers/md 24 MB 5.2/4.6

12 - 14 drivers/misc 27 MB
0.01/0.01
0.01/0.01
0.2/0.01

15 drivers/mmc 21 MB 8.1/0.01

16 - 17 drivers/mtd 29 MB 12.3/0.01
4.3/2.1

18 drivers/net/ppp 2.1 MB 4.1/0.01

19 drivers/platform/surface 3 MB 0.01/0.01

20 drivers/platform/x86 19 MB 0.01/0.01

21 drivers/scsi 121 MB 1.2/1.2

22 drivers/staging 75 MB 0.2/0.01

23 drivers/tee 746 KB 0.01/0.01

24 drivers/thermal 8.9 MB 0.01/0.01

25 - 26 drivers/tty 24 MB 4.7/0.9
0.03/3.5

27 drivers/usb/gadget 19 MB 8/1.5

28 drivers/usb/misc 4.4 MB 0.3/3.1

29 drivers/vdpa 3.3 MB 0.01/0.01

30 drivers/vfio 3.3 MB 0.17/0.01

31 drivers/vhost 2.1 MB 0.08/0.01

32 - 33 drivers/video 41 MB 3.8/0.01
0.3/5.2

*: The same path may contain multiple modules (e.g., related to
different sub-devices or vendors), which share the bitcode file.
**: per-entry analysis time / UAF detection time (hrs)

TABLE I: The List of Tested Kernel Modules

(publicly available on the Syzbot dashboard [18]), within the
past three years of April 2024. This results in a collection of
23 UAF cases as listed in Table III. We choose this dataset
because: (1) Syzkaller [11] is the most popular 24/7 Linux
kernel fuzzer maintained by Google - one major source of the
newly discovered kernel vulnerabilities in recent years, and (2)
Syzkaller reports typically come with detailed bug-triggering
PoC code and call stack traces, enabling us to reliably locate
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Subject #Warning #TP #FP0
r Pre0

r

Linux Kernel v5.17.11 977 78 101 43.6%

lrzip 18 2 3 40.0%
0: FPr: reviewer-perceived false alarms; Prer: #TP/(#TP+#FPr)

TABLE II: Vulnerability Discovery Precision of UAFX

the UAF root cause (e.g., use/free sites and alias relationship)
for further analysis.
Hardware Configuration. Our evaluations are conducted on
a server with Intel Xeon Gold 6248 CPU @ 2.5 GHz and 1
TB RAM.

A. Precision

We report UAFX’s vulnerability discovery precision per-
ceived by the warning reviewers (two paper authors) in Ta-
ble II. Specifically, when reviewing the warnings generated
by UAFX, we adopt the following procedure:
Step 1. Pick one warning and investigate its validity, then
repeat this step if it is a true positive. Otherwise, go to Step
2.
Step 2. The current warning is a false alarm, we then utilize
a simple string match to automatically filter out all the other
similar false alarms from the warning pool.

With the above procedure, FPr denotes the false alarms
that actually need the reviewers’ inspection (i.e., reviewer-
perceived false alarms). While the number of raw false alarms
(i.e., #Warnings - #TP in Table II, where #Warnings are unfil-
tered) is much larger than FPr, many of them are highly similar
and can be automatically excluded in Step 2. This is mainly
because the same false alarm root cause, expressed in a simple
string pattern, is associated with multiple warnings. Specifi-
cally, (1) UAFX is context-sensitive, so the same use/free sites
may be reached in many different calling contexts, resulting
in multiple warnings. However, the false alarm root cause can
be context-insensitive - identifiable in multiple warnings. (2)
Even false alarms with different use/free sites can share the
same root cause. We show a concrete example in Fig. 4, as
seen, UAFX incorrectly identifies the case as a sequential UAF
because it fails to recognize the condition set at line 1, which
is hidden in a low-level bulk memset() due to the compiler
optimization. As a result, UAFX fires 33 false alarms because
there are many different use sites in different indirect callees
at line 5. However, once the root cause is understood from one
warning, all false warnings in our pool involving line 0 and line
5 can be immediately filtered out with a simple string match
(e.g., based on line numbers and calling contexts). While
partial-order based filtering is also feasible here, we choose
string-based method due to its simplicity and effectiveness.
Following this procedure, inspecting the warnings takes the
two reviewers about one week.

The aforementioned false alarm reduction technique is in the
same spirit as the clustering-based FP mitigation [19], helping
UAFX achieve a reviewer-perceived precision of more than

00  kfree(dev->private); // FREE
01  dev->driver = NULL; // SET (missed by UAFX)
02  ......
03  if (dev->driver) // CHECK
04 // USE in multiple different indirect callees
05 dev->driver->detach(dev);

Fig. 4: Example False Alarms with the Same Root Cause

40% (Prer in Table II), comparable to many existing static bug-
finding works including those for the Linux kernel [20], [21],
[22], [23], [24], [25], [26], [27], [14], [28], [29], [30]. While
we consider it necessary to improve UAFX’s precision further,
we believe UAFX’s enhanced capability of cross-entry UAF
detection is still valuable (e.g., according to a recent study [31],
some developers are more sensitive to missed vulnerabilities
than lower precision).
False Alarm Analysis. Despite our various efforts to reduce
false alarms (§III-E and §IV), they still constitute the ma-
jor portion of UAFX’s generated warnings - a well-known
problem for static analyzers. We briefly discuss the significant
reasons behind the false alarms. It is worth noting that UAFX
is built on top of SUTURE [14], so some limitations of the
latter are inherited.
(1) Limited Path-Sensitivity. UAFX recognizes conflicting path
condition set and checks of simple yet common forms (§III-C),
however, it is not fully path-sensitive. Consequently, false
alarms arise due to their complex sanity check or overesti-
mated alias sets due to path-insensitivity, accounting for about
35% of UAFX’s false positives.
(2) Inaccurate Indirect Call Resolution. Linux kernel is rich
in indirect function calls, partially because it simulates many
object-oriented programming features (e.g., polymorphism)
with C structs and function pointers, posing great challenges
for static analyzers. Though UAFX utilizes the state-of-the-art
approaches for indirect call resolution [23], [32], inaccuracies
remain in the result, contributing to about 10% of UAFX’s
false alarms.
(3) Implementation Imperfection. Implementation flaws are
inevitable in static analyzers, even mature ones [33], due to
the complexity of real-world code. This is especially true
for UAFX that needs to reason about various code aspects
(§III-C). These imperfections follow a long-tail distribution
and lead to about 55% of UAFX’s false alarms. Some sig-
nificant flaws include unrecognized condition set/check (e.g.,
the example in Fig. 4), lock/unlock primitives not properly
modeled, and FPs involving recursive structures or reference
counting but not captured by our heuristic-based filters (§IV).
As a research prototype, UAFX focuses on validating the idea
of cross-entry UAF detection and we plan to improve the
implementation to unleash its potential better.
Effectiveness of Systematic FP Filtering. To understand the
performance of our partial-order-based systematic FP filtering
(§III-E), we further calculate how many UAF candidates gen-
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erated in §III-D can be filtered out by it. The median filtering-
out ratio among our tested code subjects is 98.5%, while more
than 80% subjects have a ratio higher than 95%. Due to the
large volume of UAF candidates, we randomly investigate 100
filtered-out candidates and confirm that all are indeed false
alarms (though not observed here, we acknowledge that our
filtering can cause false negatives, as detailed in §V-B). These
results suggest that our systematic FP filtering has effectively
eliminated a major portion of false alarms.

B. Recall of Known UAF bugs

Type0 Fix
Commit

Detectable? Y: Yes, N (Reason): No

UAFX 1 DCUAF2 Canary3

SEQ

ed9605a66b62 N (U0) N (D0) N (C0)
dd613a4e45f8 Y N (D0) N (C0)
68035c80e129 N (U0) N?4 N?4

84b01721e804 Y Y Y
5f0b5f4d50fa N (U1) N?4 N (C0)
24013314be6e N (U1) N (D0) N (C0)

CRS

b436acd1cf7f Y N (D1) N (C0)
5c15c60e7be6 Y N (D0) N (C0)
6f9c4d8c468c Y N (D0) N (C0)
804ca14d04df Y Y N (C0)
7d21e0b1b41b Y N (D0) N (C0)
f80cfe2f2658 N (U0) N (D0) N (C0)
0a0b79ea55de Y N (D0) N (C0)
ded85b0c0edd Y N (D0) N (C0)
36e8169ec973 Y Y N (C0)
3c4f8333b582 Y N (D1) N (C0)
c052cc1a069c Y Y N (C0)
e9e6aa51b273 Y N (D0) N (C0)
d18dcfe9860e N (U1) Y N (C0)
f326ea63ecc6 N (U1) N (D1) N (C0)
2191c00855b0 N (U1) N (D0) N (C0)
b6702a942a06 Y N (D0) N (C0)
0ac4827f78c7 Y N (D0) N (C0)

SUM 23 15 Y (65.2%) 5 Y, 2 N? (30.4%) 1 Y, 1 N? (8.7%)
0: SEQ: single-entry sequential UAF; CRS: cross-entry UAF
1: U0: Aggressive FP filtering - Recursive Structures
U1: Aggressive FP filtering - Reference Counting
2: D0: Complicated Alias Relationship; D1: Oversimplified FP Filtering
3: C0: Unsupported Control-Flow Model;
4: N?: Unsure but likely not detectable due to subtle linked list operations.

TABLE III: Inspection of Syzkaller Reported UAFs in Linux
Device Drivers within 3 years of Apr 2024

It is challenging to evaluate the false negative rate of
UAFX due to the lack of ground truth. Furthermore, there
are few established benchmarks for cross-entry UAFs (e.g.,
the widely-used Juliet vulnerability dataset [34] only contains
basic sequential UAF cases). To better understand UAFX’s
capability, as aforementioned, we crawl Syzkaller-reported
UAF cases in Linux kernel device drivers in the last three
years, as listed in Table III.

Most UAFs in this collection are cross-entry (i.e., 17 out
of 23), meaning that use and free happen in different entry
function invocations. Even for the remaining 6 seemingly
sequential cases where use happens straightly after free, most
(e.g., 5 out of 6) still require a separate entry function invo-
cation to establish the alias relationship between the use/free
sites, or to (maliciously) modify the reference count. These
observations highlight the importance of detecting cross-entry
UAFs which have become dominant. In Table III, UAFX
recognizes 15 out of 23 benchmark UAFs, a promising re-
sult given the substantial difficulties of statically discovering

cross-entry UAFs while striking a balance between coverage,
precision, and efficiency. Next, we discuss the major reasons
for UAFX’s false negatives.
False Negative Analysis. First, our intentional drop of warn-
ings involving difficult code features (§IV) causes FNs:
Reference counting. Refcnt is a well-known difficulty in UAF
analysis, existing works tackle this problem with various
heuristics and compromises (e.g., limit the scope to single
entry functions) in static reasoning [35], [27], [36], [37], or
target at dynamic traces [37] or fuzzing [38]. Accurate and
comprehensive static refcnt reasoning remains challenging. To
quantitatively understand the impact of our drop of refcnt-
related warnings on FNs, we inspect the historical kernel
UAFs to see how many involve refcnt: (1) in Table III, we
identify 5 of 23 (21.7%) Syzkaller UAFs involving refcnt (U1
in Table III) and are missed by UAFX; (2) we further go
through Linux kernel UAF CVEs within three years of Oct
2024 - 315 in total, and check their fix commits (including the
commit messages) to determine whether refcnt is involved, we
find that about 23.5% are refcnt-related. A larger-scope syzbot
UAF survey by a previous work [38] reports about 36.1% of
UAFs related to refcnt.
Recursive structures. Recursive data structures pose significant
challenges for static analyzers, while few studies explore their
impact on UAF detection. In Table III, we find 3 of 23 (13%)
Syzkaller UAFs missed by UAFX due to recursive structures
(U0). Our inspection of the same three-year CVE dataset as
in reference counting reveals that about 17.8% of them are
related to recursive structures.

Combining the two code features (overlaps exist), about
38.7% of our three-year CVE dataset is affected. These
numbers confirm that these difficult code features are consider-
able kernel UAF causes, while our current prototype focuses
on cross-entry UAF reasoning and is limited in refcnt and
recursive structure analysis, we believe the aforementioned
dedicated works (e.g., on refcnt reasoning) can be comple-
mentary and leave better support for these features as future
works.

Besides, other FN-inducing limitations of UAFX include:
(1) UAFX only analyzes each loop once and limits the depth
of the calling stack for better performance and fewer FPs,
which are common practices in static bug finding (e.g., soundy
analysis [39], [40]), and (2) inaccuracies mentioned in §V-A
could also generally lead to FNs.

C. Efficiency

As mentioned, we run UAFX on 34 kernel driver modules
and 1 user-space program. 16 of these subjects take more than
1 hour to analyze, we show their detailed time breakdown in
Fig. 5 (full statistics can be found in Table I). Specifically,
the time is spent on two stages: per-entry analysis (§III-C)
and UAF detection with demand-driven cross-entry analysis
(§III-D and §III-E). As seen, most modules are scanned
within 10 hours, however, certain challenging modules can
take up to more than 30 hours, mainly because of their
large amount of cross-entry use and free sites to be reasoned
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Fig. 5: UAFX Time Breakdown for Test Subjects (>1hr)

about. We note that (1) UAFX is more expensive than many
existing tools since it needs to perform the advanced cross-
entry analysis accurately, (2) UAFX utilizes a single thread
to process each subject, so multiple subjects can be naturally
paralleled, making an acceptable overall efficiency on typical
multi-core platforms. A further optimization is to re-implement
UAFX’s per-entry analysis in the bottom-up style (e.g., analyze
and summarize every single callee only once), which could
improve efficiency by 50% - 90% according to our estimation.
Due to the significant engineering challenges and efforts, we
leave it as a future work.

Regarding the time distribution between different stages, we
observe no clear patterns as expected. Because the cost of per-
entry analysis (§III-C) mainly relies on the code size of the
subject, while that of the UAF detection stage (§III-D and
§III-E) relies on the number of cross-entry use/free pairs -
they are not necessarily correlated.

In terms of memory cost, UAFX has a moderate footprint.
Among all the software subjects evaluated, the median of the
average (during the whole execution) memory usage is 214
MB, while the peak usage reaches 2423 MB, observed when
analyzing a large kernel GPU driver. We thus consider UAFX’s
memory efficiency reasonable.

D. Comparison with Existing Tools

Given the difficulties of cross-entry UAF detection, few
existing static detectors are available for comparative evalu-
ation. Most existing static UAF detectors are only capable of
identifying simple sequential UAF cases (e.g., use happens
straightly after free on the CFG), sometimes even limited
to the intraprocedural setting, for example, CRED [4], Pal-
frey [5], Clang Static Analyzer [6], Infer [7], Cppcheck [8],
and Flawfinder [9]. To our best knowledge, DCUAF [10]
and Canary [12] are only tools supporting cross-entry UAF
detection to a certain degree, unfortunately, neither is available
for use and testing (we plan to open source UAFX). Given
the situation, we start with an in-depth design-level analysis
of DCUAF [10] and Canary [12], then investigate their ca-
pabilities of detecting our collected benchmark UAF cases in
Table III, that is also used in UAFX’s false negative evaluation
(§V-B). We will also discuss other aspects including precision
and efficiency.
Design Analysis of DCUAF [10]. DCUAF aims to discover
concurrent UAFs in Linux kernel device drivers (e.g., free
and use in different driver entry functions). It focuses on

automatically identifying pairs of driver interface functions
that could be potentially executed concurrently, thus prone
to concurrent UAFs. To achieve this, DCUAF develops a
local-global strategy that relies on lock-based heuristics (e.g.,
concurrent functions likely use the same locks) and file number
statistics (e.g., concurrent functions are likely to be invoked
by the same source file). Besides the function pair identifica-
tion, DCUAF employs a coarse-grained type- and field-based
pointer analysis to recognize aliased free and use sites, and
filters false alarms mainly by single-aspect lockset analysis
(e.g., whether the U/F sites are protected by the same lock),
as seen in Section 3.1, 3.2, and 5.4 in [10]. As mentioned
(§II-A), coarse-grained alias analysis and simple FP filtering
can cause both false positives and negatives. To address
these issues, UAFX develops sophisticated cross-entry alias
analysis (§III-D) and systematic FP filtering (§III-E). We also
believe that DCUAF’s concurrent function pair identification
technique can be complementary to UAFX.
Design Analysis of Canary [12]. Canary is capable of finding
inter-thread UAF issues (e.g., use happens in a fork’ed
child thread) with static inter-thread pointer analysis. Its tech-
nique is scoped to the fork-based thread model (Section 2
in [12]), where the inter-thread alias relationship is explicitly
established via the pointer argument of fork(). However,
cross-entry UAFs, especially in the Linux kernel, go beyond
fork-based model, for example, the general global variable-
based cross-entry aliases and pthread-based thread model
(e.g., see our case studies in Fig. 6 and Fig. 7). Compared
to Canary, UAFX handles different cross-entry UAF cases
with advanced escape-fetch-based cross-entry alias analysis
(§III-D) and extensible thread lifecycle modeling (§III-C). As
a result, UAFX can identify more cross-entry UAFs (e.g.,
cases in §V-E). Canary also employs partial-order constraints
to filter out false alarms, however, it only considers simple
code aspects including natural intra-thread order and thread
creation and termination, on the other hand, UAFX innova-
tively encodes a much richer set of essential code aspects such
as lock primitives and condition set/check (that could happen
in different entry functions), as described in §III-E1.
Comparison on Bug-Finding Capability. Based on our deep
understanding of both the existing tools and the collected UAF
cases in Table III, we investigate whether DCUAF [10] and
Canary [12] are capable of detecting these benchmark UAF
cases. We assume that entry functions involved in these UAFs
are given to all three tools, and the implementation of DCUAF
and Canary is flawless (e.g., all lock/unlock could be correctly
identified and paired, as well as new thread creation). For
DCUAF, we consider a UAF case undetectable if (1) the use
and free sites have a complicated alias relationship that is be-
yond the capability of its simple field-based alias analysis (D0
in Table III), and (2) if the use and free sites are protected by
the same lock, which will be wrongly filtered out by DCUAF’s
oversimplified FP elimination logic (D1 in Table III). For
Canary, we deem a UAF unrecognizable if the bug-triggering
control and data flows are outside of its fork()-based multi-
threading model - most kernel UAF cases belong to this
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unsupported category by Canary (C0 in Table III). We test
UAFX on relevant functions and code snippets involved in
these collected UAFs. As shown in Table III, UAFX shows
the best bug-finding capability (e.g., a 65.2% recall, while the
second-best is 30.4%) thanks to its advanced escape-fetch-
based alias analysis and more systematic FP filtering. We note
that Canary’s limited recall in Table III is mainly because it
is not specifically designed for the kernel concurrency model
(e.g., multiple entry functions operating on shared variables).
Comparison on Precision and Efficiency. As reported in
their original papers, both DCUAF [10] and Canary [12]
have better precision (e.g., Claimed TPR of DCUAF: 94.3%,
of Canary: 73.3%) and efficiency (e.g., DCUAF: less than
20 minutes, Canary: 4.67 hours) than UAFX. However, as
previously mentioned in §V-A, UAFX targets complex cross-
entry UAFs which inevitably incurs more false alarms and
requires more computational resources. We believe our tool
represents a novel design in the tradeoff space that favors
covering more subtle bugs (a top priority of many developers
and security practitioners [31]) with a reasonably worsened
precision and increased cost.
Summary. In conclusion, UAFX provides a significantly
enhanced bug-finding capability for challenging cross-entry
UAFs, compared to existing UAF detectors, UAFX excels at
identifying subtle, real-world UAFs, as evidenced in Table III.
While existing UAF detectors could achieve better precision
and efficiency due to simpler problem scopes, we believe
UAFX is a valuable tool given its advanced capability and
reasonable performance (on par with many static kernel bug-
finding works discussed in §V-A).

E. Study of the Found UAF Issues

We have reported the identified true positive warnings by
UAFX (Table. II) to relevant developers or maintainers, so
far, 37 warnings have been confirmed by developers or bug-
triggering PoCs, which are related to 10 independent UAF
bugs.
Characteristics of the Found UAFs. We first collect the met-
rics related to different code aspects (§III-E) for an overview
of our found UAFs. (1) EFP Length. Interestingly, all true
positives UAFX identified are cross-entry, involving multiple
racy threads and EFPs (i.e., a single entry sequential UAF does
not have any EFP as there is no cross-entry object escape
and fetch). 24% of our TP warnings have 1 EF Segment
(Def. 5) and the others have 2, (2) Locks. 96% of TP cases
involve the reasoning of at least 1 pair of lock/unlock (among
them: 1 pair: 44%, 2 pairs: 13%, 3 pairs: 43%), (3) Condition
Set/Check. On average, each TP case needs to reason about
14.8 condition checks and 2.2 condition set. We believe these
metrics demonstrate UAFX’s capability of discovering cross-
entry UAF issues that require careful reasoning of multiple
code aspects.

Upon successful exploitation, the found UAFs could lead
to various security consequences such as denial of service
and information leakage. In the remainder of this section, we
showcase some representative UAF cases found by UAFX.

00  void md_unregister_thread(struct md_thread **threadp)
01  {
02 struct md_thread *thread = *threadp;
03 if (!thread)
04 return;
05 pr_debug(“... %d\n", task_pid_nr(thread->tsk)); //USE
06 spin_lock(&pers_lock);
07 *threadp = NULL;
08 spin_unlock(&pers_lock);
09 kthread_stop(thread->tsk); //USE
10 kfree(thread); //FREE
11 }

12  static void mddev_detach(struct mddev *mddev)
13  {
14 ...
15 md_unregister_thread(&mddev->thread);
16 ...
17  }

dm_ctl_ioctl() -> dev_suspend() -> do_resume() -> 
dm_table_destroy() -> raid_dtr() -> md_stop() -> __md_stop() -
> mddev_detach()

Fig. 6: UAF Case Study 1 (in Linux Kernel)

Case 1. Fig. 6 shows a cross-entry UAF case in
the Linux kernel. To trigger the bug, the function
md_unregister_thread() is concurrently executed in
two threads, while one accesses the freed memory (line 5
and 9) by the other (line 10), due to the seemingly correct
but actually unsafe thread synchronization. We highlight the
complexities of this case and show UAFX’s strengths as
follows.
(1) Cross-Entry Control Flow. At first glance, Fig. 6 seems to
be a normal free-after-use, likely to be missed by detectors that
only support simple sequential UAF cases. However, cross-
entry UAF is actually possible when competing threads in-
voke md_unregister_thread() multiple times. UAFX
is aware of such cross-entry control flows at its core design
and does not blindly exclude the cases like Fig. 6 simply based
on the use/free positioning on the CFG.
(2) Cross-Entry Data Flow. To identify this issue it is also
critical to determine that the local pointers thread held by
both threads are aliased, which is a non-trivial task as the
analyzer needs to track the pointer propagation (via both top-
level variables and address-taken memory objects) through the
whole call chain as shown at the bottom of Fig. 6. Eventually,
UAFX concludes that the object pointed to by thread (in
both threads) comes from the same global source (e.g., mddev
at line 12), establishing the alias relationship between the use
and free sites.
(3) Multi-Aspect Validation. Notably, the use and free sites in
Fig. 6 are guarded by both condition set/check (line 3 and 7)
and lock primitives (line 6 and 8) - seemingly strong protection
that could confuse the static analyzers with simple FP filtering
logic, and even human analysts. However, UAFX’s systematic
multi-aspect reasoning can still figure out the clear path toward
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00  struct sdata *sinfo = malloc(...);
01  stream_thread_struct *sts;
02  sts->sinfo = sinfo;
03  pthread_create(..., entry, sts);
04  ......
05  struct node *n = malloc(...);
06  node->sinfo = sinfo;
07  ctl->ruhead = node;
08  clear(ctl);
09
10  void clear(struct control_st *c) {
11    struct node *n = c->ruhead;
12    free(n->sinfo->ucthreads); //FREE
13  }

14  void *entry(void *data) {
15    stream_thread_struct *sts = data;
16    decomp(&sts->sinfo->ucthreads[i]);
17  }
18
19  void decomp(struct udata *uci) {
20    int d = uci->len; //USE
21  }

Global: struct control_st ctl;

Create a child thread

The thread can be 
delayed after free!

Fig. 7: UAF Case Study 2 (in lrzip)

the UAF by partial-order constraint solving. Specifically, both
threads can obtain the non-null thread pointer (line 2) and
pass the sanitization check (line 3) simultaneously (due to the
insufficient range of the lock protection), then one of them
proceeds to the free site (line 10). Although at this point,
*threadp is nullified, since the other thread has already
passed the check at line 3, it can still access the freed memory
(line 5 and 9). We believe UAFX’s capability of analyzing such
subtle interaction between multiple code aspects is one major
advantage over existing tools.

Case 2. Fig. 7 shows a complex inter-thread cross-entry UAF
case identified in lrzip [16]. Line 3 spawns a child thread
with entry() as its starting point and sts as an additional
pointer argument. The problem is that the child thread lifecycle
is not properly controlled, such that the execution of line 20
(use site, by the child thread) could be postponed after line 12
(free site, by the parent thread), causing a UAF. We discuss
some notable aspects of this case below.

(1) Inter-Thread Analysis. The analyzer needs to be
aware of the multi-threading model (e.g., semantics of
pthread_create()) to spot this kind of issue. As de-
scribed in §III-C, UAFX includes the thread lifecycle recog-
nition in its per-entry analysis, enabling it to correctly identify
the thread creation, entry points, and arguments in Fig. 7,
essential for inter-thread cross-entry UAF detection.

(2) Complex Alias Relationship. Establishing the alias rela-
tionship between n->sinfo->ucthread at the free site
(line 12) and uci at the use site (line 20) is challenging, as
the analyzer needs to accurately track the lengthy and subtle
interprocedural pointer propagation, handling memory read-
/write in a flow-, field-, and context-sensitive way. Less precise
techniques employed by previous works (e.g., DCUAF [10])
may cause both false positives (e.g., type-based analysis treat
all same-typed pointers as aliases) and false negatives (e.g.,
field-based analysis may fail to recognize the same sinfo
instance assigned to different host structures: sts at line 2
and node at line 6). UAFX can confidently recover such
complex alias relationships thanks to its accurate pointer
tracking (§III-C), even crossing different entry functions.

VI. RELATED WORK

We discuss several categories of related works as follows.
Static UAF detection. As pointed out by the previous
study [17], most existing static UAF detectors only support
simple UAF cases (e.g., intraprocedural sequential UAFs).
For example, UAFChecker [41] utilizes symbolic execution
and taint analysis to catch sequential UAFs following the
pre-defined finite state machine. Similarly, many other tools
employ these general static analysis techniques to discover
(simple) UAF cases, such as Clang Static Analyzer [6],
Infer [7], Cppcheck [8], Coverity [42], and Pinpoint [43].
CRED [4] develops context and path reduction techniques to
improve the scalability of static UAF detection while main-
taining a high precision. UAFDetector [44] uses summary-
based alias analysis to efficiently find UAF bugs in binaries.
Sys [45] supports UAF detection by combining the scalable
(but imprecise) static analysis and precise (but expensive)
symbolic execution, for a better tradeoff between efficiency
and precision. Many tools like Falwfinder [9] and Palfrey [5]
rely on manually summarized patterns for UAF detection,
limiting their capabilities. These patterns can also be wrapped
into “queries” used by general-purpose static code analysis
engines (e.g., CodeQL [46] and Joern [47]) for finding UAFs.
Besides the above works, some research aims to develop
specific techniques to detect bugs related to UAF, for example,
use-after-cgc [48] and use-after-cleanup [49]. LinkRID [36]
can vet the imbalance in reference counting for Linux kernel
in a local scope (e.g., intra-entry-function), which could lead to
UAF bugs, we consider their approach helpful in addressing
UAFX’s false negatives related to reference counting (§IV),
with necessary extensions for cross-entry analysis.

As mentioned, DCUAF [10] and Canary [12] are the only
tools we are aware of that support cross-entry UAF detection
to certain degrees, however, both have significant limitations as
detailed in §V-D. SUTURE [14] targets high-order taint-style
vulnerabilities involving multiple entry functions, however,
UAF is not in its scope. UAFX develops a precise escape-
fetch-based cross-entry alias analysis and systematic partial-
order based FP filtering on top of SUTURE, for effective and
efficient UAF detection.
Dynamic UAF detection. Many previous works utilize dy-
namic methods (e.g., fuzzing) to hunt concurrency vulnerabil-
ities including UAFs. DDRace [50] employs directed fuzzing
to guide the dynamic testing to potential program sites that
could contain UAF bugs. UAFL [51] models UAF bugs as
a typestate violation, which is the used to guide the fuzzing
process. PERIOD [52] proposes to find concurrent bugs with
periodical scheduling of simultaneous threads to explore their
interleavings more systematically, in a similar spirit, Snow-
Board [53] also tries to schedule concurrent threads more
intelligently based on their memory communication behaviors
for more effective bug finding. MUZZ [54] develops thread-
aware instrumentations to help the grey-box fuzzer better trig-
ger bugs in the multithreaded setting. SnowCat [55] utilizes a
graph neural network to guide kernel dynamic testing to reveal
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concurrency bugs more efficiently. Some other works, like
UFO [56], ConVul [57], ConVulPOE [58], ToccRACE [59],
and ConPTA [60], focus on predicting potential concurrent
bugs from existing program execution traces, by exploring
alternative thread interleavings and event orders. Generally
speaking, dynamic UAF detection methods suffer from low
code coverage due to their random exploration, which can be
improved by static approaches as UAFX.
UAF Defense. Researchers propose different mechanisms to
defend against UAF bugs. DangNull [61] prevents UAFs
at runtime by automatically nullifying the freed pointers.
DangSan [62] is a scalable runtime UAF detection mechanism
with an efficient shadow memory-based metadata manage-
ment scheme, UAFSan [63] and ViK [64] achieve a similar
goal by assigning and matching unique object identifiers for
pointers and objects. BOGO [65] utilizes Intel MPX - a
hardware feature - to identify memory safety issues at runtime,
similarly, PTAuth [66] and PACMem [67] achieve this with
ARM Pointer Authentication, xTag [68], on the other hand,
implements a software-based pointer tagging mechanism on
Intel x86-64 where no hardware features like ARM PAC are
unavailable. CHERI is an architecture-level extension that can
enforce memory safety properties [69], [70], [71]. Oscar [72]
develops a memory page permission-based method to thwart
UAF access, while DangZero [73] takes advantage of the ring0
level direct page table access for more efficient UAF detection
and prevention. PSweeper [74] utilizes concurrent threads
on spare cores to sweep the memory pointers and diagnose
potential UAF issues, while MineSweeper [75] retains the
freed memory buffers in an isolated area until no dangling
pointers exist, effectively preventing UAFs. GUARDER [76]
is a secure and tunable heap allocator that randomizes the
memory buffer allocation, making the UAF exploitation more
difficult. Allocator-based approaches are also widely adopted
by many other works, such as MarkUs [77] and FFmalloc [78].
SAVER [79] aims to automatically repair the UAF issues
reported in programs, with static analysis, on the other hand,
Zhou et al. [80] develop a secure pointer extension at the
C language level to help mitigate UAF cases. CRCount [81]
introduces an accurate reference counting mechanism to help
mitigate UAF problems, while FreeWill [37] helps developers
understand and patch the known UAF issues with a reference
count analysis, such analysis can also be complementary to
UAFX. In general, despite the existence of various approaches
for UAF prevention, we believe that early discovery and fixing
of UAF vulnerabilities is still necessary, given the limited
availability and performance overhead of the defenses.

VII. CONCLUSION

We propose UAFX, a static analyzer capable of find-
ing cross-entry UAF bugs in Linux kernel and potentially
general C programs. UAFX employs a novel escape-fetch-
based pointer analysis to accurately recover the subtle cross-
entry alias relationship between the use and free sites, and a
systematic multi-factor UAF validation framework based on
partial-order constraint solving. UAFX successfully discovers

unknown cross-entry UAF issues in Linux kernel and user
programs, with practical accuracy and performance.
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