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Abstract—The rapid deployment of Autonomous Driving (AD)
technologies on public roads presents significant social challenges.
The security of LiDAR (Light Detection and Ranging) is one of
the emerging challenges in AD deployment, given its crucial role
in enabling Level 4 autonomy through accurate 3D environmental
sensing. Recent lines of research have demonstrated that LiDAR
can be compromised by LiDAR spoofing attacks that overwrite
legitimate sensing by emitting malicious lasers to the LiDAR.
However, previous studies have successfully demonstrated their
attacks only in controlled environments, yet gaps exist in the
feasibility of their attacks in realistic high-speed, long-distance
AD scenarios. To bridge these gaps, we design a novel Moving
Vehicle Spoofing (MVS) system consisting of 3 subsystems: the
LiDAR detection and tracking system, the auto-aiming system,
and the LiDAR spoofing system. Furthermore, we design a new
object removal attack, an adaptive high-frequency removal (A-
HFR) attack, that can be effective even against recent LiDARs
with pulse fingerprinting features, by leveraging gray-box knowl-
edge of the scan timing of target LiDARs. With our MVS system,
we are not only the first to demonstrate LiDAR spoofing attacks
against practical AD scenarios where the victim vehicle is driving
at high speeds (60 km/h) and the attack is launched from long
distances (110 meters), but also we are the first to perform
LiDAR spoofing attacks against a vehicle actually operated by
a popular AD stack. Our object removal attack achieves ≥96%
attack success rates against the vehicle driving at 60 km/h to
the braking distances (20 meters). Finally, we discuss possible
countermeasures against attacks with our MVS system. This
study not only bridges critical gaps between LiDAR security and
AD security research but also sets a foundation for developing
robust countermeasures against emerging threats.

I. INTRODUCTION

The rapid implementation of Autonomous Driving (AD)
on public roads poses emerging challenges for our society. AD
vehicles with roof-mounted sensor stacks are also a common
sight [1, 2] in many cities around the world. Waymo’s robotaxi
services are available in several cities, such as Phoenix, San
Francisco, and Los Angeles [3]. LiDAR (Light Detection and
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Ranging) plays a significant role in enabling such a rapid im-
plementation of AD, especially for driverless Level 4 AD [4],
which heavily relies on accurate 3D environmental information
obtained via LiDAR to achieve production-level object detec-
tion and localization. Meanwhile, the essential roles of LiDAR
in AD have motivated extensive research efforts to ensure
its security due to the potentially fatal safety implications.
One of the major security concerns is the robustness against
LiDAR spoofing attacks [5]–[13], which project malicious
lasers against target LiDARs to compromise their distance
measurements by overwriting legitimate measurements.

In the context of object detection, LiDAR spoofing attacks
have been demonstrated to have two attack effects: object
injection attacks [6]–[11] and object removal attacks [6, 10]–
[12]. These attacks have demonstrated successful results at
the object detection model level and in low-speed, short-
distance lab environments. However, none of the prior works
have successfully proven their effectiveness in practical high-
speed, long-range autonomous driving scenarios, despite sug-
gesting potential safety and security impacts on AD vehicles.
Table I provides an overview of existing LiDAR spoofing
attacks demonstrated in the physical world. As listed, prior
work predominantly focuses on stationary lab-level setups or
dynamic but impractical low-speed setups (e.g., at most 5
km/h), and none of prior work has evaluated LiDAR spoofing
attacks against a vehicle actually controlled by an AD software
stack. Based on our survey, we identify the following three
research limitations that potentially prevent demonstrating Li-
DAR spoofing attacks in practical AD scenarios:

Lack of practical detection and tracking system capable
of high speeds and long distances: Precise and long-range
detection and tracking system is essential to keep LiDAR
spoof attacks effective on moving AD vehicles, especially for
removal attacks, which need to be effective for at least several
consecutive frames. The only previous attempt is camera-
based detection and tracking with a pan-tilt system PTX-
ATX18 [12, 14]. However, this system has not been evaluated
in practical scenarios at long distances, in which we found that
camera-based detection cannot be effective as in §V-A1.

Lack of practical spoofing devices capable on public roads:
None of the prior works have demonstrated their attacks in
realistic environments. Most of them have only been evaluated
in indoor lab-level or outdoor setups where AD vehicles are
driving slowly (<5km/h), such as parking lots. To deploy Li-
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DAR spoofing attacks on real roads, the hardware requirements
will be significantly higher to enable high-speed and long-
range attacks. For example, when spoofing at long distances
such as 100m, even small distortions in optics, errors in
detection results, and delays in motor control could lead to
an error of a few meters in aiming.

Lack of practical spoofing attacks against recent LiDARs:
As also pointed out in [11], recent LiDARs, so-called New-
Gen LiDARs, equip security-related features, such as timing
randomization and pulse fingerprinting, which can directly foil
essential assumptions in prior attacks [7, 8, 12]. The HFR
attack [11] is the only attack that demonstrates the removal
attack capability even against New-Gen LiDARs. However, the
HFR attack has not shown high attack effectiveness against
LiDARs with pulse fingerprinting.

Motivated by these limitations in prior work, we pursue
the following research question:

Can LiDAR spoofing attacks actually have end-to-end
safety impacts in practical AD scenarios?

To answer this question, we design a novel Moving Vehicle
Spoofing (MVS) system that enables us to deploy LiDAR
spoofing attacks in practical AD scenarios. Our MVS system
consists of 3 subsystems: infrared (IR) camera-based detection
and tracking system, auto-aiming system, and LiDAR spoofing
system with significant improvements over prior work. Further-
more, we design a new attack named adaptive high-frequency
removal (A-HFR) attack that can be effective against LiDARs
with pulse fingerprinting. The A-HFR attack leverages gray-
box knowledge of the target LiDARs to avoid overheating the
laser diode in the spoofer; it allows the emission of laser pulses
at a frequency more than 25 times higher than that of the HFR
attack while using the same laser.

This paper is structured as follows: In §II, we summarize
previous efforts in LiDAR spoofing attacks and formulate our
threat model to attack AD vehicles driving at high speeds
from long distances. In §III, we describe the design details
of our MVS system consisting of 3 subsystems. In §IV, we
introduce the methodology of our A-HFR attack and describe
how the A-HFR attack can be effective against LiDARs with
pulse fingerprinting. In §V, we evaluate the attack capability
of our MVS system and the effectiveness of our A-HFR attack.
We find that the prior vision-based detection can only detect
the LiDAR at up to 5 meters. On the other hand, our IR
camera-based detection can detect the target LiDAR even at
distances ≥100 meters regardless of the LiDAR types. We
also explore multiple tracking designs including the Kalman
filter. We evaluate the attack effectiveness on three commercial
LiDARs and find that for all LiDARs, the A-HFR attack can
successfully remove over 96% of the point cloud within a 20◦

horizontal and a 16◦ vertical angle.

In §VI, we demonstrate LiDAR spoofing attacks against
the victim vehicle driving at high speed, up to 60 km/h. We
find that the HFR attack achieves ≥96% attack success rates
until the braking distance (20 meters) at 60 km/h. The A-
HFR attack also achieves 100% attack success rates until 40
meters away. The injection attacks are also successful with
≥1k injected points at 60 km/h. In §VII, we perform an end-
to-end closed-loop attack evaluation on an AD vehicle operated
by Autoware.ai [15]. We demonstrate that both object injection

and removal attacks with our MVS system can cause serious
safety consequences. Particularly for the object removal attack,
the victim fails to detect an SUV car-sized object in front of
it. In §VIII, we finally discuss the findings and limitations of
this study, including potential countermeasures.

In summary, our study has the following contributions:

• We design a novel MVS system that can conduct LiDAR
spoofing attacks in practical AD scenarios. The MVS
system consists of 3 subsystems: IR camera-based detec-
tion and tracking system, auto-aiming system, and LiDAR
spoofing systems. Our MVS systems can aim at a target
vehicle driving at 60 km/h from 110 meters away.

• We design a new object removal attack, A-HFR, which
can be effective against LiDARs with pulse fingerprinting
by utilizing a gray-box knowledge of the target LiDAR to
avoid overheating the laser diode. The A-HFR attack can
remove ≥96% of points within attack angles even under
pulse fingerprinting.

• We are the first to demonstrate LiDAR spoofing attacks
against practical AD scenarios where the victim vehicle is
driving at high speeds and the attack is launched from long
distances. Our object removal attack achieves ≥96% attack
success rate against vehicles driving at 60 km/h up to their
braking distance (20 meters).

• We are the first to deploy LiDAR spoofing attacks against
a vehicle actually controlled by a popular AD stack (Auto-
ware.ai [15]) and demonstrate the end-to-end serious safety
consequences (e.g., hard crash into a parking mock car).

Project Website: Demo videos and more detailed hardware
configurations are released on project websites from each
collaborating institutions https://sites.google.com/keio.jp
/keio-csg/projects/AttackonDrivingVehicle (Keio University
side) and https://sites.google.com/view/av-ioat-sec/real-av-l
idar-attack (UCI side)1.

II. BACKGROUND

A. LiDAR Spoofing Attacks

LiDAR spoofing attacks [5]–[13] compromise the distance
measurements of LiDAR sensors by overwriting legitimate
laser signals with higher-power malicious lasers. Table I lists
an overview of the existing LiDAR spoofing attacks demon-
strated in the physical world. We can taxonomize LiDAR
spoofing attacks into two types based on the attack goals.

1) Object Injection Attacks: This type of attack is designed
to inject ghost objects that do not actually exist. The relay
attack [5] sends back recorded laser signals to the victim
LiDAR. However, the impact of this attack in AD contexts
is limited because it cannot inject objects closer than the
attacker [11]. To address this limitation, synchronized injection
attacks [6, 8, 9] have been designed to more effectively
compromise AD vehicles in practical scenarios. This attack
requires a “white-box” [11] knowledge of the target LiDAR’s
deterministic scan pattern and its current state, i.e., where the
LiDAR is currently scanning. With this white-box knowledge,
the attacker can emit malicious lasers to overwrite legitimate

1We have two websites for publicizing purposes from all collaborating
institutions; their contents are jointly developed and identical.
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Table I. Literature survey on prior works that evaluate LiDAR spoofing attacks in the physical world. We are the first to
demonstrate the LiDAR spoofing attack in practical high-speed and long-range AD scenarios and the first to perform the attacks
against a vehicle controlled by an AD software stack. ✓ : Covered, - : Not Covered

Attack
on Moving Target

Attack
on AD Vehicle

Maximum Speed
Attack

from Roadside
Attack Goals Maximum

Attack RangeInjection Removal
Ours ✓ ✓ 60 km/h ✓ ✓ ✓ 110 m

Cao et al. [12] ✓ - 5 km/h - - ✓ 10m
Cao et al. [14] ✓ - 0.4 km/h - ✓ - 4m
Jin et al. [10] ✓ - 0 km/h (running parallel) - ✓ ✓ 15m
Petit et al. [5] - - - - ✓ - 1m
Shin et al. [6] - - - - - ✓ 5m
Sun. et al. [8] - - - - ✓ - 5m

Hallyburton et al. [9] - - - - ✓ - 5m
Sato et al. [11] - - - - ✓ ✓ 10m
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Figure 1: Overview of our threat model and pipeline of our MVS system consisted of 3 subsystems: (1) detection and tracking
system with IR camera, (2) auto-aiming system with high-precision servo motor, and (3) spoofing system with arrayed lasers to
achieve a wider attack projection area. Our MVS system can attack a driving AD from ≥110 meters away.

scans based on the obtained pattern. However, synchronized
injection attacks heavily rely on a deterministic LiDAR scan-
ning pattern; therefore, they can be directly foiled by laser scan
timing randomization, which is a common feature in recent
New-Gen LiDARs [11]. Considering the worst-case scenario in
which some AD vehicles may still use old-generation LiDARs,
we also evaluate the effectiveness of synchronized injection
attacks in driving scenarios in §VI and §VII.

2) Object Removal Attacks: These attacks aim to prevent
object detectors from identifying actual objects. Synchronized
removal attacks [10, 12] remove objects by moving all points
of the object to a distance far away or within the area below the
minimum distance threshold. However, as discussed in §II-A1,
these white-box attacks, which rely on synchronization, are
directly ineffective against New-Gen LiDARs. Asynchronized
(or “black-box”) removal attacks [5, 6, 11] do not depend on
these assumptions. Particularly, the high-frequency removal
(HFR) attack [11] has shown even higher effectiveness than
synchronized attacks. The HFR attack made 5 sedan cars
undetected and showed potential effectiveness against AD in a
driving simulation. However, the HFR attack has very limited

effectiveness against LiDARs with pulse fingerprinting. This
thus motivates us to design a new attack, A-HFR attack, in §IV.

B. Pulse Fingerprinting for LiDAR

Pulse fingerprinting [16] is a technique that authenticates
whether the reflected laser pulses are emitted by the LiDAR it-
self or by other LiDARs. While pulse fingerprinting is installed
originally for anti-interference purposes to allow multiple Li-
DARs to operate at close distances, it also demonstrates a high
defense capability against LiDAR spoofing attacks [11]. Pulse
fingerprinting can be found in several New-Gen LiDARs such
as Livox Mid-360 [17], Hesai XT32 [18], and AT128 [19].
While the detailed implementation of pulse fingerprinting
is not publicly released, it is considered to be encoded in
the interval between two consecutive pulses; therefore, high-
frequency pulses can accidentally match the interval and then
bypass the authentication [11]. Naturally, higher frequency
leads to higher chances of hitting the interval. However, it
is not trivial to increase the frequency because a higher pulse
frequency causes overheating of the laser diode and degrades
the peak power of the laser, which must be higher than the
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peak power of the legitimate laser. To overcome this trade-off,
our A-HFR attack utilizes gray-box knowledge of the LiDAR
scan pattern to know when to cool down the diode (§IV). We
would like to note that such a naive authentication in New-
Gen LiDARs should be an inevitable design rather than a
random choice because more complex authentication requires
higher laser power per time, which may harm human eyes
(also discussed in [11]). For example, 2 times more pulses for
complex authentication will double the laser power per time.
Moreover, the detection range of LiDAR will also be degraded
if LiDAR uses more power for authentication.

C. Prior Attempts to Attack Moving Vehicles

So far, there has been no successful demonstration of
LiDAR spoofing attacks on AD vehicles driving in realistic
AD scenarios. As shown in Table I, the majority of prior
works do not consider attacks on moving targets. Several prior
attempts [10, 12, 14] have targeted moving vehicles, but these
works have the following three critical limitations that prevent
them from effectively attacking driving AD vehicles: First,
the LiDAR detection systems in prior work are not capable
of operating at long ranges. Jin et al. [10] just manually
aimed at the target LiDAR, and thus their approach cannot
be applied to long-range scenarios since humans cannot even
see a LiDAR from a far point, such as from 100 meters away.
Cao et al. [12, 14] detect the target LiDAR with a vision-based
approach with a YOLOv3 [20] model trained to directly detect
the target LiDAR. While this is a systematic approach, we
find that the vision-based approach cannot handle long-range
LiDAR detection even at 10 meters away since the LiDAR
appears too small to be detected in the captured image frame,
as detailed later in §V-A1.

Second, we also find that prior works did not have mature-
enough spoofing attack devices that can automatically and
precisely aim at a far-away target with attack lasers with
sufficiently high power. The only prior attempts [12, 14] used
a generic pan-tilt system [21] to control the laser emitter
direction. However, these attack devices are unlikely to be
effective against fast-moving vehicles at long distances since
such generic pan-tilt systems are not originally designed for
precise targeting of far and small objects (e.g., LiDAR), but
only for coarse vision tracking of photo subjects. Finally, the
majority of prior attacks that require synchronization with the
target LiDAR cannot be effective against the recent New-Gen
LiDARs since timing randomization makes synchronization
virtually impossible [11]. HFR attack [11] remains effective
even under timing randomization but is highly mitigated by
pulse fingerprinting, and thus its end-to-end attack impact on
AD vehicles has not been fully validated. To address these
limitations, we design our MVS system that can practically
deploy effective LiDAR spoofing attacks against driving AD
vehicles, as detailed later in §III.

D. Threat Model

We generally follow the same threat model adopted in prior
works [7]–[9]. We particularly target the threat model called
“Spoofer placed in environment” threat model [9], in which
the attacker deploys LiDAR spoofing attacks against a driving
AD vehicle from a roadside. We consider that this threat model
is the most practical but also the most challenging among the

ones discussed in [9]. The other threat models assume that
the attack is launched from a front or side vehicle traveling
alongside the victim vehicle to avoid tracking. Fig. 1 illustrates
the bird’s-eye-view of our threat model. The victim vehicle
driving at high speeds (e.g., 60 km/h) is under attack from
≥110 meters away. We assume that the attack site is a straight
and flat road, which is the most common, and assume that the
height of the target LiDAR is fixed and known for each attack
scenario. The attack device is placed at the roadside and starts
attacking the victim from as far away as possible (e.g., ≥110
meters away).

E. Major Updates from Our Preprint Papers

From our preprint works as WIP (Work-in-Progress) papers
at the VehicleSec symposium [22, 23], this full paper has major
updates in not only new design contributions enabling the
longer-range attacks with the parabolic mirror antenna designs
(§III-D) to receive and track the lasers from the LiDAR even at
110 meters away, but also has more comprehensive evaluation
including a quantitative comparison between the vision and IR-
based detection methods (§V-A1), driving evaluation at higher
speeds such as 60 km/h (§VI), injection attack evaluation
against the high-speed vehicle (§VI-D), A-HFR attack eval-
uation against the high-speed vehicle (§VI-B2), and end-to-
end evaluation with the actual AD system (§VII). Our preprint
works focused on the initial testing of our attack devices and
attack design validity at lower speeds.

III. MVS SYSTEM DESIGN

A. Overview

To practically deploy long-range LiDAR spoofing attacks
against AD vehicles driving at high speeds, we design a Mov-
ing Vehicle Spoofing system (MVS system). Fig. 1 illustrates
the overview of our MVS system consisting of three subsys-
tems: (1) IR camera-based detection and tracking system, (2)
auto-aiming system, and (3) LiDAR spoofing system. For the
IR camera-based detection and tracking system, we design a
novel methodology with an IR camera to accurately localize
the target LiDAR even at longer ranges (e.g., 100 m) than the
prior vision-based method, which can only detect a LiDAR
up to 5 m (§V-A1). For the auto-aiming system, we design a
responsive and accurate auto-aiming system that can precisely
aim at any horizontal angle with a high-precision servo motor.
For the LiDAR spoofing system, we build a novel spoofer upon
the existing LiDAR spoofers [7, 8, 10]–[12, 14] to handle long-
range attack scenarios. We further improved the electronics and
optics as detailed in Fig. 2. Particularly, we install a parabolic
mirror antenna before the PD (photodiode) to receive the laser
from LiDAR even at long distances.

B. Infrared Camera-based Detection and Tracking System

Prior work [12, 14] utilizes a vision-based approach based
on YOLOv3 [20] to detect the target LiDAR. However, as
shown in Fig. 3 (left), the LiDAR appears too small in the
camera frame for reliable detection at long distances (e.g., 15
m). A naive solution would be to use an expensive camera
and telephoto lens to get a higher resolution image, but
this approach not only incurs high costs but will introduce
challenges in real-time processing due to the high-resolution
image and manipulation of a heavy-weight camera.
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Figure 2: Overview of the hardware setup of our MVS system.
The antenna is only used for white-box and gray-box attacks
to obtain the current state of the target LiDAR.

Normal Camera lR Camera

LiDAR Laser Light

Figure 3: Comparison of vision and IR-camera frames at the
same sight 15 m away from the target LiDAR. The IR camera
only senses the light in the IR wavelength and thus enables
accurate LiDAR-agnostic detection of the LiDAR location.

1) Target LiDAR Detection with IR Camera: To address
this challenge, we design a simple yet novel detection sys-
tem inspired by InfraRed Search and Track Systems (IRST
Systems) designed for military applications, enabling long-
distance detection and tracking of objects like enemy fighter
jets [24]. By design, LiDAR must keep emitting IR lasers in
all directions to obtain 3D point cloud data. Intuitively, we
should be capable of achieving stable detecting and tracking
of the IR laser source, similar to how an anti-aircraft missile
operates. Fig. 3 (right) shows the IR camera frame at the same
location as the left figure. As the shutter time of the IR camera
is significantly longer than that of the LiDAR scans, the IR
camera can very likely capture the laser trace during the shutter
time like the distinct white circle in the figure.

This approach can achieve three key advantages over prior
vision-based systems: First, we can directly determine the loca-
tion of the laser trace. As the laser and its reflection travel in a
straight line, the origin of the laser emission must coincide with
the location where the reflection was sensed. Therefore, the
attacker can directly target the source of the laser, as indicated
by the white circle in Fig. 3 (right). On the contrary, the prior
vision-based approach requires an additional step to determine
the laser emission location even after detecting the bounding
box of the target LiDAR. Furthermore, the detected bounding
box itself has localization errors and jittering, especially for
small object detection.

Camera:
ELP-USBFHD08S-MF

Bandpath Filter:
FBH905-10

10x Optical 
Zoom Lens

Figure 4: IR Camera Configurations. We install the bandpass
filter in front of the image sensor and place the 10 times optical
zoom lens on it.

Secondly, our approach is LiDAR model-agnostic because
this approach relies only on the fundamental property inherent
to all LiDARs, which inevitably emits lasers into the scanning
area. In §III-B1, we demonstrate that our method can be
universally applied to three LiDAR models without requiring
additional training or adaptation. On the other hand, the prior
vision-based approach requires a large number of various
images of the target LiDARs to train a dedicated object
detector. If the attacker wants to handle multiple scenarios
(e.g., multiple LiDAR models), the number of required images
could increase exponentially. Finally, our approach can be
robust against different environmental conditions. For example,
the prior vision-based approach is not generally capable of
nighttime scenarios due to the dependence on passive visible
lights from other sources. Our approach can handle such
challenging environmental conditions because this approach
merely relies on the active IR light emitted from the target
LiDAR. The other wavelengths from other sources will be
filtered out by the bandpass filter.

To eventually localize the LiDAR in the IR camera frame,
we design two approaches: DNN (Deep Neural Network)-
based object detection and highest-intensity methods. For the
DNN-based object detection, we train an object detector (e.g.,
YOLOv5 [25]) to detect the LiDAR laser-induced white circle.
For the highest-intensity method, we simply select the pixel
with the highest intensity in the frame. In §V-A2, we find that
the DNN-based detection shows superior robustness compared
to the highest-intensity method. While the highest-intensity
method works well in indoor environments, it does not consis-
tently perform well in outdoor environments where the sunlight
and its reflection often have the highest intensity. In §V-A1,
we confirm that our DNN-based method achieves significantly
higher detection accuracy than the prior vision-based approach
while the vision-based detection can only detect a LiDAR
at most 5 meters away. Our IR camera-based detection can
LiDAR-agnostically detect different LiDARs from distances
exceeding 20 meters with ≥90% success rates and can effec-
tively handle the 110-meter outdoor attack scenarios in §VI.

IR Camera Configurations: Fig. 4 shows the configuration of
our IR camera (ELP-USBFHD08S-MFV [26]) with 10 times
optical zoom. We removed the pre-installed low-pass filter in
front of the CMOS sensor to accept the IR wavelength. We
then placed a bandpass filter (FBH905-10 [27]) that can selec-
tively receive the IR wavelength (905 ± 5 nm), which is used
in the majority of LiDARs [28]. If the attack wants to attack
other LiDARs using different wavelengths, the adversary can
use another bandpass filter corresponding to the wavelength
range covering the wavelength.
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2) Robust Tracking with Misdetected Frames: After the
LiDAR is localized in each frame, the next step is to track the
LiDAR with prior detection results and maintain the LiDAR
location for the frame with failed or outlier detection. We note
that tracking is particularly beneficial for our IR camera-based
detection since we cannot always sense the laser from the
target LiDAR. For example, VLP-16 [29] scans each point
at around 10 Hz, meaning we can at most detect the LiDAR
location every 0.1 seconds. To handle this, we implement
two methods: the Kalman filter [30] and DNN-based tracking.
Kalman filter is one of the most widely used methods for
tracking purposes. Kalman filter estimates the state of a linear
dynamic system from a series of noisy measurements. We
implement the Kalman filter with outlier elimination based on
the Mahalanobis distance [31]. For the DNN-based tracking,
we simply feed the current and a few prior frames as the
channel of the input image of the DNN-based detection. We
denote the number of frames to feed as Np. In §V-A2, we find
that both methods generally achieve high tracking performance
and that the combination of the two methods shows the highest
performance. Particularly, the DNN-based tracking with Np=3
shows high robustness against the ghosting effect [32] caused
by strong lasers from the LiDAR.

C. Auto-Aiming System

After the current position of the target LiDAR is estimated
with tracking, the auto-aiming system calculates the required
rotation angle to aim at the LiDAR. We assume the attack site
is on a flat road and that the height of the LiDAR is known and
constant, as discussed in our threat model (§II-D). Therefore,
we first set our spoofer at the same height as the target LiDAR
and the auto-aiming system only adjusts the horizontal angle
on the fly. To accurately aim at the target horizontal angle, we
find that the precision of the servo motor has a major impact on
attack success because a 1◦ error leads to around 1.7 m error
at 100 m away. We eventually selected a high-precision servo
motor, Dynamixel MX-28, which has 0.088◦ angle resolution
with PID control. To smoothly rotate the entire MVS system,
we enclose the motor on a box and the system rotates on the
box with two bearings as shown in Fig. 5.

D. LiDAR Spoofing System

Table II lists the comparison between our MVS system
and prior setups to attack moving targets. Our MVS system
has two major improvements over prior works: (1) We adopt

PD

LiDAR

Figure 6: Illustration of how the vertical parabolic mirror
antenna helps the PD receive more lasers from LiDAR.

two arrayed lasers with 2-inch lenses to cover a significantly
larger (100 times larger) area than prior work. The two lenses
are horizontally arrayed. While we could place more arrayed
lasers to cover a larger beam area, doing so could harm the
responsiveness of the auto-aiming system due to the increased
weight, and it also introduces additional costs. In §VI-C, we
find that the setup with the two 2-inch lenses can achieve
sufficient performance to attack a vehicle driving at 60 km/h.
(2) We introduce a vertical parabolic mirror antenna before the
photodiode (PD) to reliably receive the laser from the LiDAR.
Prior work has used a bare PD, but it cannot work in long-range
attack scenarios because the lasers from LiDAR spread radially
and sparsely at long distances, and thus the bare PD is less
likely to receive them. The parabolic shape can collect signals
arriving from any direction at a single point (focal point). Fig. 6
shows how the vertical parabolic mirror antenna helps the PD
receive lasers from LiDAR at long distances. The parabolic
mirror surface reflects incoming lasers and concentrates them
at the focal point where the PD is located. While we can also
gather such sparse lasers by using a convex lens, the parabolic
antenna has clear advantages in the lightweight design and
cost efficiency as evidenced by their widespread use in space
exploration applications [33].

For our threat model, we design a one-dimensional vertical
parabolic mirror as shown in Fig. 5. We use a focal length f =
200 mm and an antenna height h = 600 mm. For the horizontal
dimension, we adopt a thick design, consisting of a stack of
parabolic shapes, because the strong directivity of the parabola
is not suitable for the horizontal dimension where the target
vehicle moves quickly. This design allows us to eliminate the
need to move the antenna during the attack. Once the MVS
system receives the laser from LiDAR with the antenna, we can
launch not only white-box attacks [6, 8, 9] by synchronizing
the LiDAR scan pattern, but also our gray-box A-HFR attack,
which will be introduced in §IV. For the LiDAR spoofing
methodologies themselves, we follow prior works (except for
the A-HFR attack part) since our major contributions of the
MVS system are in how to deploy LiDAR spoofing attacks in
high-speed and long-range scenarios.

E. Cost of the MVS system

Fig. 2 illustrates the entire components of our MVS system,
which is built completely using off-the-shelf components.
The system has a total cost of $2.3k, including the $1.1k
laser driver, $36 optical receiver, $700 detection and auto-
aiming systems, and $500 in miscellaneous parts including
jigs. Specifically, the laser driver component includes two laser
boards ($450 × 2), two 2-inch lenses ($54 × 2), and two
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laser diodes (LD) ($36 x 2). The optical receiver consists of a
PD ($2), a TIA ($4), and an antenna ($30). The detection
and auto-aiming systems include the IR camera ($70), the
bandpass filter ($165), the servo motor ($270), and the box
with a turning table ($200). Additionally, to run the MVS
system, we use a function generator (FG) ($6.7k), 4-channel
DC power supplies ($3k), and a laptop ($1.7k). We note that
the majority of the cost is due to the expensive FG, which
can be replaced with Analog Discovery ($400) [34] or FPGAs
(∼$200) with a certain level of engineering efforts. As this
study is motivated to explore the feasibility of LiDAR spoofing
against moving vehicles, we used the FG to flexibly evaluate
various parameters and setups with less effort.

IV. NEW ATTACK: A-HFR ATTACK

To bypass pulse fingerprinting in recent New-Gen LiDARs,
we design a new removal attack, named Adaptive HFR (A-
HFR) attack. We discover that the pulse fingerprinting can be
bypassed if we can achieve much higher frequency pulses than
the ones of the prior HFR attack [11]. We achieve 25 times
higher frequency than the HFR attack at the target attack range
by utilizing the gray-box knowledge of the scan pattern of
target LiDAR, to avoid the overheating issue of the laser diode.

A. Basic Concept to Bypass Pulse Fingerprinting

Prior work [11] points out that the pulse fingerprinting in
recent New-Gen LiDARs presumably uses a pair of pulses to
measure a point and embeds the fingerprint into the interval
of a pair of pulses. The pulse intervals of each pair randomly
vary and the LiDAR can authenticate the reflected laser based
on whether the interval matches the one the LiDAR emitted or
not. The HFR [11] attack demonstrated that it can still bypass
pulse fingerprinting LiDARs with 2.1% attack success rate and
hypothesizes that their high-frequency pulses can occasionally
match the correct interval and bypass the authentication as
described in Fig. 7. Another possibility is that the overheating
may differ the laser wavelength to out of LiDAR’s acceptable
wavelength. Based on the datasheet [35], the effect is very
small (3 nm per 10◦C) and thus should be negligible.

The hypothesis assumes the existence of Tα, which is a
tolerance error time used to authenticate the fingerprinting.
With Tα, the attack success rate of the HFR attack in an ideal
case can be written by min

(
1, Tα

TA

)
, where TA is the interval

of attack pulses. In other words, the attack always succeeds
if the interval of attack pulses is less than the tolerance error,
and stochastically succeeds otherwise.

If the hypothesis is correct, a higher pulse frequency
should result in higher attack effectiveness. As shown in
Fig. 11, we confirmed that the hypothesis is correct through
the experiment, i.e., a sufficiently high pulse frequency can
bypass the fingerprinting in recent New-Gen LiDARs. The
remaining challenge lies in achieving such a high pulse fre-
quency. However, we find that it is not trivial to increase
the frequency due to a trade-off between pulse frequency
and peak power. Specifically, emitting a pulsed laser at a
higher frequency causes overheating of the laser driver and
the laser itself, significantly degrading the laser’s peak power.
To overpower the legitimate laser power emitted by the target
LiDAR, the peak power of the attack laser must be greater

- Interval of attack pulses (TA) should be short enough
- Attack always succeeds if TA  < Tα 

- Peak power must be higher than legitimate one 
- Otherwise, the legitimate laser will be just used

Attack pulses

Legitimate pulses with fingerprinting

Figure 7: Requirements to bypass fingerprinting: (1) The
interval of the attack pulses (TA) should be short enough and
close to the tolerance error (Tα); (2) the peak power of the
attack laser must be higher than the legitimate laser of LiDAR.

than that of the legitimate laser. The HFR attack achieves the
highest attack success rate at around 1 MHz when attacking
LiDARs without pulse fingerprinting. Ideally, attacking with
higher frequencies should increase the effectiveness of HFR,
but overheating causes a reduction in laser power, significantly
lowering the attack success rate.

B. Attack Design

To overcome the trade-off between pulse frequency and
peak power, we design the adaptive-HFR (A-HFR) attack.
As the name implies, the A-HFR attack adaptively changes
its attack laser frequency to avoid overheating. As shown in
Fig. 8, the A-HFR attack strategically boosts the frequency
only when the target LiDAR scans the specific object the
attacker wants to hide. This design allows the diode to rest
most of the time and effectively cool down during the rest.
To know when the LiDAR scans the target objects, we utilize
a photodiode (PD) similar to the existing white-box (§II-A1)
LiDAR spoofing attacks that require synchronization with the
target LiDAR. However, unlike white-box attacks that require
precise knowledge of when the LiDAR scans each point
and a predictable scan pattern, A-HFR only needs a coarse-
grained understanding of the victim LiDAR’s state. Due to
this reduced information requirement compared to white-box
synchronization attacks, we classify the A-HFR attack as a
gray-box attack and term the coarse-grained requirement as
weak synchronization.

Obtaining Gray-box Knowledge: We can roughly estimate
when LiDAR scans each horizontal angle based on the laser
from the LiDAR with PD. As LiDAR is rotating and scans each
angle evenly, the interval between two consecutive lasers from
the LiDAR corresponds to the time required to scan the full
360◦. We can calculate the scan timing of each relative angle
between the PD and the target object. Although the relative
angle will change as the victim AD vehicle moves, we can
account for this by using a wider margin in the attack angle.
In §V-B3, we evaluate the maximum attack angle that can
maintain attack effectiveness. Similarly, we can also rest the
attack when the LiDAR is scanning less important vertical
angles. For example, pedestrians and other vehicles generally
do not exist at a height ≥3 meters. If we can focus only
on the area within 20◦ of horizontal and vertical angles, the
laser diode can rest 97% of the total LiDAR scan time. In
Appendix A, we evaluate the impact of limiting vertical and
horizontal attack angles and find that limiting both vertical and
horizontal attack angles is necessary to achieve more than 25
MHz frequency.
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Table II. Comparison between our MVS system and the prior setups to attack moving targets.
Number of

Lasers
Beam Diameter Total Beam Area Maximum

Tracking Distance
Tracking

Detection Strategy
(target, using device)

LiDAR
Agnostic

Vertical
Antenna

Ours 2 60 cm 5654.7 cm2 110 m Auto Detect LiDAR laser w/ IR Camera Yes Yes
Cao et al. [12, 14] 1 2.54 cm 5.1 cm2 5 m Auto Detect LiDAR w/ RGB Camera No No

Jin et al. [10] 1 8cm 50.3 cm2 15 m Manual - - -

LiDAR

LiDAR

(a) HFR Attack

(b) A-HFR Attack

Attacking regardless 
of when and where 
LiDAR is scanning

Attacking only when 
LIDAR scanning 

target object

Victim

Victim

LiDAR’s Top View 

LiDAR’s Top View 

Figure 8: Comparison between (a) HFR attack and (b) A-HFR
attack. A-HFR can keep high peak power at high effective
frequencies by limiting the attack angle with weak synchro-
nization to know where to boost the frequencies.

V. ATTACK CAPABILITY EVALUATION

We first evaluate the attack capability of our MVS system
and then evaluate A-HFR attack through static indoor and
outdoor experiments to validate our proposed designs.

A. MVS System Evaluation

Of the three subsystems of the MVS system, we begin with
an evaluation of the IR camera-based detection and tracking
system because the others require actual high-speed driving
scenarios to adequately evaluate their capabilities, which will
be covered in §VI and §VII.

1) Detection Capability Evaluation – Vision v.s. IR Cam-
era: We evaluate the detection capability of our IR camera-
based target LiDAR detection (§III-B1) through the compari-
son with the prior state-of-the-art vision-based detection [12,
14]. We calculate the detection success rate of each method at
4 different distances between the target LiDARs and the vision
or IR camera. We note this is an indoor static experiment, i.e.,
both the LiDAR and camera remain stationary. For the vision-
based detection, we train YOLOv5 [25] with 200 images of
the target VLP-32c [36] LiDAR. For our IR camera-based
detection, we train YOLOv5 with 532 images of the attack
traces like those shown in Fig. 3 (right). The resolution of
all vision and IR images is 640x640. Since the IR camera
cannot always sense the emitted laser from the target LiDAR,
we define the attack success rate as whether a detector can
correctly output a point within the area of the LiDAR with
the previous 10 camera frames. The camera operates at 60
Hz, meaning 10 frames span 0.17 seconds. For both vision-

Table III. Detection success rates of vision- and IR camera-
based methods at different distances between the target LiDAR
and the cameras.

LiDAR 5 m 10 m 15 m 20 m
Vision-based Detection VLP-32c 100% 0% 0% 0%

IR Camera-based
Detection (Ours)

VLP-32c 100% 100% 100% 100%
Horizon 100% 100% 100% 100%
AT128 90% 90% 100% 90%

and IR camera-based detection, we finally output the averaged
LiDAR position of the frames excluding the frames that failed
to detect the target LiDAR.

Results: Table III lists the detection success rates of vision-
and IR camera-based methods at different distances between
the target LiDAR and the cameras. As listed, the vision-based
detection fails to detect the target LiDARs even at 10 m away
from the camera. On the other hand, our IR camera-based de-
tection achieves ≥90% detection rates for 3 different LiDARs.
Among the 3 LiDARs, AT128 [19] is shown to be slightly
more difficult to stably receive its laser by the IR camera. We
suspect that AT128 has some irregular scan patterns for the
vertical angles. Nevertheless, ≥90% detection rates are already
sufficiently high, and we find that the remaining 10% of frames
should be complementable by the tracking system as evaluated
in the next section.

2) Tracking Capability Evaluation: We then evaluate the
tracking performance for each combination of the detection
and tracking methods. Since a dynamic experimental setup is
required to evaluate the performance of tracking, we record
a video as shown in Fig. 9 where we put a target LiDAR
(AT128) on a push cart and manually push it toward an IR
camera from 40 meters away at around 8 km/h speed. We
apply each method for this video and calculate the tracking
success rate defined by the ratio of whether the tracking point
is within the LiDAR area or not for each frame.

Results: Table IV lists the tracking success rates of different
combinations of detection and tracking methods for each 2-
meter interval bin for AT128 LiDAR. As listed, YOLOv5
with Np = 3 achieves the highest tracking rates regardless
of the existence of the Kalman filter. This result indicates
that the DNN-based tracking is highly effective in our threat
model. As shown in Fig. 9, the highest-intensity methods and
YOLOv5 with Np = 1 cannot adequately handle several cases.
For example, at a distance of 15 meters away, the pixel with
the highest intensity is not the LiDAR but rather a street
light reflecting sunlight into the IR camera. Similarly, at 7
meters away, YOLOv5 with Np = 1 misdirects the ghost
reflection [32] caused by strong direct light from the LiDAR
entering the lens. Since such strong direct light does not
occur in consecutive frames, YOLOv5 with Np = 3 appears
unaffected by ghost reflections. For these methods, the Kalman
filter sometimes helps to correct the LiDAR localization but
not always since the Kalman filter also sometimes causes
the long-last effect of misdetections at the current frame for
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40 m away 15 m away

Area with highest 
intensity pixel 

Area with highest 
intensity pixel 

Approaching 
at 8 km/h

7 m away

Misdetected ghost 
reflection by

YOLOv5 (            ) 

Figure 9: IR camera frames at 40, 15, and 7 meters away from
the target LiDAR. The highest intensity pixel in the 15-meter
frame is the reflection of the sunlight on a street light. The 7-
meter frame has ghosting mistedected by YOLOv5 with Np=1.

Table IV. Tracking success rates of different combinations of
detection and tracking methods for AT128 LiDAR.

Distance (m)
2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-40 Avg.

Highest Intensity 100%100% 91% 91% 75% 63% 73% 58% 68%
+ Kalman Filter 0% 0% 91% 100%100%100%100%100% 89%

YOLOv5 (Np = 1) 77% 0% 14% 100%100%100%100%100% 89%
+ Kalman Filter 0% 0% 95% 100%100%100%100%100% 89%

YOLOv5 (Np = 3) 55% 70% 100%100%100%100%100% 98% 95%
+ Kalman Filter 55% 70% 100%100%100%100%100% 98% 95%
# of frames 22 20 21 23 20 16 15 145

Table V. Three production LiDARs with pulse fingerprinting
functionalities based on our measurements or official docu-
mentation. n/a means that we could not measure it.

Livox Mid-360 [17] Hesai XT32 [18] Hesai AT128 [19]

Scanning
Type Prism Rotating Rotating Mirror Rotating

Tmin 1250 ns 250 ns n/a
Tmax 1550 ns 450 ns n/a

the following frames. Although other state-of-the-art tracking
methods (e.g., extended Kalman filter [37], unscented Kalman
filter [38], particle filter [39]) may overcome the tracking issues
including the lower performance at close distances, we adopt
the tracking method with YOLOv5 (Np = 3) and the Kalman
filter in the later experiments since it already has almost 100%
accuracy until 6 meters away, which is much shorter than the
braking distances (20 meters) at 60 km/h.

B. A-HFR Attack Evaluation

We evaluate the attack effectiveness and robustness of the
A-HFR attack against LiDARs with pulse fingerprinting by
comparing the attack results of the HFR attack, which is the
current state-of-the-art removal attack [11].

1) Evaluating LiDARs with Pulse Fingerprinting: We iden-
tify three mass-produced LiDARs with pulse fingerprinting
as listed in Table V. For XT32 [18] and Mid-360 [17], we
find that the two LiDARs emit a pair of lasers for a single
distance measurement. The pulse interval of each pair varies
between the minimum (Tmin) and maximum (Tmax). For
AT128 [19], For AT128 [19], we confirm the fingerprinting
features through their official document, although we could
not measure accurate Tmin and Tmax with our measurement
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Figure 10: Point removal rates of the HFR and A-HFR attacks
at different frequencies for LiDARs with pulse fingerprinting.

environments. We mainly evaluate the A-HFR attack against
XT32 and AT128 because the fingerprinting in Mid-360 [17]
does not have sufficient complexity and can be bypassed
by the HFR attack alone, i.e., the pulse frequency of the
normal HFR attack is already high enough to bypass Mid-
360’s fingerprinting. We further discuss it in Appendix B.

2) Attack Effectiveness: Fig. 10 shows the point removal
rates for HFR and A-HFR attacks at different frequencies.
We evaluate the ratio of removed points within the angle of
20◦ horizontally and 16◦ vertically based on our preliminary
analysis that shows that ≥95% of objects located more than
6 meters away, the minimum LiDAR detection range, in the
KITTI dataset [40] fit within this area. We placed the spoofer
2 meters away from the LiDAR and 3 meters away from the
target room wall. For XT32, we restrict the vertical attack
angle to half (16◦) to have more rest. As shown, our A-HFR
attack can achieve significantly higher attack success rates
compared to the current state-of-the-art HFR attack. For AT128
and XT32, due to the overheating issue, the HFR attack can
achieve a maximum success rate of only 20% at around 10
MHz, and the attack success rate even starts dropping around
17 MHz. In contrast, the A-HFR attack can remove 100% of
the points for AT128 at 15 MHz for AT128 (Tα = 67 ns) and
96% of the points at 24 MHz for XT32 (Tα = 42 ns).

Fig. 11 demonstrates the effectiveness of the HFR and A-
HFR attacks against AT128. For the HFR attack, the majority
of the points still remain, although we can see some points have
been removed and the shape appears blurred. With the A-HFR
attack, almost all points of the person have been completely
removed. We note that this attack can be sustained for a long
time, such as >100 seconds.

3) Robustness to Wide Attack Horizontal Angles: We eval-
uate the robustness of the A-HFR attack when the attack angle
is increased. Although horizontal 20◦ can cover most road
objects, wider attack angles can help compensate for spoofing
errors and sudden movements of the target vehicle. Table VI
lists the point removal rates of the HFR attacks at different
attack horizontal ranges for AT128 and XT32. As shown, the
point removal rate decreases as the attack angle increases,
especially for XT32, which requires a higher frequency to
attack as shown in §V-B2. As a higher frequency leads to
greater overheating of the diode, XT32 is more robust against
wider attack angles than AT128 since the A-HFR attack is
also affected by the overheating issue, at wider attack ranges.
Nevertheless, for both LiDARs, the A-HFR attack can cover at
least 20◦, which is wide enough to hide at least one pedestrian.
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(a) Benign (b) HFR (5 MHz) (c) A-HFR [ours] (15 MHz)

Figure 11: Comparison of the results of HFR and A-HFR
attacks on AT128. A-HFR attack can completely remove
almost all points (right).

Table VI. Point removal rates of the A-HFR attack with differ-
ent attack horizontal ranges LiDARs with pulse fingerprinting.

Attack Freq. 10◦ 20◦ 30◦ 40◦ 50◦ 60◦

AT128 15 MHz 97% 100% 99% 98% 90% 90%
XT32 24 MHz 97% 96% 78% 58% 47% 38%

(a) Benign (b) Attack (24 MHz)

Figure 12: A-HFR attack on Hesai XT32 to hide a real vehicle.
We limit the attack angle to 20◦ horizontally and 16◦ vertically.
The red bounding box shows the detection results generated by
Pointpillars in Apollo. When under attack, the vehicle becomes
undetected with a 98% success rate for over 15 seconds.

4) Outdoor Evaluation: To further evaluate the effective-
ness of the A-HFR attack, we conducted an outdoor experiment
aiming to remove an entire car point cloud on XT32 LiDAR.
We place the target car at a distance of 12 meters away. The
car occupies around the area within 10◦ horizontally and 8◦

vertically in the LiDAR point cloud. As shown in Fig. 12,
the target vehicle is entirely removed from the point cloud
with a 98% success rate by the PointPillars of Apollo 6.0 [41]
in 15 seconds. The several failures are due to the failure in
weak synchronization to receive the laser from the LiDAR.
Currently, we trigger the attack only when the laser correctly
is received. We consider that this issue could be addressed by
a speculative execution. Detailed discussions are in §VIII-5.

Target
LiDAR

Victim Object
(Pedestrian) Driving Direction

(~60 km/h)

Target Vehicle
(~110 m away)

MVS System

Figure 13: Experimental setup of high-speed driving evaluation
with real car driving at ≤60 km/h. Our MVS system starts
deploying LiDAR spoofing attacks around 110 meters away.

VI. HIGH-SPEED DRIVING EVALUATION WITH REAL CAR

We evaluate the attack feasibility and performance of
LiDAR spoofing attacks with our MVS system against a real
car driving at high speeds (e.g., 60 km/h). For removal attacks,
we assess the effectiveness of HFR and A-HFR attacks. For
injection attacks, we evaluate the synchronized injection attack.

A. Experimental Setup

Fig. 13 illustrates the overview of our experimental setup.
We follow our threat model described in §II-D: We rent a
private testing road with exclusive-use permission to ensure
a controlled environment. We placed the MVS system device
2 m away from the driving lane and positioned the victim
pedestrian 10 m away from the MVS system device. To
prioritize safety, the victim pedestrian is also 2 m away from
the driving lane, not directly in the lane. The target vehicle
with a mounted LiDAR on its roof is approaching from 100
m away from the victim pedestrian, i.e., the attack distance
between the MVS system and the target vehicle is up to 110
m. We measure the attack effectiveness starting from 70 m
away from the victim, where the target vehicle reaches the
desired speed. We evaluate the system at 6 different speeds
from 10 km/h to 60 km/h. For each speed, we collected data
from 4 different traces. We divided the measurements from all
trials into distance bins and calculated evaluation metrics for
each bin by combining all the trials.

B. Removal Attack Evaluation

1) HFR Attack at High Speed: We evaluate the HFR attack
against a high-speed driving vehicle with Livox Horizon [42],
which is one of the New-Gen LiDARs whose manufacturer
releases an official object detector, Livox Detection v2.0 [43]
working with Livox Horizon. We selected 0.25 as the confi-
dence threshold for Livox Detection v2.0, ensuring that around
90% detection rate is achieved in benign scenarios.

Table VII lists the attack success rates of the HFR attack for
different speeds and the detection rates in the benign traces.
As shown, the HFR attack with our MVS system can hide
the victim pedestrian with almost 100% attack success rates
until the vehicle is 20 meters away from the pedestrian. We do
not observe evident performance degradation due to the higher
vehicle speeds, and higher speeds actually yield even greater
attack success rates. This result indicates that our MVS system
has sufficiently high targeting precision to effectively aim at a
fast-driving vehicle.
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Pedestrian
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Figure 14: An example of LiDAR point clouds visible from a
vehicle moving at 60 km/h. The HFR attack with our MVS
system successfully eliminated a pedestrian 40 m away, and it
is possible to continue to remove it until it approaches 10 m.

Table VII. Attack success rates of the HFR attack against
Livox Horizon for different speeds. The “benign” row lists the
detection success rates of the target pedestrian without attacks.

Distance between victim and target (m)
0-10 10-20 20*-30 30-40 40-50 50-60 60-70

10 km/h 59% 83% 97% 100% 100% 100% 100%
20 km/h 65% 76% 99% 100% 100% 100% 100%
30 km/h 67% 78% 100% 100% 100% 100% 100%
40 km/h 71% 76% 100% 100% 100% 100% 100%
50 km/h 93% 97% 100% 100% 100% 100% 100%
60 km/h 85% 85% 96% 100% 100% 100% 100%
Benign 50% 100% 100% 100% 89% 94% 76%

*: the braking distance at 60 km/h

Table VIII lists the point removal rates of the HFR at-
tack. We calculate the rate by dividing the number of points
belonging to the victim pedestrian by the number of points
in the corresponding benign frames at the same location. We
manually annotate the area of the victim for all frames. As
listed, the HFR attack succeeds in removing the majority of
the victim’s points, but it appears that ≥95% of the points need
to be removed to completely fool the object detector. Fig. 14
shows examples of the LiDAR point clouds for both benign
and attack scenarios at 10 and 40 meters away from the victim
pedestrian. As shown, the majority of the victim’s points have
been removed by the HFR attack.

Notably, the attack success until 20 meters away has a
significant impact on the safety implications considering that
the braking distance at 60 km/h is 20 meters without the
reaction distance [44]. To more rigorously estimate the impact
on safety, we will conduct a closed-loop end-to-end evaluation
with a popular AD stack in §VII. We also discuss possible
countermeasures in §VIII-2.

Table VIII. Point removal rates of the HFR attack against Livox
Horizon for different speeds by comparing the points in the
benign scenarios at the same distance.

Distance between victim and target (m)
0-10 10-20 20*-30 30-40 40-50 50-60 60-70

10 km/h 90% 89% 99% 100% 100% 100% 100%
20 km/h 79% 90% 98% 100% 100% 100% 100%
30 km/h 75% 92% 100% 100% 100% 99% 95%
40 km/h 75% 90% 97% 100% 100% 100% 100%
50 km/h 87% 97% 100% 100% 100% 100% 93%
60 km/h 87% 93% 97% 100% 100% 100% 97%

*: the braking distance at 60 km/h

Target vehicle

Injected points 
in front of target

Driving Direction (60 km
/h)

Figure 15: Point cloud under the synchronized injection attack
in the high-speed driving scenario at 60 km/h.

2) A-HFR Attack at High Speed: We evaluate the A-HFR
attack against a high-speed driving vehicle with AT128 [19],
which is one of the New-Gen LiDARs with pulse fingerprint-
ing. The attack frequency is set at 15 MHz. For the object
detector, we use the PointPillars used in Apollo 6.0 [41].
Table IX lists the attack success rates of the A-HFR attack
for 6 different speeds. As listed, the A-HFR attack is quite
successful at distances of up to 40 meters away from the
victim, with attack success rates of 100% at 60 km/h. Similar
to the observations in the HFR experiment, there was no
strong correlation between the vehicle’s speed and the attack
success rate, indicating that accurate tracking was achieved.
However, the attack success rate drops to 50% when the
vehicle is 20 meters away. This degradation is mainly due to
the occasional failure to receive the laser from the LiDAR in
the optical receiver during certain LiDAR scans. Currently, for
each LiDAR scan, the A-HFR attack is triggered only if the
laser is received by the PD; consequently, the attack inevitably
fails for scans in which the LiDAR laser is undetected by the
optical receiver. Even with a parabolic antenna, the laser light
from a LiDAR mounted on a distant vehicle follows a sparse
pattern, making it prone to occasional misses by the receiver.
This limitation can be handled by two approaches: improving
the optical receiver sensitivity or implementing speculative
execution. Further details are provided in §VIII-5.

C. Ablation Study on Hardware Configuration of MVS Systems

We evaluate the validity of our MVS system design in-
troduced in §III in practical high-speed and long-range attack
scenarios. Table X lists the point removal rates of the HFR
attack for different numbers of beams and sizes of lenses in
the scenario with a 60 km/h driving speed. As shown, our
setup with 2 beams and 2-inch lenses achieves ≥97% attack
success rates until 20 meters, which corresponds to the braking
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Table IX. Attack success rates of the A-HFR attack against
AT128 for different speeds. The “benign” row lists the detec-
tion success rates of the target pedestrian without attacks.

Distance between victim and target (m)
0-10 10-20 20*-30 30-40 40-50 50-60 60-70

10 km/h 42% 61% 46% 84% 95% 100% 100%
20 km/h 37% 70% 42% 80% 94% 100% 100%
30 km/h 44% 67% 45% 86% 97% 100% 100%
40 km/h 44% 66% 40% 80% 91% 100% 100%
50 km/h 34% 61% 50% 73% 81% 100% 100%
60 km/h 27% 72% 50% 87% 100% 100% 100%
Benign 32% 50% 49% 53% 70% 100% 100%

*: the braking distance at 60 km/h

Table X. Point removal rates of the HFR attack against the
target vehicle driving at 60 km/h for the different numbers of
beams and sizes of lenses in the MVS system.

Distance between Pedestrian & LiDAR (m)
# of beams Lens size 0-10 10-20 20-30 30-40 40-50 50-60 60-70

1 1 inch 49% 63% 61% 76% 88% 94% 99%
1 2 inches 49% 43% 63% 69% 89% 100% 100%
2 2 inches 87% 93% 97% 100% 100% 100% 97%

Table XI. Averaged number of points and their angles injected
by the synchronized attack against VLP-32c for each 10-meter
bin in the 60 km/h scenario.

Distance between injected wall and target (m)
0-10 10-20 20-30 30-40 40-50 50-60

# of injected points 410 676 1,016 897 623 248
Point Range 4.7 6.6 10.4 10.2 8.1 3.1

distance at 60 km/h [44]. We consider that the beam size of
roughly 4 inches x 4 inches proves a sufficiently large total
beam size to cover inaccuracies in the current MVS system,
as the improvement observed when doubling the lens size is
not as significant as the improvement achieved by doubling
both the lens size and the number of beams.

D. Injection Attack Evaluation

We evaluate the synchronized injection attack in the high-
speed driving scenarios against VLP-32c [36] with a determin-
istic scan pattern, which is a requirement for the white-box
attack. We inject a ghost wall in front of the target vehicle
at a fixed position in the world coordinate by following the
methodology in [10] as shown in Fig. 15. Table XI lists the
average number of points and their angles injected by the
synchronized attack against VLP-32c for each 10-meter bin
from the injected wall to the target vehicle in the 60 km/h
scenario. As shown, the attack can inject ≥1k points at around
20 meters away, which is already the braking distance at 60
km/h [44], meaning that hard braking is inevitable to avoid the
injected wall. Unlike the removal attack, the injection attack
may cause serious safety consequences (e.g., hard braking)
even if the attack is only successful for a few frames. We will
evaluate the system-level impact of the injection attack in the
next section (§VII).

VII. END-TO-END EVALUATION ON AD VEHICLE

We finally evaluate the attack effectiveness of LiDAR
spoofing attacks with our MVS system against an actual AD
vehicle. We deploy the attacks against Autoware.ai [15], a

popular open-sourced AD stack, installed on PIXKIT [45], an
autonomous driving development platform.

1) Experimental Setup: Fig. 16 (b) shows the experimental
setup for the end-to-end attack evaluation on an AD vehicle,
PIXKIT [45] with a VLP-32c [36] LiDAR controlled by
Autoware.ai version 1.14.1 [15]. For the LiDAR object de-
tection, we use the LiDAR Euclidean cluster detection, which
is officially supported by Autoware.ai. We placed our MVS
system on the roadside of our private road with exclusive
use permission. The AD vehicle started accelerating 40 meters
away from our MVS system. For the removal attack, we placed
an SUV-sized inflatable mock car 5 meters away from the MVS
system and tried to make the mock car undetected by the HFR
attack. For the injection attack, we injected a ghost wall as
shown in Fig. 17 to see if the AD vehicle would stop before
the ghost wall. We accelerate the AD vehicle up to 5 km/h
and 15 km/h for removal and injection attacks, respectively.
The 15 km/h for injection attacks is the maximum speed we
could test on the testing road. The 5 km/h for removal attacks
is an acceptable speed to avoid damage to the facilities. To
ensure safety, the experiments were conducted only during
nighttime. Demo videos and perception results are available
on https://sites.google.com/keio.jp/keio-csg/projects/Attack
onDrivingVehicle (Keio University side) and https://sites.go
ogle.com/view/av-ioat-sec/real-av-lidar-attack (UCI side) 2.

2) Removal Attack Results: As shown in Fig. 16 (a) the
AD vehicle adequately stopped 7 meters before the front mock
vehicle in the benign scenario. The “Follow” word on the AD
vehicle indicates the current driving mode, meaning that the
AD vehicle is following a front object and must stop before it.
On the other hand, the AD vehicle failed to detect the mock car
and crashed into it in the attack scenario as shown in Fig. 16
(c), as evidenced by the driving mode “Foward”, meaning the
AD vehicle is decided to drive forward. These results directly
support the end-to-end safety impacts of object removal effects
of LiDAR spoofing attacks; the HFR attack with our MVS
system has a high potential to cause a hard crash into objects
on roads, such as cars and pedestrians, in the real world.

3) Injection Attack Results: Fig. 17 shows the results of
the synchronized injection attack. In the benign scenario (the
left figure), the AD vehicle keeps driving forward at 15
km/h. In the attack scenario (the right figure), the AD vehicle
permanently stops before the injected ghost wall during the
attack. These results indicate that the injection attack can make
an AD vehicle stop on a road and thus has a high potential to
cause severe safety and transportation concerns such as hard
braking and traffic jams.

VIII. DISCUSSIONS AND LIMITATIONS

1) Safety Implications: The safety implications (e.g., hard
crash into a parked car and hard braking) demonstrated in §VII
are very likely to be feasible for AD vehicles driving at fast
speeds, with our MVS system. Although we could not evaluate
the attack on a high-speed vehicle actually controlled by an
AD stack due to the limitations in our testing facility, the
attack effectiveness in the high-speed driving scenarios has
been addressed in §VI, which shows that the HFR attack with

2We have two websites for publicizing purposes from all collaborating
institutions; their contents are jointly developed and identical.
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Figure 16: Experimental setup and removal attack results on AD vehicle. We deploy the HFR attack with our MVS system
against PIXKIT with VLP-32c controlled by Autoware.ai. PIXKIT drives from 40 meters away from the MVS system.
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Figure 17: Injection attack results on AD vehicle. We deploy
the synchronized injection attack with our MVS system against
the PIXKIT with VLP-32c controlled by Autoware.ai.

our MVS system can achieve ≥96% attack success rates at
60 km/h until the braking distance, 20 meters away from the
victim. We believe that compared to prior works, this work
is able to much more clearly show the safety implications
of LiDAR spoofing attacks against AD vehicles in real-world
scenarios. Although our MVS system is costly, we so far do
not see major technical challenges to launch LiDAR spoofing
attacks against real AD vehicles on public roads with our
MVS system. Different from rock throwing or gun shooting, as
LiDAR spoofing attacks can directly attack the AD technology,
adversaries may implement the MVS system to damage the
reputation and reliability of AD services. However, private
AD vehicles such as Waymo robotaxi may have their original
countermeasures. Thus, before the publication of this paper, we
conducted a responsible vulnerability disclosure for popular
Level-4 and Level-3 AD companies using LiDARs due to the
potential high security and safety impacts of this work on the
AD industry.

2) Possible Countermeasures: We consider that the use of
New-Gen LiDARs is mandatory to be more robust against
LiDAR spoofing attacks, as also mentioned in [11]. For
example, New-Gen LiDARs with timing randomization can
effectively defend against synchronized injection attacks. For
removal attacks, pulse fingerprinting shows high attack mitiga-

tion capability. While the A-HFR attack can potentially bypass
it, this attack increases the hardware requirements of the MVS
system. However, as discussed in §II-B, timing randomization
and pulse fingerprinting are employed originally for anti-
interference, not for security purposes. We encourage LiDAR
manufacturers to enhance the magnitude of randomization
and fingerprinting as high as possible to make them work
as security features. We also strongly recommend that AD
companies develop availability-check and fail-safe methods.
For example, Tesla shows an alert when all three front cameras
do not correctly work [46]. Particularly, the HFR and A-HFR
attacks work like “jamming”. It should not be hard to detect
their distinctive randomized point pattern as in Fig. 11 and
also shown in [11], e.g., by an entropy-based method [47].
For fail-safe, adequate recovery is highly scenario-dependent
and an open problem, but even simple measures may mitigate
the fatality. For example, slowing down is likely to be effective
as it is advised even for human drivers under uncertainty.

3) Multi-Sensor Fusion: Multi-sensor fusion could be an
effective mitigation strategy since the current MVS systems
are designed to track only one LiDAR sensor on a vehicle.
However, it is not technically difficult to attack multiple
LiDARs by driving multiple MVS systems simultaneously for
the HFR or A-HFR attacks. Furthermore, LiDARs struggle
with scanning duplicated areas due to interference, meaning
each area is likely scanned by only a single LiDAR. The MVS
system thus may not need to attack multiple LiDARs even if
the target AD has multiple LiDARs. Fusion with different types
of sensors such as cameras, radars, and ultrasonic sensors could
be a mitigation strategy. However, the current AD vehicles,
especially Level-4 AD, heavily rely on LiDARs as our attack
works on the actual AD stack as demonstrated in §VII. Sensor
fusion generally improves robustness, but it is currently far
from being sufficient as a defense. Prior research has also
identified a wide variety of vulnerabilities in these sensors,
cameras [48, 49], radars [50, 51], ultrasonic sensors [51].
Furthermore, more sensors result in increased costs and may
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even open new attack channels.

4) Attack Deployment on Uneven Roads: Our current threat
model only assumes a flat and straight road as an attack site,
i.e., the target LiDAR height is constant and preknown, and
thus the auto-aiming is only designed for the horizontal direc-
tion. Thus, the current MVS system has a limitation in vertical
tracking. Meanwhile, we note that the majority of high-speed
scenarios should be only on flat and straight roads because
the vehicle cannot accelerate on uneven and winding roads. In
low-speed scenarios, tracking both for horizontal and vertical
directions should not be challenging as demonstrated in prior
work [12, 14]. Furthermore, our arrayed laser design (§III-D)
can even eliminate the need for vertical tracking by vertically
arraying more lasers. However, large number of arrayed lasers
may harm the portability of the MVS system, and thus the
attacker needs to decide the number of lasers based on the
tracking performance in the target attack scenarios.

5) Speculative Execution for A-HFR Attack: As discussed
in §VI-B2, we find that the current optical receiver often fails
to receive lasers at many frames and thus fails to launch the
attack. There are two main approaches to address this issue.
The first is to improve the optical receiver by either enlarging
the antenna to receive more signals or integrating it into the
auto-aiming system to better align with the LiDAR. Another
approach is to implement speculative execution of the attack
at each frame based on the attack timing from the previous
frame. Currently, we trigger the A-HFR attack only when the
laser is received at each frame, meaning the attack fails if the
laser is not received. To address this, we could start the attack
even if the laser is not received, based on the interval patterns
of previous frames. Since the interval between LiDAR frames
is periodic, such speculative execution should improve the A-
HFR attack. This might result in shorter rest periods and more
overheating, but it should be still more preferable than failing
to launch the attack. This type of speculative execution should
be performed in real-time on an FPGA.

6) Ethical and Safety Considerations: The experiments
were safely carried out in controlled conditions on a private
road with exclusive-use permission. A human with a driving
license drove the experimental vehicle, and the area was
surveilled to keep people off the road. During the experiments,
participants potentially exposed to the attack laser wore pro-
tective goggles for eye safety. While the IRB process is not
mandatory for our study since we do not analyze data derived
from human subjects, we have strictly followed the advice
of the authorities at our testing site to ensure the safety of
all individuals involved in the experiments, including human
drivers and the target pedestrians standing at the roadside.

IX. CONCLUSION

In this study, we investigate the safety and security impact
of LiDAR spoofing attacks against AD vehicles driving at
high speeds in practical long-range attack scenarios. We first
identify 3 research limitations in prior work to prevent them
from deploying their LiDAR spoofing attacks in practical AD
scenarios. To address the limitations, we design a novel MVS
system that can detect, track, and aim at the target LiDAR
moving at high speeds, and also design a new practical removal
attack, A-HFR attack, which can be effective against New-
Gen LiDARs even with pulse fingerprinting. We demonstrate

that our designs in the MVS system can achieve significantly
longer attack distances (e.g., 110 meters) in a LiDAR-agnostic
way. We demonstrated that both injection and removal attacks
can be deployed against high-speed vehicles driving at 60
km/h, and the attacks can have end-to-end attack impacts on
a popular AD stack. This study bridges critical gaps between
LiDAR security and AD security research. We hope that our
study can give a new perspective in this research space to more
adequately understand the safety and security implications of
LiDAR in AD perception.
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APPENDIX

A. Impact of Vertical and Horizontal Attack Angles

We evaluate the laser pulse peak power at different attack
frequencies to evaluate the improvements of the A-HFR attack
over the HFR attack. For the A-HFR attack, we evaluate
two different vertical attack angles: 32◦ (v=100%) and 16◦

(v=50%). Fig. 18 shows the laser pulse peak power at different
attack frequencies. We calculate the average power of the
attack laser with a laser power meter and then divide this
value by the laser frequency to obtain the power per pulse. As
designed, the A-HFR attack can achieve higher peak powers
at the same attack frequencies compared to the HFR attack. If
we limit more vertical attack angles, the A-HFR can achieve
higher attack capability by reducing the vertical attack angle as
well. The A-HFR attack between 10 and 20 MHz can achieve
substantially higher power, with a 10 times increase. This
attack angle reduction approach of the A-HFR is necessary
to achieve high frequencies such as 25 MHz.

Fig. 19 shows the efficacy of A-HFR’s vertical attack angle
reduction. Since the angle reduction boosts the peak power
under high attack frequencies (Fig. 18), this expands the point
cloud removal angle by about 20%.

B. HFR Attack on Mid-360

Fig. 20 shows the efficacy of the conventional HFR attack
on Mid-360, equipped with pulse fingerprinting. We found
that even the HFR attack can fully remove points in 20◦

horizontally and vertically. The Mid-360’s vulnerability can
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Figure 18: Laser pulse peak power of the HFR and A-HFR
attacks at different attack frequencies. The A-HFR attack can
achieve higher laser power at the same frequency.
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Figure 19: 2D projection of point cloud of the A-HFR attack
on XT32 with horizontal 20◦. Blue points mean the remaining
points, and the red dotted line indicates the attack angle.
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Figure 20: Point removal percentage by HFR attack against
Livox Mid-360, under the same condition as Fig. 10.

be attributed to its relatively less secure authentication system
compared to other LiDARs. This suggests that a larger Tα

results in potentially lower power in legitimate pulses, indicat-
ing that certain LiDAR models might have more lenient Tα

settings and hence weaker security features.
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