Artifact
Evaluated

ANDss

Available

Mens Sana In Corpore Sano: Sound
Firmware Corpora for Vulnerability Research

Reproduced

René Helmke*, Elmar Padilla*, and Nils Aschenbruck®
*Fraunhofer FKIE, Cyber Analysis & Defense, Germany, {firstname.lastname } @fkie.fraunhofer.de
°Osnabriick University, Distributed Systems Group, Germany, aschenbruck @uos.de

Abstract—Firmware corpora for vulnerability research should
be scientifically sound. Yet, several practical challenges complicate
the creation of sound corpora: Sample acquisition, e.g., is hard
and one must overcome the barrier of proprietary or encrypted
data. As image contents are unknown prior to analysis, it is hard
to select high-quality samples that can satisfy scientific demands.
Ideally, we help each other out by sharing data. But here,
sharing is problematic due to copyright laws. Instead, papers
must carefully document each step of corpus creation: If a step
is unclear, replicability is jeopardized. This has cascading effects
on result verifiability, representativeness, and, thus, soundness.

Despite all challenges, how can we maintain the soundness of
firmware corpora? This paper thoroughly analyzes the problem
space and investigates its impact on research: We distill practical
binary analysis challenges that significantly influence corpus
creation. We use these insights to derive guidelines that help
researchers to nurture corpus replicability and representative-
ness. We apply them to 44 top tier papers and systematically
analyze scientific corpus creation practices. Our comprehensive
analysis confirms that there is currently no common ground in
related work. It shows the added value of our guidelines, as
they discover methodical issues in corpus creation and unveil
miniscule step stones in documentation. These blur visions on
representativeness, hinder replicability, and, thus, negatively
impact the soundness of otherwise excellent work.

Finally, we show the feasibility of our guidelines and build a
new corpus for large-scale analyses on Linux firmware: LFwC.
We share rich meta data for good (and proven) replicability. We
verify unpacking, deduplicate, identify contents, provide ground
truth, and demonstrate LFwC’s utility for research.

I. INTRODUCTION

Embedded systems are part of everyone’s life. Their prolif-
eration in households, industries, and critical domains makes
them highly lucrative targets for cyber attacks with devastat-
ing impact, e.g., [1]-[4]. Thus, finding vulnerabilities in the
firmware running on these systems is an important task.

Firmware vulnerability research becomes a matryoshka doll
of nested analysis problems when no source code is available:
Acquisition is hard, data may be encrypted, and architectures
are manifold [5]. Heterogeneity and resource constraints defy
established analysis methods for general-purpose systems [6].

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA

ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.230669
www.ndss-symposium.org

Automated firmware vulnerability research has, thus, be-
come a prevalent research topic [5], [6]: Common static meth-
ods are cross-platform code similarity or taint analysis [7], [8].
Dynamic approaches explore scalable emulation to create test
beds for techniques like fuzzing [6].

Regardless of the method conducted, there is a need for
high-quality firmware corpora for sound evaluations. This is
intuitive, as related fields show that careful curation, rich meta
data, and meticulous documentation foster scientific rigor,
enable replicability, and emulate real conditions [9], [10].

We have conducted a literature review on firmware corpora
and found little consensus on their creation: Some researchers,
e.g., scrape the Internet [11], [12] while others select few
images [13]. Some describe unpacking [8]; others do not [13].
Some collect product data [12]. Others do not [11]. Copyright
and intellectual property laws limit sample sharing. Thus,
some share no data [14], but others provide source links [11].

All of the above affects soundness. Unpacking is an ex-
ample [5]: If we share too few details, replication may fail.
This may push us towards small corpora, which can add bias.
We may bulk collect to improve unpacking odds; but without
filters, we affect representativeness: If data is riddled with, e.g.,
old samples, it may no longer represent today’s vulnerabilities.

To sidestep these problems, we could craft synthetic tests,
but they can not fully model real conditions [15]. Thus, this
paper focuses on real firmware. Of course, analysis methods
affect our corpora; not all work targets the same systems. But
ideally, we may agree on unified and sound data requirements.
This paper is a comprehensive analysis of the problem space
of sound firmware corpora. We provide guidelines to improve
their soundness, and contribute a new corpus that follows these
guidelines. More specifically, our contributions are as follows:

o We distill common firmware analysis problems from re-
lated work [5], [6] to pinpoint corpus creation challenges:
What makes the creation of scientifically sound corpora
so hard? We set ground for a practical perspective on
(and better understanding of) the problem space.

« With the challenges in mind, we propose a framework of
data requirements to increase the soundness of firmware
corpora: Three superordinate goals are nurtured by six
requirements and 16 measures. It can support researchers
by raising attention to the small step stones that lie in
their way towards scientifically sound corpora. As a Latin

idiom states: Mens sana in corpore sano — These are
guidelines to support a healthy mind in a healthy body.

« We show that there is no common ground on corpus doc-
umentation, even in otherwise excellent work: We review
44 top tier papers to collect data on our framework. We
discover that missing meta data, scarce documentation,
and inflated corpus sizes blur visions on representative-
ness and hinder replicability. This demonstrates the need
for a set of best corpus practices that the community can
agree on, highlights the added value of our framework,
and defines the research gap that this analysis paper fills.

e We describe a new Linux Firmware Corpus (LFwC)
to show our framework’s feasibility. It contains 10,913
high-quality, meticulously documented, and fully unpack-
able images from ten manufacturers. It covers 2,365
devices and 22 device classes. We share rich meta data
with the community and perform deduplication and con-
tent identification. We use an established open source
tool for replicable, effective, and verified unpacking.
The scripts are available at https://github.com/fkie-cad/
linux-firmware-corpus. Access to the meta data can be
requested on Zenodo [16].

II. AN ANALYSIS OF CORPUS CREATION CHALLENGES

Establishing a practice-oriented perspective on the problem
space of scientific firmware corpora allows us to propose
sane data requirements and conduct fair analyses of existing
work. We consult surveys by Wright et al. [6] and Qasem
et al. [5], who identify binary analysis challenges from two
perspectives: The former targets vulnerability research and the
latter emulation. Yet, explicit questions on which and how
challenges affect corpora remain unanswered.

We approach these questions by collecting and analyzing
challenges from the surveys [5], [6]: We deduplicate similar
items, reorganize them, and distill their impact on corpus
creation by including examples from related work. We drop
challenges with no clear impact. Superordinate goals lack
clarity, e.g., improving accuracy [5]. We mark General and
Method-Specific challenges that do not apply to all papers.

We use the taxonomy by Muench et al. [14] for firmware
classification. They define four types on the axes of operating
system (OS) abstraction and specialization: general purpose
(Type-0), retrofitted general purpose (I), special purpose (II),
and bare-metal (III). Respective examples are Windows, a
retrofitted Linux, VxWorks, and bare-metal binaries based on
Contiki-NG. Appendix A describes the types in detail.

Fig. 1 shows the distilled challenges with impact on corpus
creation. The first four are general, the latter four are method-
specific. The connections show all source challenges with their
newly associated descriptive class.

C1 Firmware Acquisition. Empirical data shows high Type-I
accessibility [7], [8], [11], [12], [17]-[20]: Research scrapes
the Internet to download samples from manufacturer or third
party sites. This is non-trivial, as scrapers must navigate

C General Challenges D

C1|Firmware Acquisiton Wright et al. [6]:
Qasem et al. [5]: > 3 amn i are |
Tnformation Loss C2|Firmware Unpacking fbiain L
Compiler Effects - > emble
Binary Disassembling C3|Content Identification -
Hardware Architecture C4|Ground Truth Peripheral & Models
ceurac] { Mem. Interactions
Results Verification { Configure Hardware
e dentify Functions
Scalability { Tdentify Tasks
est Case Generation { Mem. Accesses
Fault Detection I TIW. Interactions
FW Rev. Engineering ebugeing

Fig. 1. Firmware analysis challenges that can have an impact on scientific
firmware corpus construction. We distill common challenges from the surveys
of Wright et al. [6] and Qasem et al. [5] and group them into eight descriptive
classes. Items from the source surveys that show no clear impact on corpus
creation are in grey: Accuracy, Test Case Generation, and Efficiency. We mark
General and Method-Specific challenges.

volatile pages and links. If access is restricted, which is
common when entering industrial settings with Type-II and
-III systems, one resorts to Hardware-In-the-Loop (HIL)
testing or invasive extraction. The latter means over-the-
air captures, reading debug ports or extracting chips. The
devices a paper targets dictate feasible acquisition and
corpus sizes. Yet, this is not bound to firmware types. E.g.,
some Type-I firmware remains unmaintained and unpub-
lished: Scalable acquisition is infeasible. Vice versa, some
manufacturers make Type-III easily accessible.

C2 Firmware Unpacking. Researchers must unpack firmware
before analyzing its contents. But many archive types
exist and manufacturers often use proprietary formats or
encryption [11]. Thus, there is significant effort to identify,
reverse engineer, and decrypt samples. The community uses
tools that unpack known formats, e.g., [21]-[24]. Yet, the
challenge persists as formats and encryption changes.

C3 Content Identification. Prior to analysis, firmware contents
are often unknown. This yields two problems: First, content
serves as unpacking validation. If there is no ground truth on
contents, there is uncertainty in unpacking success. Second,
we must ensure that contents match analysis requirements.
One can not evaluate, e.g., kernel analyses on images with-
out kernel. Information loss is a related issue, e.g., binary
information is needed but stripped from the image [5].

C4 Ground Truth. Firmware with ground truth is needed for
result validation. Samples might have known vulnerabilities
of weaknesses targeted by a method, e.g., taint-style bugs
for data flow analyses. Another example would be firm-
ware with unstripped executables to test correct function
identification. This is a problem, as such data is not always
available.

CS5 ISA & Execution Parameters. Methods that analyze or
execute code must often be aware of the Instruction Set Ar-
chitecture (ISA) and execution parameters like base address,
entrypoint, and memory layout [5], [6]. For Type-I and -II,
this is a smaller issue as systems use known formats pro-
viding these parameters, e.g., ELF. Yet, the documentation
of proprietary Type-III systems is often restricted and they

https://github.com/fkie-cad/linux-firmware-corpus
https://github.com/fkie-cad/linux-firmware-corpus

T, :
(::)— I;gg,lzcabllt;v

1V-A) Goals
[Rel. %hallengesl @
G3

C2, C3,

Representativeness {
[C1, C2, C3, C4, C8]

Method-Orientati i
[C4, C5, C6, C7, C8]

IV-B) Requirements (RN @U@ Cim it

O ®4) Rich Meta Data) ®3) Documentation) (R6) Heterogeneity & Diversity)

[ERNuinerabilities” (@ File Contents | [@[Deduplication* | [@]File Contents __|[D]Reasoning* | [gh|Sample Quantity |
Blbevice Properties | (B Unpacking Status|[@]Device Propertied[@[Acquisition* Sam A;a(gkggtity
IV-B) Measures SamBle Quantity File Properties npacking Proc*| evice Properties |
Date* acked* Date Hash* m Model*
Architecture?
Version* Samnlpeac %%n}ny Link* Version FW Type*

Fig. 2. A framework of guidelines for the creation of scientifically sound firmware corpora. It consists of three layers: On top are the superordinate scientific
goals Replicability, Representativeness, and Method-Orientation. They are associated with the identified problems in corpus creation from Section II.
To achieve these goals, a corpus must fulfill six requirements, which is the second layer: Ground Truth, Relevance, Clean Data, Rich Meta Data,
Documentation, and Heterogeneity & Diversity. In layer three, we add a list of 16 unique and practical measures designated by an asterisk (*). They help to
assess the fulfillment of the previously mentioned requirements. Note that measures can serve multiple requirements. Abstract measures are written in cursive.
We do not claim list completeness, as varying paper scenarios and method constraints may imply additional or substitute measures.

operate on unknown execution parameters. Researchers can
only use samples where this information is available.

C6 Emulation. Dynamic methods like fuzzing are faced with
emulation challenges [6]: Generally, one can only test
devices with components supported by the emulators and
detail information on the execution environment. In all
other cases, one must laboriously establish compatibility, or
develop strategies to automate the process [12], [25]-[27].
Example implementation tasks are ISA translation layers
and peripheral behavior, which must consider timing, inter-
rupts, or direct memory access. This is especially relevant
considering the heterogeneity, specialization, and restricted
documentation of Type-II to -III systems.

C7 Hardware Interfaces. HIL methods can only work with
sample devices where interfacing during runtime is possible.
This might be an Ethernet port or debug interface such as
12C, JTAG, SPI, or UART on the PCB.

C8 Heterogeneity & Scalability. HIL and its need for real
device interaction show that methods are unequally scalable.
Static analyses, e.g., can entirely work on firmware samples,
are not constrained by execution, and, thus, scale better. This
influences corpus sizes, as we can see when comparing, e.g.,
5,000 FirmUp [7] samples with three Avatar [28] samples.
Heterogeneity and varying method applicability are related:
Cross-platform code similarity, e.g., scales better across
ISAs than symbolic execution for a few ARM flavors.

III. REQUIREMENTS FOR SOUND FIRMWARE CORPORA

Firmware corpora are the data source we use to assess
our binary analysis methods. Thus, their composition and
documentation play important roles in evaluating method
performance; they should be scientifically sound: The results
we derive from them should be transparent, comprehensible,
and verifiable; conclusions one can draw should accurately
describe or approach an objective truth and clarify limitations.

With the challenges from Section II in mind, we will now
propose a framework of data requirements that serve as
practical guidelines for the creation of sound firmware corpora.

Fig. 2 illustrates a system with three layers: There are
superordinate goals, which are nurtured by six requirements.
The requirements describe properties to consider for corpus
creation. Goals and requirements are abstract concepts that
may be hard to measure in practice. For instance, who draws
the line between old and actual samples to conclude upon
relevance? Thus, we identified 16 practical measures that feed
into the system and allow estimations and comparisons on
requirement fulfillment. Intuitively, there is no claim of com-
pleteness: Scenarios may need specialized measures. Covering
all possibilities is infeasible when aiming for generalizability.
Thus, we include items with assumed universal applicability.

A. Goals of Scientifically Sound Firmware Corpora

Three intuitive goals shall steer us towards soundness:
Replicability, Representativeness, and Method-Orientation.
First, a sound corpus provides Replicability (G1), allowing for
independent result verification. It enables comparability, as the
corpus can serve as benchmark for multiple papers. However,
roadblocks hinder accessibility for third parties: C1 shows that
firmware acquisition and sharing is non-trivial due to, e.g.,
copyright laws. C2 and C3 show the issues of unpacking,
validation, and content identification to parameterize analysis
methods and verify ground truth. With C1 as primary road-
block that complicates sharing of (pre-prepared) samples, the
goal of Replicability forces us to apply best effort approaches
within our own possibilities: To meticulously document each
aspect of the corpus from acquisition to unpacking, and
propagate as much meta data as legally possible. The latter
helps with content identification and corpus reconstruction.

Corpora should be Representative (G2). Plohmann et
al. [9], who maintain a scientific malware corpus with similar

problem space as firmware corpora, explain representativeness:
It “means that the selection of samples contained in the data
set should be prevalent and suitable for the deduction of results
that are of real-world relevance” [9]. For firmware corpora,
this means that they should adequately model real-world distri-
butions of relevant samples with heterogeneous properties like
manufacturers and models. What relevant means will be sepa-
rately discussed in Section III-B. Ideally, we can model market
distributions of device properties. But those are often unknown
and C1 complicates sample acquisition, which affects C8.
Another practical, but less accurate, approach is to aim for
the largest possible heterogeneity to demonstrate scalability,
applicability, impact, and performance of an analysis method.

Malpedia [9] shares similar problems with firmware corpus
creation: Malware samples are often packed or encrypted, too.
Thus, both share the challenges C2 and C3, affecting ground
truth (C4). This impacts verifiable representativeness; it is hard
to check the contents of a box without looking into it. Thus,
we adopt the quality over quantity credo [9]. By quality, we
mean that all samples can be unpacked while their contents
are known, deduplicated, appropriately match the scenario,
and avoid data skew. Balancing firmware sample quality and
quantity is a tightrope act, which becomes apparent when
looking at machine learning and its common pitfalls [29]:
Here, one seeks a sweet spot between quantity for training and
quality to avoid overfitting and improve model performance.

Finally, we propose the goal of Method-Orientation (G3):
Research questions differ, papers target firmware of differ-
ent availability, and analysis scalability varies. These aspects
ultimately dictate the feasibility of other goals (C5 to C8).
We provide three examples: First, emulative approaches can
only include firmware that is successfully re-hosted, with
sufficient fidelity to derive results of real-world relevance.
Second, symbolic execution might be bound to certain ISAs;
there is little use to include MIPS as heterogeneity property
when the engine only supports ARM. Third, as HIL analyses
must interact with the physical devices, how is it practicable
to consider more than a handful of samples? C4 is also related
since there may be varying ground truth requirements — why
should a code similarity paper limit itself to samples with
known bugs when the primary evaluation would greatly benefit
from function symbol ground truth instead?

All of these considerations have major impact on the goals
G1 and G2, especially considering quality over quantity. Yet, it
appears beneficial to try and attain all other goals for the sake
of soundness within the practical limitations of each scenario.

B. Key Corpus Requirements and Their Measures

Six requirements nurture three goals in Fig. 2. There are 16
associated measures to assess their fulfillment: Date, Version,
Packed/Unpacked, Link, Hash, Vulnerabilities, Deduplication,
Reasoning, Acquisition, Unpacking Process, Manufacturer,
Model, Architecture, Device Class, and FW Type. They can
feed into multiple requirements.

R1 Ground Truth. Performance evaluations should search for
new and known vulnerabilities. The first demonstrates im-
pact and proofs that the method can, indeed, find new bugs.
The latter helps to verify results and paints scenarios that
show what could have been if a tool would have been avail-
able in the past. As this contributes to representativeness,
one should include samples with known Vulnerabilities.

R2 Relevance. G2 demands samples of relevance. In general,
we can measure it using temporal properties: Samples have
a Release Date and Version. These provide information on
actuality and history. Depending on a paper’s scenario, they
may vary in effect and meaning for relevance: Papers that
search for new bugs should consider most recent versions of
devices that are still in active use. Their end-of-support date
could be an indicator for actuality. If papers explore, e.g., the
proliferation of known bugs, history becomes relevant; then,
consider old and new versions. Methods may also target
certain relevant Device Properties or File Contents (cf. R6).

R3 Clean Data. For replicability and sample quality, corpora
should contain Clean Data. Sample Deduplication via, e.g.,
file hashes, helps to clean the results from findings in mul-
tiple samples with similar contents. We give two examples
that can introduce duplicates to the corpus: First, scrapers
might catch images that are already duplicates on the origin
server. Second, some manufacturers create base firmware
images for whole product lines, which only differ in few
files, e.g., drivers. Reporting the sample unpacking status
also contributes to cleanliness: Researchers may provide
detail information on the quantities of Packed and effective
corpus sizes of analyzable and Unpacked Samples.

R4 Rich Meta Data. Rich meta data helps to ensure repli-
cability within legal possibilities. Supplemental data could
be file properties like Download Links, Hashes, Versions,
and Release Dates. The latter two also contribute to R2.
Such information helps to find samples in the Internet when
links are broken. Hashes are, in this regard, disputable when
acquisition is (semi-)invasive: When we, e.g., dump memory
during runtime, it is type-dependent if an image hash is
useful. ROMs can yield reusable hashes, which could help
to verify extraction success. But if data changes, the hash
changes too, jeopardizing its use. Similarity hashes might
help in this case. Other useful data is the File Contents,
e.g., Linux kernel versions, libraries used, or ISA. Device
properties like Manufacturer and Model can provide further
insights on sample distributions. Also, meta data serves as
proof of relevance and helps third parties to easily extract
corpus subsets that nurture their own research goals.

RS Documentation. Providing as much information as possi-
ble on sample Acquisition and the Unpacking Process sup-
ports replicability. Are there, e.g., any scripts or scrapers?
If so, can they be shared? If not, which steps were followed
to obtain samples? Which unpackers were used and how
did researchers validate their success? If unpackers were
custom, is it possible to share them? It is also useful to
describe Deduplication. Understandable Reasoning about
sample selection is another aspect of representativeness:

Which device properties are relevant for the paper and why
were the samples chosen? Example reasons may be ground
truth, availability, heterogeneity, or method limitations.

R6 Heterogeneity & Diversity. Device properties should be as
heterogeneous and diverse as possible. Example properties
are Manufacturers, Models, Architectures, Firmware Types,
and Device Classes such as routers, switches, and network
cameras [11]. This helps to draw a good picture of analysis
performance across different devices, demonstrates method
applicability, and reduces biases introduced by certain prop-
erties. Applicability, e.g., could be misinterpreted if a corpus
only includes manufacturers that do not strip required
information like build artifacts [30]. Of course, greater
heterogeneity implies larger sample quantity, but quality
should be preferred: There is no benefit in inflating corpus
sizes with similar contents or unanalyzable samples. Anal-
ysis methods ultimately dictate quantities and permutable
properties. Thus, we may approach heterogeneity with best
efforts according to G3 and report Unpacked Samples.

IV. ANALYSIS: CURRENT CORPUS CREATION PRACTICES
IN ToP TIER RESEARCH

We assess if there is common ground on corpus creation
practices in research: We systematically review 44 top tier
papers, collect data on our framework, and use the insights to
analyze and reveal methodical shortcomings in literature.

A. Paper Selection & Data Collection Methodology

Fig. 3 shows our paper selection process. We distill top tier
papers on vulnerability research that underwent rigorous peer
reviews to analyze state of the art scientific practices.

Collection started by downloading all papers from CCS,
NDSS, SP, and USENIX Security (1). These are the four
cybersecurity conferences with the highest rating of A* in the
CORE2023. For actuality, we considered papers from 2013
to 2023. We skimmed the abstracts and removed all papers
that do not focus on vulnerability research (2). The resulting
set contained 263 papers. We then screened their full-text for
the keyword Firmware and removed items without a match,
as they likely do not explore firmware then (3). 65 papers re-
mained. Assuming that high-quality research references other
high-quality research, we read the related work sections for
referenced work between 2013 and 2023 that focuses on
Firmware security as well. We applied the steps (2) and (3)
to these references, too. Thus, we effectively dropped the A*
requirement and pulled in 32 more papers from workshops and
conferences like IoT SP, ACSAC, NDSS BAR, and RAID (4).
We skimmed the evaluation methods of the grown set of 97
papers and discarded all papers that do not create or use a
firmware corpus (5). The final set, listed in Table I, has 44
papers from 10 workshops and conferences. We read every
paper and collected data on our requirements using the 16
measures (6). Appendix B provides the catalogue of criteria to
assess the fulfillment of all 16 measures.

- - —(6
Detail Reading & Data Collection
{Focus}

Requirement Fulfillments

Initial Selection Criteria
{Publication Year} AND {CORE2023 Rank}
[2013; 2023 A*

Analysis Methods
¢ ¢ ¢ ¢ Method Scalability
CCS: 8| NDSS: 8| SP: 4
Final: 44 JUSENIX: 13| ACSAC: 3] DSN: 1
E: 2] ASPLOS: 1 [oT SP: 1
RAID: 1[Asia CCS: 1
— 2 Skim Evaluations
Abstract Skimming (Method Criterion Discard: 52

{General Topic}

Vulnerability Research Creates / Uses Firmware Corpus

A
“ombined: CCS: 13| NDSS: 11 | SP; 14
\CS: X Combined: 97 USHNJXIZﬁ\O[h‘L‘r: b
mitial: 263 | G370 |NDSS: 64

7
P:55) lJSF.N[X: 74 >

New: 32\ DSS BAR, loT SP,
A 4 3 ~" JACSAC. AsiaCCs. . 4
Screen Full-Text Remaining: 65 Screen Related Work
{Keyword} — > {Topic} AND {Publication Year}
Firmware [SESIUARI S| pirmware [2013; 20231
Discard: l‘)8¢

Fig. 3. Out of an initial set of 263 peer-reviewed papers from the past ten
years, we distilled 44 relevant ones. For each of the remaining papers, we
collected data on our 16 corpus measures, which shall support the goals of
Replicability and Representativeness (cf. Section III).

TABLE I
OVERVIEW OF REVIEWED RESEARCH PAPERS
Paper Conference Year Type Method Scal.
Cui et al. [31] NDSS 2013 S P [)
Costin et al. [11] USENIX Security 2014 S P [)
Avatar [28] NDSS 2014 H SEHILE O
Pewny et al. [32] SP 2015 S CS [)
Firmalice [33] NDSS 2015 S SE;FA O
PIE [34] ACSAC 2015 S FA;ML [D)
FIRMADYNE [12] NDSS 2016 D E [)
discovRE [13] NDSS 2016 S CS []
Costin et al. [17] Asia CCS 2016 H P;E [J
Genius [18] CCS 2016 S CS;ML [J
BootStomp [35] USENIX Security 2017 S SE;FA [)
FirmUSB [36] CCS 2017 S SE (D)
Gemini [37] CCS 2017 S CS;:ML [J
Muench et al. [14] NDSS 2018 H E;HIL;F O
DTaint [38] DSN 2018 S FA @
Tian et al. [39] USENIX Security 2018 S P [J
VulSeeker [40] ASE 2018 S CS;ML [)
FirmUp [7] ASPLOS 2018 S CS [)
IoTFuzzer [41] NDSS 2018 D HIL;F @)
FIRM-AFL [42] USENIX Security 2019 D EF []
FirmFuzz [43] IoT SP 2019 H EF [)
SRFuzzer [44] ACSAC 2019 D HIL;F @)
Pretender [27] RAID 2019 D E;HIL O
HALucinator [45] USENIX Security 2020 H E;F O
FirmScope [19] USENIX Security 2020 S FA [J
PDiff [46] ccs 2020 S SA o
P2IM [47] USENIX Security 2020 H E:F ©
Karonte [8] SP 2020 S FA [J
Laelaps [48] ACSAC 2020 H E;SE;F]
FirmAE [26] ACSAC 2020 H E;F []
CPscan [49] CCS 2021 S FA []
Diane [50] Sp 2021 H HIL;FA:F O
DICE [51] SP 2021 D E;F []
ECMO [52] ccs 2021 H E (4
iFIZZ [53] ASE 2021 H E;HIL;F O
Jetset [54] USENIX Security 2021 H SE;E [)
SaTC [55] USENIX Security 2021 S FA []
Snipuzz [56) CCs 2021 D HIL;F O
pEmu [57] USENIX Security 2021 H SE:E;F [)
SymLM [58] CCS 2022 S ML []
Marcelli et al. [59] USENIX Security 2022 S ML [)
Greenhouse [25] USENIX Security 2023 H E;FAF [)
FirmSolo [20] USENIX Security =~ 2023 H E;F [J
VulHawk [60] NDSS 2023 S CS;ML [)

Scalability: @ = Scalable; O = Not Scalable; © = Uncertain. Method: CS
= Code Similarity; E = Emulation; F = Fuzzing; FA = Flow Analysis; HIL =
Hardware-In-the-Loop; ML = Machine Learning; P = Pattern; SE = Symbolic
Execution. Type: S = Static; D = Dynamic; H = Hybrid.

TABLE 11
CORPUS CREATION PRACTICES IN TOP TIER RESEARCH FROM 2013 TO 2023: COLLECTED DATA ON THE MEASURES FOR SOUND FIRMWARE CORPORA

Requirement Applies to Measure

g g g 5
* S S) 1 g
o 5 g g £] 5 g & 2 S =
Requirement ‘f D: Qe 5: é :t') >: é N g ::y = = Qv 2 &
R1) Ground Truth - - - - - v - - - - - - - - -
R2) Relevance - - - - - - v v v v v v v
R3) Clean Data v v - - - - - - - - - - - - -
R4) Rich Meta Data - - - - - - - v v v v v v v v v
RS5) Documentation - - v v v v - - - - - - - - - -
R6) Heterogeneity - v - - - - - - - - v v v v v
Paper Collected Data on the Measures for Scientifically Sound Fimware Corpora
Cui et al. [31] 373 O O o o O o ®¢ O O O 1 63 1 2 Il
Costin et al. [11] 32,356 26,275 O o © S © O O e e © () O © O
Avatar [28] 3 3 o O o M © o O O O 3 3 3 1 I
Pewny et al. [32] 6 6 o O o M o O e @ O 6 6 3 3 0-I
PIE [34] 4 4 [] O © O O o O O O © 4 4 1 I
Firmalice [33] 3 3 o O o M o o O O O 3 3 3 2 I
FIRMADYNE [12] 23,035 9,486 o o © S o e 6 o o <« © © 7 I
discovRE [13] 3 3 o O o M o O & e o 3 3 3 4 0-I
Costin et al. [17] 1,925 1,925 O O] O © O © O O © © © 9 I
Genius [18] 33,045 8,126 O O O srR © O O @ O =2 © O O ©
BootStomp [35] 5 5 [© [M ®¢ O © O O 14 4 1 1 11
FirmUSB [36] 2 2 o © O M O o O O O 2 2 1 © 1
Gemini [37] 33,045 8,126 O O O R © O O @ O =2 © ¢ O ©
Muench et al. [14] 4 4 o O (] M © o O O O 4 4 4 1 oI
DTaint [38] 6 6 [) O o O o O @ O O 4 6 [D) 2 I
Tian et al. [39] 2,018 © O o S &) ©C @ © O 11 O 1 S I
VulSecker [40] 4,643 O O © O R [D) O O e O © © OO O ©
FimUp [7] @©5,000 @©2000 O o O S ®¢ O O O O © © ¢ © O
IoTFuzzer [41] 17 @] &) o O o C @ O O 12 17 0 © ©
FIRM-AFL [42] 11 11) O O MR @ O @ O O 5 11 2 © I
FirmFuzz [43] 6,427 1,013) O o S o o O O O 3 © 1 2 I
SRFuzzer [44] 10 @) &) O M O O @ O O 5 10 1 2 ©
Pretender [27] 6 @ o &® © M O O O e e 2 3 1 1 11
HALucinator [45] 16 16 [) O o M (D) O O e O 3 4 1 1 I
FirmScope [19] 2,017 () O o © S ®¢ O O © O 99 © 1 & I
PDiff [46] 715 O O O O O o o O O O 8 © 3 2 I
P2IM [47] 10 10 o © [] M O O O e O 3 4 10 1 I
Karonte [8] 53;899 © o [® SR O e o o o () © 3 I
Laelaps [48] 30 @ o © o O O O O O O 2 4 24 1 I
FirmAE [26] 1,306 1,124 [) o o S o e O o o 8 © 2 2 I
CPscan [49] 28 28 o O O O O O e O O 10 28 © © I
Diane [50] 11 & [] ® O O ® O e O O 9 11 4 © ©
DICE [51] 7 @ [©® o M O O O e O 6 7 7 1 I
ECMO [52] 815 815 O o () O O o O O O 2 37 1 1 I
iFIZZ [53] 10 10 o o o O © O @ O O 7 10 4 2 I
Jetset [54] 13 13 o O © MR O o O O O 4 13 3 3 LI
SaTC [55] 39:49 39,49 o [] O Or O O ®© @& @ 64 60 20 23 ©
Snipuzz [56] 20 &) O ©® o M O O e O O 17 20 8 © O©
pEmu [57] 21 21 o O O MR @ O @ @@ O © 21 © 1 I
SymLM [58] 8 8 o O [D) R ©® o O O O © 8 © 1 I
Marcelli et al. [59) 2 2 o O (J M o o O O O 2 2 1 2 I
Greenhouse [25] 7,141 5,690 (] o ® SR (] o O O O 9 1,764 2 3 I
FirmSolo [20] 8,737 1,470 o © ® OrR O O © © O © © © 2 I
VulHawk [60] 20 20 O O O O o O O O O 3 20 OO O ©
LFwC (Section V) 14,583 10,913 o o o S o e O o o 10 2365 22 9 -1

Semicolon (;): Multiple Methods/Corpora/Data Points. Symbols: V= Requirement Applies to Data Column Below; @ = Documented/Proof of Presence in
Data; O = Undocumented/Proof of Absence in Data; © = Partially Documented/Missing Data to Proof Absence or Presence; @ = Not Applicable in Paper
Scenario. Acquisition: S = Web-Scraping; M = Manual Collection; R = Samples from Related Work. Firmware Types: As described in Appendix A.

B. General Statistics & Result Overview

Table I shows the papers and gives insights on method types,
i.e., static, dynamic, or hybrid. Publication year, conference,
scalability, and analysis method are noted as well. Each year
from 2013 to 2023 is represented, with rising quantities until
2021. Fewer papers were published in 2022 and 2023. The
four most represented conferences are USENIX Security (13
papers), CCS (8), NDSS (8), and SP (4). 22 papers use
static, seven dynamic, and 15 hybrid approaches. 28 methods
are rated as scalable (@). FIRMADYNE [12], e.g., analyzes
9,500 samples. We rated seven papers as unscalable (Q); all
apply HIL. For nine papers, there was uncertainty regarding
scalability (Q)). HALucinator [45] and P2IM [47], e.g., both
use emulation but need manual modelling. Their corpora are
small and do not reveal scalability. Modelling efforts can not
be estimated without in-depth system experience.

Table II provides the results on all measures in our frame-
work. The upper half maps the 16 measures to their associated
requirements from Section III-B with a check mark (‘/).
The lower half provides the collected data for each paper.
Where possible, we provide concrete values from the papers.
If not, we resort to a symbolism marking complete (@),
partial (Q)), or missing (O) documentation. When a measure is
not applicable to a specific scenario, we insert the @B symbol.

The data allows us to study various practices in corpus
creation. In the following, we share our observations, group
the results by measure to study paper performance, and dis-
cuss selected details on common practices. Finally, we group
findings by requirement and conclude upon their fulfillment.

C. Preliminary Observations

» A paper’s scenario dictates feasible quantities. G3 says
that all numbers in Table II are relative to their paper scenario.
Aspects like sample accessibility and scalability influence
experiments. The data backs this claim: Table II reveals that 17
out of 44 papers use corpora between 373 and 33,000 samples.
All of them use scalable methods according to Table I; the
majority of them scrapes the accessible Type-I. Only one of
the 17 papers includes the specialized and harder to acquire
Type-III. Vice versa, 27 papers use corpora of two to 49
samples. Out of these, 70% either target Type-III or use HIL.
Low quantities must not mean bad practice, as they can also
reveal limits of feasibility in spite of best efforts. This does
not change the fact that they introduce statistical uncertainty.

» The measures are practicable and relevant. We have
created a framework that addresses scientifically relevant as-
pects of corpus creation. Thus, we proposed concrete measures
to test requirement fulfillment (cf. Section III-B). We aimed to
select relevant measures with universal applicability. Table II
holds 704 data points across the 16 measures and 44 papers.
We considered that measures may not be applicable (), too.
This is only true for 17 out of 704 data points: The high
viability of all measures in literature let us conclude that our
framework is practicable and can find broad application.

I Documented 3 Partially Documented 3 Undocumented

Packed Samples []
Unpacked Samples

Deduplication

Unpack Process I

Reasoning [

Acquisition

Known Vulnerabilities I

Release Dates

Versions I
Links I

Hashes

Manufacturer

Models

Device Classes

ISAs

Firmware Types
0.0 01

04 05 06 07 08 09 L0

Fraction

02 03

Fig. 4. Aggregated results of all collected data points for each measure in Ta-
ble II. Data points that mark non-applicability of a measure are considered.

D. Quantitative Result Analysis by Measure

We quantitatively analyze the data in Table II to identify the
cumulative measure performance across all papers and discuss
current practices in research. We group data by measure and
convert concrete numbers to the value @. Thus, we establish a
comparison baseline using four discrete values: A paper docu-
ments the subject of a measure fully (@), partially (), or not
at all (O). The fourth is non-applicability (D). We calculated
the fraction of documented data points for a measure across
all applicable papers. Fig. 4 shows the unweighted results.

» [Sample Quantities] All document packed samples.
Some omit unpacked quantities. All papers precisely specify
the quantity of packed samples. FirmUp [7], however, does
not. The performance drops to 91% for unpacked samples: 36
papers (81%) provide precise unpacking numbers while four
papers only give partial information (10%) [7], [8], [19], [39]:
One gives approximations, three other include unpacking as
system component but do not provide clear numbers. Three
papers do not share any unpacked quantities [31], [40], [46].

» [Deduplication] 30% of the papers do not describe
sample deduplication. As we will discuss in detail in Sec-
tion I'V-E, sample deduplication is important to avoid skewness
in analysis results due to, e.g., duplicate findings. We note
that the performance on this measure is over-evaluated in
terms of documentation awareness: The 70% already includes
papers that share artifacts, which helped us to determine if any
deduplication took place (cf. Appendix B).

» [Unpacking Process] 52% of the papers do not
describe the unpacking process. Sample unpacking is a
significant barrier to any kind of replicability and, thus, result
verification. 20 (52%) of all papers that are applicable to
this measure do not document the critical unpacking process.
12 (32%) document it in detail, e.g, Greenhouse [25], Firm-

Scope [19], and Karonte [8]. Six (16%) document it partially.

» [Reasoning] 13 papers do not justify sample selection.
It is useful for third parties to understand why a corpus contains
certain samples, as such information gives insights on possible
limitations and goals. It further helps to contextualize the work
and interpret results. Possible reasons for sample selection
could be, e.g., availability, required firmware properties like
ISAs, or a device class of particular interest. 30% of papers
do not give a reason, 18% give a reason that was not entirely
comprehensible to us, and 52% justify comprehensively.

» [Acquisition] 32% of the papers do not document
acquisition. Sharing how samples were acquired points inde-
pendent research into the direction of corpus replication, be it
through scraping or manual firmware extraction. 14 out of 44
(32%) papers do not provide any information on this matter.

» [Known Vulnerabilities] 50% of the papers have no
or incomplete documentation on the existence of known
bugs in their corpora. The existence of known vulnerabilities
in corpora helps to obtain verifiable evidence showing the
fruitfulness of a new analysis method. /f there are known bugs
fitting to the paper, it is a choice to use them as benchmark.
21 out of 42 papers fully document the existence of ground
truth (50%). DTaint [38], e.g., rediscovers six verifiable CVEs
in their corpus. Nine papers partially document this subject
(21%). VulSeeker [40], e.g., searches for CVE-2015-1791, but
does not explain which samples are affected in the corpus.
Experiments using other CVEs are mentioned, but also not
explained. 12 papers do not mention ground truth (29%).

» [File & Temporal Properties] Release dates, versions,
links, and hashes are rarely documented. Considering
temporal properties that could help to estimate relevance, only
four out of 44 papers report firmware release dates (4%) and
15 (34%) report firmware versions. For the latter, there are four
more papers with partial data: BootStomp [35], e.g., reports
experiments on an older and newer bootloader version by
Qualcomm, but does not name the identifiers. File properties
beneficial to replicability are also rarely documented: 15 out
of 44 papers share links for download or device acquisition.
If such links become invalid, readers can fall back to file
hashes to find alternative sources. Three papers provide an
incomplete sample list, e.g., FirmSolo [20], who use the
fully documented FIRMADYNE [12] corpus but then add 50
samples of unknown origin. Hashes are available in seven out
of 44 cases.

» [Device Properties] All papers discuss corpus com-
position regarding heterogeneous device properties. In all
papers, there is full or partial information on the device prop-
erties Manufacturer, Model, Device Class, ISA, and Firmware
Type. This is a positive result as it shows that all papers
provide insights on heterogeneity. Yet, between 25% and 34%
of papers only give partial information. They can be grouped
into two classes: First, there are papers that bulk scrape images
but do not collect meta data, e.g., Costin et al. [11]. Second,
some papers give incomplete information on these properties.

FirmUp [7], e.g., lists example manufacturers, but not all of
them. In both cases, some device properties remain unknown,
which makes it harder to assess corpus composition.

E. On Quality over Quantity for Representative Results

Our requirements are extensive and strict. As we will see
in Section V, creating a corpus that caters to all included
measures is difficult. It demands attention to aspects that are
usually not core paper contributions. Furthermore, documen-
tation occupies space that is a valuable asset in papers.

It is understandable and of little surprise that we found
qualitative issues in corpus creation when we gathered the data
for Table II. We found that discussions on common practices
that are not covered by our measures provide valuable insights
on the importance of the quality over quantity credo from G2:

» Put special attention to packed and unpacked sample
quantities while writing and reading. Most papers provide
all sample quantities we searched for. But we often caught
ourselves revising the collected data while reading through
papers, especially with large corpora. Authors should put
special attention to clearly communicate corpus statistics,
as imprecise wording can unintentionally skew perspectives
on representativeness. Two arbitrarily chosen examples from
otherwise excellent work show how easy it is to fall into this
trap: Costin et al. [11] report in the abstract that they unpacked
32,000 images. Yet, later they describe 32,356 processed files
and 26,275 successfully unpacked images; the net corpus
size shrinks by 6,000. Genius [18] combines two corpora
from related work [11], [12]. The abstract reports evaluations
on a data set of 33,045 devices. Later statements reveal
that 8,126 firmware images were successfully unpacked for
evaluation. There is 76% loss. The former puts perspective on
the importance of high-quality, analyzable samples. As for the
latter, peeking into one [12] of the corpora reveals that multiple
images exist for one device, showing that interchanging the
terms devices and firmware images leads to ambiguity.

» Bulk collection, combinations, and deduplication. Data
uniqueness serves sample quality, as duplicates lead to skewed
analysis results. The fact that we did not find deduplication
information in ten out of 17 papers with corpora of 373 or
more samples is worrying, as bulk collection may catch the
same sample multiple times. Thus, we can not verify that
deduplication took place. The practice of combining multiple
corpora from related work that scraped partially overlapping
sources feeds into this issue, e.g., Feng et al. [18].

» Contents: Open source samples inflate corpora. Open-
Wrt [61] and DD-WRT [62] are two open source distributions
that provide an alternative OS for consumer-grade network
devices. Their container formats are well-known and can be
easily unpacked. Thus, it is understandable that we observe
the inclusion of such highly available and analyzable samples
into corpora to evade the unpacking barrier. Yet, their dis-
proportional inclusion inflates firmware corpora with content-
based duplicates and skews heterogeneity. These projects share

I Documented 3 Undocumented

3 Partially Documented

R1) Ground Truth [

R2) Relevance

R3) Clean Data

R4) Rich Meta Data

R5) Documentation

R6) Heterogeneity

00 01 02 03 04 05 06 07 08 09 1.0
Fraction

Fig. 5. Aggregates the results of all collected data points for the associated
measures in Table II. The associated measures are unweighted within a
requirement, but weighted across requirements, because they can contribute
towards multiple goals. All 44 papers are included and data points that mark
non-applicability of a measure are considered.

a common code base across devices, ISAs, and build settings.
We compared the contents of two factory images of OpenWRT
v23.05.0, released on 2023-10-12. We selected builds for the
ASUS RT-AC87U [63] and NETGEAR R8000 [64] consumer
routers and used FACT v4.2-dev [24] for unpacking. SHA256
comparisons yield that the included files overlap by 95%. An-
gelakopoulos et al. [20] also see this problem and point out that
they removed 4,020 DD-WRT and OpenWrt samples from the
9,486 successfully unpacked samples of FIRMADYNE [12].
These samples represent 42% of the original evaluation corpus.
Removing them impacts representativeness.

FE. Are Current Practices Meeting our Requirements?

Is current research meeting our requirements? Like Fig. 4,
we aggregate the collected data points from Table II across all
applicable papers, but group them by requirement instead. We
calculate the share of full (@), partial (Q)), and missing (Q))
documentation per requirement. Data is unweighted within a
single requirement, but weighted across requirements, as some
measures contribute to multiple requirements (cf. Table II).

Fig. 5 shows that researchers put effort into corpus creation.
Yet, there is room for improvement: They could include more
meta data for better replicability and representativeness (R4).
One should provide release dates, versions, download links,
and file hashes (R2, R4). Subjects covered by RS should be
thoroughly documented. Especially unpacking steps often re-
main unclear. Regarding our observations on the impact of the
quality over quantity credo (cf. Section IV-E), we argue that
there are many step stones such as missing deduplication that
must be documented to draw a better picture on representative-
ness and provide clean data for R3. Researchers may conduct
more experiments that search for known vulnerabilities in
firmware (R1). Finally, it is wise to improve the precision on
all aspects of R6 — through documentation or artifact sharing.

Thus, current practices in firmware vulnerability research

meet our requirements only partially: None of the 44 reviewed
papers documents the subject of all 16 measures. The results of
this literature analysis show that there is currently no common
ground on sound firmware corpus creation and documentation.
Missing meta data, incomplete documentation, and inflated
corpora blur visions on representativeness and replicability.

Generally, we see that otherwise excellent work may fall
into the trap of the methodological and practical challenges
we discussed in Section II. A brief analysis, in which we
re-clustered the results from Fig. 5 by publication year, did
not reveal any rising or declining trends of documentation
awareness in this research branch.

V. LFwWC: A NEW CORPUS TO DEMONSTRATE THE
PRACTICABILITY OF THE PROPOSED REQUIREMENTS

We built a proof of concept Linux Firmware Corpus (LFwC)
to assess the feasibility of our requirements. It is based on
data until June 2023 and consists of 10,913 deduplicated and
unpacked firmware images from ten known manufacturers. It
includes recent and historical firmware, covering 2,365 unique
devices across 22 classes. To provide an overview of LFwC,
we added corpus data points to the bottom of Table II.

We share plenty of meta data and publish all scripts and
tools for replicability. We tear down LFwC’s unpacking barrier
with an open source process. Access to the meta data can be
requested on Zenodo [16]. The tools and artifacts are available
at https://github.com/fkie-cad/linux-firmware-corpus.

A. Corpus Creation

Fig. 6 shows the corpus creation process explained below.

(A) General Reasoning. We formulate two statements:

Al Purpose & Firmware Targets. LFwC aims to add value for
vulnerability research while being as sound as possible. It
shall cover multiple paper scenarios with a sizable quantity
of images. We target Linux firmware, as it is prevalent
in research. More precisely, we target commercial off-the-
shelve (COTS) network appliances due to their availability.

A2 Definition of Sample Relevance & Meta Data Reasoning.
Samples with vulnerability ground truth, but also historical
and actual versions, are relevant. Aside from the meta
data covered by our guidelines, we aim to include insights
on discovered Linux kernels and ISAs. Filtering of such
information allows researchers to create sub-corpora that
suit their specific scenario. OSS samples are not included.

Manufacturer Selection & Device Classes. We did not
model market distributions in our corpus because there was
no such information available. Instead, we have selected ten
manufacturers of consumer network appliances by subjectively
perceived prevalence, sample availability, and portfolio: The
broader the portfolio of device classes, the better for hetero-
geneity. The manufacturers are: ASUS, AVM, D-Link, EDI-
MAX, EnGenius, Linksys, NETGEAR, TP-Link, TRENDnet,

https://github.com/fkie-cad/linux-firmware-corpus

®

[facturers] & [Cl

Modelled Market Distribution: No

Selection Bias Possible: Yes
Manufacturers: 10
AVM, D-Link, EDIMAX, EnGenius, Linksys
NETGEAR, TP-Link, TRENDnet, Ubiquity
Device Classes: Network Appliances

v A
General [Reasoning] O
A1 Purpose & Firmware Targets
Corpus Purpose: Soundness, Applicability
Targets: COTS, Network, Type-I/II Linux

Firmware Analysis and Comparison Tool (FACT) O .
. . F — G
Replicable [Unpacking] N Content [Deduplication] .OO .LFWC
‘Tool: FACT Unpacking Plugins > Scope: Files Across all Images O O
How: Recursive Unpacker Selection based How: SHA256 Hash of each File O O
on MIME Signatures T
Fallback: binwalk |

‘A2 Def. Relevance & Meta Data e.g., router, ipcam, switch, ...

v

Sample Relevance: Vuln., Actual, Historical
Meta Data: From Requirements, Kernels

!

J
Annotate [Ground Truth]Q

How: Match Models and their Firmware
Versions against Routersploit Database

H
[ISA] & Kernel Detectiono

ISA: architecture_detection Plugin

O . (Device Trees, Kernel Configs, ELF Headers) Ly
— @ Kernel: software_components Plugin | | pmmmmmm e A e @
sample [Acquisition] Unique [Packed] .OO . (Match Linux Kernel Banners via YARA) O .
Technique: Scraping 14,583
Tools: Scrapy, Selenium, geckodriver . Y O O .OO .
Root Document: Manufact. Portfolio Pages with Meta Data O O O O [Unpacked]
| Approach: Greedy, all Versions, all HW Rev. . O fD
Fallback: WaybackMachine CDX API 2) (@) B Verify [Unpacking] SuccessT O O 10,913
4 (@) @) ._J Firmware [Deduplication] Criterion: Unpacked File Paths Contain
v O O How: SHA256 Hash of Packed Sample Linux C
P @ . (/bin|var |www |etc|sbin | boot | home|
Meta Data [Acquisition] OO libopt|root|srvlusry) | 0 EgsTgm—Tmmoo—mosog
Technique: Scraping e | LFwC-Failed
Source: Manufacturer Product Pages, Files ~~< .
What: [Links, Manufacturer; Model, Rel. H . . 3,670
Dates, Versions, Hashes, Dev. Class]]

Fig. 6. We summarize and document the LFwC corpus creation process in a flow graph. There are ten processing steps, identified by the letters A-J. We
provide a process revolving around the Firmware Analysis and Comparison Tool (FACT) [24] for replicable unpacking success, content deduplication, and
analyses for additional meta data. Addressed measures from our Requirements Framework in Section III are marked by [Square Brackets].

and Ubiquiti. Examples for covered device classes are routers,
switches, IP cameras, NAS systems, and network printers.

(C) Sample Acquisition. For each manufacturer’s page, we
created scrapers with Scrapy [65] v2.9.0. We interfaced with
Selenium and geckodriver v0.30.0 to render JavaScript pages.
For each manufacturer, we navigated through the steps of
browsing the portfolio, inspecting devices, opening the sup-
port, and downloading the firmware by hand. Along the way,
we dissected page layouts to identify and implement relevant
interactions for automation. We pointed the scrapers to the
manufacturer portfolio overviews as root. Then, we let them
traverse through the pages to collect all firmware. If there
were multiple hardware or firmware versions, we downloaded
images for all of them. If the vendors did not provide histor-
ical versions, we implemented fallback scrapers that use the
WaybackMachine [66] to get samples from archive.org.

(D) Meta Data Acquisition. The scrapers extract as much
meta data as possible from the manufacturers. This includes
the release date, version, manufacturer, model, and device
class. As for classes, we manually assigned labels to each
product line. In total, there are 22 labels: switch, router, ipcam,
repeater, mesh, controller, accesspoint, powerline, modem,
power_supply, wifi-usb, recorder, nas, phone, board, kvm,
converter, san, printer, media, encoder, and gateway. We saved
download links and calculated file hashes like SHA256, as well
as the fuzzy SSDeep and TLSH.

(E) Firmware Deduplication. We deduplicate firmware before
unpacking by calculating the SHA256 sample hash. In total,
we collected 14,583 unique but packed firmware files.

(®) Replicable Unpacking. We found that the open source
Firmware Analysis and Comparison Tool (FACT) [24] ad-
dresses many issues of replicable unpacking. The tool gained
attention in the non-academic security community and pro-
vides plugin-based firmware processing for automated unpack-
ing and static analyses. Plugins register themselves to process
files based on their MIME type. Results are attached to each

10

file as meta data. The contents of a firmware are both subject
to analysis and further recursive unpacking, which means
that the tool selects the appropriate unpacker and protocols
the unpacking results on file-basis. The core has unpackers
for over 110 file types; some of them are reverse-engineered
by the community, increasing the odds of unpacking success
in comparison to, e.g., the academic’s default binwalk [21],
which is included as fallback when other approaches fail. All
collected images were uploaded to FACT v4.2-dev. We provide
Vagrant [67] recipes to easily deploy FACT instances. Our
shared scripts ingest the shared LFwC meta data to replicate
corpus downloading and unpacking. If the included links are
dead, a fallback searches on the WaybackMachine.

(G) Content Deduplication. FACT implements hash dedupli-
cation to find duplicate files across all firmware images. Files
can be correlated, similar to Costin et al. [11]. Duplicates can
be pruned to clean analysis results, which solves the issue on
duplicate contents in firmware corpora (cf. Section IV-E).

(H) ISAs & Kernels. We used FACT’s architecture_detection
and software_components plugins. The former identifies ISAs
in firmware samples. It finds device trees, Linux kernel build
configurations, and ELF file headers to skim them for common
architecture identifiers such as arm64 or mips32el. The latter
uses YARA [68] rules to find Linux banner version strings
embedded in kernel builds. This provides evidence that the
firmware contains a Type-I or -II Linux system. We export the
results to complement the set of meta data included in LFwC.

(@ Verify Unpacking Success. After unpacking, we collected
the files of all 14,583 firmware samples. We marked a firmware
image as successfully unpacked if we were able to find
common Linux path components of extracted files. Examples
are /bin/, /lib/, and /var/. The full list is included in Fig. 6.
This approach was chosen because the absence of, e.g., a
Kernel banner from step (H) does not imply failures: Samples
must not contain full root file systems, as it can also be an
incremental device update. We verified that 10,913 samples
were successfully extracted. LFwC only contains these images

TABLE III
LFwWC: CORPUS STATISTICS OVERVIEW

Samples Size Files

Manufact. Samples Devices o= (1] Sampie (1] Sample (1]
AVM 797 201 3.97 22 MiB 2,194
TP-Link 1,163 477 2.44 14 MiB 1,446
ASUS 1,647 205 8.03 39 MiB 3,780
D-Link 1,929 458 421 19 MiB 1,234
EDIMAX 200 155 1.29 4 MiB 395
EnGenius 143 61 2.34 9 MiB 1,144
Linksys 308 166 1.86 13 MiB 1,363
NETGEAR 2,580 270 9.56 24 MiB 2,145
TRENDnet 752 191 3.94 9 MiB 826
Ubiquiti 1,394 181 7.70 78 MiB 11,676
Total 10,913 2,365 4.61 29 MiB 3,219

and is, together with FACT, a fully unpackable corpus. The
remaining 3,670 failed images are a separate data set we share.

(@) Vulnerability Ground Truth. We tried to establish vul-
nerability ground truth. The approach is twofold: First, we
map all devices in the corpus to RouterSploit [69], which
consolidates exploits for network appliances. There is meta
data attached to each exploit, linking to possibly affected
firmware versions and security advisories. This yielded over
800 initial matches between samples and exploits. As the meta
data in RouterSploit is not complete, we manually inspected
the matches and compared version strings with source security
advisories. We distilled 105 samples from the list with possibly
applicable remote exploits, e.g., CVE-2017-5521 and CVE-
2013-3093. We note that version data in security advisories is
often faulty [70] and effective matching is an open research
topic [71]. To find additional evidence, we manually verified
the presence of CVE-2016-10177 to CVE-2016-10186 in
LFwC using static analysis. This set of vulnerabilities affected
versions of the D-Link DWR-932B in 2016.

B. Brief Insights on Corpus Composition

We give brief insights on LFwC’s sample composition.
For more detail information, e.g., included ISAs and kernel
distributions, we refer to Appendix C. Table III shows the
file statistics across manufacturers. LFwC contains firmware
images for 2,365 different devices and provides, on average,
between four and five firmware versions per device. The mean
sample size is 29 MiB and the mean number of included files
is 3,219. Yet, the relatively large samples by Ubiquiti skew
these numbers. With 2,580 samples (24%), NETGEAR is most
represented. D-Link (18%), ASUS (15%), Ubiquiti (13%), and
TP-Link (11%) follow.

Fig. 7 shows the samples per manufacturer across their
year of release. LFwC has images from 2005 to June 2023,
which proofs that it holds historical and recent samples. From
years 2005 to 2019, we observe exponential growth in sample
quantities. This makes sense considering the market growth
over the past 20 years and changing patch behavior due to
security awareness. Starting with the COVID-19 pandemic,
there is a decrease of samples between 2020 and 2022. The
data for 2023 is incomplete, as the corpus was created in June

11

N AVM [D-Link [0 Linksys [TRENDnet
[TP-Link [EDIMAX I NETGEAR I Ubiquiti
3 ASUS [EnGenius

12001

1000 4

800 1

6001

400+

Sample Quantity [#]

200 A

Fig. 7. LFwC firmware distribution per release date. For 747 samples, our
scrapers could not extract any release date from the sources.

2023. For 747 samples, we could not extract release dates.

C. Case Study I: Proof of Replicability

We share meta data for replication. Thus, there is an inherent
risk that LFwC’s included download links become inaccessible
over time. The requirements in Section III propose to include
file- and device-related data, e.g., product data and hashes.
This information helps to acquire files from other sources.

We conducted a case study to investigate the replicability of
LFwC: In June 2024, one year after creating the corpus, we
simulated the scenario of an independent researcher that only
uses the shared meta data and tools to reconstruct LFwC. We
divided the process into four phases:

1) Pass the shared meta data to our download tool, which
obtains the samples using the original links.

2) Then, use the archive.org fallback (cf. Section V-A).

3) Search firmware images on VirusTotal [72] via hashes.

4) Use the device name, file name, and version data to search
for samples on forums and archives.

The first three steps were automated and the fourth was
manual. We noted the phase of successful acquisition for each
sample and collected the results. The total size of packed
samples is 353 GiB. We used a 1 Gbps Internet connection.

Table IV shows the results per manufacturer and phase:
After one year, we were able to successfully replicate 99.73%
of LFwC (10,883 out of 10,913 samples) within five hours.
10,786 samples were acquired from the included direct down-
load links, which left us with the task to recover 177 samples
from alternative sources. Entering the fallbacks, we found 13
missing AVM and seven missing ASUS images on archive.org.
Another 50 were found on VirusTotal [72], most of them from
AVM (34) and NETGEAR (12). Then, we invested roughly 40
minutes for manual search on the Internet and gathered another
27 samples, of which we were able to verify hash identity.
Most links in this category are dead because the manufacturers
updated their devices and moved the older firmware packages

TABLE IV

ONE YEAR AFTER CORPUS CREATION: RESULTS FOR THE CASE STUDY ON THE INDEPENDENT REPLICABILITY OF LFWC THROUGH META DATA

Samples Samples 1: Link 2: Archive 3: VirusTotal 4: Manual Missing
Manufact. LFwC Replicated Samples Ratio Samples Ratio Samples Ratio Samples Ratio Samples Ratio
AVM 797 790 731 0.91 13 0.02 34 0.04 12 0.02 7 0.02
TP-Link 1,163 1,163 1,163 1.00 0 0.00 0 0.00 0 0.00 0 0.00
ASUS 1,647 1,642 1,633 0.99 7 <0.01 2 0.01 0 0.00 5 0.00
D-Link 1,929 1,927 1,911 0.99 0 0.00 2 0.01 14 0.01 2 <0.01
EDIMAX 200 200 200 1.00 0 0.00 0 0.00 0 0.00 0 0.00
EnGenius 143 143 143 1.00 0 0.00 0 0.00 0 0.00 0 0.00
Linksys 308 308 308 1.00 0 0.00 0 0.00 0 0.00 0 0.00
NETGEAR 2,580 2,564 2,551 0.98 0 0.00 12 <0.01 1 <0.01 16 <0.01
TRENDnet 752 752 752 1.00 0 0.00 0 0.00 0 0.00 0 0.00
Ubiquiti 1,394 1,394 1,394 1.00 0 0.00 0 0.00 0 0.00 0 0.00
Total 10,913 10,883 10,786 0.99 20 <0.01 50 <0.01 27 <0.01 30 <0.01
TABLE V —8— Canaries NX —# RELRO —¥— PIC Fortify Source
ELF BINARIES EXTRACTED FROM LFwC 1.0
Not Deduplicated [#k] Deduplicated [#k] 209
Arch Execs Libs Objs b)) Execs Libs Objs = § 0.8
<
ARM 638.1 630.8 30.0 1,568.9 102.6 56.4 345 193.4 EE 07 _',,,v—-"
MIPS 416.7 397.5 90.6 904.8 87.6 433 26.6 157.5 =06 J/,J""—
x86 26.8 344 6.0 67.3 3.8 4.8 1.6 10.2 805 T A —_-a
Other 13.2 6.5 11.1 30.8 4.3 1.0 1.7 7.0 204 ¥ ,v-——‘—v"" »n—R
5 P Rag 7
¥ 1,0948 1,069.3 407.8 2,571.8 198.3 105.5 644 368.2 = 031y /./
2 s ——®
= 0.2 x .
Execs: x-pie-executable, x—ex?cutable.. Libs: x-sharedlib, x-archive. g 011, w—m— A S .,.f/r4/r
Objs: x-object. ool Zh 4 e i =i o -
a g p
R A I R

to another URL, which was recovered. 30 samples could not be
found within the 40 minutes time span of manual acquisition.

Overall, the results provide evidence that independent re-
searchers can efficiently replicate LFwC through its meta data
and automated tools; with reasonable manual effort. The fact
that 99% of the samples could still be acquired through their
originally scraped links, is a positive result. However, one
should expect that this rate decreases over time and more
samples must be collected through fallback methods.

D. Case Study II: Proof of Scientific Corpus Utility

This brief case study demonstrates the scientific utility of
LFwC: Together with FACT, we successfully perform a large-
scale trend analysis using static methods.

Similar to Yu et al. [73], we raise the following question:
How did the use of binary hardening methods for ELF files
change over time in the firmware corpus at hand? We focus
on five compiler-based user space methods: Canaries, Non-
Executable Stacks (NX), Relocation Read-Only (RELRO),
Position-Independent Code (PIC), and Fortify Source. Yu et
al. [73] explain these hardening methods in detail.

With LFwC fully unpacked in FACT v4.2-dev, we query the
tool’s API to aggregate all included files that have common
ELF MIME types. We purged all kernel objects (.ko extension)
and images (FACT Linux kernel detection) from the data set.

Table V shows the data and its MIME types: We extracted
2.6m ELFs from all 10,913 images. The majority uses ARM
or MIPS. FACT’s deduplication helped to create a final data
set of 368.2k unique ELFs across all firmware images.

12

Fig. 8. ELFs with enabled hardening techniques per firmware release year.

We applied checksec v2.6.0 [74] to the 386.2k files to detect
the presence of binary hardening methods in ELF headers.
We traced back each ELF to its origin firmware, associate
the firmware’s release date, and grouped the analysis results
by year. For each method, Fig. 8 plots the fraction of ELFs
included in firmware from 2010 to 2023 where the method
is enabled. From 2010 to 2023, usage grows steadily for all
hardening methods. While PIC is most often enabled and grew
almost linearly from 2010 (30%) to 2023 (67%), we observe
an accelerating trend for all other methods starting with 2018.
As of 2023, NX (60%) almost catched up to PIC, followed
by RELRO (50%), Canaries (25%), and Fortify Source (12%).
Overall, we can observe a positive trend in our data set. This is
reasonable, as security awareness grew and resources needed
to use these methods became more affordable.

This contradicts the results by Yu et al. [73] from 2022: As
shown in Figure 4 of their paper, they observe almost 100%
NX usage, while Canaries fluctuate, and the other methods
have almost no change in adoption rates. The authors note
that their data set does not seem balanced, as five out of 34
manufacturers provide 78% of the ELF binaries. As Synology
makes up for 46% of all ELFs, changes in their build chain
can significantly impact results.

Also, we can use LFwC to show that the 100% NX adoption
rate from Yu et al. [73] can not be representative. NX requires
CPU support, as the hardware has to ultimately protect mem-
ory regions from execution. ARM and x86 families support

—8— ARM x86 —— MIPS —¥— Other

Fig. 9. ELFs with enabled NX bit per release year and ISA.

NX since decades, but MIPS specifications only introduced
this feature recently as eXecute Inhibit (XI) [75]. As there is a
certain time-to-market for each specification, we can assume
that fewer MIPS devices support this feature than x86 and
ARM devices. Fig. 9 shows the adoption rate of NX in our
corpus by architecture over the past decade. As expected, the
ARM and x86-based ELFs almost all adopted NX as of 2023.
However, for MIPS, NX adoption only started in 2017. Six
years later, the adoption rate is at 10%, which is reasonable.
As we show in Table V, 42% of the ELF files in our corpus
are MIPS and ISAs other than ARM and x86 are negligible.
At the same time, 41% of the ELF files are MIPS in the corpus
by Yu et al. [73]. Thus, both data sets should be comparable,
but the results vastly deviate. We invite interested researchers
to further explore LFwC and investigate the observations we
made as part of this short case study, in which we showed that
our corpus can be used for static analyses.

E. Ethical Discussion on Construction and Distribution

For ethical firmware collection, we taught our scrapers to
obey to the robots.txt of manufacturers. We assume that
said file correctly implements any restrictions mentioned in
their ToS/EULA. We also reduced infrastructure load by throt-
tling requests and execution threads. The replication scripts we
provide are equally throttled. We did not greedily mirror and
process all information available on the manufacturer’s pages.
These pages can include data, e.g., forum posts, that might
fall under special data protection laws. Thus, we designed
our scrapers in a way that steers them directly towards the
desired sample downloads over the product pages. These were,
alongside the specifically included meta data fields, the only
data we persisted. Furthermore, we argue that it is unethical
to include detail FACT [24] reports in the meta data we
share. These include security-relevant data, e.g., file system
trees, hashes of included files, or complete lists of detected
software components. This data provides a low entry barrier
for malicious actors to perform large-scale presence checks of
emerging zero day vulnerabilities across thousands of devices.
Thus, we decided to control access to the meta data. LFwC
shall help to improve, and not jeopardize, device security.

13

E Corpus Limitations & Future Expansion

Our creation methods imply various limitations. First, we
criticize the sample distribution: As we only scrape easily
accessible, network-centric samples, LFwC does not include
devices where acquisition is less scalable, more complex, and
invasive. Cisco I0S images, e.g., are gated by login pages.
We further limited the sources to ten manufacturers. Thus,
market distributions are not accurately modelled and trend
analyses on samples might lack fidelity. OSS samples are also
not included. Generally, LFwC is limited to Type-I and -II
Linux images. Their distribution is unknown: Device-specifics
like timing constraints might incentivize manufacturers to
implement user space applications in kernel space, which blurs
the lines between the two classes (cf. Appendix A). A detail
content analysis would be required for all 10,913 samples to
distinguish, which is infeasible within the scope of this paper.

Second, LFwC’s compatibility is limited to static methods.
We can not test the presence of execution parameters that are
possibly needed without having concrete dynamic scenarios
at hand. This does not mean that it is unsuitable for dynamic
analyses, but that we did not verify LFwC’s compatibility.

Third, we note that FACT uses static heuristics for unpack-
ing, verification, and meta data acquisition. We also mapped
Routersploit ground truth statically and manually. Thus, there
is a chance of false-positive findings in the corpus meta data.

Finally, we observe that all shared meta data for replication
remains volatile and the relevancy of samples fades as the
corpus ages. Thus, we plan to provide at least annual updates
that refresh the links and add new manufacturers or devices
to the corpus. As our scrapers are open source, we invite
researchers to join us in this task.

VI. CONCLUSION

We brought attention to an important, but often overlooked
aspect of binary vulnerability research: The creation of rep-
resentative and replicable firmware corpora for sound and
independently verifiable experiments. For this purpose, we
pinpointed eight challenges that can significantly affect corpus
creation. We used them to derive a strict framework of corpus
requirements, nurtured by 16 measures. The goal was to
give broadly applicable and practical guidelines that can be
used to improve soundness — given current copyright laws
and unpacking barriers. We revised the status quo of corpus
creation practices through a systematic literature review on
top tier research. We showed that our framework serves its
purpose, as it helps to find and avoid many methodological
pitfalls: Missing meta data, incomplete documentation, and
inflated corpus sizes blur visions on representativeness and
hinder replicability. Our measures show practical ways, like
an extended set of meta data, that one could implement to
improve corpus soundness.

The requirements led to the creation of LFwC, a new Linux
firmware corpus with rich meta data, high-quality deduplicated

samples, and verified contents. It is a valuable addition to
the community, as it demonstrates verified replicability, shows
its scientific utility, and takes the needed space to transpar-
ently document creation and composition. Together with our
requirements, it is a step towards scientifically sound corpora.
We plan yearly updates to preserve relevance and replicability.

[1]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

REFERENCES

M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the Mirai Botnet,”
in Proceedings of the USENIX Security Symposium (USENIX Security
17). Vancouver, British Columbia, Canada: USENIX Association, 2017,
pp. 1093-1110. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity 1 7/technical-sessions/presentation/antonakakis

T. M. Chen and S. Abu-Nimeh, “Lessons from Stuxnet,” Computer,
vol. 44, no. 4, pp. 91-93, 2011. [Online]. Available: https:
//dx.doi.org/10.1109/MC.2011.115

W. Largent. New VPNFilter Malware Targets at least SO0K Networking
Devices Worldwide. [Online]. Available: https://blog.talosintelligence.
com/vpnfilter/
DRAGOS, Inc. CHERNOVITE’s PIPEDREAM Mal-
ware Targeting Industrial Control Systems CS).
[Online]. Available: https://www.dragos.com/blog/industry-news/
chernovite- pipedream-malware-targeting-industrial-control-systems/

A. Qasem, P. Shirani, M. Debbabi, L. Wang, B. Lebel, and
B. L. Agba, “Automatic Vulnerability Detection in Embedded
Devices and Firmware: Survey and Layered Taxonomies,” ACM
Computing Surveys, vol. 54, no. 2, 2021. [Online]. Available:
https://doi.org/10.1145/3432893

C. Wright, W. A. Moeglein, S. Bagchi, M. Kulkarni, and A. A.
Clements, “Challenges in Firmware Re-Hosting, Emulation, and
Analysis,” ACM Computing Surveys, vol. 54, no. 1, 2021. [Online].
Available: https://doi.org/10.1145/3423167

Y. David, N. Partush, and E. Yahav, “FirmUp: Precise Static Detection
of Common Vulnerabilities in Firmware,” in Proceedings of the
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’18). Williamsburg, VA,
USA: Association for Computing Machinery, 2018, p. 392-404.
[Online]. Available: https://doi.org/10.1145/3173162.3177157

N. Redini, A. Machiry, R. Wang, C. Spensky, A. Continella,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Karonte: Detecting
Insecure Multi-binary Interactions in Embedded Firmware,” in
Proceedings of the IEEE Symposium on Security and Privacy (SP’20).
Virtual Conference: IEEE, 2020, pp. 1544-1561. [Online]. Available:
https://dx.doi.org/10.1109/SP40000.2020.00036

D. Plohmann, M. Clau3, S. Enders, and E. Padilla,
“Malpedia: A Collaborative Effort to Inventorize the Malware
Landscape,” in Proceedings of the Botnet & Malware Ecosystems
Fighting Conference (Botconf’17), Montpellier, France, 2017. [On-
line]. Available: https://www.botconf.eu/botconf-presentation-or-article/
malpedia-a-collaborative-effort-to-inventorize- the-malware-landscape/
G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
Fuzz Testing,” in Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS’18). Toronto, Canada:
Association for Computing Machinery, 2018, p. 2123-2138. [Online].
Available: https://doi.org/10.1145/3243734.3243804

A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A
Large-Scale Analysis of the Security of Embedded Firmwares,” in
Proceedings of the USENIX Security Symposium (USENIX Security
14). San Diego, California, USA: USENIX Association, 2014,
pp. 95-110. [Online]. Available: https://www.usenix.org/system/files/
conference/usenixsecurity 14/sec14-paper-costin.pdf

D. D. Chen, M. Egele, M. Woo, and D. Brumley, “Towards
Automated Dynamic Analysis for Linux-based Embedded Firmware,” in
Proceedings of the Network and Distributed System Security Symposium
(NDSS’16). San Diego, California, USA: The Internet Society, 2016.
[Online]. Available: https://dx.doi.org/10.14722/ndss.2016.23415

14

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]
[22]

(23]
[24]

[25]

[26]

[27]

(28]

S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “discovRE:
Efficient Cross-Architecture Identification of Bugs in Binary Code,” in
Proceedings of the Network and Distributed System Security Symposium
(NDSS’16). San Diego, California, USA: The Internet Society, 2016.
[Online]. Available: https://dx.doi.org/10.14722/ndss.2016.23185

M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti,
“What You Corrupt Is Not What You Crash: Challenges in
Fuzzing Embedded Devices,” in Proceedings of the Network and
Distributed System Security Symposium (NDSS’18). San Diego,
California, USA: The Internet Society, 2018. [Online]. Available:
https://dx.doi.org/10.14722/ndss.2018.23166

S. Geng, Y. Li, Y. Du, J. Xu, Y. Liu, and B. Mao, “An Empirical
Study on Benchmarks of Artificial Software Vulnerabilities,” arXiv,
2020. [Online]. Available: http://arxiv.org/abs/2003.09561

R. Helmke, “Linux Firmware Corpus - Full LFwC Meta Data for
Replication,” Jul. 2024. [Online]. Available: https://doi.org/10.5281/
zenodo.12659436

A. Costin, A. Zarras, and A. Francillon, “Automated Dynamic
Firmware Analysis at Scale: A Case Study on Embedded Web
Interfaces,” in Proceedings of the Asia Conference on Computer and
Communications Security (Asia CCS’16). Xi’an, China: Association
for Computing Machinery, 2016, p. 437-448. [Online]. Available:
https://doi.org/10.1145/2897845.2897900

Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin,
“Scalable Graph-Based Bug Search for Firmware Images,” in
Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS’16). Vienna, Austria: Association
for Computing Machinery, 2016, pp. 480—491. [Online]. Available:
https://dx.doi.org/10.1145/2976749.2978370

M. Elsabagh, R. Johnson, A. Stavrou, C. Zuo, Q. Zhao, and
Z. Lin, “FIRMSCOPE: Automatic Uncovering of Privilege-Escalation
Vulnerabilities in Pre-Installed Apps in Android Firmware,” in
Proceedings of the USENIX Security Symposium (USENIX Security
20). Virtual Conference: USENIX Association, 2020, pp. 2379-2396.
[Online]. Available: https://www.usenix.org/system/files/sec20-elsabagh.
pdf

I. Angelakopoulos, G. Stringhini, and M. Egele, “FirmSolo: Enabling
Dynamic Analysis of Binary Linux-based IoT Kernel Modules,” in
Proceedings of the USENIX Security Symposium (USENIX Security
23). Anaheim, California, USA: USENIX Association, 2023, pp.
5021-5038. [Online]. Available: https://www.usenix.org/system/files/
usenixsecurity23-angelakopoulos.pdf
ReFirmLabs. Binwalk. [Online].
ReFirmLabs/binwalk

A. Hemel. The Binary Analysis Tool (BAT). [Online]. Available:
https://github.com/armijnhemel/binaryanalysis

ONEKEY. Unblob. [Online]. Available: https://unblob.org/

Fraunhofer FKIE. FACT - Firmware Analysis and Comparison Tool.
[Online]. Available: https://github.com/fkie-cad/FACT_core

H. J. Tay, K. Zeng, J. M. Vadayath, A. S. Raj, A. Dutcher,
T. Reddy, W. Gibbs, Z. L. Basque, F. Dong, Z. Smith, A. Doupé,
T. Bao, Y. Shoshitaishvili, and R. Wang, “Greenhouse: Single-Service
Rehosting of Linux-Based Firmware Binaries in User-Space Emulation,”
in Proceedings of the USENIX Security Symposium (USENIX Security
23). Anaheim, California, USA: USENIX Association, 2023, pp.
5791-5808. [Online]. Available: https://www.usenix.org/system/files/
usenixsecurity23-tay.pdf

M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim,
“FirmAE: Towards Large-Scale Emulation of IoT Firmware for
Dynamic Analysis,” in Proceedings of the Annual Computer Security
Applications Conference (ACSAC’20). Austin, Texas, USA: Association
for Computing Machinery, 2020, pp. 733-745. [Online]. Available:
https://doi.org/10.1145/3427228.3427294

E. Gustafson, M. Muench, C. Spensky, N. Redini, A. Machiry,
Y. Fratantonio, D. Balzarotti, A. Francillon, Y. R. Choe, C. Kruegel,
and G. Vigna, “Toward the Analysis of Embedded Firmware
through Automated Re-hosting,” in Proceedings of the International
Symposium on Research in Attacks, Intrusions and Defenses (RAID’19).
Chaoyang District, Beijing, China: USENIX Association, 2019,
pp- 135-150. [Online]. Available: https://www.usenix.org/system/files/
raid2019-gustafson.pdf

J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, “Avatar:
A Framework to Support Dynamic Security Analysis of Embedded
Systems’ Firmwares,” in Proceedings of the Network and Distributed

Available: https://github.com/

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://dx.doi.org/10.1109/MC.2011.115
https://dx.doi.org/10.1109/MC.2011.115
https://blog.talosintelligence.com/vpnfilter/
https://blog.talosintelligence.com/vpnfilter/
https://www.dragos.com/blog/industry-news/chernovite-pipedream-malware-targeting-industrial-control-systems/
https://www.dragos.com/blog/industry-news/chernovite-pipedream-malware-targeting-industrial-control-systems/
https://doi.org/10.1145/3432893
https://doi.org/10.1145/3423167
https://doi.org/10.1145/3173162.3177157
https://dx.doi.org/10.1109/SP40000.2020.00036
https://www.botconf.eu/botconf-presentation-or-article/malpedia-a-collaborative-effort-to-inventorize-the-malware-landscape/
https://www.botconf.eu/botconf-presentation-or-article/malpedia-a-collaborative-effort-to-inventorize-the-malware-landscape/
https://doi.org/10.1145/3243734.3243804
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-costin.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-costin.pdf
https://dx.doi.org/10.14722/ndss.2016.23415
https://dx.doi.org/10.14722/ndss.2016.23185
https://dx.doi.org/10.14722/ndss.2018.23166
http://arxiv.org/abs/2003.09561
https://doi.org/10.5281/zenodo.12659436
https://doi.org/10.5281/zenodo.12659436
https://doi.org/10.1145/2897845.2897900
https://dx.doi.org/10.1145/2976749.2978370
https://www.usenix.org/system/files/sec20-elsabagh.pdf
https://www.usenix.org/system/files/sec20-elsabagh.pdf
https://www.usenix.org/system/files/usenixsecurity23-angelakopoulos.pdf
https://www.usenix.org/system/files/usenixsecurity23-angelakopoulos.pdf
https://github.com/ReFirmLabs/binwalk
https://github.com/ReFirmLabs/binwalk
https://github.com/armijnhemel/binaryanalysis
https://unblob.org/
https://github.com/fkie-cad/FACT_core
https://www.usenix.org/system/files/usenixsecurity23-tay.pdf
https://www.usenix.org/system/files/usenixsecurity23-tay.pdf
https://doi.org/10.1145/3427228.3427294
https://www.usenix.org/system/files/raid2019-gustafson.pdf
https://www.usenix.org/system/files/raid2019-gustafson.pdf

[29]

[30

=

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

System Security Symposium (NDSS’14). San Diego, California, USA:
The Internet Society, 2014. [Online]. Available: https://dx.doi.org/10.
14722/ndss.2014.23229

D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pierazzi,
C. Wressnegger, L. Cavallaro, and K. Rieck, “Dos and Don’ts
of Machine Learning in Computer Security,” in Proceedings of
the USENIX Security Symposium (USENIX Security 22). Boston,
Maryland, USA: USENIX Association, 2022, pp. 3971-3988. [Online].
Available: https://www.usenix.org/system/files/sec22-arp.pdf

R. Helmke and J. vom Dorp, “Extended abstract: Towards reliable
and scalable linux kernel cve attribution in automated static firmware
analyses,” in Proceedings of the International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment (DIMVA’23).
Hamburg, Germany: Springer-Verlag, 2023, pp. 201-210. [Online].
Available: https://doi.org/10.1007/978-3-031-35504-2_10

M. C. Ang Cui and S. J. Stolfo, “When Firmware Modifications Attack:
A Case Study of Embedded Exploitation,” in Proceedings of the Network
and Distributed System Security Symposium (NDSS’13). San Diego,
California, USA: The Internet Society, 2013. [Online]. Available: https:
/Iwww.ndss-symposium.org/wp-content/uploads/2017/09/03_4_0.pdf

J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz,
“Cross-Architecture Bug Search in Binary Executables,” in Proceedings
of the IEEE Symposium on Security and Privacy (SP’15). San
Jose, California, USA: IEEE, 2015, pp. 709-724. [Online]. Available:
https://dx.doi.org/10.1109/SP.2015.49

Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and
G. Vigna, “Firmalice - Automatic Detection of Authentication
Bypass Vulnerabilities in Binary Firmware,” in Proceedings of the
Network and Distributed System Security Symposium (NDSS’15). San
Diego, California, USA: The Internet Society, 2015. [Online]. Available:
https://dx.doi.org/10.14722/ndss.2015.23294

L. Cojocar, J. Zaddach, R. Verdult, H. Bos, A. Francillon, and
D. Balzarotti, “PIE: Parser Identification in Embedded Systems,”
in Proceedings of the Annual Computer Security Applications
Conference (ACSAC’15). Los Angeles, California, USA: Association
for Computing Machinery, 2015, pp. 251-260. [Online]. Available:
https://doi.org/10.1145/2818000.2818035

N. Redini, A. Machiry, D. Das, Y. Fratantonio, A. Bianchi,
E. Gustafson, Y. Shoshitaishvili, C. Kruegel, and G. Vigna,
“BootStomp: On the Security of Bootloaders in Mobile Devices,”
in Proceedings of the USENIX Security Symposium (USENIX
Security 17). Vancouver, BC, Canada: USENIX Association, 2017,
pp. 781-798. [Online]. Available: https://www.usenix.org/system/files/
conference/usenixsecurity 17/sec17-redini.pdf

G. Hernandez, F. Fowze, D. J. Tian, T. Yavuz, and K. R. Butler,
“FirmUSB: Vetting USB Device Firmware Using Domain Informed
Symbolic Execution,” in Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security (CCS’17). Dallas, Texas,
USA: Association for Computing Machinery, 2017, pp. 2245-2262.
[Online]. Available: https://doi.org/10.1145/3133956.3134050

X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural
Network-Based Graph Embedding for Cross-Platform Binary Code
Similarity Detection,” in Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security (CCS’17). Association
for Computing Machinery, 2017, pp. 363-376. [Online]. Available:
https://dx.doi.org/10.1145/3133956.3134018

K. Cheng, Q. Li, L. Wang, Q. Chen, Y. Zheng, L. Sun,
and Z. Liang, “DTaint: Detecting the Taint-Style Vulnerability in
Embedded Device Firmware,” in Proceedings of the IEEE/IFIP
International Conference on Dependable Systems and Networks
(DSN’18). Luxembourg: IEEE, 2018, pp. 430—441. [Online]. Available:
https://dx.doi.org/10.1109/DSN.2018.00052

D. J. Tian, G. Hernandez, J. I. Choi, V. Frost, C. Raules,
P. Traynor, H. Vijayakumar, L. Harrison, A. Rahmati, M. Grace, and
K. R. B. Butler, “ATtention Spanned: Comprehensive Vulnerability
Analysis of AT Commands Within the Android Ecosystem,” in
Proceedings of the USENIX Security Symposium (USENIX Security
18). Baltimore, Maryland, USA: USENIX Association, 2018,
pp. 273-290. [Online]. Available: https://www.usenix.org/system/files/
conference/usenixsecurity 18/sec18-tian.pdf

J. Gao, X. Yang, Y. Fu, Y. Jiang, and J. Sun, “VulSeeker: A
Semantic Learning Based Vulnerability Seeker for Cross-Platform
Binary,” in Proceedings of the ACM/IEEE International Conference
on Automated Software Engineering (ASE’18). Montpellier, France:

15

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Association for Computing Machinery, 2018. [Online]. Available:
https://dx.doi.org/10.1145/3238147.3240480

J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau,
M. Sun, R. Yang, and K. Zhang, “loTFuzzer: Discovering Memory
Corruptions in IoT Through App-based Fuzzing,” in Proceedings of
the Network and Distributed System Security Symposium. San Diego,
California, USA: The Internet Society, 2018. [Online]. Available:
https://dx.doi.org/10.14722/ndss.2018.23159

Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun,
“FIRM-AFL: High-Throughput Greybox Fuzzing of IoT Firmware
via Augmented Process Emulation,” in Proceedings of the USENIX
Security Symposium (USENIX Security 19). Santa Clara, California,
USA: USENIX Association, 2019, pp. 1099—1114. [Online]. Available:
https://www.usenix.org/system/files/sec19-zheng_0.pdf

P. Srivastava, H. Peng, J. Li, H. Okhravi, H. Shrobe, and M. Payer,
“FirmFuzz: Automated IoT Firmware Introspection and Analysis,” in
Proceedings of the International ACM Workshop on Security and
Privacy for the Internet-of-Things (IoT SP’19). London, United
Kingdom: Association for Computing Machinery, 2019, pp. 15-21.
[Online]. Available: https://dx.doi.org/10.1145/3338507.3358616

Y. Zhang, W. Huo, K. Jian, J. Shi, H. Lu, L. Liu, C. Wang,
D. Sun, C. Zhang, and B. Liu, “SRFuzzer: An Automatic Fuzzing
Framework for Physical SOHO Router Devices to Discover Multi-Type
Vulnerabilities,” in Proceedings of the Annual Computer Security
Applications Conference (ACSAC’19). San Juan, Puerto Rico, USA:
Association for Computing Machinery, 2019, pp. 544-556. [Online].
Available: https://dx.doi.org/10.1145/3359789.3359826

A. A. Clements, E. Gustafson, T. Scharnowski, P. Grosen, D. Fritz,
C. Kruegel, G. Vigna, S. Bagchi, and M. Payer, “HALucinator: Firmware
Re-hosting Through Abstraction Layer Emulation,” in Proceedings
of the USENIX Security Symposium (USENIX Security 20). Virtual
Conference: USENIX Association, 2020, pp. 1201-1218. [Online].
Available: https://www.usenix.org/system/files/sec20-clements.pdf

Z. Jiang, Y. Zhang, J. Xu, Q. Wen, Z. Wang, X. Zhang, X. Xing,
M. Yang, and Z. Yang, “PDiff: Semantic-based Patch Presence
Testing for Downstream Kernels,” in Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS’20).
Virtual Conference: Association for Computing Machinery, 2020, pp.
1149-1163. [Online]. Available: https://dx.doi.org/10.1145/3372297.
3417240

B. Feng, A. Mera, and L. Lu, “P2IM: Scalable and hardware-
independent firmware testing via automatic peripheral interface
modeling,” in Proceedings of the USENIX Security Symposium (USENIX
Security 20). Virtual Conference: USENIX Association, 2020. [Online].
Available: https://www.usenix.org/system/files/sec20-feng.pdf

C. Cao, L. Guan, J. Ming, and P. Liu, “Device-Agnostic Firmware
Execution is Possible: A Concolic Execution Approach for Peripheral
Emulation,” in Proceedings of the Annual Computer Security
Applications Conference (ACSAC’20). Austin, Texas, USA: Association
for Computing Machinery, 2020, pp. 746-759. [Online]. Available:
https://doi.org/10.1145/3427228.3427280

L. Fu, S. Ji, K. Lu, P. Liu, X. Zhang, Y. Duan, Z. Zhang, W. Chen,
and Y. Wu, “CPscan: Detecting Bugs Caused by Code Pruning in
IoT Kernels,” in Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS’21). Virtual Conference:
Association for Computing Machinery, 2021, pp. 794-810. [Online].
Available: https://dx.doi.org/10.1145/3460120.3484738

N. Redini, A. Continella, D. Das, G. De Pasquale, N. Spahn,
A. Machiry, A. Bianchi, C. Kruegel, and G. Vigna, “Diane: Identifying
Fuzzing Triggers in Apps to Generate Under-constrained Inputs for
IoT Devices,” in Proceedings of the IEEE Symposium on Security
and Privacy (SP’21). Virtual Conference: IEEE, 2021, pp. 484-500.
[Online]. Available: https://dx.doi.org/10.1109/SP40001.2021.00066

A. Mera, B. Feng, L. Lu, and E. Kirda, “DICE: Automatic Emulation
of DMA Input Channels for Dynamic Firmware Analysis,” in
Proceedings of the IEEE Symposium on Security and Privacy (SP’21).
Virtual Conference: IEEE, 2021, pp. 1938-1954. [Online]. Available:
https://dx.doi.org/10.1109/SP40001.2021.00018

M. Jiang, L. Ma, Y. Zhou, Q. Liu, C. Zhang, Z. Wang, X. Luo,
L. Wu, and K. Ren, “ECMO: Peripheral Transplantation to Rehost
Embedded Linux Kernels,” in Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS’21).
Virtual Conference: Association for Computing Machinery, 2021, pp.
734-748. [Online]. Available: https://doi.org/10.1145/3460120.3484753

https://dx.doi.org/10.14722/ndss.2014.23229
https://dx.doi.org/10.14722/ndss.2014.23229
https://www.usenix.org/system/files/sec22-arp.pdf
https://doi.org/10.1007/978-3-031-35504-2_10
https://www.ndss-symposium.org/wp-content/uploads/2017/09/03_4_0.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/03_4_0.pdf
https://dx.doi.org/10.1109/SP.2015.49
https://dx.doi.org/10.14722/ndss.2015.23294
https://doi.org/10.1145/2818000.2818035
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-redini.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-redini.pdf
https://doi.org/10.1145/3133956.3134050
https://dx.doi.org/10.1145/3133956.3134018
https://dx.doi.org/10.1109/DSN.2018.00052
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-tian.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-tian.pdf
https://dx.doi.org/10.1145/3238147.3240480
https://dx.doi.org/10.14722/ndss.2018.23159
https://www.usenix.org/system/files/sec19-zheng_0.pdf
https://dx.doi.org/10.1145/3338507.3358616
https://dx.doi.org/10.1145/3359789.3359826
https://www.usenix.org/system/files/sec20-clements.pdf
https://dx.doi.org/10.1145/3372297.3417240
https://dx.doi.org/10.1145/3372297.3417240
https://www.usenix.org/system/files/sec20-feng.pdf
https://doi.org/10.1145/3427228.3427280
https://dx.doi.org/10.1145/3460120.3484738
https://dx.doi.org/10.1109/SP40001.2021.00066
https://dx.doi.org/10.1109/SP40001.2021.00018
https://doi.org/10.1145/3460120.3484753

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]
[62]

[63]

[64]

[65]

[66]
[67]
[68]
[69]

[70]

P. Liu, S. Ji, X. Zhang, Q. Dai, K. Lu, L. Fu, W. Chen,
P. Cheng, W. Wang, and R. Beyah, “IFIZZ: Deep-State and Efficient
Fault-Scenario Generation to Test IoT Firmware,” in Proceedings
of the International Conference on Automated Software Engineering
(ASE’21). Virtual Conference: Association for Computing Machinery,
2021, pp. 805-816. [Online]. Available: https://dx.doi.org/10.1109/
ASES51524.2021.9678785

E. Johnson, M. Bland, Y. Zhu, J. Mason, S. Checkoway, S. Savage, and
K. Levchenko, “Jetset: Targeted Firmware Rehosting for Embedded
Systems,” in Proceedings of the USENIX Security Symposium (USENIX
Security 21), Virtual Conference, 2021, pp. 321-338. [Online].
Available: https://www.usenix.org/system/files/sec21-johnson.pdf

L. Chen, Y. Wang, Q. Cai, Y. Zhan, H. Hu, J. Linghu, Q. Hou, C. Zhang,
H. Duan, and Z. Xue, “Sharing More and Checking Less: Leveraging
Common Input Keywords to Detect Bugs in Embedded Systems,” in
Proceedings of the USENIX Security Symposium (USENIX Security 21).
Virtual Conference: USENIX Association, 2021, pp. 303-319. [Online].
Available: https://www.usenix.org/system/files/sec21-chen-libo.pdf

X. Feng, R. Sun, X. Zhu, M. Xue, S. Wen, D. Liu, S. Nepal,
and Y. Xiang, “Snipuzz: Black-Box Fuzzing of IoT Firmware via
Message Snippet Inference,” in Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS’21).
Virtual Conference: Association for Computing Machinery, 2021, pp.
337-350. [Online]. Available: https://doi.org/10.1145/3460120.3484543
W. Zhou, L. Guan, P. Liu, and Y. Zhang, “Automatic Firmware
Emulation through Invalidity-guided Knowledge Inference,” in
Proceedings of the USENIX Security Symposium (USENIX Security
21). Virtual Conference: USENIX Association, 2021, pp. 2007-2024.
[Online]. Available: https://www.usenix.org/system/files/sec21-zhou.pdf
X. Jin, K. Pei, J. Y. Won, and Z. Lin, “SymLM: Predicting Function
Names in Stripped Binaries via Context-Sensitive Execution-Aware
Code Embeddings,” in Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security (CCS’22). Los Angeles,
California, USA: Association for Computing Machinery, 2022, pp.
1631-1645. [Online]. Available: https://dx.doi.org/10.1145/3548606.
3560612

A. Marcelli, M. Graziano, X. Ugarte-Pedrero, Y. Fratantonio,
M. Mansouri, and D. Balzarotti, “How Machine Learning is Solving the
Binary Function Similarity Problem,” in Proceedings of the USENIX
Security Symposium (USENIX Security 22). Boston, Massachusetts,
USA: USENIX Association, 2022, pp. 2099-2116. [Online]. Available:
https://www.usenix.org/system/files/sec22-marcelli.pdf

Z. Luo, P. Wang, B. Wang, Y. Tang, W. Xie, X. Zhou, D. Liu,
and K. Lu, “VulHawk: Cross-architecture Vulnerability Detection with
Entropy-based Binary Code Search,” in Proceedings of the Network
and Distributed System Security Symposium (NDSS’23). San Diego,
California, USA: The Internet Society, 2023. [Online]. Available:
https://dx.doi.org/10.14722/ndss.2023.24415

The OpenWrt Project. OpenWrt. [Online]. Available: https://openwrt.
org/

embeDD GmbH. The DD-WRT Project. [Online]. Available: https:
//dd-wrt.com/

The OpenWrt Project. Factory Image v23.05.0
for ASUS RT-AC87U. Release: 2023-10-12, MD5:
fd3580876e26e34a870f9c6e935cc296. [Online]. Available:
https://downloads.openwrt.org/releases/23.05.0/targets/bcmS53xx/
generic/openwrt-23.05.0-bcm53xx- generic-asus_rt-ac87u-squashfs.trx
——. Factory Image v23.05.0 for NETGEAR R8000. Release: 2023-
10-12, MDS5: 130b8dce90fa899be3ccb6fld2c6laaf. [Online]. Avail-
able: https://downloads.openwrt.org/releases/23.05.0/targets/bcmS53xx/
generic/openwrt-23.05.0-becm53xx- generic-netgear_r8000-squashfs.chk
Zyte. Scrapy - An open source and collaborative framework for
extracting the data you need from websites. [Online]. Available:
https://scrapy.org/

The Internet Archive. Wayback CDX Server API. [Online]. Available:
https://archive.org/developers/wayback-cdx-server.html

HashiCorp. Vagrant - Development Environments Simplified. [Online].
Available: https://www.vagrantup.com/

VirusTotal. YARA - The Pattern Matching swiss Knife for Malware
Researchers. [Online]. Available: https://virustotal.github.io/yara/
threat9. RouterSploit - Exploitation Framework for Embedded Devices.
[Online]. Available: https://github.com/threat9/routersploit

L. A. Benthin Sanguino and R. Uetz, “Software Vulnerability

16

Analysis Using CPE and CVE,” ArXiv, 2017. [Online]. Available:
https://doi.org/10.48550/arXiv.1705.05347

[71] Y. Dong, W. Guo, Y. Chen, X. Xing, Y. Zhang, and G. Wang,
“Towards the Detection of Inconsistencies in Public Security
Vulnerability Reports,” in Proceedings of the USENIX Security
Symposium (USENIX Security 19). Santa Clara, California, USA:
USENIX Association, 2019, pp. 869-885. [Online]. Available:
https://www.usenix.org/system/files/sec19-dong.pdf

[72] Google Inc. VirusTotal. [Online]. Available: https://www.virustotal.com/

[73] R. Yu, FE. Nin, Y. Zhang, S. Huang, P. Kaliyar, S. Zakto, M. Conti,
G. Portokalidis, and J. Xu, “Building Embedded Systems Like It’s
1996,” in Proceedings of the Network and Distributed System Security
Symposium (NDSS’24). San Diego, California, USA: The Internet
Society, 2022. [Online]. Available: https://www.ndss-symposium.org/
wp-content/uploads/2022-3 1-paper.pdf

[74] B. Davis. checksec.sh. [Online]. Available: https://github.com/slimm609/
checksec.sh

[75] J. vom Dorp and R. Helmke, “Home Router Security Report 2022,”
Fraunhofer FKIE, Tech. Rep., 2022.

[76] R. Helmke, “Linux Firmware Corpus - Repository Snapshot,” Jul.
2024. [Online]. Available: https://doi.org/10.5281/zenodo.13627731

APPENDIX A
FIRMWARE TAXONOMY

Embedded devices are diverse: They operate in many envi-
ronments, are highly specialized, and are bound to application-
specific constraints or cost functions [6]. This leads to many
combinations of hardware layouts, ISAs, software stacks, and
peripherals. Thus, heterogeneity shapes the firmware corpora
and analysis methods in research.

To better describe firmware and its heterogeneous property
space in this paper, we adopt the taxonomy by Muench et
al. [14]. They define four types on the axes of OS abstraction
and specialization. This appendix describes them in detail:

Type-0 Conventional Desktop and Server Systems. This type
describes common desktop or server OSs, e.g., Windows,
Linux, and Mac OS. They ship rich user environments and
general purpose kernels that add many hardware abstrac-
tions and features, like scheduling or file systems. Type-
0 has many functions and high modularity, but requires
certain components and more resources than other types. It
is not strictly firmware [14], but influences the other types.
Dominant ISAs are x86 and aspiring ARM platforms.

Type-1 General Purpose Embedded Systems. Type-I retrofits
Type-0 for embedded use: Because manufacturers know
device purpose and hardware, they can strip unused compo-
nents and add proprietary code. This allows less powerful
devices to host Type-O applications. Routers, e.g., may
use networking from Type-O OSs, but do not need media
codecs. Linux is a common OS in Type-I systems [11], [12].
Here, manufacturers couple stripped kernels with slim user
space environments like BusyBox [6]. Other popular Type-
I devices use Windows IoT, Android, or iOS. MIPS and
ARM are common ISAs [11].

Type-1I Special Purpose Embedded Systems. Type-II runs on
single purpose systems common in, e.g., industrial, automo-
tive, or healthcare settings. Respective devices are robotic
arms, wallboxes, or ECGs. Type-II handles requirements
where Type-I fails, e.g.: There is no memory management

https://dx.doi.org/10.1109/ASE51524.2021.9678785
https://dx.doi.org/10.1109/ASE51524.2021.9678785
https://www.usenix.org/system/files/sec21-johnson.pdf
https://www.usenix.org/system/files/sec21-chen-libo.pdf
https://doi.org/10.1145/3460120.3484543
https://www.usenix.org/system/files/sec21-zhou.pdf
https://dx.doi.org/10.1145/3548606.3560612
https://dx.doi.org/10.1145/3548606.3560612
https://www.usenix.org/system/files/sec22-marcelli.pdf
https://dx.doi.org/10.14722/ndss.2023.24415
https://openwrt.org/
https://openwrt.org/
https://dd-wrt.com/
https://dd-wrt.com/
https://downloads.openwrt.org/releases/23.05.0/targets/bcm53xx/generic/openwrt-23.05.0-bcm53xx-generic-asus_rt-ac87u-squashfs.trx
https://downloads.openwrt.org/releases/23.05.0/targets/bcm53xx/generic/openwrt-23.05.0-bcm53xx-generic-asus_rt-ac87u-squashfs.trx
https://downloads.openwrt.org/releases/23.05.0/targets/bcm53xx/generic/openwrt-23.05.0-bcm53xx-generic-netgear_r8000-squashfs.chk
https://downloads.openwrt.org/releases/23.05.0/targets/bcm53xx/generic/openwrt-23.05.0-bcm53xx-generic-netgear_r8000-squashfs.chk
https://scrapy.org/
https://archive.org/developers/wayback-cdx-server.html
https://www.vagrantup.com/
https://virustotal.github.io/yara/
https://github.com/threat9/routersploit
https://doi.org/10.48550/arXiv.1705.05347
https://www.usenix.org/system/files/sec19-dong.pdf
https://www.virustotal.com/
https://www.ndss-symposium.org/wp-content/uploads/2022-31-paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2022-31-paper.pdf
https://github.com/slimm609/checksec.sh
https://github.com/slimm609/checksec.sh
https://doi.org/10.5281/zenodo.13627731

unit or there is limited processing power. Hardware layouts
or special components may be unsupported by Type-I. There
could be no file system, or tasks may be too time-critical
for general purpose scheduling. Kernel and user space still
exist, but lines become blurry [14]. MIPS and ARM are
present, but there are plenty alternatives. Example Type-II
OSs are VxWorks, Zephyr OS, pClinux, and FreeRTOS.
Type-1I1 Bare-metal Embedded Systems. Type-Ill, or bare-
metal, systems have few to no OS abstraction: The firmware
is a monolithic executable that shows no separation between
kernel and user space. Applications execute in a single loop
and have direct access to hardware [14]. Being minimalistic
and low level, Type-III shows highest flexibility and least
requirements. Thus, it runs on controllers or other integrated
circuits. It is also used in highly constrained Internet-of-
Things (IoT) devices, sensors, and actuators. The code can
be custom or proprietary, but may use OS-like libraries for
protocol stacks, interrupt handlers, and memory manage-
ment. Example libraries are Contiki-NG and Mbed OS.

APPENDIX B
CATALOG OF CRITERIA FOR THE LITERATURE REVIEW

This appendix provides a catalog of criteria that we applied
to each paper to derive the literature review results in Fig. 5.

A. General Information

o If papers reused existing corpora, we considered all
information on corpus creation practices from the sources
and their artifacts as well.

We only considered data sets with real-world samples.
When papers used multiple real-world firmware corpora,
we considered all of them.

If a measure did not fit a paper’s research question, we
explicitly marked the data point as not applicable (D).
Example: An HIL-based method like IoTFuzzer [41]
does not need sample unpacking. Thus, neither unpacked
sample quantities, nor unpacking procedures can be doc-
umented.

B. Fulfillment Criteria for all 16 Measures

» Packed & Unpacked Samples, Manufacturers, Models,
Device Classes, and ISAs. Let M be one of the measures
above. M is ...

([0-9]+ / @) fulfilled, if the paper states concrete quantities
of M for all samples ...
1) ... in any kind of text (main, appendices, footnotes)
2) ... [OR] in figures or tables,
3) ... [OR] in shared meta data/linked repositories.
4) ... [OR] through complete sample lists in 1-3 that can be
used to independently calculate the quantities.
(@) partially fulfilled, if the paper desribes M ...

1) ... only for a subset of samples as stated in @,
2) ... [OR] imprecisely, e.g., some round values [7].

17

(O) unfulfilled in all other cases.

» Deduplication, Unpacking, and Acquisition. Let M be
one of the measures above. M is ...

(@) fulfilled, if the paper explicitly documents M ...
1) ... in any kind of text (main, appendices, footnotes)
2) ... [OR] in figures or tables,
3) ... [OR] in shared meta data/linked repositories.
4) ... [OR] through a complete list of sample data or scripts
to independently verify or replicate M.
(@) partially fulfilled, if the paper documents M ...
1) ... only for a subset of samples as stated in @,
2) ... [OR] incomplete, such that independent research must
assume substeps for verification or replication.
(O) unfulfilled in all other cases.

» Rel. Dates, Versions, Links, Hashes, and FW Types. Let
M be one of the file properties above. M is ...

(@) fulfilled, if the paper provides M for all samples ...

1) ... in any kind of text (main, appendices, footnotes)
2) ... [OR] in references,

3) ... [OR] in figures or tables,

4) ... [OR] in shared meta data/linked repositories.

5) ... [OR] (Links and Hashes) through shared samples.

(@) partially fulfilled, if the paper fulfills M only for a subset
of samples as stated in @.
(O) unfulfilled in all other cases.

» Sample Selection Reasoning and Ground Truth
Let M be one of the above. M is ...

(@) fulfilled, if researchers provide reasons for sample selec-
tion or consciously include bug ground truth before evalua-
tion. Reasons could be arbitrary and must not seem reason-
able to everyone. However, they are explicitly discussed and,
thus, documented and disputable. Examples: The method to
evaluate only supports certain ISAs, manufacturers, or OSs.

(@) partially fulfilled, if there is no explicit selection rea-
soning, but possible selection motives are derivable from
the paper. E.g., a paper rediscovers already known bugs in
samples. A lack of documentation leaves the reader guessing
if the researchers deliberately included samples with ground
truth or not.

(O) unfulfilled in all other cases.

APPENDIX C
LFwC: INSIGHTS ON CORPUS META DATA

Fig. 10 shows device classes per manufacturer. With 5,328
(49%) samples, routers are most prevalent in LFwC, followed
by switches (1,525/14%) and access points (1,345/12%). The
remaining classes have a prevalence between 162 (powerline)
and 851 (repeater). For illustration, we bundled the other 14
classes, with samples from 3 to 116, into misc (569, or 5%).

Fig. 11 shows the detected Linux kernel banners, grouped
by major and minor version. We removed manufacturer colors

N AVM [TP-Link 3 ASUS [D-Link [EDIMAX [EnGenius 3 Linksys I NETGEAR [TRENDnet I Ubiquiti

=5 1000
)
Ei
2 100
c
<
S
o 10
=
£
3

1

accesspoint ipcam mesh misc modem powerline repeater router switch
Device Class

Fig. 10. Distribution of device classes in LFwC. The three most prevalent classes are routers (49%), switches (14%), and access points (12%). We bundled
device classes with less than 150 samples into the meta class misc. It contains: controller, board, converter, encoder, gateway, kvm, media, nas, phone,

power_supply, printer, recorder, san, and wifi-usb.

54 § 16

4194 241

414 e 89

49 169

44 692

4.1 554

3.18 284

3. 1 - S S e 4 6.6

3.10 526

3.8 19

3.6 511

34 324

G o 1§ v w s P20}

32 17

2.6 5074
2.4 45

22 25

2.1 ——— 10

unk. 1423

—_

10

1000

Detected Linux Kernel Version Banners [Grouped by Major.Minor, log]

Fig. 11. Detected Linux kernel banners in LFwC samples. Versions range from 2.1 to 5.4, with Linux kernel 2.6 remaining the most prevalent version in
our data set (51%). In total, we found 9,901 kernel banners across all included images. We could not find a banner in 1,423 samples. Note that a sample can
ship with multiple kernels hosted by subsystems of independent device components.

=)
S

10

Sample Quantity [#, log]

PPC RISCV /390 SPARC x86

Detected Architecture

Fig. 12. Distribution of the nine detected ISAs in LFwC across all vendors on a logarithmic scale. The three most prevalent ISA families are MIPS (5,993
samples), ARM (4,764), and x86 (2,095). There are 13,429 unique findings on ISAs across all samples, because included subsystems must not run the same

ISA as the main system.

as the scale introduced false visual cues of over- and under-
represented shares. Versions range from 2.1 to 5.4, with 2.6
being most prevalent (5,074, or 51%). With 692 findings (7%),
version 4.4 is the second most prevalent, followed by 2.4 with
645 findings. With 16 matches for version 5.4 and 10 matches
for version 2.1, both extremes are rare in LFwC. In total,
we found 9,901 banners in LFwC. The above numbers are
already sanitized, as FACT found roughly 400 false positives
originating from a pptp-linux client binary with similar banner
format. Also we found multiple banners in some samples. This
is because images can contain multiple subsystems and, thus,
kernels. Cable modems embedded in routers, e.g., can run
independent kernels interfacing with the main system. This
data is present because the updates for sub components are

managed by the main system. In general, we found that the
existence of these subsystems in firmware images is often
overlooked in related work on large scale analyses.

Finally, Fig. 12 shows the nine detected ISAs. There are
13,429 unique ISA findings hinting at the subsystems embed-
ded into devices. In 5,993 images, we found MIPS, making
it the most common ISA in LFwC. ARM was found in 4,764
images. The third group is x86 with findings in 2,095 images
— most of them in powerful devices like managed switches
and enterprise routers. With findings in 59 to 143 samples,
the remaining ISAs, usually found in micro-controller sub-
components, are underrepresented.

TABLE VI
CONFIG. 1: ORIGINAL SERVER SPECIFICATIONS (FULL CORPUS)

Component Specifications
CPU 2x Intel Xeon E5-2650 v3@ 2.30 GHz, NUMA
RAM 157 GiB DDR4 @ 2133MHz
Board Dell OHFG24, LGA 2011 (PowerEdge R430)
SSD (OS) 512 GiB
HDD (Data) 4 TiB
Internet Speed 1 Gbps
(O] Ubuntu 22.04.4 LTS (Bare Metal)
Python 3.10.12
FACT v4.2-dev (commit 0984d0ca)

APPENDIX D
ARTIFACT APPENDIX

A. Description & Requirements

[Access] The artifacts are available on GitHub'. We persist a
git tag (ndss—25-ae) that marks the version we submitted
for artifact evaluation. A ZIP-archive is on Zenodo [76].
As we stated in our ethical discussion on corpus distribu-
tion, the detail meta data required for LFwC replication is
gated (cf. Section V-E). Researchers can request access to the
corpus [16].

[Hardware Requirements] LFwC requires 354 GiB for
samples, and 2.5 TiB for unpacking and content analysis.
Unpacking and analysis take several months on server-grade
hardware. Table VI shows our server specifications (Config. 1).
As the other artifacts run on modern x86-64 desktop machines,
we decided to add a second, down-scaled version of LFwC
with fewer samples. Our artifacts include a virtual machine
for quick deployment. As shown in Table VII, it requires 4
cores, 16 GiB RAM, and 100 GiB of storage (Config. 2).

[Software Requirements] For Config. 1, an Ubuntu 22.04
LTS system, with at least Python 3.10, is required. Also,
users must install FACT commit 0984d0ca. For a step-
by-step guide, we refer to the official pages®. Config. 2, as
shown in Table VII, is flexible and can be quickly deployed:
Users take a recent Linux version, and then install VirtualBox?3
>7.0 and Vagrant* 2.4. The latter will be used to auto-deploy
the virtual machine. We provide installers for all remaining
dependencies.

B. Setup Guide

We assume that the previous requirements are already
fulfilled. The user starts with a shell — either on the server
(Config. 1), or local (Config. 2):

First, users should obtain a copy of the repository via git:

$ git clone \
https :// github .com/ fkie —cad/linux —firmware —corpus. git \
“/linux —firmware —corpus

$ c¢d "/linux —firmware—corpus

Uhttps://github.com/fkie-cad/linux-firmware- corpus
Zhttps://github.com/fkie-cad/FACT_core/blob/master/INSTALL.md
3https://www.virtualbox.org/

“https://www.vagrantup.com/

19

TABLE VII
CONFIG. 2: DOWN-SCALED SPECIFICATIONS (CORPUS SUBSET)

Component Specifications
CPU VT-x/AMD-V Capable, 4 Cores for VM
RAM 16 GiB for VM
Storage 100 GiB
Internet Speed High-Speed, Unmetered
(] Arbitrary Modern Linux
VirtualBox >7.0
Vagrant 24
$ # optional: change to ndss-25-ae branch

$ git checkout ndss-25-ae

Config. 1 users install via prepare script and are finished:

$ ¢d “/linux —firmware—-corpus && ./ prepare

Config. 2 users skip installer invokation. The following
command downloads a FACT image, deploys it in VirtualBox,
mounts the repository, and invokes prepare:

$ cd “/linux —firmware—-corpus && vagrant up

Deployment takes 10 minutes, depending on download speed.
Once finished, users can browse to http://localhost:5000 and
are greeted by FACT. The machine is controlled as follows:

$

$
$

vagrant up # start the machine
vagrant halt # stop the machine
vagrant destroy # remove the machine + included data

The setup is now finished for Config. 2. Users can enter
the virtual machine via the following command:

$ vagrant ssh # establish ssh connection with the machine

To change virtual machine resources, edit the Vagrantfile.

All steps described in the following subsections must be
executed on the virtual machine, or dedicated server. However,
the browser can be opened locally for Config. 2, as ports are
forwarded to the host by VirtualBox.

C. Artifact Claims

1) Literature Analysis: The literature analysis in Sec-
tion IV is explorable. All statements from Sec-
tion IV-B, IV-C, and IV-D are verifiable.

2) Corpus Replication: LFwC is replicable (cf. Section V).
The included meta data and tools let researchers acquire
99% of all samples (as of June 2024, cf. Section V-C).

3) Corpus Analysis: All figures from Section V and Ap-
pendix C can be recreated. Corpus meta data is explorable
and researchers can create sub-corpora.

D. Literature Analysis Data Set

[Preparation] Go to notebooks. Run ./ jupyter. It asks
to open a URL with format http://localhost:8888/lab?token="*.
Open it in a browser to enter Jupyter Lab’.

Shttps://jupyter.org/

https://github.com/fkie-cad/linux-firmware-corpus
https://github.com/fkie-cad/FACT_core/blob/master/INSTALL.md
https://www.virtualbox.org/
https://www.vagrantup.com/
http://localhost:5000
https://jupyter.org/

[Execution][1 human-minute + 1 compute-minute] In
Jupyter Lab, navigate to the notebooks sub-folder and
open IV_literature_review.ipynb. Run all tiles by
clicking on the »» button below the opened notebook tab.

[Expected Results][15 human-minutes] The code loads
the paper analysis data. Scrolling down, all tables and fig-
ures from Section IV appear. Each statement from Sec-
tion IV-B, IV-C, and IV-D is quoted. There is code that
generates evidence for statement verification.

[Interactive] Researchers are invited to interactively explore
the data using Jupyter Lab and pandas® queries. To (re-)run a
specific cell, it must be selected. Then, click » in the top bar
below the tab view.

E. LFwC: Corpus Replication & Unpacking (Config. 1)

[Preparation] Get LFwC [16]. Navigate to replication
and place 1 fwc-full.csv inside the folder.

[Execution][15 human-minutes + 4 compute-months]

1) Download 354 GiB of LFwC samples into corpus:

$./replicate -1fwc ——corpus—csv Ifwc—full.csv \
download —-corpus—dir corpus

2) Verify sample downloads:

$./replicate -1fwc ——corpus—csv Ifwc—full.csv verify \
——corpus—dir corpus ——json >> verify.json

3) Inspect verify. json for missing/corrupt samples.
4) If samples are missing, use archive.org:

$./replicate -1fwc ——corpus—csv Ifwc—full.csv \
download —-corpus—dir corpus \
——continue —--use-wayback—machine

5) If samples are missing, use product and file data to man-
ually search for sources on the Internet (cf. Section V-C).
6) Upload the samples to FACT:

$./replicate -1fwc ——corpus—csv Ifwc—full.csv \
upload —-to-fact ——corpus—dir corpus

[Expected Results] After the download step, the corpus
folder should contain the samples. After (and during) upload,
the firmware images should appear in FACT, running on http:
/Nocalhost:5000. Each sample is now unpacked and analyzed.

[Interactive][30 human-minutes] LFwC can be interactively
explored, either via FACT’s web interface or its REST API.
We invite researchers to watch a talk’ on its capabilities, which
teaches tool-specific knowledge.

FE. LFwC: Corpus Replication & Unpacking (Config. 2)

For Config. 2, researchers can follow all steps from Ap-
pendix D-E. To reduce compute times and hardware require-
ments, we provide a tool to create sampled sub-corpora of
LFwC. The following steps describe how to use the script.

Ohttps://pandas.pydata.org/
7https://passthesalt.ubicast.tv/videos/improving-your-firmware-security-
analysis-process-with-fact/

20

After corpus creation, please follow Appendix D-E and sub-
stitute 1 fwc—full.csv with the newly created mini corpus.

[Preparation] Get LFwC [16]. Go to downscaling. Put
1fwc—full.csv inside the folder.

[Execution][1 human-minute + 1 compute-minute] Create a
random corpus of 50 samples, with 5 samples per manufacturer
and a maximum sample size of 30 MiB:

./build_corpus ——full_corpus Ifwc—full.csv \
——output 1fwc-mini.csv

If desired, invoke with ——he 1p to change creation parameters.

[Expected Results] A mini corpus in 1 fwc-mini.csv. This
can be used with the instructions in Appendix D-E.

G. LFwC: Corpus Meta Data Analysis

[Preparation] Get LFwC [16]. Navigate to notebooks.
Place 1fwc—full.csv in the public_data subfolder.
Run ./jupyter. It asks to open a URL with format
http://localhost:8888/lab?token=*. Open it in a browser to
enter Jupyter Lab.

[Execution][1 human-minute + 3 compute-minutes] In
Jupyter Lab, navigate to the notebooks sub-folder and open
V_1fwc.ipynb. Run all tiles by clicking on the »» button
below the opened notebook tab.

[Expected Results] The code loads LFwC’s meta data file.
Scrolling down, all tables and figures from Section V and
Appendix C are created.

[Interactive] Researchers are invited to interactively explore
LFwC’s meta data using Jupyter Lab and pandas queries.
Using this function, users can independently query the data
and create subsets. Depending on their own research questions,
they could, e.g., derive corpora that only include firmware with
specific device types, Linux kernel versions, or architectures.
At the bottom of the notebook, there is an example to show
how to query the data. To (re-)run a specific cell, it must be
selected. Then, click » in the top bar below the tab view.

H. (Bonus) LFwC: Historical Scrapers

We share our scrapers, but most of them likely fail, as
Internet resources disappear and web layouts change over time.

[Preparation] Navigate to scrapers.

[Execution][1 human-minute + var. download-hours] Ex-
ecute: ./scrape <manufacturer>. Valid values are:
archive_avm, archive_linksys, asus, avm, dlink, edimax, enge-
nius, linksys, netgear, tplink, trendnet, ubiquiti. On 2024-06-
30, we could verify that the D-Link scraper is still functional.

[Expected Results] Scraped samples should appear in
firmware_files. The collected meta data is written into a
JSON file that has the same name as the scraped manufacturer.

http://localhost:5000
http://localhost:5000

	Introduction
	An Analysis of Corpus Creation Challenges
	Requirements for Sound Firmware Corpora
	Goals of Scientifically Sound Firmware Corpora
	Key Corpus Requirements and Their Measures

	Analysis: Current Corpus Creation Practices in Top Tier Research
	Paper Selection & Data Collection Methodology
	General Statistics & Result Overview
	Preliminary Observations
	Quantitative Result Analysis by Measure
	On Quality over Quantity for Representative Results
	Are Current Practices Meeting our Requirements?

	LFwC: A New Corpus to Demonstrate the Practicability of The Proposed Requirements
	Corpus Creation
	Brief Insights on Corpus Composition
	Case Study I: Proof of Replicability
	Case Study II: Proof of Scientific Corpus Utility
	Ethical Discussion on Construction and Distribution
	Corpus Limitations & Future Expansion

	Conclusion
	References
	Appendix A: Firmware Taxonomy
	Appendix B: Catalog of Criteria for the Literature Review
	General Information
	Fulfillment Criteria for all 16 Measures

	Appendix C: LFwC: Insights on Corpus Meta Data
	Appendix D: Artifact Appendix
	Description & Requirements
	Setup Guide
	Artifact Claims
	Literature Analysis Data Set
	LFwC: Corpus Replication & Unpacking (Config. 1)
	LFwC: Corpus Replication & Unpacking (Config. 2)
	LFwC: Corpus Meta Data Analysis
	(Bonus) LFwC: Historical Scrapers

