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Abstract—Fingerprint-based authentication (FpAuth) is in-
creasingly utilized by Android apps, particularly in highly
sensitive scenarios such as account login and payment, as it
can provide a convenient method for verifying user identity.
However, the correct and secure use of Android fingerprint APIs
(FpAPIs) in real-world mobile apps remains a challenge due to
their complex and evolving nature.

This paper presents the first systematic empirical analysis
of FpAPI misuses in Android apps from the perspective of
the FpAuth lifecycle. First, we develop specialized tools to
identify and analyze apps employing FpAPIs, examining their
characteristics. Then we define the threat models and categorize
four prevalent types of FpAPI misuses through a detailed
lifecycle analysis in practical settings. Finally, we develop tools
to automatically detect these misuse types in 1,333 apps that
use FpAuth and find alarming results: 97.15% of them are
vulnerable to at least one type of misuse, with 18.83% susceptible
to all identified misuse types. The consequences of such misuses
are significant, including unauthorized data access, account
compromise, and even financial loss, impacting a broad user base.
We have responsibly reported these vulnerabilities, resulting in
the issuance of 184 CVE IDs and 19 China National Vulnerability
Database (CNVD) IDs, as well as acknowledgment from 15
vendors. We hope this work can raise awareness and emphasize
the importance of proper usage of FpAPIs.

I. INTRODUCTION

Nowadays fingerprint-based authentication (FpAuth) has
gained significant popularity in real-world mobile applications
(apps), as it provides an efficient and convenient way for users
to prove their identities. Specifically, FpAuth is widely used
in various security-sensitive scenarios, such as login, payment,
and authorizing access to sensitive resources. As a result, the
security of FpAuth in real-world mobile apps becomes a major
concern that demands more attention and protection.

In Android apps, developers are required to implement
FpAuth using the provided Android fingerprint APIs (FpAPIs).
However, these APIs come in different versions and are often
integrated with cryptographic APIs to enhance security, which
can be complex and may lead to inadvertent misuse by
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developers if not managed properly. Given the critical role
of FpAuth in securing sensitive operations and the potential
severe consequences of its compromise, such as unauthorized
access and data breaches, there is a pressing need to investigate
how these APIs are misused in the wild. This study, therefore,
aims to conduct a thorough empirical investigation into the
misuse of FpAPIs in real-world Android apps, providing
insights into the vulnerabilities and enhancing the overall
security of FpAuth1.

Existing works on FpAuth security can be mainly clas-
sified into two categories: 1) Spoofing Fingerprint Hard-
ware/Algorithms. These studies focus on spoofing the process
of fingerprint matching using fake or wrong fingerprints [1–6].
For example, DeepMasterPrints [4] uses a neural network to
create a synthetic fingerprint image that can fool a fingerprint
matcher, while FakeGuard [2] improves the fingerprint forgery
attack with more realistic and low-cost fake fingerprints.
2) Spoofing Users. The focus of these studies [7–9] is to
trick users with hijacked and crafted UI, rather than locating
vulnerabilities which can bypass the authentication process.
However, the above works do not consider the implementation
specifics of FpAuth, where improper FpAPI usage may also
pose security threats.

The most relevant prior work to our research is Broken-
Fingers [10], which deeply analyzes the cryptographic check
in FpAuth implementations during the verification stage. In
contrast, our research goes beyond this scope by delving
into the whole aspects of the FpAuth lifecycle from the
user’s perspective. Specifically, we uncover previously un-
explored areas, including the proper deactivation of FpAuth
functionality and the management of updates and changes
to fingerprint templates on the device. By examining these
overlooked aspects, our study provides a more comprehensive
understanding of FpAPI misuses in real-world Android apps.

We begin our research by identifying 1,333 (2.05%) FpAuth
apps from a dataset of 65,086 apps collected from various app
markets. Most of the FpAuth apps are popular and provide

1For convenience, this paper abbreviates the Android fingerprint API as
“FpAPI”, fingerprint-based authentication using FpAPIs as “FpAuth”, and
Android apps utilizing FpAuth as “FpAuth apps”.
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sensitive services to a large user base. We then conduct
a measurement study on these FpAuth apps to understand
their characteristics. Based on our findings, we are able to
delineate the threat models and summarize four common types
of FpAPI misuses. These misuses include: ① using outdated,
less secure versions of FpAPIs instead of the newer, more
secure ones (Obsolete API Usage), ② failing to correctly bind
cryptographic keys, which compromises the integrity of the
fingerprint verification result (Inadequate Cryptographic Vali-
dation), ③ not requiring authorization during the deactivation
of fingerprint protection (Unauthorized Fingerprint Deacti-
vation), and ④ failing to revalidate existing sessions when
fingerprints registered on the device are altered (Mishandled
Fingerprint Updates).

We then develop a static analysis tool to automatically
detect all four types of misuses, which first assesses the apps’
intentions with FpAuth and identifies the specific stages of
FpAuth lifecycles. The tool then proceeds to pinpoint the
presence of FpAPI misuse patterns within FpAuth apps. In
all 1,333 FpAuth apps, we find that 1,295 (97.15%) of them
contain at least one type of misuses. More concerning is that
251 (18.83%) of them exhibit all four types, cumulatively
accounting for over 109 billion downloads2 and impacting a
vast number of users globally.

Delving deeper into the details of each misuse, our mea-
surement study reveals several instructive findings. Notably,
despite the release of the newer, more secure version of
FpAPIs over five years ago, nearly half (47.79%) of the
apps assessed still rely solely on the older, more vulnerable
version. Additionally, the official support library, designed
to facilitate the secure and efficient use of these APIs, is
underutilized, particularly in apps originating from China.
Another significant observation is the tendency among some of
the developers to prioritize functionality over security. This is
evident in cases where developers have deliberately configured
the specific FpAPIs to overlook the fingerprint updates on
mobile devices. These findings highlight the pressing need
for increased attention to the security of FpAPIs by both app
developers and AOSP maintainers.

Our manual inspection of real-world apps has uncovered
that the identified misuses of FpAPIs could lead to severe risks,
such as unauthorized account takeovers, privacy violations,
and financial losses. We have responsibly disclosed these
vulnerabilities and received 184 CVE IDs and 19 CNVD
IDs. For instance, consider Binance, a leading global cryp-
tocurrency exchange and blockchain platform, which has been
downloaded over 50 million times from Google Play. This
app fails to properly manage fingerprint updates; consequently,
when a new fingerprint is added to the device, Binance permits
access without requiring re-authentication of the user. This
oversight could potentially allow unauthorized individuals to
execute transactions, leading to financial losses to legitimate
users. We report this issue and it is assigned CVE-2024-31695.

2The downloads data is crawled from Google Play and the Huawei app
market, which serve as the sources of our app dataset.

In summary, this paper makes the following contributions:

• We conduct the first comprehensive study on the entire
lifecycle of FpAuth in real-world Android apps, catego-
rizing the threat models of FpAuth and summarizing four
common FpAPI misuse types.

• We design and implement tools based on static analysis
to automatically identify FpAuth apps and detect FpAPI
misuses in these apps.

• Our empirical measurement of real-world apps reveals
that despite the critical security role FpAPIs serve, their
deployment is often flawed, leading to significant security
breaches and risks. The code and data used in this
study are publicly available at https://github.com/FpAuth/
FpAuthAnalysis.

Organization. § II describes the workflow of FpAuth and
the design details of FpAPIs. In § III, we introduce the method
for identifying FpAuth apps and present their characteristics.
§ IV elaborates our principled analysis workflow, the FpAPI
misuse details, and the consideration of app intentions, while
§ V shows the methodology for detecting four misuse types.
Then § VI demonstrates and analyzes the detection results.
§ VII and § VIII make discussions and summarize related
works, respectively. Finally, § IX concludes this work.

II. BACKGROUND

A. Fingerprint Authentication (FpAuth)

Android utilizes dedicated fingerprint sensors and a Trusted
Execution Environment (TEE) as the underlying foundation
to provide robust fingerprint recognition capabilities. It offers
high-level APIs for apps to perform user authentication based
on fingerprints. Figure 1 illustrates a fingerprint-matching
process and the entities involved in it.

Step 1
AOSP

Fp Sensor TEE FpAPIs FpAuth App

Step 2 Step 3 Step 4

User

Cryptographic Keys

☆

Fig. 1. The overall workflow of FpAuth in Android. The green area is resilient
against OS-level attackers, while the pink area is not. Note that we abbreviate
fingerprint to “Fp” for ease of representation.

In this workflow, users only interact with fingerprint sensors
(Step 1), and the fingerprint data are only securely stored
and matched in TEE (Step 2). That is, even if the Android
OS is compromised, the fingerprint data will be secure. After
matching the fingerprint within TEE, the result indicating the
success or failure of fingerprint verification is passed through
the Android framework (Step 3) to the apps through the
FpAPIs (Step 4).
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Table I
Two versions of Android fingerprint APIs.

Fingerprint API Available API Level Supported Features Required Permission Support Library

android.hardware.fingerprint.FingerprintManager 23 - 27 fingerprint USE BIOMETRIC or USE FINGERPRINT android.support.v4.hardware

android.hardware.biometrics.BiometricPrompt 28 - now fingerprint, face, iris USE BIOMETRIC androidx.biometric

While an OS-level attacker cannot disrupt the fingerprint
matching process conducted within the TEE3 (the green area
in Figure 1), they can introduce tampering risks to the result
processing procedure within the Android OS and FpAuth
apps (the pink area in Figure 1). Consequently, to meet
the requirements of apps in countering OS-level attackers,
Android provides a mechanism [11] that allows FpAPIs to be
used in conjunction with cryptography keys (✩ in Figure 1),
which are also secured through TEE or StrongBox [12] and
resilient to OS-level attackers. In such cases, parties with
the cryptographic key privileges can verify the fingerprint-
matching result without interference.

A typical example is in the design of FIDO (Fast IDentity
Online) [13], where the remote server of an app possesses a
public key, and the corresponding private key resides within
the TEE of the user’s mobile device. When fingerprint veri-
fication is completed within the TEE, the challenge from the
server is signed using the private key and sent back to the
remote server. This way, the app’s remote server can ascertain
the fingerprint verification result using the public key, immune
to OS or network attackers.

However, the binding of FpAPIs and cryptographic APIs,
while enhancing security, also introduces added complexity,
making it more challenging for developers to use them cor-
rectly. Our discussion on developers’ feedback in § VI-C
shows that developers face difficulties in this issue according
to their expressions in responses and their actions to deal with
it.

B. Android Fingerprint APIs (FpAPIs)

FpAPI Versions. As a novel feature, Android FpAPIs have
undergone a noticeable version change. As listed in Table I,
there are two major versions of FpAPIs: 1) The first version,
namely FingerprintManager APIs, was introduced in
AOSP 6 (API level 23) and deprecated in AOSP 9 (API
level 28); 2) The second and currently used version, namely
BiometricPrompt APIs, was issued in AOSP 9 to replace
the first version. AOSP also provides support libraries, such
as androidx.biometric library, to ensure compatibility
across different devices.

Compared to the first version, the newer version supports
more biometric features such as face and iris. More im-
portantly, in the first version, developers need to implement
FpAuth UIs by themselves, which may be easily hijacked by
local malicious apps [8, 9]. Thus in the second version, AOSP
fixes this problem by providing developers with a unified and

3In general, TEE is considered secure, and this paper does not consider the
scenarios where TEE is compromised.

easy-to-use authentication user interface, effectively mitigating
UI spoofing attacks [8, 9].

Preparation

G1. Availability Check

isHardwareDetected()

hasEnrolledFingerprints()

G2. Crypto Configuration

setUserAuthenticationRequired

setInvalidatedByBiometricEnrollment

Verification
G3. Fingerprint Verification

authenticate(CryptoObject, ..., Callback)

Result
Processing

Callback

onAuthenticationSucceeded(result)
onAuthenticationFailed()

G4. Result Handling

onAuthenticationSucceeded(result)

onAuthenticationFailed()

sign()

doFinal()

G5. Crypto Validation

Unlock

Fig. 2. Detailed FpAPIs in Android. Note that the functionality of these two
API versions is roughly the same, and FingerprintManager APIs are
used for illustration here.

FpAPI Details. Despite the above differences, the two
versions of FpAPIs remain fundamentally consistent in design
principles and usages. As shown in Figure 2, the process for
apps conducting FpAuth can be divided into 3 main phases
with 5 groups of FpAPIs: 1) During the Preparation phase,
FpAPIs are called to check the availability of hardware and
fingerprints, and to set up the cryptographic configurations.
2) In the Verification phase, authentication APIs are called to
verify the provided fingerprint. 3) In the Result Processing
phase, FpAPIs are called to handle the authentication result
and validate it with cryptographic operations. We discuss the
details of each group of FpAPIs below.

G1. Availability Check. Before initiating fingerprint ver-
ification, apps need to perform preliminary device checks,
including checking the availability of the fingerprint scanner
with isHardwareDetected and the existence of enrolled
fingerprints with hasEnrolledFingerprints to ensure
the feasibility of FpAuth.

G2. Cryptographic Configuration. In the preparation phase,
apps can also prepare a configured cryptographic key bound
with FpAuth to confirm the authenticity of the verification
result, as illustrated in § II-A. Security-related key configura-
tion here involves two APIs required to be set appropriately.
setUserAuthenticationRequired binds the crypto-
graphic key with fingerprint verification, and setInvali-
datedByBiometricEnrollment configures that a newly
enrolled fingerprint or deleting all existing fingerprints will in-
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validate the key, allowing apps to identify fingerprint updates.
G3. Fingerprint Verification. Apps can start fingerprint

verification by calling authenticate method, where the
reference to the cryptographic key can be passed in via
CryptoObject parameter. Then by comparing the provided
fingerprint template with the ones enrolled on the device, the
system will get a matching result and pass it back to the app.

G4. Result Handling. After verifying the fingerprint, the
Android framework will inform the app of the result by
invoking the given callback. For example, the invocation
of onAuthenticationSucceeded means the user has
successfully passed the fingerprint verification and apps can
perform subsequent operations in the callback.

G5. Cryptographic Validation. As previously stated, apps
need to combine with a cryptographic key to be resilient
against OS-level attackers. In this step, when previously se-
tUserAuthenticationRequired is set to True, only
a successful user fingerprint verification will unlock the use
of the key. Then the app can use this key to do cryptographic
operations, such as signing a message (using the API sign)
and securely verify the result on its server.

Overall, the Android FpAPIs offer robust capabilities for
FpAuth apps to defend against attacks. However, this requires
the app to appropriately set several groups of FpAPIs, whose
accompanying complexity may cause misuses of these APIs.

III. FPAPI MEASUREMENT STUDY

In this section, we conduct a measurement study on the
popularity of FpAuth and how FpAPIs are used in real-world
Android apps.

A. Identifying FpAuth Apps

First, we develop an automatic tool to identify real-world
apps with fingerprint-based authentication. The overall idea
is first to find all FpAPI invocations and then conduct a
reachability analysis to find a path from the entry points to
these invocations, as shown in Figure 3.

Reachability
Analysis

Filtering

Permission Analysis

API Scanning

Pre-processing

Unpacking

Crawling

Identification FpAuth Apps

Fig. 3. Methodology of FpAuth app identification.

Pre-processing. We first use crawlers to collect popular apps
from app markets. Upon collecting apps, we notice that some
are protected by packing, making static analysis impractical.
Therefore, we first make an effort to unpack these apps using
frida-dexdump [14]. Any successfully unpacked apps are then
included in our subsequent analysis.

Permission & API Filtering. we apply a preliminary filter
based on the requested permissions and FpAPI invocations
to narrow down the scope. Apps implementing FpAuth must
request either USE_BIOMETRIC or USE_FINGERPRINT
permission, as shown in Table I. Next, we use static analysis

to search for the presence of FpAPIs in the app’s code.
Specifically, we create a list containing all versions of FpAPIs
and scan the app’s decompiled code with Apktool [15] to filter
out the apps without invoking any FpAPIs.

Reachability Analysis. After API scanning, we obtain a
candidate list of FpAuth apps. However, we observe that dead
code may exist in these apps, e.g., integrating FpAuth-related
third-party SDKs but not using FpAuth functionality. To get a
more precise result, we further conduct a reachability analysis
to find a path from the entry points of the app to the FpAPI
invocations. In detail, we construct the call graphs for each
candidate app based on state-of-the-art static analysis tools,
including Soot [16] and FlowDroid [17]. Then we backtrack
the call graphs, from the invocations of the FpAPIs, to check
if they are initially called by the app’s entry points, namely
the exported components stated in its Manifest files. In this
way, we can exclude apps that have FpAPI invocations but do
not provide active FpAuth functionality.

Evaluating the Identification. We employ a best-effort
approach to manually evaluate the identification result. First,
for each reported FpAuth app by our static analysis, our team
of security experts will execute the app, engage in the regis-
tration and sign-in process, test the app, and seek evidence of
active FpAuth functionality. However, previous works [10, 18]
have shown that several challenges exist for manual dynamic
testing, such as the lack of certain prerequisites to register an
account, e.g., a bank card for a financial app. Consequently,
in cases where we encounter obstacles in creating accounts
and conducting comprehensive testing, we resort to a best-
effort manual examination of the app’s decompiled code, app
description in the market, privacy policies, and thorough online
searches to check the presence of FpAuth functionalities. For
example, the official website of the tested app, as well as user
comments4 may indicate that this app indeed supports FpAuth.

We randomly select 100 identified FpAuth apps (from 1,333
reported in Table II) and another 100 apps not recognized as
FpAuth apps but containing FpAPIs (from 2,546 apps but not
in 1,333 apps of Table II), to build the validation set. Two
security experts apply the above methods to determine whether
FpAuth exists in these 200 apps, which costs them about one
week to get the final result.

Result. Out of the 100 identified FpAuth apps, all of
them are confirmed to have FpAuth functionality, resulting
in a 100% true positive rate. For the other 100 apps with
FpAPIs but not recognized as FpAuth apps, we find that 17
of them do have FpAuth functionality. The reasons for these
false negatives (FN) include Soot/Flowdroid error or timeout
(6 apps), Flutter development (a framework for cross-platform
app development, 4 apps), native calls (4 apps), and strong
obfuscation (3 apps). These problems are mostly caused by
complex static analysis challenges, as also met in previous
studies [10, 19, 20].

4More specifically, we search the user comments on the app market, and
any comment indicating the app contains FpAuth functionality will be strong
evidence.
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Because our primary aim is to investigate misuse issues
within real-world FpAuth apps, we consider this proportion of
false negatives to be acceptable. We acknowledge that more
complex static analysis tools could enhance the identification
rate, but we view this as orthogonal work to our current
research focus.

B. Characteristics of FpAuth Apps

Prevalence. We collect all the top and free Android apps in
37 categories from Google Play Store [21] and 16 categories
from Huawei market [22], including 29,848 and 35,238 apps
respectively, as shown in Table II. Out of the total 65,086 apps,
5,545 apps request FpAuth-related permissions. Among them,
975 apps are equipped with packers that cannot be unpacked
using existing tools [14]. Among the remaining 4,570 apps, our
static analysis tool identifies that 2,546 of them (55.71%) con-
tain FpAPIs. This observation highlights a substantial concern:
a significant portion of apps (44.29%) request FpAuth-related
permissions without utilizing any FpAPIs. This underscores
the issue of excessive permission collection, consistent with
prior research findings [10, 23]. Finally, our reachability
analysis confirms that 1,333 of them are FpAuth apps.

Table II
FpAuth apps identification results.

Dataset Total Permission Analysis API Reachability
unpacked packed Scanning Analysis

Google Play 29,848 2,043 272 1,597 786*

Huawei Market 35,238 1,352 1,878 949 547
Sum 65,086 3,395 2,150 2,546 1,333
* We have removed 14 redundant apps that also occurred in the Huawei Market

according to the unique app package name.

Distribution & Significance. Figure 4 shows the distribution
of FpAuth apps across different categories. It is evident that
the majority of these apps belong to feature-rich or payment-
involved categories such as business, lifestyle, socialization,
and shopping. Additionally, health and sports apps often
require fingerprint scanning in their functionalities. Conse-
quently, considering the high sensitivity of these categories,
the security of FpAuth implementations holds substantial sig-
nificance for safeguarding critical aspects such as user privacy
and financial security.

These apps collectively have over 218 billion installations,
with an average of more than 164 million installations per app.
Consequently, any instances of FpAPI misuses within these
apps could potentially affect a large user base.

Origins of FpAuth Implementations. We also explore the
origins of FpAuth implementations in these apps, i.e., where
are the FpAuth code from. We first collect the package names
of the code where the FpAPIs are invoked and cluster these
package names based on their prefixes. These clustered groups,
inspired by previous works [24], after filtering out support
libraries and obfuscated ones, provide insights into the origins
of the FpAuth code.

Table III demonstrates the top 10 origins employed by
FpAuth apps in two markets. Through manual analysis of
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Fig. 4. FpAuth apps category distribution. Note that we merge similar
categories from Google Play and Huawei Market into 16 categories.

Table III
Top 10 FpAuth implementation origins used in Google Play & Huawei
Market apps. Note that some origins may have more than one prefix.

Origin in Google Play # Apps Rk. Origin in Huawei Market # Apps

org.telegram.messenger 24 1 com.baidu.sapi2/wallet 55
com.epic.patientengagement 21 2 com.tuya.security/smart 41
com.github.ajalt 21 3 com.wei.android 28
de.niklasmerz.cordova 12 4 com.alipay.security 25
com.americanwell.android 12 5 cn.org.bjca 23
io.flutter.plugins 10 6 com.tencent.soter 14
com.salesforce.androidsdk 9 7 us.zoom.androidlib 11
com.oath.mobile 8 8 ctrip.android.pay 11
com.visa.checkout 8 9 com.meituan.android 9
com.oblador.keychain 7 10 com.rnfingerprint.FingerprintHandle 7

Sum 132 (16.79%) - Sum 224 (40.95%)

these origins, we find that the FpAuth code may come from
dedicated FpAuth SDKs, open-source repositories on Github,
and apps developed by the same large companies, etc. Apps
using these origins account for 16.79% in Google Play and
40.95% in Huawei FpAuth apps, implying that if there are
misuse issues in them, a considerable number of apps may
inherit such issues and associated risks, especially in the
Huawei market.

Finding 1: FpAuth is widely used in popular and security-
sensitive apps, making its security of great importance.

IV. THE FPAPI MISUSE PROBLEM

In this section, we aim to figure out various types of
FpAPI misuses present in real-world Android apps through
a principled analysis approach.

A. Principled Analysis on FpAPI Usage

As shown in Figure 5, our principled analysis approach is
launched with the exploration of three fundamental questions:
Q1: Lifecycle Stages, what are the key stages in the FpAuth
lifecycle in real-world apps? Q2: Threat Model, who are the
potential attackers at these stages? Q3: Possible Misuse, what
are the possible misuse scenarios for these stages within the
context of the threat models?
Q1. What are the key stages in the FpAuth lifecycle
in real-world apps? By studying the FpAPI documents
and investigating real-world FpAuth apps, as well as our
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Q1. Lifecycle Stages Q2. Threat Model

Security
Standards

Attacker

Q3. Possible Misuse

VerifyActivate

Update
Deactivate Misuse

Fig. 5. Our principled analysis workflow.

experience of using smartphones with fingerprint sensors, we
sum up the following key stages in the fingerprint usage
lifecycle: 1) Activation, 2) Verification, 3) Updates, and 4)
Deactivation.

Specifically, in the Activation stage, the app activates the
FpAuth functionality by checking the environment and verify-
ing the user’s identity. In the Verification stage, the app uses
FpAPIs with the help of correctly configured cryptographic
APIs to finish the fingerprint verification, as demonstrated
in Figure 1. After that, chances are that the enrolled fin-
gerprint templates on the device may Update, i.e., adding
new fingerprints or deleting fingerprints by the device users.
Under such circumstances, the app should be responsible for
effectively handling potential impacts to FpAuth caused by
fingerprint updates. For example, if new fingerprints are added,
potentially by someone other than the account owner, apps
may want to re-verify the user’s identity for account protection.
Finally, in the Deactivation stage when users no longer wish
to use FpAuth, the app should carefully verify whether such
operations are initiated by legitimate users and deactivate the
FpAuth functionality.

Through our investigation of this question, we have ob-
served that previous research on fingerprint security has mostly
focused on the Verification [8–10] stage while overlooking the
significance of the other critical phases, such as Updates and
Deactivation.

Q2. Who are the potential attackers at these stages?
By categorizing potential attackers and assessing their capa-

bilities, we investigate the threat models that these key stages
may encounter. We have identified four types of attackers that
require attention, including 1) Local Software-level Attacker,
2) Local OS-level Attacker, 3) Physical Curious Attacker, and
4) Physical Intimate Attacker.

Specifically, a Local Software-level Attacker is able to install
malicious apps on the victim’s device (i.e., app-wide) or embed
malicious code like SDKs in normal apps (i.e., in-app), thus
they can induce the victim to perform fingerprint verification
through UI attacks [9, 10]. A Local OS-level Attacker, also
known as a root attacker, can compromise the Android system
of the victim, allowing them to inject malicious code and
hijack the execution flow of the FpAuth apps. We also consider
physical attackers who can access the victim’s mobile device,
which is practical in daily social interactions. A Physical
Curious Attacker may have the chance to access the victim’s
unlocked device. In some cases, they may have a one-time
opportunity to access the target app, e.g., when the app is

unlocked, but seek to gain permanent access to that app
whenever the attacker can use the victim’s unlocked device
again.

On the other hand, we also consider a Physical Intimate
Attacker, who not only has physical access to the victim’s
device but also knows the locking PIN, which may be obtained
through shoulder-surfing attacks [25], guessing attacks [26],
or any other ways leaked by the victim. In this scenario, the
attacker aims to bypass the FpAuth protection, for example,
to execute stealthy transactions.
Q3. What are the possible misuse scenarios for these stages
within the context of the threat models? To gain a deeper
understanding of fingerprint security within the context of the
aforementioned threat models, we conduct a pilot study on
real-world FpAuth apps.

Pilot Study Dataset. We collect a representative set of apps,
including open-source and closed-source ones, to manually
inspect the FpAuth implementations in them. First, we select
1 app from each of the previously identified 20 clustered
origins (Table III), which can represent a substantial portion of
FpAuth apps. Then we collect open-source FpAuth apps from
a famous open-source Android app repository, F-Droid [27].
Specifically, we search FpAuth-related permissions and APIs
and manually verify the existence of FpAuth in these apps,
resulting in 14 apps. Finally, we randomly select 3 apps from
each of the 2 app markets in our dataset. The above steps result
in a total of 40 representative FpAuth apps, covering all app
categories identified in our analysis. This dataset is presented
in the Appendix (Table XIII).

Manual Inspection. We then conduct a manual inspection
of each key stage within these apps, taking into account
all potential attackers as mentioned earlier. In particular, we
examine how these apps utilized FpAPIs, cross-referencing
their usage with the official documentation to validate and
identify any issues or discrepancies that may exist. As a result,
we are able to summarize four common misuse types, as listed
in Table IV.

Table IV
Overview of FpAPI misuses and corresponding threat models.

Misuse Threat Model

M1. Obsolete API Usage Local Software-level Attacker
M2. Inadequate Cryptographic Validation Local OS-level Attacker
M3. Unauthorized Fingerprint Deactivation Physical Curious Attacker
M4. Mishandled Fingerprint Updates Physical Intimate Attacker

Among all the misuse types, M1. Obsolete API and M2.
Weak Crypto have been partially touched in previous works [8,
10], while M3. Unauthorized Deactivation and M4. Mishan-
dled Updates are first proposed by this work. We discuss the
details of each misuse in the next subsection.

B. FpAPI Misuse Types

We discuss the details of the four misuse types in this
subsection. Note that the misuses are determined considering
the specific app intentions.
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1
  // Pattern 1: Obsolete API Usage
  fingerprintmanager.authenticate(...);   // Misuse: Only using the deprecated version 
 (FingerprintManager) of FpAPIs, instead of the new version (BiometricPrompt) 

Fig. 6. Example of the misuse pattern of obsolete API usage (M1).

M1. Obsolete API Usage. This misuse type refers to the
app developers still using the deprecated, insecure version of
FpAPIs, i.e., FingerprintManager (Figure 6). While it
has been highlighted in previous work [8] that this version
of the APIs is insecure, the proportion of real-world im-
plementations that have migrated to the newer version and
corresponding support libraries remains unclear.

M2. Inadequate Cryptographic Validation. This type
of misuses refers to the inability to utilize cryptographic
capabilities adequately to securely verify the authenticity of
fingerprint verification results. As detailed in § II-B, the
app receives fingerprint verification results from the Android
framework. Even though the fingerprint matching process is
secure within TEE, there remains a possibility of tampering
during the transmission of verification results and processing
in the apps, particularly by local OS-level attackers. Previous
works [10] have discussed this problem, however, we observe
that it is unnecessary to defend against OS-level attackers for
some apps, and we will discuss this scenario in § IV-C.

1
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  // Pattern 2: Null Cryptographic Object
  fingerprintmanager.authenticate(null);   // Misuse: Setting parameter crypto to 
 null causes FpAuth is not protected by cryptographic key

  // Pattern 3: Failed Key Binding
  keyGenerator.init(KEY_NAME)
      ...
      .setUserAuthenticationRequired(false);   // Misuse: Not explicitly setting this 
 API to true causes failure to bind FpAuth with cryptographic key
  fingerprintmanager.authenticate(CryptoObject(cipher.init(KEY_NAME)), ...);   

  // Pattern 4: Failed Result Validation
  keyGenerator.init(KEY_NAME)
      ...
      .setUserAuthenticationRequired(true);   
  fingerprintmanager.authenticate(CryptoObject(cipher.init(KEY_NAME)), ...);

  public void onAuthenticationSucceeded(result) {   
      log.info("FpAuth succeeded!");   // Misuse: Not validating the result using 
 cryptographic key causes the result can be forged
  }

Fig. 7. Examples of three misuse patterns of inadequate cryptographic
validation (M2).

To bind cryptographic keys with FpAuth, developers need to
configure several FpAPIs correctly. During this process, three
common code patterns may arise: Null Cryptographic Object
(as seen on Line 2 in Figure 7), Failed Key Binding (Line 7),
and Failed Result Validation (Line 21). On the other hand, the
best practice is to utilize the appropriate cryptographic key, set
the parameter of setUserAuthenticationRequired to
True, and use the cryptographic key to sign the results and
validate on the server side.

M3. Unauthorized Fingerprint Deactivation. This type
of misuses refers to apps not verifying the operator’s identity

when FpAuth is deactivated, causing an unauthorized bypass
of FpAuth. Initially, an app using FpAuth aims to protect itself
from being used by unauthorized users, but if this protection
method can be easily disabled, it becomes ineffective. In
practice, a physical curious attacker may gain access to the
victim’s phone with the FpAuth app unlocked, e.g., when the
victim shows a message/picture on the app to nearby users,
so the attacker can deactivate the FpAuth protection. Subse-
quently, whenever the attacker obtains the victim’s unlocked
phone again, they can use the app freely. This poses the
risk of potential information leakage and even financial loss,
especially when considering a scenario where the victim’s app
is a payment app with FpAuth enabled to secure transactions.
The code pattern for this type of misuses is shown in Figure 8.
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  // Pattern 5: Unauthorized Fingerprint Deactivation
  Switch fpSwitch = findViewById(R.id.fingerprintSwitch);
  listener = new OnCheckedChangeListener() {
  public void onCheckedChanged(..., boolean isChecked) {  
  if (isChecked) { // activating FpAuth
  ...  

} else {
... // Misuse: Not authenticating when deactivating FpAuth

  } 
  }
  fpSwitch.setOnCheckedChangeListener(listener);

Fig. 8. Example of the misuse pattern of unauthorized fingerprint deactivation
(M3).

M4. Mishandled Fingerprint Updates. This type of
misuses refers to a situation where the enrolled fingerprints on
the device have changed, but the FpAuth apps fail to correctly
respond to such change, leading to FpAuth being weakened
or totally bypassed. In this case, we consider the presence
of a physical intimate attacker, who manages to know the
PIN code of the victim’s device, using methods described
in Q2 of § IV-A. Originally, the FpAuth is protected by
fingerprint verification, so even if the attacker knows the PIN
and can unlock the victim’s device, they cannot directly use the
functionality, e.g., payment, protected by FpAuth. However,
if this misuse type exists, the attacker can take advantage
of it by adding their own fingerprint (after first verifying
the PIN), thereby gaining access to the FpAuth-protected
functionality. The attacker may also choose to remove all
enrolled fingerprints on the device. If the FpAuth app fails
to detect these changes, there is a risk that the attacker may
gain unauthorized access to the target app. Below we discuss
the details of two kinds of fingerprint updates: addition and
removal.

1) Addition. In Android, apps can perceive fingerprint
additions on the device by using a cryptographic key bound to
FpAuth (as discussed in M2. Weak Crypto). This perception
requires accurate use and configuration of the relevant APIs.
In this context, patterns 2 and 3 in Figure 7 also contribute
to M4. Mishandled Updates, as they do not use a key or fail
to bind the key to FpAuth. Also, another pattern contributing
to M4 is shown in Figure 9, where despite correctly binding
the key, mistakenly setting setInvalidatedByBiomet-

7



1
2
3
4

5

  // Pattern 2: Null Cryptographic Object
  // Pattern 3: Failed Key Binding

  // Pattern 6: Failed Enrollment Handling
  keyGenerator.init(KEY_NAME)
      ...
      .setUserAuthenticationRequired(true)  
      .setInvalidatedByBiometricEnrollment(false);  // Misuse: Setting this API to 
 false causes failure to handle the enrollment of new fingerprints
  fingerprintmanager.authenticate(CryptoObject(cipher.init(KEY_NAME)), ...);

Fig. 9. Example of the misuse patterns of mishandled fingerprint updates
(M4-Addition).

ricEnrollment API to false explicitly results in failing to
handle the enrollment of new fingerprints.

  // Pattern 7: Failed Removal Handling
  if (fingerprintmanager.hasEnrolledFingerprints()) {

...
  } else {

... // Misuse: Not authenticating when all fingerprints are removed
  }

1
2
3
4
5

Fig. 10. Example of the misuse pattern of mishandled fingerprint updates
(M4-Removal).

2) Removal. A physical intimate attacker can also delete
all enrolled fingerprints on the victim’s device. If the FpAuth
app fails to detect or mishandles this change, the attacker may
gain access to the FpAuth app. A common pattern of this
misuse is depicted in Figure 10, where the app checks for
the existence of fingerprints on the device. If no fingerprints
are found, it proceeds to unlock the protected functionality,
such as displaying sensitive information. The best practice is
to provide a fallback authentication method (such as setting
a password), to ensure authentication protection in case no
fingerprints for FpAuth.

C. Consideration of App Intentions

In real-world deployments, apps may have their specific
intentions. Our study categorizes app intentions concerning
FpAuth from two different perspectives: usage scenarios and
authentication choices, as follows.

First, apps may employ FpAuth for two different usage
scenarios:

• Local Unlocking, where the FpAuth is used for local
data protection as shown in Figure 11(a). In this case,
it’s unnecessary to assume that the app should defend
against OS-level attackers since if these attackers gain
OS-level privileges, they can access all local data of the
app without needing to specifically bypass FpAuth. This
type of app should focus on the other three types: M1.
Obsolete API, M3. Unauthorized Deactivation, and M4.
Mishandled Updates.

• Remote Authentication, where the FpAuth is used for
remote service protection such as payment and login. In
this case, apps should consider all four misuse types.

Second, when implementing FpAuth, developers may have
different authentication choices:

(a) Local Unlocking (b) PIN Alternative

Fig. 11. FpAuth examples with intentions of Local Unlocking and PIN
Alternative. Note that (a) shows a fingerprint lock when entering the app.

• PIN Alternative, which configures the device PIN as
an alternative to FpAuth, allowing users to choose to
authenticate using FpAuth or PIN as shown in the upper
panel of Figure 11(b). In this case, apps may not want to
defend against physical intimate attackers, especially for
those apps that do not contain highly sensitive operations.
They may assume that the device PIN is the last level
of security protection, and an FpAuth process does not
provide additional protection over the device PIN. As a
result, they can choose to explicitly set several relevant
APIs listed in Table VI, so that the FpAuth is allowed
for fallback to the lock screen PIN [28]. This type of app
should focus on M1. Obsolete API, M2. Weak Crypto,
and M3. Unauthorized Deactivation.

• Fingerprint-only, which disallows the device PIN to be
an alternative to the FpAuth, requiring users to use only
FpAuth for authentication as shown in the lower panel of
Figure 11(b). In this case, apps should consider all four
misuse types.

Table V
Summary of four types of misuses and their related app intentions, FpAuth

lifecycle stage, and code patterns.

Misuse App Intention Stage Code Pattern

M1. Obsolete API - Verification P1
M2. Weak Crypto NOT local unlocking Verification P2, P3, P4
M3. Unauthorized Deactivation - Deactivation P5
M4. Mishandled Updates NOT PIN alternative Updates P2, P3, P6, P7

Table V summarizes the mappings between each misuse
type, its conditions in the context of app intentions and FpAuth
lifecycle stages, and the corresponding code patterns. We will
refer to this table to detect real-world FpAPI misuses.

V. FPAPI MISUSE DETECTION

This section will describe how we automatically detect the
FpAPI misuses in FpAuth apps based on static analysis. Then,
we evaluate the effectiveness of the detection tool.
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A. Detecting FpAPI Misuses

Although we have summarized the identified misuses into
specific patterns, the actual implementations of these patterns
in real-world apps vary significantly. Furthermore, some apps
may employ obfuscation, encryption, or other techniques to
obscure their implementation details, further complicating
detection efforts. Thus, detecting these misuses accurately
is challenging. Nonetheless, we strive to overcome these
challenges to ensure the efficiency and accuracy of our misuse
detection methods.

Approach Overview. We implement our misuse detection
based on static analysis. Although dynamic analysis can
yield more accurate results, it is limited by accounts login
requirements [10, 18], such as the need for a bank card
during registration. Besides, static analysis is more efficient
for detecting misuses on such a large scale. As shown in
Figure 12, the detection of the identified four types of misuses
includes three major steps: 1) Intention Analysis, 2) Stage
Identification, 3) Pattern Matching.

S1. Intention Analysis S2. Stage Identification S3. Pattern Matching

Soot IR

PIN
Alternative

Local
Unlocking

VerifyActivate

UpdateDeactivate

Setting Fallback

Misuse 
Pattern

App Code

Fig. 12. Methodology of FpAPI misuse detection based on static analysis.

1) Intention Analysis: We begin by identifying the two spe-
cific types of app intentions outlined in Table V, namely Local
Unlocking and PIN Alternative. The idea involves combining
the semantics of both the UI and code to infer the intentions
of FpAuth apps.

To identify FpAuth used for Local Unlocking, we first use
static analysis to extract relevant FpAuth UI and code details.
Inspired by prior work on recognizing login functions [19], we
traverse through the FpAuth code call chains and UI elements
texts to identify the semantics of “unlock”. The specific
process involves: a) Searching for terms like “fingerprint
lock” and “unlock” to consider them as Local Unlocking. b)
Excluding references to non-local types like “payment” and
“login”. c) In cases where the exact semantics are unclear, we
categorize them as Local Unlocking conservatively.

Table VI
APIs related to PIN Alternative configurations.

API PIN Alternative Conditions

setNegativeButton(...)† Not invoking this API
setDeviceCredentialAllowed(boolean allowed) allowed = True
setAllowedAuthenticators(int authenticators) authenticators & DEVICE CREDENTIAL != 0
† Corresponds to setNegativeButtonText API in androidx.biometric library.

To identify FpAuth used as PIN Alternative, we apply static
data flow analysis to determine the exact parameter values for
a couple of relevant APIs based on the conditions in Table VI.
Note that the APIs offered by AOSP are a little intricate.

For example, if developers configure the negative button in
Figure 11(b) using setNegativeButton API, they will
not be able to utilize the latter two APIs to set FpAuth as PIN
Alternative. Otherwise, developers can utilize one of the latter
two APIs in Table VI to designate FpAuth as PIN Alternative.

2) Stage Analysis: We also need to identify the deactivation
and updates stages to detect M3. Unauthorized Deactivation
and M4. Mishandled Updates. The core idea is to analyze the
context of the related UI and code where FpAuth is conducted.

For the deactivation stage, we find that most apps provide
the “Deactivate Fingerprint” functionality with a toggle switch
in their “Setting” pages. Therefore, we use static analysis
to firstly find such toggle switches and then locate their
event handling functions (onCheckedChanged). We then
employ backward analysis from authenticate API to the
toggle switches, ending with the event callback onChecked-
Changed of a switch UI element, and inspect whether FpAuth
is performed when it is deactivated. Note that in cases where
apps don’t use onCheckedChanged method, we look for
features related to the switch status like “checked”, and
utilize semantic features to identify custom switch component
implementations.

For the updates stage, we aim to determine whether the
removal of all fingerprints has triggered unauthorized ac-
cess. Specifically, we associate the removal of all fingerprints
with the invocation of hasEnrolledFingerprints or
canAuthenticate API, which checks the presence of
enrolled fingerprints. We then perform path-sensitive control
flow analysis to trace the return values of these APIs and
determine whether the apps have allowed access to sensitive
resources or operations without any authentication protection.

3) Pattern Matching: We perform pattern matching after
the app intention analysis and stage analysis. According to the
7 patterns summarized in § IV-B, we conduct static analysis
to identify specific code patterns indicative of each misuse.
This involves analyzing the app’s bytecode to search for
sequences of API calls and the value of API parameters or
control flow structures that match the predefined patterns. For
example, to detect M2. Weak Crypto, we analyze code seg-
ments where authenticate API is invoked without proper
cryptographic key configuration or validation. Similarly, for
M3. Unauthorized Deactivation we look for instances where
the event handling function of the UI component (switch) in
the specific context is previously invoked on the call chains
of authenticate API. By systematically matching these
patterns against the app’s code, we can effectively identify
instances of each misuse.

4) Implementation Details: We implement the control flow
and data flow analysis based on state-of-the-art tools, i.e.,
Soot [16] and FlowDroid [17]. We parse the APKs and
construct the call graphs referring to these tools. In our misuse
detection, we conduct data flow analysis to track the variable
value based on Shimple intermediate representation (single
static assignment form). Our static analysis approach considers
various aspects critical to the accurate detection of FpAPI
misuses. Specifically, we include the data flow and implicit
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control flow, covering multi-threading constructs, some inter-
component communications, lifecycles of activities, and com-
mon Android callbacks. During this process, we observed that
the FpAuth functionalities are often implemented in Android
fragments [29], a special type of component not modeled by
these tools. Therefore, we extend the modeling of Android
components to incorporate fragment lifecycles to build a more
complete call graph for FpAPI misuse detection. Moreover,
while code obfuscation is a prevalent issue in static analysis,
our misuse detection targets FpAPIs, which are system-level
APIs typically not subjected to obfuscation by apps. The
code of this static analysis tool is open-sourced at https:
//github.com/FpAuth/FpAuthAnalysis to ease reproduction and
foster subsequent studies.

B. Evaluating Misuse Detection

Evaluating the Detection. To validate the effectiveness of
the proposed misuse detection method, we manually test all
identified 1,333 FpAuth apps. As a result, we have successfully
tested the FpAuth functionalities of 334 apps. The remaining
apps could not be tested due to special restrictions including
requiring a bank card, ID card, phone number of certain
countries, area restrictions, etc., servers not responding, and
legacy FpAuth implementations that cannot be dynamically
triggered. We have two security experts to manually evaluate
these apps, where all of these apps are cross-validated. They
are asked to dynamically run each app, finish account login,
and test all the FpAuth lifecycles for potential misuses, for
example, verifying if user authentication is provided when
deactivating FpAuth in the app settings.

To help our security expert better detect FpAPI misuses,
we also develop scripts based on dynamic instrumentation
using Frida [30]. Specifically, we hook the different versions
of FpAPIs to record their invocation details and simulate
root attackers to tamper with the fingerprint verification result
to assess M2. Weak Crypto. These scripts can facilitate our
manual analysis.

Result. We calculate the precision and recall of the proposed
detection method, by comparing with the results from the man-
ual evaluation on the testable 334 apps, as shown in Table VII.
We can find that the proposed method can achieve relatively
high precisions and recalls, considering that FpAuth is tightly
coupled with the specific logic and various implementations
in real-world mobile apps.

Table VII
Precision and recall of our misuse detection tool.

Misuse TP FP TN FN Precision Recall

M1. Obsolete API 192 0 142 0 100.00% 100.00%
M2. Weak Crypto 187 42 6 3 81.66% 98.42%
M3. Unauthorized Deactivation 206 34 18 76 85.83% 73.05%
M4. Mishandled Updates 199 29 33 47 87.28% 80.89%

We then manually examine the false positives and false
negatives in our detection tool, and find that they are mainly
attributed to the limitations of static analysis. Among the false
positives, the most common reason is that there are multiple

redundant FpAuth implementations in the app, and the one
with misuse remains unexecuted. Although we have integrated
a reachability analysis to exclude dead code, chances are that
the static analysis tool fails to determine complex branching
conditions.

On the other hand, the false negatives are primarily due to
code obfuscation and invocation of native code, which result
in an incomplete call graph. Additionally, some apps may use
customized UI components, such as using ImageView as
the switch for deactivating FpAuth (M3. Unauthorized Deac-
tivation). These challenges are inherent to all static analysis
techniques. Thus, we consider them orthogonal issues and
recommend more advanced static analysis methods for future
work.

VI. FPAPI MISUSE ANALYSIS

In this section, we present the overall results of FpAPI
misuses and break down each type of misuses with detailed
analysis and case studies.

A. Overall Result

Table VIII displays the overall results of four types of
misuses within the 1,333 identified FpAuth apps. From the
table, we can infer several insights regarding the prevalence
and distribution of these misuse types:

• High Incidence of Misuse: Nearly all FpAuth apps
(97.15%) are found to have at least one misuse, with each
type of misuses present in nearly or more than half of the
apps, indicating widespread security concerns across the
real-world FpAuth implementations.

• Most Common Misuse Type: The most prevalent type
of misuses is M2. Weak Crypto, affecting 999 apps
(74.94%). This suggests that this specific misuse is more
challenging for developers to avoid, making it a critical
target for further security enhancements.

• Use of Obsolete FpAPIs: Despite the new version of
FpAPIs has been introduced for over five years by AOSP,
nearly half of the apps (47.79%) persist solely using the
deprecated version. This suggests potential barriers to
adoption, such as compatibility issues or a lack of aware-
ness about the advantages of the new FpAPIs version.

• Multiple Misuses within Single Apps: A significant num-
ber of apps (251, representing 18.83%) exhibit all four
types of misuses, vulnerable to various types of attackers,
endangering the FpAuth security.

Table VIII
Four types of misuses in 1,333 FpAuth apps.

Misuse # Apps (Proportion) # Misuse # Apps (Proportion)

M1. Obsolete API 637 (47.79%) 1 179 (13.43%)
M2. Weak Crypto 999 (74.94%) 2 377 (28.28%)
M3. Unauthorized Deactivation 871 (65.34%) 3 488 (36.61%)
M4. Mishandled Updates 894 (67.07%) 4 251 (18.83%)

# Apps without Misuse 38 (2.85%)

These findings reveal that misuses of FpAuth are common
issues in real-world apps, affecting a vast user base, as
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evidenced by the cumulative download count exceeding 109
billion for the 251 apps exhibiting all four misuses. The total
downloads for all 1,295 apps with any misuse surpasses 217
billion. The observation underscores the challenges developers
encounter when implementing FpAuth securely and the critical
need for improved security practices.

Given these widespread issues, particularly prevalent in
business apps (201 misused apps), which are often security-
sensitive, there is a clear necessity to enhance developer
awareness and comprehension of FpAPI misuses. In the next
subsection, we will explore each misuse in detail to offer
deeper insights, aiming to enhance developers’ awareness of
FpAuth security practices.

Finding 2: Misuse of FpAPIs is widespread in real-world
apps, underscoring the urgent need to enhance developers’
understanding and ability to correctly use FpAPIs.

B. Breakdown of Misuse

1) M1. Obsolete API Usage: One intriguing observation
from the overall results is that despite 5 years passing since the
release of the more secure and reliable new version of FpAPIs,
a significant number of real-world apps continue to only use
the old, insecure version. Thus we look deep into the details
of various aspects including the distribution of utilized API
versions, and the prevalence of apps using different versions
of APIs.

Fig. 13. Distribution of FpAPI version used by FpAuth apps.

• Distribution of FpAPI Versions Used: The distribution
varies significantly between Google Play and the Huawei
market as shown in Figure 13. Specifically, we find that
M1. Obsolete API is more common in the Huawei market.

• Usage of Recommended Library: Google’s recommended
library androidx.biometric, designed to address
both compatibility and security concerns, is underuti-
lized by apps, especially in the Huawei market (only
1.03%) while Google Play exhibits a much higher usage
(46.82%).

• Prevalence of Apps Using Different FpAPI Versions:
Upon analyzing the popularity of these apps, we find
that in Google Play, apps only using deprecated API (with
M1. Obsolete API) average around 15 million downloads,
lower than 41 million for those without M1. However, in
the Huawei market, apps with M1 average 494 million
downloads, significantly higher than the download count
of apps without M1 (171 million). This shows a trend
where popular Google Play apps favor the newer, more

secure FpAPI version, while the Huawei market exhibits
the opposite trend, potentially increasing security risks.

Case 1: Meituan (com.sankuai.meituan), which is a com-
prehensive lifestyle platform app in China offering diverse
services like food delivery, and hotel reservations, with over
17 billion downloads5 in the Huawei market, It offers FpAuth
as one of the means of authorizing payments. Our analysis
identifies M1. Obsolete API within its FpAuth implementation,
specifically only using the insecure and deprecated Finger-
printManager API. As elaborated § IV-B, apps utilizing
this API are susceptible to the fingerprint-jacking attack where
a malicious app can deceive the user into authorizing finger-
print verification for fraudulent payments, potentially resulting
in financial losses for the user.

Finding 3: The adoption of the newer, more secure version
of FpAPIs should receive increased attention from both the
developers and AOSP.

2) M2. Inadequate Cryptographic Validation: Among all
four types of misuses identified, this particular misuse is
the most prevalent in apps. Table IX provides a detailed
breakdown of the various code patterns that lead to this
misuse. We discover that the most common code pattern, P2,
accounts for 73.37% of cases, where developers directly omit
the cryptographic parameters. This may imply that the majority
of developers implementing FpAuth are not conscious of the
need to combine keys and server-side verification to ensure
the security of FpAuth.

Table IX
Distribution of the three patterns leading to inadequate cryptographic

validation misuse (M2). Note that we exclude apps with the intention of
Local Unlocking.

Misuse Pattern # Apps

P2. Null Cryptographic Object 733 (73.37%)
P3. Failed Key Binding 67 (6.71%)
P4. Failed Result Validation 199 (19.92%)
Sum (with M2. Weak Crypto) 999

Case 2: 58 Tongcheng (com.wuba), which is an online
classifieds marketplace app in China providing diverse ser-
vices like job postings, and real estate, with over 10 billion
downloads6 in the Huawei market. The app uses FpAuth in
a remote authentication scenario, specifically account login.
However, 58 Tongcheng’s FpAuth implementation exhibits
misuse pattern 2 (Null Cryptographic Object). Through track-
ing the crypto parameter set in the authenticate API, it
is eventually found that the value of this parameter is Null.

The existence of M2. Weak Crypto poses potential risks of
taking over the user’s account, compromising user data and
privacy such as work and rental details, and even leading
to financial loss. After reporting this issue, the developer

5In October 2022, the download data was obtained from https://appgallery.
huawei.com/app/C5206.

6In October 2022, the download data was obtained from https://appgallery.
huawei.com/app/C10026044.
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confirmed and acknowledged our concerns, then promptly
addressed it by removing FpAuth functionality on rooted
devices to defend against OS-level attacks in the new app
version.

Finding 4: The majority of FpAuth apps fail to use and
configure cryptographic keys to defend against OS-level
attacks.

3) M3. Unauthorized Fingerprint Deactivation: We identi-
fied that 462 apps perform authentication when deactivating
FpAuth, while the remainder fail to properly authorize the
deactivation operation. Interestingly, we discovered 120 apps
that fail to perform FpAuth when deactivation but they do
so when activation, as shown in Table X. This implies that
developers grasp basic security concepts but struggle with their
effective implementation. Conducting FpAuth solely during
activation does not guarantee the integrity of FpAuth protec-
tion. It merely checks the availability of FpAuth, which can
be easily achieved using relevant FpAPIs.

Table X
Verification practices when activating/deactivating FpAuth.

Verified Deactivation Verified Activation Only Verified None

# Apps 462 (34.66%) 120 (9.00%) 751 (56.34%)

Case 3: WhatsApp (com.whatsapp). WhatsApp, a popular
messaging app with 5 billion Google Play downloads, of-
fers secure communication through end-to-end encryption. It
provides high-strength protection through its fingerprint lock
(requiring FpAuth to access the app). Specifically, users are
required to authenticate via FpAuth every time they switch
back to WhatsApp, even if it’s running in the background.
However, its FpAuth implementation exists M3. Unauthorized
Deactivation, lacking authentication when deactivating the fin-
gerprint lock. This misuse could enable attackers with physical
access to the device to gain persistent access to sensitive user
data like contacts and chat history.

Finding 5: More than half of FpAuth apps fail to verify the
user’s identity when deactivating FpAuth, leading to unau-
thorized access once FpAuth is illegitimately deactivated.

4) M4. Mishandled Fingerprint Updates: We list the ex-
amples of code patterns leading to this type of misuses in
Table XI. Note that we consider an FpAuth app to exhibit
M4 if it fails to correctly respond to fingerprint addition
or removal. Overall, we find that the most common misuse
pattern causing M4 is the failure to combine the cryptographic
key with FpAuth (P2).

Furthermore, by delving into the details of this type of
misuses, we can uncover some interesting observations:

• Prioritization of Functionality over Security: In real-
world scenarios, developers may prioritize functional-
ity over security, sometimes neglecting security alto-
gether. For instance, we found that 17 apps, which

Table XI
Distribution of the four patterns leading to mishandled fingerprint updates

misuse (M4). Note that we exclude apps with the intention of PIN
Alternative.

Misuse Pattern # Apps

P2. Null Cryptographic Object 760 (85.01%)
P3. Failed Key Binding 90 (10.07%)
P6. Failed Enrollment Handling 17 (1.90%)
P7. Failed Removal Handling (Removal) 85 (9.51%)
Sum (with M4. Mishandled Updates) 894

* Note that the percentages add up to more than 100% because failed
handling of either fingerprint addition (P2, P3, P6) or removal (P7)
will result in M4. Mishandled Updates, and some apps fail in both
cases at the same time.

disallow PIN Alternative, correctly configure setUser-
AuthenticationRequired API to True, but in-
tentionally set setInvalidatedByBiometricEn-
rollment to False to ignore the fingerprint updates,
leading to an unauthorized person who obtains the lock
screen PIN can compromise the protection of FpAuth.
Consequently, this decision, while focusing on basic
functionality and user experience, results in mishandled
fingerprint updates, potentially compromising security by
allowing unauthorized access.

• Insufficient Security Knowledge: Some developers strive
to uphold security measures but lack comprehensive
security understanding and knowledge, resulting in M4.
Mishandled Updates. We found that 5 apps intend to
invalidate keys when a new fingerprint is added by set-
ting setInvalidatedByBiometricEnrollment
to True. However, they inadvertently nullify their se-
curity intentions by also setting setUserAuthenti-
cationRequired to False, revealing a gap in their
security knowledge.

• Ambiguous Official Guides: We found that samples in the
Android developer guides [11] may contain ambiguities,
potentially misleading developers. Specifically, the com-
ments in the samples state that invalidatedByBio-
metricEnrollment is True by default. However,
this default behavior only applies after explicitly set-
ting setUserAuthenticationRequired to True,
which could confuse developers and contribute to M4.
Mishandled Updates.

Case 4: Binance (com.binance.dev). Binance, a global cryp-
tocurrency trading app with 50 million downloads in Google
Play, offers fingerprint lock protection when entering the app.
Specifically, access to the app needs first unlock the device
using the lock screen PIN and then unlock the app using a
fingerprint. However, M4. Mishandled Updates (addition) in its
FpAuth leads to degrading the dual protection to single, where
physical intimate attackers can use the PIN to add their finger-
prints on the device and bypass the FpAuth. Consequently, the
intended dual protection is invalidated and unauthorized access
to the victim’s app account will lead to sensitive financial
information leakage and even financial loss. This vulnerability
has been accepted as CVE-2024-31695.
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Case 5: YouFish (com.jz.youyu). YouFish, a finance man-
agement app with over 69 million downloads in the Huawei
market, provides a fingerprint lock feature to protect the user’s
privacy. However, its implementation exists M4. Mishandled
Updates (removal), specifically failing to offer fallback au-
thentication when users delete all enrolled fingerprints. This
oversight grants direct access to sensitive information, posing
a risk of unauthorized access and financial data theft. Further-
more, this app developer’s intention disallows PIN Alternative
in FpAuth. However, this misuse undermines that intention,
enabling the bypassing of FpAuth by removing all existing
fingerprints using a lock screen PIN. This issue has been
accepted as CNVD-2023-68954.

Finding 6: Developers often prioritize functionality over
security and may lack sufficient knowledge to implement
FpAuth securely compounded by ambiguities in samples
in Android developer guides, leading to critical security
oversights.

C. Responsible Disclosure & Developer Feedback

We responsibly reported the misuse issues to the app devel-
opers. If we encounter difficulties in reaching them or if they
do not respond promptly, we further report to CVE and CNVD.
Specifically, we manually tested the FpAuth functionality of
all the identified FpAuth apps to confirm the misuses before
reporting. As a result, we have 334 remaining apps that we
can test their FpAuth without any constraints.

We first responsibly reported to the developers of these 334
apps, and 15 of them acknowledged our disclosure and fixed
the issues. Our detailed reports not only outline the identified
misuses but also elucidate the inherent weaknesses in FpAuth
security resulting from these misuses. We show the potential
consequences of misuses to developers and provide practical
and feasible repair suggestions for each misuse to assist them
in addressing the misuse problems.

Result. For those we did not receive responses from
developers promptly, we reported the issues to CVE (apps
from Google Play) and its Chinese counterpart CNVD (apps
from Huawei Market). Overall, we have obtained 184 CVE
IDs, 19 CNVD IDs, and acknowledgments from 15 developers,
as listed in Table XII. The specific details regarding the vulner-
abilities refer to https://github.com/FpAuth/FpAuthAnalysis.

Table XII
The acknowledged vulnerabilities after our responsible disclosure.

CVE ID CVND ID Developer

Number 184 19 15

Findings about Developers’ Feedback. According to the
responses we received, we found that understanding and
addressing M2. Weak Crypto is more difficult for developers.
Some developers express difficulty in fixing M2 in their re-
sponses. In addition, apps like 58 Tongcheng (a popular online
classifieds marketplace app in China) resolved the problem

by canceling FpAuth on rooted devices through risk control
measures instead of appropriately using reliable cryptographic
key validation. This reflects the challenges developers face
in addressing the complexities associated with fixing M2.
Furthermore, this defense through risk control may not be
reliable due to various means of counteracting root detection.

We reported the M4. Mishandled Updates issue to Meta
Security’s bounty program. They emphasized that fingerprint
removal requires prior authentication. However, this prior
authentication relies on a weak lock screen PIN, vulnerable to
common attacks like shoulder surfing and guessing. Enhancing
FpAuth security through proper implementation, as indicated
in ISO/IEC standard[31], is crucial. Notably, Element, a
similar messenger app, employs a robust implementation,
requiring a separate password for unlocking after removing
all fingerprints, providing resistance against physical intimate
attackers.

VII. DISCUSSION

Mitigation. To address the prevalent FpAuth misuses, we
provide several best practices that help mitigate the four types
of misuses. For M1. Obsolete API, developers should migrate
to the newer FpAPIs, i.e., BiometricPrompt APIs or
adopt androidx.biometric library, which ensures com-
patibility with older devices, to prevent the fingerprint-jacking
attack. For M2. Weak Crypto, developers for remote services
should ensure the proper use, configuration, and validation of
the cryptographic key, setting the correspondent parameter of
authenticate method to a cryptographic key, configuring
setUserAuthenticationRequired to True, and em-
ploying it in onAuthenticationSucceeded callback to
validate with the server. For M3. Unauthorized Deactivation,
developers should verify the operator’s identity when deac-
tivating FpAuth, which is easily overlooked. For M4. Mis-
handled Updates, if developers prefer to use FpAuth without
a PIN, which is a more secure way, they should carefully
configure the cryptographic key, setting the setInvali-
datedByBiometricEnrollment to True, in line with
the best practices for M2. Additionally, Android can provide
more customized and accurate guides for apps with different
intentions and more unified APIs for safer choices.

Ethics. Our study focuses on the security of FpAuth and
thus it is inevitably necessary to test and simulate attacks
to attempt to bypass FpAuth. To uphold ethical standards,
all aspects of our study and testing have been exclusively
conducted using our own devices and our test accounts,
avoiding any potential harm to other users’ account security.

Other Biometrics. In this paper, we focus on analyzing
the security issues within the FpAuth lifecycle, given its
prevalence and widespread adoption in authentication systems.
However, similar principles and methodologies can be applied
to other biometric authentication schemes, such as facial
recognition and iris scanning. These biometric technologies
may also face similar security issues, including unauthorized
access, spoofing attacks, and data breaches. Therefore, the
insights gained from this study can be applied to enhance
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the security and resilience of other biometric authentication
systems. Future research efforts could explore the specific
misuse patterns and security risks associated with different
biometric authentication, further advancing the understanding
and mitigation of biometric authentication vulnerabilities.

Limitation. The limitations of this study are primarily due
to the inherent challenges of static analysis tools and the
complexity of dynamically executing FpAuth. Our identifi-
cation of FpAuth apps and detection of FpAPI misuse rely
on the ability of static analysis tools to construct accurate
and complete control and data flows. However, static analysis
can be hindered by techniques such as native calls and code
packing commonly employed in Android apps. We have miti-
gated some of these challenges using state-of-the-art tools for
unpacking and by enhancing inter-component communication
(ICC) analysis, which has partially addressed these limitations.

Moreover, to validate the results, dynamic execution of the
FpAuth functionality is essential. This necessitates manual ef-
forts to complete the login process within apps and fingerprint
enrollment on the device. Thus, large-scale testing is limited
by the time and manual resources required. These common
limitations are orthogonal to the primary focus of our work,
i.e., studying the real-world misuses of FpAPIs. Nevertheless,
we are optimistic that future advancements in these areas will
enhance the findings of this study and similar research.

VIII. RELATED WORK

Fingerprint APIs. Recent research has focused on the
security analysis of FpAPIs due to the potential risks associ-
ated with FpAuth in critical user operations. To the best of
our knowledge, Zhang et al. [7] are the first to demonstrate
the security issues in FpAuth, where they present four attack
techniques targeting mobile FpAuth frameworks. Among these
attacks, GUI hijacking, as explored by Bianchi et al. [32],
involves a malicious app replacing the GUI of other apps to
mount click-jacking attacks. As Android APIs have evolved
over the years, a more recent study Wang et al. [9] proposes
five novel attacks about fingerprint hijacking, which can even
bypass the latest countermeasures in Android 9+ and be
effective against all apps using the APIs. These investigations
underscore FpAPI security vulnerabilities, emphasizing the
need for robust countermeasures in FpAuth.

Furthermore, observing the misuse of these FpAPIs by app
developers, Bianchi et al. [10] present a systematic analysis
of the FpAPIs in Android, which is the previous work most
relevant to our study. Their research primarily focuses on the
cryptographic checks of FpAPIs during the verification stage.
In contrast, our work offers a novel research perspective by
examining the entire lifecycle of FpAuth, including activation,
verification, updates, and deactivation. This comprehensive ap-
proach allows us to identify and analyze security issues across
different stages, rather than focusing solely on verification.
Our study introduces new threat models and identifies new
misuse types, providing a broader understanding of FpAuth
security. By analyzing the FpAuth lifecycle, we uncover inter-

esting and practical findings that highlight real-world security
implications and potential improvements.

Fingerprint Recognition. The widespread use of finger-
print recognition has heightened concerns over its security.
Feng et al. [33] investigate fingerprint obfuscation techniques
that enable individuals to alter their fingerprints without detec-
tion. Roy et al. [3] examine the advantages and disadvantages
of employing small-sized fingerprint sensors for authentication
and the feasibility of matching synthesized partial fingerprints
with stored templates. Additionally, relevant research suggests
that the cost associated with forging fingerprints may be
relatively low, and even cheap nylon materials can be used
to counterfeit fingerprints [7]. Chen et al. [6] propose a zero-
knowledge brute-force attack to unlock Android phones. These
findings collectively underscore the need for improved security
in fingerprint recognition technology.

More on FpAuth Security. Many prior works have
contributed greatly to the development of FpAuth security.
Dharavath et al. [34] conduct a comprehensive review of chal-
lenges and future possibilities in a systematic manner. Ratha et
al. [35] analyze the strengths of FpAuth, and propose a generic
fingerprint system framework to identify vulnerable points.
Ballard et al. [1] discuss the trade-off between fingerprint
data mismatch and privacy concerns at a theoretical level.
Tiefenau et al. [36] point out that systems supporting multiple
authentication modes are only as secure as the weakest one.
Wimberly et al. [37] highlight the impact of perceptible
security measures on users’ perception of system security.
These insights contribute to the expansion of understanding
of FpAuth, opening avenues for further in-depth exploration.

As a key part of FpAuth, TEE securely stores fingerprint
data. Some studies on TEE have also emerged in recent years.
Shakevsky et al. [38] identify vulnerabilities in Samsung’s
TrustZone cryptographic process, leading to attacks on TEE,
affecting FpAuth and FIDO protocol. Imran et al. [39] intro-
duce SARA, a library simplifying TEE-specific API use to
facilitate TEE integration and utilization.

IX. CONCLUSION

This work systematically analyzes FpAPI misuses in real-
world Android apps from the perspective of the FpAuth lifecy-
cle. We identify real-world FpAuth apps and perform measure-
ments to understand their characteristics. Through principled
analysis, we identify the threat models and summarize four
common FpAPI misuse types. Then, we develop a static
analysis tool to detect these misuses and unveil that FpAPI
misuses widely exist in real-world apps, leading to far-reaching
consequences like account takeover, privacy violations, and
financial losses. Our responsible disclosures have been ac-
knowledged by app vendors, resulting in 203 CVE/CNVD
vulnerability IDs. The detailed analysis of each type of mis-
uses also comes up with several alarming findings that call for
more attention to the secure usage of these APIs from both
developers and API designers. We have publicly released our
code and data at https://github.com/FpAuth/FpAuthAnalysis to
facilitate reproduction and subsequent research.
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APPENDIX A
DATASET FOR PILOT STUDY

To investigate the security issues present in the real-world
FpAuth apps, we conduct an in-depth manual analysis on
40 representative apps. The details of the apps are shown in
Table XIII.
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Table XIII
The dataset for our pilot study. Note that the origin refers to FpAuth implementations origins used in our dataset, including SDKs, open-source repositories,

etc.

No. Package Name Category Source Detail

1 org.telegram.messenger Social Origin org.telegram.messenger
2 com.smsrobot.callu Productivity Origin com.github.ajalt
3 com.adventhealth.flagship Health & Sports Origin com.epic.patientengagement
4 edu.aiuniv Education Origin de.niklasmerz.cordova
5 net.baptisthealth.android.bhsf.careondemand Health & Sports Origin com.americanwell.android
6 com.divessi.ssi Health & Sports Origin io.flutter.plugins
7 com.coca cola.android.cep Food & Drink Origin com.salesforce.androidsdk
8 com.yahoo.mobile.client.android.fantasyfootball Health & Sports Origin com.oath.mobile
9 com.usablenet.mobile.walgreen Shopping Origin com.visa.checkout
10 com.bgmobilenga Lifestyle Origin com.oblador.keychain
11 com.baidu.BaiduMap Maps & Navigation Origin com.baidu.sapi2/wallet
12 com.wangc.bill Finance Origin com.wei.android
13 com.taobao.trip Travel & Local Origin com.alipay.security
14 com.tynet.huiliao.doc Health & Sports Origin cn.org.bjca
15 com.tuya.smartiot Productivity Origin com.tuya.security/smart
16 com.wuba Lifestyle Origin com.tencent.soter
17 com.systec.umeeting Business Origin us.zoom.androidlib
18 com.ctrip.jd Finance Origin ctrip.android.pay
19 com.sankuai.meituan.takeoutnew Food & Drink Origin com.meituan.android
20 cn.yingmi.qieman.hermione Finance Origin com.rnfingerprint.FingerprintHandle
21 com.abhinavmarwaha.wrotto Productivity F-Droid -
22 com.zell mbc.medilog Health & Sports F-Droid -
23 sushi.hardcore.droidfs Productivity F-Droid -
24 org.koitharu.kotatsu Entertainment F-Droid -
25 de.jepfa.yapm Productivity F-Droid -
26 com.glitterware.passy Productivity F-Droid -
27 com.velas.mobile wallet Finance F-Droid -
28 com.standardnotes Productivity F-Droid -
29 com.soumikshah.investmenttracker Finance F-Droid -
30 com.kunzisoft.keepass.libre Productivity F-Droid -
31 com.beemdevelopment.aegis Productivity F-Droid -
32 com.simplemobiletools.gallery.pro Productivity F-Droid -
33 com.nextcloud.client Productivity F-Droid -
34 com.simplemobiletools.filemanager.pro Productivity F-Droid -
35 com.huawei.holosens Entertainment Market Huawei
36 com.tencent.gallerymanager Photography & Editors Market Huawei
37 com.cns.qiaob News & Books Market Huawei
38 com.sharkdevelop.platincoins Libraries & Demo Market Google Play
39 com.whatsapp Social Market Google Play
40 com.fca.myconnect.alfaromeo.nafta Auto & Vehicles Market Google Play
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