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Abstract—Industrial Control Systems (ICS) ensure the au-
tomation and safe operation of critical industry, energy, and
commerce processes. Despite its importance, ICS code often
cannot be evaluated as rigorously as software on traditional
computing platforms, as existing code evaluation tools cannot
readily interface with the closed ICS ecosystem. Moreover, the
use of domain-specific languages, the lack of open and extensible
compilers, and the deficiency of techniques developed for ICS-
specific nuances, among other challenges, hinder the creation
of specialized tools. This paper addresses these challenges by
introducing ICSQuartz, the first native fuzzer for IEC 61131-3
Structured Text (ST), a standardized Programmable Logic Con-
troller (PLC) programming language. Native support eliminates
the necessity of any vendor or architecture-specific requirements.

ICSQuartz outperforms the fastest state-of-the-art fuzzers in
the ICS space by more than an order of magnitude in executions
per second. In addition to natively fuzzing ST code, we introduce
novel mutation strategies to ICSQuartz that uncover vulnerabil-
ities due to the scan cycle architecture of ST programs–a nuance
that traditional fuzzers do not consider. Using ICSQuartz, we
perform the first large-scale fuzzing campaign of real-world ICS
libraries, resulting in multiple vulnerability disclosures and bug
fixes. In addition to vulnerabilities, ICSQuartz discovered a bug
in an open-source ST compiler. These findings underscore the
imperative impact of ICSQuartz in the ICS domain.

I. INTRODUCTION

Industrial Control Systems (ICS) represent a collection of
systems, networks, and associated connected equipment that
operate in tandem to control, monitor, and automate physical
processes. ICS control processes in a wide array of fields, in-
cluding manufacturing (e.g., operating assembly lines), energy
(e.g., geographically distributed operation of electric smart
grid), mining (e.g., material handling), and critical infrastruc-
ture (e.g., automating water treatment facilities).

Programmable Logic Controllers (PLCs), an integral part
of ICS, are industrial computation platforms equipped with
specialized hardware and peripherals and built for robust
and reliable operation in harsh industrial conditions. In these
environments, it is common for manufacturers to equip PLCs
with firmware that utilizes standard operating systems such as

RTLinux and VxWorks. These devices follow a periodic mode
of operation known as the scan cycle: The PLC captures inputs
from the monitored physical process (e.g., temperature read-
ings, control signals, machinery status, etc.), processes these
inputs based on its programming, and utilizes the outputs to
control actuators that influence the underlying process. Process
engineers program PLCs by writing control logic code using
domain-specific programming languages, such as Structured
Text (ST), that are defined under the IEC 61131-3 standard [1].
This code is then compiled using vendor-supplied proprietary
compilers to non-standard formats. Compiled control programs
are then executed by purpose-built software stacks, known as
runtimes, which run on the PLC.

The transformation of the industrial landscape by the
movement dubbed the 4th Industrial Revolution [2], saw
the operational technology (OT) space merge with solutions
and practices from the Information Technology (IT) space.
This development has seen ICS devices gain increased flex-
ibility, support greater programmability, receive augmented
with advanced real-time monitoring features, and numerous
other capabilities that extensively benefited adopting indus-
tries. Furthermore, ICS vendors have embraced open source
software (OSS) solutions to support their ecosystems, reducing
resources spent reimplementing and securing software, such
as FTP servers, SSH clients, or even complete firmware
stacks [3]. These developments have led to a paradigm shift
in the security landscape of the ICS code, requiring that
components previously thought of as isolated, such as the IEC
61131-3 programs [1], be rigorously evaluated and secured.

Given their critical positioning and role, ICS are a prominent
target for malicious parties. Historically, weaknesses in ICS
software have led to events such as Stuxnet [4], allowing
adversaries to compromise Iran’s nuclear infrastructure by in-
jecting malicious code into PLCs, thus impairing close to 20%
of their centrifuges. ICS-specific malware was also discovered
in 2016 by the FLARE team, which identified IRONGATE [5],
a malware family built to manipulate industrial processes
operating on Siemens’ control system environment. Another
incident in 2019 saw threat actors successfully enter the US
Coast Guard network, forcing the facility to shut down opera-
tions for more than 30 hours [6]. In 2022, the European Union
Agency for Cybersecurity (ENISA) predicted an increased
risk to OT systems, due to a rise in sophisticated state-level
threats and malware targeting ICS [7]. The following year,
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ENISA remarked this coming to fruition with the discovery
of Industroyer2, COSMICENERGY, and CRASHOVERRIDE,
and called for proactive efforts to secure OT and ICS [8].

Therefore, identifying faulty programming and vulnerabil-
ities in PLC code is a topic of great interest to the research
community. The work carried out in this domain has consid-
ered various directions, such as model checking [9], automated
tests and generation of invariants for PLC code [10, 11],
formal verification of control logic [12, 13, 14], and reverse
engineering of control binaries [15]. These methods provide
important insights and safety guarantees; however, they focus
on PLC code that strictly follows the IEC 61131-3 standard
and do not consider the effects of the underlying runtime, its
libraries, and its dependencies.

PLC vendors are expanding their software stacks to support
an increasing amount of features [3], ranging from simple
language tweaks, libraries, and visualization systems, to fully
fledged machine learning solutions [16]. These increased capa-
bilities of PLCs necessitate that PLC code security evaluation
takes into consideration the a refined threat model. An obvious
remedy would be to resort to mature tools from the IT space:
Dynamic and static analysis, fuzzers, and symbolic execution-
based tools. However, application of these tools to the ICS
domain is not straightforward due to challenges stemming
from the domain-specific languages, closed-source compilers,
non-standard binaries, and proprietary protocols. Efforts to
bridge IT with OT space tools need to overcome significant
obstacles [17, 18, 19], while the lack of vulnerable ICS code
corpora deters the creation and evaluation of such tools.

In this work, we introduce ICSQuartz, a novel framework
developed for fuzzing ST code. Our approach utilizes an open-
source compiler to enable LLVM code instrumentation during
the compilation of ST programs, which is notably vendor-
agnostic and platform-independent. This enables us to conduct
native fuzzing for ST programs, encompassing scan cycle
fuzzing, coverage-guided fuzzing, and vulnerability localiza-
tion. These improvements to state-of-the-art solutions manifest
through multiple vulnerability disclosures. In summary, our
contributions are the following:

• We introduce ICSQuartz, the first native fuzzer for the
IEC 61131-3 Structured Text language. ICSQuartz is
vendor-agnostic and platform-independent, surpassing ex-
isting solutions in performance and capability, incorporat-
ing advances from non-OT state-of-the-art fuzzers.

• We develop new ICS-specific scan cycle fuzzing com-
ponents, which discover vulnerabilities unique to ICS
environments, and extend ICSQuartz to support it.

• We demonstrate the impact of ICSQuartz by producing
multiple vulnerability disclosures and bug fixes in widely
distributed ST libraries. We discovered, to the best of our
knowledge, the first ST-related CVE. At the same time,
ICSQuartz also discovered a bug in an ST compiler which
was leading to generation of vulnerable ST programs.

• ICSQuartz and developed benchmarks have been artifact-
evaluated as reproducible (Appendix A) and are available:
https://github.com/momalab/ICSQuartz.

II. PRELIMINARIES

A. IEC languages

Code written for industrial control systems has been sys-
tematized by the International Electrotechnical Commission
through the formation of the IEC 61131 international stan-
dard [1]. IEC 61131-3, the third component of the standard,
defines an ensemble of five interoperable, domain-specific
programming languages to be used with PLCs. The IEC
61131-3 family defines graphical languages, including Ladder
Diagram, Function Block Diagram, and textual languages,
such as Structured Text. For this work, we elect to use Struc-
tured Text (ST), which closely resembles traditional imperative
programming languages and is the most flexible language in
the standard for writing complex control functionality code.

B. The PLC Software Stack

The typical PLC software stack is quite complex, involv-
ing many components, including an Integrated Development
Environment (IDE) for code development, compilers for IEC
61131-3 languages, a runtime that executes on the PLC,
and special communication protocols. Due to the increasing
complexity of the PLC software stack, and the costs associated
with its maintenance and development, many ICS hardware
vendors have adopted and customized readily available soft-
ware stacks, such as Codesys [20].

Projects are written using a combination of IEC 61131-3
languages and are compiled using specialized proprietary com-
pilers provided by ICS vendors. These compilers differ from
commodity solutions like the GNU C Compiler (gcc) and
the Clang compiler (clang), as they prioritize predictability,
robustness, and stability, which are of paramount importance
in OT, over performance and optimization, which are often
preferred in IT. The compilation output is typically a binary
in a proprietary format defined by the vendor. ICS control
logic binaries can either be bytecode that is then interpreted
during execution or assembly instructions.

The IEC 61131-3 execution model diverges from traditional
execution models, relying on scan cycles. In the traditional
IT domain, typical programs have a standardized lifecycle:
1) An initial setup sequence by the operating system to
allocate memory and resources. 2) Subsequent execution of
instructions as a process. 3) System resources are released as
the process terminates. In the case of PLCs, programs run as
proprietary executables on top of a vendor runtime process.
The runtime is responsible for executing the IEC 61131-3
program as part of the scan cycle at a predefined frequency
configured by the operator [1]. In IEC 61131-3 programs,
variables are initialized once by the runtime and are then
mutated by program logic until the PLC is shut off.

C. Vulnerabilities in PLC Software

Previous work has explored how ST, similar to C and C++,
is a memory-unsafe language and is inherently vulnerable to
various memory-exploitation bugs [21]. A common example of
this is arrays with an absence of bound checks prior to reading
from memory, even when indexes may be greater than the size
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of the array or are negative values. Other problems stem from
the language’s permissive rules regarding the use of pointers,
which can be easily manipulated and reassigned through code.

Libraries provided by vendors also introduce access
to memory-unsafe functions, such as SysMemCpy,
SysStrCpy, and SysMemSet, which have been determined
to not perform bound checks before modifying memory [17].
Unlike C or C++, the ST language specification does not
include a system for dynamic memory allocation, such as
with malloc or new. Instead, as PLC programs are intended
for repeatable and consistent execution, the programs must
rely only on stack memory. Some vendors have introduced
an extension to the ST language, which introduces support
for dynamic memory allocation [22]. These non-standard
language extensions further increase the possibility of
memory-related vulnerabilities and reinforce the importance
of fuzzing to identify security vulnerabilities proactively.

D. RuSTy Compiler

Although proprietary implementations remain largely preva-
lent within the IEC 61131-3 development space, RuSTy is
a recently introduced open-source ST compiler, written in
the Rust programming language [23]. RuSTy implements
the IEC 61131-3 Structured Text language specification, al-
lowing programs written to run on PLCs to be compiled
for other platforms and architectures. It manages this by
leveraging the Low-Level Virtual Machine (LLVM) compiler
framework [24], which provides a robust compiler backend
throughout the low-level stages of program compilation.

III. PROBLEM FORMULATION

A. Limitations of ST Evaluation

Proprietary Compilers: A core inhibitor to the application of
modern fuzzing tools on ST is the prevalence of proprietary
compilers. Proprietary PLC compilers are often built into
the vendor IDEs and offer minimal customization. Available
features are limited, and none of these compilers, to our
knowledge, offer any code instrumentation features that are
compatible with modern security fuzzing tools.
Proprietary Executable Formats: The binaries produced by
said proprietary compilers are also, in most cases, in propri-
etary formats. Unlike compilers used by most UNIX operating
systems, such as gcc and clang, which produce standard
Executable and Linkable Format (ELF) binaries, PLC binaries
are most often black-box binaries. Though some previous
works have managed to reverse-engineer some of these binary
layouts after significant effort [15, 21], the non-compliance
with the ELF standard makes running these applications on
any system, without the assistance of the vendor runtime, non-
trivial. Additionally, beyond reverse-engineering the binary
layouts, many of these programs depend on components of
the proprietary runtime for core components to function, such
as the delivery of sensor inputs to the program.
Proprietary Libraries: Vendors often provide access to ex-
tensive collections of first-party and third-party libraries that
fulfill a variety of purposes, from networking operations to

reading and writing to the filesystem to performing basic string
operations. In most cases, these libraries are pre-compiled
and only include enough code to define function interfaces.
These proprietary libraries present another challenge when
attempting to fuzz ST for security vulnerabilities: 1) White-
box fuzzing techniques, which typically rely on compile-time
instrumentation, are not possible. 2) Black-box fuzzing tech-
niques are significantly hindered by proprietary executables
and non-standard memory layouts.

B. Limitations of Related Work

Non-Standard Fuzzing Interface: A fundamental limita-
tion of previous work is the non-standard fuzzing interfaces
used to deliver inputs. Creative solutions have been developed
by researchers, including hijacking the KBUS_CYCLE thread
of the Codesys Runtime, which is responsible for delivering
program inputs at every execution. While this technique en-
ables fuzzing ST programs, it often experiences unreliable
input delivery due to scan cycle synchronization issues [17].

Another solution, introduced in FieldFuzz [18], delivers
program inputs over the network by leveraging the proprietary
network protocol used to communicate with the Codesys Run-
time. Two unfortunate side-effects of this delivery mechanism
are: 1) Hard-coded memory offsets for each program input,
which must be manually located by the operator, and requires
that address space layout randomization (ASLR) be disabled.
2) Requiring unauthenticated access to the runtime.

Although the network-based input delivery provides faster
and more reliable inputs than the KBUS_CYCLE technique,
both techniques are non-standard and highly dependent on
vendor runtime implementation details. Crucially, both tech-
niques present a much higher barrier to entry than standard
methods and suffer from additional overhead compared to
traditional IT fuzzers, which typically pass inputs directly
through system memory. In addition, adapting state-of-the-
art security fuzzers to these input delivery channels presents
significant technical challenges.
Non-Standard Coverage Mechanisms: Another fundamental
limitation of related work is non-standard mechanisms to track
code coverage in executing programs. One method explored
previously by researchers replaces NOP (no-operation) assem-
bly instructions in program binaries with logging instructions
to track execution paths [17]. Another method uses a dynamic
instrumentation toolkit to monitor executing functions and
relevant segments in memory and extract coverage feedback
for the fuzzer. While effective, the authors noted a significant
resource consumption as a result of this dynamic instrumen-
tation [18]. Moreover, both mechanisms require fuzzers to be
specifically adapted to receive coverage data through these
unique channels.
Vendor Lock-In: State-of-the-art fuzzing tools in the ICS
domain are often vendor-dependent, relying on leveraging
proprietary features of the Codesys Runtime, which are unfor-
tunately subject to change at the discretion of the vendor. Case
in point, recent changes in the Linux kernel have broken the
input delivery mechanism leveraged by ICSFuzz [17]. Further
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ICSFuzz [17]  # G# # # G# G# # # # # # # G#
FieldFuzz [18]  # G# # G# G# G# # # G# # # G# G#
ICSQuartz              #

TABLE I: ICSQuartz vs. State-of-the-Art ICS Fuzzers. Full
support indicated by  . Partial or suboptimal support indicated
by G#. No support indicated by #.

complicating, the firmware binary, which includes this older
Linux kernel, is no longer available in the vendor repositories,
rendering the extensive work currently non-functional.
Insufficient Memory Bug Detection: Fine-grain detection
of potential memory vulnerabilities is crucial for effective
fuzzing. Current ICS fuzzing tools depend on the operating
system to detect out-of-bounds reads or writes through seg-
mentation fault (SIGSEGV) exceptions [17], or through rule-
based dynamic analysis which enforces separation of program
and runtime memory-isolation [21]. Memory bugs that attempt
to read or write within valid program memory, which can be
more dangerous as those that do reach beyond valid memory,
will not be detected by current ICS fuzzing tools.
Missing Scan Cycle Evaluation: The scan cycle execution
model is unique to IEC 61131-3 programs. Prior fuzzing tools
do not take this ICS-specific novelty into account in their
designs. Although ICSFuzz [17] inherits stateful execution
as it operates on a physical PLC, the fuzzer does not have
control or knowledge of the program state while executing.
Similarly, while FieldFuzz [18] does provide limited program-
state control capability (start/stop execution), it also considers
each execution absolute. Crashes in both of these solutions
lack sufficient information to record inputs leading to a crash,
rendering reports non-reproducible.
Manual Effort Required: The manual effort required to setup
and configure current tools presents another barrier to entry for
robust evaluations. ICSFuzz[17] requires a physical PLC run-
ning the appropriate firmware and Codesys Runtime version.
It additionally requires a compatible Windows development
machine to run the Codesys IDE and monitor the fuzzing
process. Lastly, it requires manual crash monitoring, as the
PLC must be manually restarted when it encounters bad input.
FieldFuzz [18], on the other hand, requires an operator to
capture and dissect PLC traffic using Wireshark to generate
an initial input corpus for a sample program [18].

Both state-of-the-art solutions require operators to have
significant familiarity with the tools themselves and to invest
a considerable amount of time to configure and monitor the
fuzzing process. Lastly, both projects lack a mechanism for
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Fig. 1: Scan Cycle Execution Paradigm. New inputs con-
secutively execute on the prior state, Si−1, producing Si.

identifying unique crashes and instead record all crashes en-
countered, making crash investigation a laborious undertaking.

Lastly, once one or more crashes have been produced by
ICSFuzz [17] or FieldFuzz [18], the operator must manually
triage the proprietary ST program in the vendor IDE to localize
the vulnerability to a specific portion of problematic code.
Summary of Comparison: Table I synthesizes the com-
parison of our work, ICSQuartz, with prior ICS fuzzers.
Although some fuzzers are capable of fuzzing portions of the
proprietary runtime [17, 18], we consider this out of the scope
of ICSQuartz. Specifically, this is because vendor runtimes
are implemented in traditional programming languages (e.g.
C/C++), and can be most effectively evaluated by vendors with
white-box access to the source. Instead, ICSQuartz focuses
exclusively on providing a robust evaluation of ST programs.

IV. ICSQUARTZ

To resolve the outstanding technical challenges related to the
robust security evaluation of ICS, we introduce ICSQuartz, a
vendor-agnostic and platform-independent ICS-specific fuzzer,
equipped with both scan cycle aware and coverage-guided
fuzzing techniques.

A. Scan Cycle-Aware Fuzzing

Figure 1 depicts the scan cycle execution model, a core com-
ponent of IEC 61131-3 program execution with the potential
to introduce new and unexpected vulnerabilities, specific to
ICS programs.

Scan cycles are defined to execute at regular intervals:
Reading inputs from sensors, executing control logic, and
writing outputs. In this pattern, the IEC 61131-3 program
is executed at cycle time frequency [1], often measured in
milliseconds, which we denote as τ . In the first execution, the
program will inherit the initial variable state, defined by the
programmer, which we denote as state S0. After τ ms, the
program will execute once again, operating on values from
state S0 and producing state S1, which will then be inherited
by the next execution. To calculate any program state Si,
which is defined as the program state after i × τ ms, the
previous state Si−1 must first be computed.
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Suppose that the execution state at Sn is responsible for a
memory vulnerability. Reconstructing the crash requires the
set of all states in S:

S = {S0, S1, S2, . . . , Sn}

To extend ICSQuartz to support scan cycle-execution
fuzzing, we isolate program inputs from program state, en-
abling us to cycle through many program inputs while pre-
serving integrity of the IEC 61131-3 program state.

The number of states simulated and explored by ICSQuartz,
known as scan cycle depth, is denoted as D, and is equal to
the cardinality of the set of states observed, S.

A novel component of ST programs is a unique exe-
cution pattern, often featuring cyclic control flow through
initialization, incremental computation, completion and reset
phases [25, 26, 21]. The number of scan cycles required
for an exhaustive execution is not necessarily deterministic,
and rather varies as incoming sensor inputs are continually
received and processed.

A naive fuzzing strategy to explore these types of pro-
grams may invoke a constant scan cycle depth: Executing
the program across D inputs, after which the state will be
cleared to default values and a new simulation can begin. This
mechanism, while simple to implement, introduces two key
drawbacks. 1) A insufficiently high scan cycle depth D may
mask the presence of vulnerabilities which manifest beyond
D. 2) A scan cycle depth D which is configured as too high
may spend a significant proportion of executions on programs
which are longer processing new inputs. This naive strategy
could potentially be introduced to FieldFuzz [18], yet cannot
be developed further due to the black-box architecture. As
ICSFuzz [17] does not feature state control, this would not be
possible to implement.
Adaptive Scan Cycle Execution: ICSQuartz, rather than rely-
ing on a constant scan cycle depth D, addresses this challenge
by actively monitoring for programs which are no longer
processing inputs and require a state reset immediately. We
achieve this functionality by introducing a fuzzer observer [27]
which copies the program state before and after execution at
the byte-level, can be dynamically configured by an operator
in the fuzzer harness. It subsequently compares the two states
to determine whether the inputs had any affect on the program.
We denote the cases where the program state does not change
as stale scan cycles, which ICSQuartz reacts by invoking a
state reset. The number of stale states required to invoke a
state reset defaults to 1, but is configurable by the operator
for more sophisticated contexts.

As it is possible that a ST program may include an execution
branch which never terminates, we include a maximum scan
cycle depth parameter for these edge-cases. This mechanism
forces a programs to reset regardless of changes to their state,
preventing executions which would otherwise never terminate.

In order to provide introspection into the scan cycle fuzzing
process, we instrument ICSQuartz to report several metrics in
the fuzzer output corpus, including: 1) The number of stale
scan cycles encountered. 2) The respective scan cycle for

Library Vendor Function Target Function Source Lib.

SysMem
SysMemSet memset glibc
SysMemCpy memcpy glibc
SysMemMove memmove glibc

MemUtils MemSet memset glibc
BitCpy bitcpy (custom)

SysFile
SysFileOpen fopen glibc
SysFileRead fread glibc
SysFileWrite fwrite glibc

TABLE II: Vendor-Specific Compatibility Layers. Propri-
etary vendor functions are mapped to the target functions,
displayed as glibc functions or custom implementations.

coverage and crash reports. 3) All inputs delivered in the given
scan cycle context, allowing a comprehensive reconstruction
of the vulnerable state Sn and any previous states, Si, which
led to the vulnerable state.

B. ICSQuartz New Mutation Strategies

In order to tailor ICSQuartz for ST program nuances, we
introduce a number of specialized mutation strategies, which
are then combined with existing state-of-the-art mutations
from AFL++ [28].
Scan Cycle Unblocking: As discussed previously, many ST
programs feature cyclic control flow patterns, which must be
reset by providing specific inputs [25, 26, 21]. To that end, our
scan cycle unblock algorithm attempts to simulate this type of
sensor input by selecting a random byte from the input and
replacing it with its respective initial value. These initial values
do not need to be configured manually by the operator, and
are instead retrieved from the RuSTy [23] compiler.
ST Input Shaping: Contrasting to traditional IT programs
which feature inputs of variable lengths, ST programs most
often receive inputs from a static configuration of sensors.
Each input has a hard-coded length, and no dynamic memory
allocation is allowed [1]. The input shaping mutation strategy
retrieves the program input size from the RuSTy [23] compiler,
ensuring that inputs are the appropriate size for the program.
While input size constraints could alternatively be enforced in
the fuzzing harness, implementing it as a mutation strategy
ensures that all inputs are executable by the program.

These ST specific mutation strategies and scan cycle adap-
tation complement the existing state-of-the-art mutation algo-
rithms provided by AFL++ [28].

C. Vendor-Agnostic and Platform-Independent Fuzzing

Compatibility Layers: Proprietary vendor libraries still
posed a challenge to a complete evaluation of many ST
programs, which are leveraged in real-world control programs
and in state-of-the-art benchmarks [17, 21]. The complexity of
these vendor libraries varies significantly by function. Fortu-
nately, many of these functions are wrappers named after the
underlying libc functions invoked (e.g. SysMemCpy calls
memcpy). Higher complexity functions, such as those which
abstract network functionality through a series of system calls
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(e.g SysSockSelect), may require more thorough reverse-
engineering efforts leveraging other binary analysis tools to
fully understand.

To enable compilation of benchmarks in related work, we
create a compatibility layer comprised of the proprietary ST
function interfaces, which are mapped to their underlying
libc counterparts, or to our own C-based implementations,
which are compiled and linked against. Table II includes
samples of function mappings, provided through our com-
patibility layer. This compatibility layer introduces a certain
margin of error for vulnerabilities to be either introduced or
to be concealed, in cases where our implementation does not
perfectly match that of the vendor library. This concern can
be alleviated through the cross-validation of potential security
vulnerabilities on a physical PLC testbed.
Structured Text Code Coverage: As discussed, code cov-
erage instrumentation is crucial in enabling coverage-guided
fuzzing. To perform a comprehensive evaluation of ST targets,
we introduce LLVM code coverage support to the RuSTy com-
piler, enabling compatibility with state-of-the-art fuzzing tech-
niques. This work further narrows the gap between traditional
IT fuzzing and ICS fuzzing, addressing a fundamental obstacle
that earlier hindered the use of traditional fuzzing tools on ST.

LLVM code coverage instrumentation introduces source-
based metadata and control flow tracking, such that precise
sections of code can be identified during execution. The
coverage instrumentation includes injecting counters and in-
crement calls (i.e. llvm.instrprof.increment), which
are invoked every time functions and code branches are
reached, allowing fuzzing algorithms to understand which
inputs explore new branches and determine how much of
the program paths have yet to be explored. Due to the tight
integration of source code metadata and branch counting, the
majority of this instrumentation must be performed in the
RuSTy compiler itself, and cannot be implemented as an
LLVM Intermediate Representation (IR) pass.

Figure 2 provides an architecture diagram that visualizes

Algorithm 1 ICSQuartz Code Coverage Algorithm.

1: CONTROL FLOW← {IF,CASE, FOR,WHILE,REPEAT}
2: procedure INSTRUMENT(functions)
3: for all function ∈ functions do
4: name← function.name
5: span← function.span
6: // Parent counter (CP ) tracks function executions.
7: CP ← CREATECOUNTER
8: // Invoke the DFS algorithm.
9: GENCOVERAGE(function.ast, CP )

10: STOREFUNCTIONRECORD(name, span,CP )
11: end for
12: end procedure
13: function GENCOVERAGE(ast, CP )
14: for all node ∈ ast.nodes do
15: if node.type /∈ CONTROL FLOW then
16: continue
17: end if
18: // False counter (CF ) is initially set to CP and cascades
19: // and as new branches are recorded.
20: CF ← CP

21: if node.type ∈ {IF,CASE} then
22: for all branch ∈ node.branches do
23: CT ← CREATECOUNTER
24: // CF is recursively calculated from parents.
25: CF ← CREATEEXPRESSION(CF − CT )
26: STOREREGION(branch.span,CT , CF )
27: GENCOVERAGE(branch.body, CT )
28: end for
29: else if type ∈ {FOR,WHILE,REPEAT} then
30: for all block ∈ node.blocks do
31: CT ← CREATECOUNTER
32: CF ← CREATECOUNTER
33: STOREREGION(block.span,CT , CF )
34: GENCOVERAGE(block.body, CT )
35: end for
36: end if
37: end for
38: end function

why introducing the LLVM code coverage to RuSTy is non-
trivial. As the code coverage components of LLVM are not
exposed through the official C++ API, it is instead required
to interface with these functions through the inclusion of
specific header files and subsequently linking against LLVM.
The architecture depicted exposes the necessary interfaces
to RuSTy, which leverages the Rust-based Inkwell library
to provide a layer of type-safety from the Foreign Func-
tion Interfaces (FFIs) which facilitate direct Rust and C++
interoperability [29]. We also extend Inkwell to enable this
integration.

Once the appropriate LLVM code coverage functions were
made accessible to RuSTy, coverage instrumentation was
implemented using a depth-first-search algorithm to tra-
verse the ST program Abstract Syntax Tree (AST), which
is shown in Algorithm 1. This algorithm records where
llvm.instrprof.increment calls should be placed,
and introduces both execution counters and counter expres-
sions. While counters are simple incrementing data structures,
counter expressions are calculated dynamically based on sim-
ple counters, optimizing performance and storage usage.
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+@__llvm_coverage_mapping = private constant {...
+@__profc_prg = private global [1 x i64] zeroi...
+@__profd_prg = private global { i64, i64, i64...
...
define void @prg(%prg* %0) #0 {

entry:
%a = getelementptr inbounds %prg, %prg...
%b = getelementptr inbounds %prg, %prg...

+ %pgocount = load i64, i64* getelementp...
+ %1 = add i64 %pgocount, 1
+ store i64 %1, i64* getelementptr inbou...

store float 1.500000e+00, float* %b, a...
%load_b = load float, float* %b, align 4
%2 = fptosi float %load_b to i16
store i16 %2, i16* %a, align 2
ret void

}

Listing 1: ICSQuartz Code Coverage Instrumentation.
IR sample of injected coverage counters and data structures.

Listing 1 includes a simplified sample of the LLVM code
coverage introduced to a small ST program. This coverage
instrumentation feature will be merged into RuSTy for others
to continue research in this area [23].
Address Sanitizer: A core feature of state-of-the-art fuzzing
tools is the ability to detect memory bugs at a fine-grain level,
beyond bugs which cause segmentation faults (SIGSEGV).
The Address Sanitizer (ASAN) LLVM IR pass became the
ideal candidate to introduce higher precision memory bug
detection into RuSTy, as it boasts a comparatively low over-
head to other solutions, with an approximate 73% decrease
in execution performance [30]. ASAN is the primary address
sanitizer integrated into multiple robust compilers, such as
gcc, clang, and rustc.

To incorporate these advances from traditional IT fuzzing,
we extend RuSTy to support the industry-standard ASAN
instrumentation. This is accomplished through additional in-
strumentation across the RuSTy frontend and by the invocation
of the the ASAN LLVM IR pass to complete the ASAN im-
plementation. This provides ICSQuartz the ability to discover
more sophisticated vulnerabilities, which are fundamentally
not detectable by previous state-of-the-art ICS fuzzers [17, 21].
Input Delivery: Reliable and low-latency input delivery is a

key factor that contributes to fuzzing performance. Program
entrypoints in RuSTy, defined as functions, use inputs and
outputs defined in continuous C-like structures, passed to the
program as a memory address. The program reads inputs from
this structure, executes the control logic, and writes outputs,
which can be read after the execution concludes. This enables
ICSQuartz to send program inputs directly as system memory
to a function, rather than over the network or by taking over
a runtime thread, as previous state-of-the-art fuzzers [17, 18].
LLM-based Harness Generation: The fuzzing harness can
be written in C++ or ST. As previous works required sig-
nificant manual effort before fuzzing could commence, we
developed a tool to automatically generate a C++ fuzzing
harness for any provided program. This harness generation
tool leverages the program’s IR as a ground truth for byte-
level inputs and outputs, which are passed to a Large Language
Model (LLM) to predict a C-struct, which models the layout
of the original program. This is then inserted into a template
fuzzing harness, to be customized further as needed. Sample
prompts used for the LLM-generated harnesses can be found
in the Appendix (Listing 3, 4).
Vulnerability Localization: The code coverage instrumenta-
tion and address sanitizing allow ICSQuartz to identify pre-
cisely which instruction executing in a program caused a crash
without the need for analysis with an additional crash triage
process as previous ICS-specific fuzzers required. In addition,
ICSQuartz can identify whether a similar crash has been
reported before and only report unique crashes. Further, once
a crash is encountered, mutation strategies seek to minimize
the complexity of the input, such that understanding flaws in
programmatic logic is more straightforward for an operator.

D. End To End Methodology

Figure 3 provides an end-to-end overview of the ICSQuartz
methodology, including program compilation, the fuzzing
methodology, and the final security analysis.

Stage 1: Compilation. Initial programs are provided as
plaintext ST files to our modified RuSTy compiler, along with
the additional compatibility layer interfaces outlined in Table
II. These interfaces provide the modified RuSTy compiler with
the necessary interface definitions, such that the parameter
and return types can all be validated at compile-time. The
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PROGRAM PLC_PRG

VAR_INPUT

  Out1: LREAL;

  In: ARRAY[0..3] OF LREAL;

  In_Tmp: ARRAY[0..20] OF LREAL;

  ssMethodType: SINT;

END_VAR

// Initialize input array

SysMemSet(ADR(In_Tmp[0]),0,20*8);

CASE ssMethodType OF

  SS_INITIALIZE:

    UnitDelay_DSTATE := 0.0;

    ...

    (* End of SystemInitialize *)

  SS_STEP:

    Out1 := (0.01 * ABS(In[1]));

    ...

Structured Text Program

Shadow Memory
Mapping

ASAN
Function Record (F1)
Regions = [{
    counter: C1,

    start_line: 1,
    start_col: 1,
    end_line: 18,
    end_col: 12,
},...]

Code Coverage

Branch Region (B1)

Branch Region (C1-B1)

Coverage Header
version: 6
files: ["main.st"]
hash: 0xabcd
....

Intercept Memory
Operations

Map Proprietary
Library Functions

Compat. Layer

Input Delivery

Harness and Scan
Cycle Fuzzing

Fig. 4: ICSQuartz Program Dissection. Harnesses, memory
sanitizers, compatibility layers, and coverage culminate to
provide fine-grain security introspection and validation.

RuSTy compiler then performs an initial pass through the
source code, parsing the syntax and constructing a program
AST. Next, the ICSQuartz code coverage algorithm, included
in 1, traverses the AST to construct instrumentation and inject
metadata, including simple and expression-based counters for
each execution branch. It also injects a coverage mapping
header to the IR, which describes the implemented version of
the LLVM coverage specification, paths to the source files, and
hashes of function structures. Furthermore, the required ASAN
instrumentation is introduced, ensuring extensive validation of
program correctness pertaining to all memory-based opera-
tions. The resulting IR generated from RuSTy is then passed to
clang [31], which provides the final step in the compilation,
statically linking the necessary compatibility libraries invoked
in the source input, along with the LLVM code coverage and
ASAN runtime libraries.

Figure 4 provides a comprehensive diagram detailing how
each component of the security instrumentation interacts si-
multaneously with a sample ST program, providing a higher
degree of sophistication related to the analysis of program
execution than previously possible.

Stage 2: Fuzzing. Once an Instrumented Control Appli-
cation has been produced from Stage 1, ICSQuartz analyzes
the input struct defined in the IR and leverages an LLM to
reconstruct the variable memory layout in a C-struct. The
output C is then inserted into a harness template, which allows
for immediate fuzzing without an operator being required to
create an initial harness from scratch. ICS-specific parameters,
such as maximum scan cycle depth, can be configured to
provide a more comprehensive analysis of the program’s re-
silience. Other common fuzzing features, such as dictionaries
and seeds, can also be introduced at this stage in order to
improve fuzzing performance.

In the final stage, the program is compiled into an in-
strumented executable binary for in-process fuzzing by the
ICSQuartz fuzzer, which enables scaling across multiple cores
or machines over a network. As ICSQuartz performs a rigorous
evaluation of the input ST program, a corpus of inputs is
stored in memory and on disk, which contains inputs that

each achieve unique coverage paths or cause a unique crash.
Additional metadata pertaining to scan cycle exploration, stale
scan cycles, and scan cycle mutations are recorded to enable
comprehensive introspection into the fuzzing process.

Stage 3: Security Analysis. Standardization introduced by
ICSQuartz considerably simplifies the fuzzing post-mortem
for ICS binaries. The fuzz corpus provides a set of linearly
independent inputs, each of which achieves additional code
coverage. This corpus set can be used in conjunction with
llvm-cov [24] to provide a line-by-line breakdown of fuzzer
coverage and produce insights into portions of code that
may require further evaluation. Memory-related crashes can
be localized using ASAN, providing a comprehensive stack
trace of the execution of the program leading up to the crash.
These potential vulnerabilities can be further investigated, if
necessary, using typical reverse engineering tooling, such as
gdb or Ghidra.

V. EVALUATION SETUP

A. Structured Text Corpus

To exhaustively evaluate ICSQuartz against a diverse corpus
of ST, we collected programs from a range of sources.
OSCAT Libraries: While significant portions of ST are
proprietary and closed-source, the Open Source Community
for Automation Technology (OSCAT) libraries stand out as
a notable example of an open-source ICS software, which is
distributed and widely used amongst a multitude of vendors,
including Siemens, Moeller, Bosch, Beckhoff, Wago, and PC-
Worx [25]. The OSCAT project distributes three main libraries:
OSCAT Basic [25], OSCAT Building [32], and OSCAT Net-
work [26]–comprised of 39,900, 6,422, and 23,786 lines of ST,
respectively. OSCAT Basic includes a vast corpus of functions
that operate on strings, implement different data structures,
and perform calculations. OSCAT Building contains functions
for building facilities, such as heating and air conditioning
systems, and actuators [32]. OSCAT Network provides utili-
ties for interacting with services over the network, including
clients, cryptographic hashes, and binary encoders [26].

In total, we gather a total of 63 program benchmarks
from OSCAT Basic and OSCAT Network, providing program
templates and fuzzing harnesses to the community for future
research. To our knowledge, this is the first instance of fuzzing
an open-source ST library as a security research project.
ICSFuzz Benchmarks: The ICSFuzz project includes a set
of 17 synthetic ST benchmarks [17], consisting of programs
with four categories of vulnerabilities: Out-of-bounds write
through memcpy, out-of-bounds write through memset, out
of bounds read and write through memmove, and out of
bounds reads and writes through arrays. These benchmarks
increase in complexity, with benchmark numbering ranging
from 1 to 13 and a total of 3,711 lines of ST.
ICSPatch Benchmarks: The ICSPatch project includes a set
of 24 synthetic ST benchmarks [21], accumulating to 1,676
lines of ST. The ICSPatch programs are notable for two
major reasons: 1) Benchmarks are modeled after real-world
ICS applications, including an Aircraft Flight Control, and a
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Control
Application

Execution Speed First Crash First Crash
(inputs/sec) (seconds) (inputs)

ICSQuartz FieldFuzz ICSFuzz ICSQuartz FieldFuzz ICSFuzz ICSQuartz FieldFuzz ICSFuzz
(x64) (x64) (A8) (x64) (x64) (A8) (x64) (x64) (A8)

bf mcpy 1 19649.9 593.0 70.9 0.0008 0.25 234 15.7 148 15270
bf mcpy 6 1403.4 642.4 64.2 0.0140 1.43 188 19.6 898 12172
bf mcpy 8 1355.6 645.6 66.1 0.0151 7.08 279 20.5 4566 18216
bf mcpy 12 328.2 526.2 62.1 0.2630 1.95 426 86.3 999 26645

bf mset 1 7526.0 560.6 64.6 0.0026 0.04 208 19.6 22 13441
bf mset 3 9961.5 571.2 62.7 0.0020 0.03 174 19.5 17 10906
bf mset 5 2227.1 503.2 68.8 0.0088 0.56 254 19.6 281 17554

bf mmove 1 2626.4 660.2 64.6 0.0078 0.005 176 20.5 2 11245
bf mmove 4 6674.9 578.2 63.1 0.0046 0.003 159 30.5 1 10070
bf mmove 7 1924.3 573.0 66.3 0.0158 0.005 229 30.5 3 15317
bf mmove 12 1932.5 508.2 64.5 0.0158 182.14 783 30.5 92456 50643

oob 1 arr 1 21747.2 598.8 71.9 0.0073 0.14 55 159.4 83 3880
oob 1 arr 6 53965.5 591.0 77.0 0.0068 1.39 103 367.1 821 8085
oob 1 arr 13 24039.7 507.0 75.2 0.0071 97.86 207 171.6 49165 27241

oob 2 arr 1 27174.2 520.8 73.5 0.0093 154.42 117 252.0 80080 8558
oob 2 arr 5 53055.0 520.4 71.1 0.0069 155.62 165 367.1 80662 22759
oob 2 arr 13 24999.5 502.2 71.0 0.0054 97.86 192 134.8 48694 13401

Average 15328.88 564.8 68.1 0.0231 41.22 232.29 103.81 21111.65 16788.41

TABLE III: Performance of ICSQuartz vs. FieldFuzz [18] and ICSFuzz [17]. Statistics as reported by respective work.

Desalination Plant. 2) These programs include vulnerabilities
developed from MITRE’s top applicable CWEs: Improper
input validation (CWE-20), out-of-bounds write (CWE-787),
out-of-bounds reads (CWE-125), and OS command injection
(CWE-78) [33]. Similar to the OSCAT libraries, the ICSPatch
programs ground the programs in real-world ICS applications,
which incorporate the most common software vulnerabilities
encountered by the industry.
Scan Cycle Benchmarks: In addition to the programs above,
in this work, we introduce a new set of 12 synthetic bench-
marks, which highlight the necessity for stateful scan cycle
fuzzing, an execution model specific to the IEC 61131-3
programs with the potential to introduce vulnerabilities. These
programs are based on the existing ICSPatch benchmarks,
grounding them in real-world applications, and total 1,146
lines of ST. To the best of our knowledge, this type of program
fuzzing has not been possible or explored by previous work.
These benchmarks are also be open-sourced.

B. Fuzzing Infrastructure

Evaluations are performed on an Ubuntu 22.04.2 server,
with 128 CPU cores and 2TB of allocated system memory.
To validate ST vulnerabilities discovered by ICSQuartz, we
use a WAGO PFC200 Controller (750-8216), running Codesys
Runtime v3.5.16.10 and Codesys IDE v3.5 SP17, Patch 2. The
OSCAT Basic used is the latest official Codesys port (3.3.4.0).
In addition, we leverage the Codesys Control for Linux SL
(3.5.16.10) to evaluate ICSFuzz [17] and FieldFuzz [18].

C. Fuzzing Practices

To standardize with industry best practices and conduct
reproducible experiments [34, 35], we leverage taskset to
conduct all fuzzing on the same CPU processor core for all

experiments. In addition, we leverage isolcpus to disable
the scheduling of tasks to our dedicated fuzzing processor
core. All experiments are repeated a minimum of 10 times.

VI. ICSQUARTZ EVALUATION

A. Performance in Existing ICS Benchmarks

Table III provides a comprehensive comparison of the
fuzzing performance against the two state-of-the-art ICS
fuzzing tools, ICSFuzz [17] and FieldFuzz [18], in 17 syn-
thetic benchmarks. The comparison was conducted on three
key metrics: execution speed (i.e., the number of program
executions per second), time to find the first crash (in seconds),
and the number of inputs required to reach the first crash. The
results in Table III indicate that ICSQuartz outperforms both
of the other ICS frameworks in all three metrics across the
4 categories of vulnerability benchmarks. The results show
a statistically significant (p<0.05) improvement in all three
metrics under a Mann-Whitney U-test, as recommended by
the broader fuzzing community [34, 35].

As indicated in the first column, ICSQuartz exceeds the
performance of FieldFuzz [18] and ICSFuzz [17] in terms of
executions per second, surpassing them by factors of more
than 27× and 225×, respectively. Improvements in executions
per second come from a variety of factors: 1) Improved
input delivery, where program input is passed through system
memory rather than with the added overhead of a network,
or the inconsistency of a runtime process, allowing ICSQuartz
to provide higher consistency and lower latency than previous
tools. 2) Vendor and platform independence allows programs
to run as standard ELF executables on larger systems without
vendor runtimes, which easily outperforms system resources
available in PLCs.
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Fig. 5: Coverage Performance in ICSFuzz Benchmarks.
Blue indicates ICSQuartz. Orange indicates ICSFuzz [17].

Moreover, investigating inputs to the first crash, ICSQuartz
outperforms FieldFuzz [18] and ICSFuzz [17] in almost all
benchmarks and by an average factor of 203× and 161×,
respectively. Considering the inputs to the initial crash is es-
sential when evaluating the performance of fuzzers: Although
enhancements in sheer execution speed are beneficial, the
number of inputs to the first crash demonstrates the overall
performance of the input mutation strategy. Both improve-
ments work in tandem: Each input is more effective, and
more inputs are tested in the same duration. This combined
improvement is seen in the time-to-first crash column, where
ICSQuartz outperforms FieldFuzz [18] and ICSFuzz [17] by
average factors of more than 1,784× and 10,055×.

Figure 5 represents a time graph of code coverage achieved,
contrasting the performance of ICSQuartz with ICSFuzz [17]
across multiple benchmarks. The visual differences highlight
how the vendor and platform independence introduced by
ICSQuartz improve substantially upon state-of-the-art fuzzers,
with ICSQuartz immediately providing 100% code coverage
for all benchmarks. Note that FieldFuzz [18] coverage data is
not available.

B. Vulnerabilities Discovered

Table IV shows an excerpt of the fuzzing campaign con-
ducted across the 63 OSCAT benchmarks, including the 25
programs that experienced a crash within one continuous
hour of fuzzing. ICSFuzz [17] and FieldFuzz [18] were also
evaluated across these benchmarks–with the exception of the
OSCAT Network binaries, as this Codesys distribution of
this library is not compatible with 64-bit architectures. Total
executions for ICSFuzz and FieldFuzz are generally consistent
due to reliance on the statically configured scan cycle speed,
while ICSQuartz is able to perform executions without this
dependency. ICSFuzz and FieldFuzz notably did not encounter
any crashes, which we discuss further below.

1) OSCAT Vulnerabilities: ICSQuartz encountered a crash
after 24 seconds of fuzzing the MONTH_TO_STRING func-
tion. Upon investigation, our team discovered that the function
suffered from an out-of-bounds read vulnerability (CWE-125)
due to improper input validation (CWE-20).

OSCAT Program
Total Executions

ICSQuartz FieldFuzz ICSFuzz

CHARNAME 123M 239k 102k
CLEAN 3.73M 239k 99.2k
DEL CHARS 3.73M 239k 99.6k
DT TO STRF 129k 239k 102k
FIND CHAR 386k 239k 102k
FIND CTRL 386k 239k 99.1k
FINDB NONUM 436k 239k 99.1k
FINDB NUM 436k 239k 99.5k
FSTRING TO BYTE 817k 239k 99.3k
FSTRING TO DWORD 333k 239k 99.0k
IS CC 3.73M 239k 99.2k
IS NCC 3.73M 239k 99.3k
MIRROR 436k 239k 99.7k
MONTH TO STRING 1.07B 239k 102k
REAL TO STRF 399M 239k 102k
REPLACE ALL 23.7M 239k 100k
REPLACE CHARS 23.7M 239k 99.2k
TRIM 436k 240k 100k
TRIM1 436k 239k 99.3k
TRIME 436k 239k 100k
UPPER CASE 436k 239k 99.7k
WEEKDAY TO STRING 966M 240k 102k
BASE64 ENCODE STR 17.9k N/A N/A
XML READER 644k N/A N/A

TABLE IV: OSCAT Fuzzing Campaign. Bold indicates a
vendor-agnostic CVE issued (discovered only by ICSQuartz).
Italics indicate a RuSTy-specific compiler vulnerability.

MONTH_TO_STRING accepts three input parameters: MTH
(16-bit integer, as a numerical month), LANG (16-bit integer, as
a language index: 1=English, 2=German, 3=French), and LX
(16-bit integer, output length configuration, i.e. 0=”January”
(full month name), 3=”Jan”), and returns a 10-byte string with
the month name as a string. Although bound checks ensure
that MTH and LX are in a valid range, and LANG is below the
maximum allowed value, no bound checks ensure that LANG
is non-negative. Providing a negative LANG allows an attacker
to read 10 bytes at a time from any address higher than the
global language.MONTHS definition.

Due to the notably large 132-byte size of each language’s
month definitions, the minimum integer value -32,768 of LANG
can be used to traverse up to 4,325,376 (132 × 32, 768)
bytes up the stack. In addition, the MTH parameter can be
adjusted between the values of 1 and 12, where each increment
to MTH adds 11 bytes to the target address, moving back
down the stack. The two of these parameters can be used
very effectively in conjunction to traverse most target memory
locations, leveraging both large and small jumps.

This vulnerability is particularly interesting, as it does not
affect a single vendor but instead affects all vendors that
distribute OSCAT Basic. Three major vendors are officially
supported, with specific distributions directly from OSCAT:
Codesys, PCWorx, and Siemens [25]. Codesys also distributes
an official port of OSCAT Basic, which we reproduced the vul-
nerability on a real PLC. Although the vulnerability did impact
Codesys systems, neither ICSFuzz [17] nor FieldFuzz [18]
detected this vulnerability. We propose that this is likely due
to the reliance of segmentation faults to detect vulnerabilities
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AFL++ 1 0 0 0 1 0 0 0 0 0 3 1
FieldFuzz 0 0 9 0 0 0 0 0 0 0 0 0
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e
(s

) ICSQuartz 12.4 56.9 0.8 1.5 0.1 30.7 3.1 0.1 0.2 0.2 0.1 0.5
AFL++ 78.8 - - - 0.8 - - - - - 2.4 0.9
FieldFuzz - - 42.5 - - - - - - - - -
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E
xe

cs
. ICSQuartz 5.6M 14M 95k 560k 1.0k 14M 480k 240 1.6k 6.1k 2.4k 100k

AFL++ 32k - - - 1.3k - - - - - 1.6k 2.1k
FieldFuzz - - 2.7k - - - - - - - - -
ICSFuzz - - - - - - - - - - - -

TABLE V: Scan Cycle Benchmark Evaluation (10 Trials).
ICSQuartz is evaluated against state-of-the-art fuzzers. Ex-
isting mutation strategies are unable to uncover scan cycle
vulnerabilities in 7 out of 12 benchmarks.
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Fig. 6: Mutations Curbing Stale Scan Cycles. The two
proposed mutation strategies effectively curb stale scan cycles.

rather than a more precise address sanitizer [30].
To responsibly disclose the vulnerability, our team sub-

mitted the vulnerability to the CERT Coordination Center
(CERT / CC) on 2024-04-10. After corresponding with a
security professional from Codesys and notifying the OSCAT
developers, the vulnerability was assigned as CVE-2024-6876
and patched on 2024-10-09.

2) RuSTy Compiler Bug: Throughout the fuzzing cam-
paign, a recurring bug in the RuSTy compiler was discovered,
which introduces vulnerabilities into ST programs: Loops
with negative increments were found to execute once without
properly performing the condition check. Additional details on
this vulnerability are described in Appendix B.

C. Scan Cycle Fuzzing Technique

In this section, we compare the scan cycle-aware mutation
strategies of ICSQuartz with three fuzzers: 1) AFL++ [28]
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TABLE VI: Evaluation of ICSQuartz Mutations (10 Trials).
ICSQuartz, without the proposed mutation strategies, is unable
to reliably or efficiently detect scan cycle vulnerabilities.
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Fig. 7: Coverage vs. Scan Cycle Depth (Aircraft-oobw-4).
Scan cycle programs require many scan cycle executions to
effectively exhaust control flow paths and reach full coverage.

to represent traditional IT fuzzers. 2) FieldFuzz [18], and 3)
ICSFuzz [17] to represent state-of-the-art ICS fuzzers.

These four fuzzers are each evaluated in Table V across
twelve synthetic scan cycle benchmarks–each over ten inde-
pendent trials. The featured metrics denote the number of trials
the respective fuzzer discovered the vulnerability, the time to
discover, and the number of executions required. Lastly, the
last column includes the averaged stale scan cycles encoun-
tered overall–reported only for ICSQuartz and the ICSQuartz
variant, as the remaining fuzzers are not scan cycle-aware.
Table V demonstrates that all compared fuzzers are unable to
discover the vulnerability in 7 out of 12 benchmarks evaluated.
In contrast, the ICSQuartz mutation strategy discovers all bugs
and demonstrates the vital role of the mutation strategies by
its stark contrast with the ICSQuartz variant.

We then investigate the efficacy of the proposed mutation
strategies in Table VI. In these experiments, we compare IC-
SQuartz against a naive variant of ICSQuartz that excludes the
proposed mutations and instead only implements the standard
AFL++ mutations [28, 27]. Further, it statically resets the pro-
gram state after a constant number of scan cycles to introduce
a naive approach to scan cycle awareness. These empirically
demonstrate the impact of the proposed mutation strategies in
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Fig. 8: ICSQuartz vs. ICSPatch [21] in Vulnerability Localization. ICSQuartz, due to a significant decrease in instrumentation
overhead and white-box access, is able to localize vulnerabilities faster than ICSPatch across all CWE-based benchmarks.

scan cycle-aware benchmarks, where fewer wasted executions
lead to more effective vulnerability detection.

Figure 6 details the fuzzing process in more detail, plotting
the number of stale scan cycles encountered against the total
number of executions. The standard AFL++ [28] algorithm is
susceptible to stale scan cycles, where almost all executions
performed are unnecessary. In contrast, the adaptive scan
cycle algorithms in ICSQuartz perform well in reliably and
consistently avoiding these paths. This figure reinforces the
importance of scan cycle-specific components, which comple-
ment existing state-of-the-art fuzzing strategies.

Introspecting deeper into the scan cycle behavior introduced
by ICS programs, we investigate the relationship between
coverage and the maximum scan cycle depth explored by
ICSQuartz. Figure 7 depicts a performance analysis on the Air-
craft Flight Control benchmark (Aircraft Oobw 4) introduced
in Table V, which includes a program input size of 32 bytes.
We chose this specific benchmark as it features a diverse range
of control flow branching and paths for scan cycle exploration.
This figure accentuates the crucial component scan cycles
introduced to ICS programs and robust security evaluations of
ICS software. As stateful executions are rigorously evaluated,
novel and unexpected execution paths are uncovered.

D. Vulnerability Localization

To understand how effectively ICSQuartz can detect some
of the most prevalent vulnerabilities in software, we eval-
uate against the 24 synthetic benchmarks provided by IC-
SPatch [21]. Figure 8 visualizes the substantial improvement in
vulnerability location provided by ICSQuartz, outperforming
ICSPatch in all benchmarks. On average, ICSQuartz localizes
vulnerabilities 9× faster than the state-of-the-art. Table VII
provides a qualitative analysis of the vulnerability localization
process in a single sample: Aircraft Flight Control (CWE-20).

These results demonstrate that when white-box access is
available, the vulnerability localization process is 185× faster

Phase Prep. (s) Vulnerability Localization (s)

IC
SQ

ua
rt

z
Steps Compile

ST
ST Execution ASAN

Device LLVM Target

Time 3.624 0.007 0.638

IC
SP

at
ch

[2
1] Steps Extract

Hexdump
Load

Hexdumps
Program

Execution
DDG

Traversal

Device PLC
Testbed

ICSPatch Host (angr)

Time 733.11 52.02 4.73 0.003

TABLE VII: Comparison of Vulnerability Localization.
ICSQuartz improves upon the vulnerability localization pro-
cess compared to ICSPatch [21] in speed and usability.

on the ICSQuartz platform and does not require access to
a PLC testbed for hexdump extraction. Though ICSQuartz
does not compete directly with ICSPatch, we suggest that
ICSQuartz vulnerability localization may be a suitable addition
to ICSPatch when possible, enabling improved performance
while being vendor-agnostic.

VII. DISCUSSION

A. ICSQuartz Limitations

In this work, ICSQuartz empirically demonstrated sta-
tistically significant improvements upon state-of-the-art ICS
fuzzers in both performance and scan cycle fuzzing. Never-
theless, there are cases where a hybrid-fuzzing approach may
be advantageous in order to evaluate a broader threat model.
To that end, operators may choose ICSQuartz to rigorously
evaluate stateful PLC-logic and libraries under a white-box
setting, while concurrently leveraging FieldFuzz [18] or ICS-
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Fuzz [17] to proactively detect potential weaknesses in the
PLC runtime or physical hardware.
RuSTy Compiler: Although the use of a relatively new open-
source compiler introduces the potential for compilation bugs
or discrepancies between fuzzing targets and PLC binaries,
we contend that the significant benefits of white-box access
far outweigh the potential downsides.

Furthermore, all potential downsides of the RuSTy compiler
can be further alleviated through a rigorous cross-validation
process: Leveraging traditional ST compilers such as the
Codesys IDE [20] or SIEMENS TIA Portal [36] and repro-
ducing vulnerabilities on a real-world PLC Testbed, as we
demonstrated with the OSCAT vulnerability we uncovered and
reported to the vendor, and it was reproducible when using
their own proprietary compiler.
Precompiled Libraries Fuzzing: Fuzzing proprietary libraries
can require more sophisticated techniques: FieldFuzz [18]
can fuzz network-reachable runtime components, while ICS-
Fuzz [17] is capable of fuzzing proprietary function interfaces
directly whilst running on a virtual or physical Codesys. SP-
Fuzz [37] further tackles these challenges–introducing dy-
namic taint analysis to extract contextual information about the
target from the PLC runtime to dynamically generate a fuzzing
harness. As ICSQuartz is a white-box fuzzer, it is unable
to perform security evaluation of proprietary precompiled
libraries that do not include source code. These complementary
relationships underscore the vital role a hybrid approach to ICS
fuzzing can play in mitigating vulnerabilities.
Automation of Cross-Validation: While our framework is
entirely automated, reproducing crashes and cross-validating
potential vulnerabilities on a physical PLC testbed remains
challenging to fully automate: The process entails manual
hardware configurations on the PLC, compilation of the ST
using the proprietary vendor IDEs, and analysis of program
execution as inputs are executed. We leave the automation
of PLC-based cross-validation as a problem to be tackled
in future work. Additionally, multi-vendor cross-validation
could further enable a rigorous evaluation and differential
comparison across multiple platforms and hardware devices.

The specific impact of vulnerabilities will depend on con-
text, including memory layouts and security features (e.g. non-
executable stack), which vary between vendors, PLC firmware,
and hardware. Case in point, our RuSTy bug discovery is
highly-critical for programs compiled with the RuSTy com-
piler, but does not reproduce with other PLC compilers.
However, all OSCAT vulnerabilities discovered have been suc-
cessfully reproduced using the proprietary Codesys compiler.

B. Directions for Future Research

ICSQuartz serves as an initial bridge from robust and long-
standing traditional IT fuzzing tools [28, 38, 39] into the
previously vendor-locked ICS fuzzer research [17, 18]. In that
respect, there exists significant room for future contributions
that continue to build on existing work while introducing
unique ICS-specific novelty that must be accounted for.

Scan Cycle Fuzzing: While ICSQuartz introduces several
key fuzzing components and strategies that uncover scan
cycle-specific vulnerabilities, future research can continue to
build and reuse these components. The introduction of scan
cycles into the fuzzing process opens the door to considerable
problems of state explosion. While ICSQuartz partially tames
this state explosion challenge through the detection of stale
scan cycles, future work could investigate how states could be
stored and minimized natively in fuzzer test cases.
ML-Guided Fuzzing: Machine learning and deep learning are
active areas for exploration, improving upon classical fuzzing
techniques in interesting ways. The unique capabilities of
LLMs have become a recent valuable addition to the field
of software fuzzing and vulnerability discovery [40]: Titan-
Fuzz [41], ChatAFL [42], LLMIF [43], and Fuzz4all [44] fine-
tune LLMs to generate input for fuzzing IoT protocols, and
system under test (SUTs). DeepGo [45] leverages reinforce-
ment learning, proposing the first path transition model which
models Directed Greybox Fuzzing. These novel techniques
may be particularly useful in the ICS domain.
Emerging Fuzzing Techniques: Fuzzing performance may
be further enhanced through other techniques, such as sym-
bolic execution [46, 47], which has proven to be particularly
effective in state-dependent branch programs. Research in this
direction could complement the scan cycle novelty of ST
programs. KLEE [48], a symbolic execution tool, is capable
of automatically generating tests that achieve impressive cov-
erage and high accuracy in bug detection. Ferry [49] intro-
duced program-state-aware symbolic execution to efficiently
explore the state-dependent branches. Finally, SYMSAN [50]
improves upon concolic execution [51], and demonstrated its
performance in exploring paths that are guarded by complex
and tight branch predicates compared to random mutation-
based fuzzing. Other work–such as Sizzler [19]–introduce
Generative Adversarial Networks (GANs) to further optimize
mutation strategies in fuzzing ladder diagrams.

VIII. CONCLUSION

This paper presents ICSQuartz, an ICS-specific fuzzer
that improves upon state-of-the-art fuzzing components and
follows a vendor-agnostic methodology to provide platform
independence. Leveraging an IEC 61131-3 Structured Text
open-source compiler, we instrument and comprehensively
fuzz 116 ICS programs both with and without scan cycle con-
siderations. This approach culminates in the first large-scale
ICS code fuzzing and vulnerability analysis on real-world
open-source libraries. Using ICSQuartz, we report multiple
vulnerability disclosures and submit important bug fixes to the
RuSTy compiler for future research to leverage. In addition,
we accelerate fuzzing performance by more than an order
of magnitude compared to state-of-the-art ICS fuzzing tools–
evaluating directly against prior work. Finally, we present scan
cycle-aware mutation strategies that uncover vulnerabilities not
discovered by existing strategies. With ICSQuartz, we provide
the research community with a scalable open-source fuzzer to
facilitate research in ICS program fuzzing.
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APPENDIX A
ARTIFACT APPENDIX

A. Description & Requirements

1) How to access: The latest source is available at:
github.com/momalab/ICSQuartz (10.5281/zenodo.14249993).

2) Hardware dependencies: A commodity computer.
3) Software dependencies: Linux system (validated on

Ubuntu 22.04), Git, Docker (validated with 27.3.1), Python
(requires 3.10 or higher), Python pip (python3-pip), and
Python virtual environment (python3-venv).

4) Benchmarks: Included under ./benchmarks.

B. Artifact Installation & Configuration

To validate the major claims of this work:
1) Install all dependencies.
2) Add $USER to the docker group.
3) Clone and enter the GitHub repository.
4) Install the Python libraries in requirements.txt.
5) Disable ASLR to run ICSFuzz [17] and FieldFuzz [18].
6) Calibrate the CODESYS virtual PLC for ICSFuzz and

FieldFuzz: ./scripts/calibrate-codesys.sh.

C. Major Claims

• (C1): ICSQUARTZ outperforms prior work by more than
an order of magnitude in execution speed (Table III).

• (C2): ICSQUARTZ is the first, to our knowledge, to
discover a real-word ST vulnerability (Table IV).

• (C3): ICSQUARTZ introduces a novel scan-cycle fuzzing
technique with two new mutation strategies (Table V).

D. Evaluation

The run_experiment.py script orchestrates the bench-
mark build process and concurrent fuzzing with parameters:

• --fuzz-time: seconds to fuzz each benchmark.
• --fuzz-trials: times to repeat each experiment.
• --cpus: cores available for fuzzing (i.e. 1-8). Note:

ICSFuzz and FieldFuzz can experience issues when run-
ning in parallel across many cores.

• --experiment: table to reproduce (i.e. table_3).
Invoking an experiment script will automatically:

1) Compile the program source into an instrumented binary.
2) Build fuzzing targets using the respective fuzzer.
3) Execute fuzzing in batches of size: |cpus|.
4) Collect and aggregate statistics into: results/.
The time required for the build stages will vary, and may

take significantly longer for the first experiment as dependen-
cies are downloaded and built in the containers. The time
required for the actual fuzzing (after building) should be
approximately:⌈

fuzz-time× fuzz-trials× |benchmarks|

|cpus|

⌉
E. Run All Experiments (E1-E5)

You may execute all 5 experiments sequentially by running:
./evaluate-all.sh. The script will output results in
./all-results.txt.

1) Experiment (E1): [Performance] [Table III] [10 human-
minutes + 1.5 compute-hour]: Here we compare with state-of-
the-art ICS fuzzers.

[How to] ./run_experiment.py \
--fuzz-time 565 --fuzz-trials 3 \
--cpus 1-8 --experiment table_3

[Results] Metrics to compare are execs_per_sec,
first_crash_time and first_crash_executions.
While executions per second will vary significantly depending
on the hardware, the inputs to first crash should not.

2) Experiment (E2): [Fuzzing Campaign] [Table IV] [10
human-minutes + 1.5 compute-hour]: Here we reproduce the
fuzzing campaign across the OSCAT Basic library using a
subset of 18 benchmarks.

[How to] ./run_experiment.py \
--fuzz-time 170 --fuzz-trials 3 \
--cpus 1-8 --experiment table_7

[Results] Compare total executions between ICSQuartz,
FieldFuzz, and ICSFuzz. As ICSQuartz is not tied to scan
cycles, total executions should outperform significantly.

3) Experiment (E3): [CVE] [10 human-minutes + 0.2
compute-hour]: Here we reproduce the disclosed CVE.

[How to] ./run_experiment.py \
--fuzz-time 60 --fuzz-trials 1 \
--cpus 1-8 --experiment cve

[Results] This demonstrates the additional precision of IC-
SQuartz for detecting memory vulnerabilities. A crash should
be quickly detected by ICSQuartz, but will not be detected by
FieldFuzz and ICSFuzz.

4) Experiment (E4): [Scan Cycle Fuzzing] [Table V] [10
human-minutes + 0.2 compute-hour]: Here we reproduce the
ICSQuartz scan cycle fuzzing campaign across 12 benchmarks
and compare it with ICSFuzz and FieldFuzz.

[How to] ./run_experiment.py \
--fuzz-time 80 --fuzz-trials 3 \
--cpus 1-8 --experiment table_4

[Results] This demonstrates how ICSQuartz locates vulner-
abilities not reliably detected by prior work.

5) Experiment (E5): [Scan Cycle Fuzzing] [Table VI] [10
human-minutes + 0.2 compute-hour]: Here we reproduce the
ICSQuartz mutation strategy evaluation.

[How to] ./run_experiment.py \
--fuzz-time 80 --fuzz-trials 3 \
--cpus 1-8 --experiment table_5

[Results] The state_resets metric indicates the scan
cycle mutation algorithm interventions to reset stale execution
paths. The higher number of first_crash_executions
in these benchmarks reflects the stateful complexity introduced
by ST programs tracking residual states.

F. Note on Artifact Revision

While this work was revised from its initial submission, the
AEC evaluated the revised version of this artifact.
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APPENDIX B
RUSTY VULNERABILITY

This ST implementation error in RuSTy introduces vulner-
abilities to at least 6 OSCAT Basic [25] functions and likely
introduces vulnerabilities in other programs and libraries not
evaluated in our fuzzing campaign. This bug parallels a high-
severity vulnerability documented over 10 years ago in gcc,
where the generation of a bad instruction led to memory cor-
ruption vulnerabilities introduced to compiled programs [52].

We then identified the root cause of this defect in the IR
code generated by RuSTy: A signed less than or equal (sle)
instruction that should instead be a signed greater than or equal
to (sge) instruction to properly perform bound checks, in the
case where the loop step size is negative. Listing 2 provides an
example of this bug in ST, where the loop will run exactly once
before terminating, along with the corresponding condition
check as LLVM IR.

The security impact of this is context-dependent to the
application running and the specific memory layout. In severe
cases, this bug introduces vulnerabilities that enable out-of-
bounds reads (CWE-125), out-of-bounds writes (CWE-787),
or OS-command injection (CWE-78). We disclosed this im-
plementation bug to the RuSTy compiler team on 2024-04-24
through a GitHub security advisory report, and a patch was
issued on 2024-06-27.

We discovered several shortcomings in the RuSTy’s imple-
mentation of the IEC 61131-3 standard library, which account
for crashes in the fuzzing campaign. Implemented in the
Rust programming language, many of the string functions,
such as LEN, expect inputs to be valid ASCII characters.
In cases where non-ASCII characters were provided, the
implementation would most often call a Rust panic, success-
fully mitigating memory vulnerabilities, through crashing the
program.

Source Code:
FOR a := 0 TO 10 BY -1 DO;

printf(’Hello %d!$N’, a);
END_FOR;

LLVM IR:
condition_check: ; preds = %increment, %

entry
%load_a = load i16, i16* %a, align 2, !dbg !22
%load_a1 = load i16, i16* %a, align 2, !dbg !22

- %tmpVar = icmp sle i16 %load_a1, 10, !dbg !22
+ %tmpVar = icmp sge i16 %load_a1, 10, !dbg !22
...

Listing 2: Instance of RuSTy Bug and Vulnerable Code.
The loop shown in the code shown will execute once before
terminating. The execution is due to the sle instruction,
which should instead be a sge, as shown in the IR.

APPENDIX C
LLM HARNESS

Listing 3 presents the LLM prompt used to produce a ST
entrypoint program, while Listing 4 presents a prompt to
construct a C-style harness for fuzzing.

System: You are a helpful assistant who provides C-
style structures when prompted with LLVM IR. Please
refer to the following example in your responses:

User: Complete a C++ struct for this LLVM type.
Assume stdint.h is already imported:
‘‘‘
%PLC_PRG = type { i32, i32, i32, [11 x i8] }
‘‘‘

Assistant:
‘‘‘
struct PLC_PRG_struct {

int32_t field1;
int32_t field2;
int32_t field3;
int8_t array1[11];

};
‘‘‘

Listing 3: Prompt for LLM-Generated Harness. The
above prompt was utilized to dynamically generate C-style
structures using the LLVM IR from the respective compiler.
The output struct is then used within a standard harness
template–automating the harness generation entirely.

System: Provided a function documentation in IEC
61131-3 Structured Text, please return a PROGRAM (
PLC_PRG), including inputs to invoke the function.

Please refer to the following example for future
responses:

User: 13.59. MONTH_TO_STRING
Type Function: STRING (10)
Input MTH: INT (Month 1..12)
LANG: INT (Language 0 = Default )
LX: INT (length of string)
Output STRING (10) (output value)
MONTH_TO_STRING convert a month number to its
equivalent string...

Assistant:
‘‘‘
PROGRAM PLC_PRG
VAR_INPUT

in_MTH: INT;
in_LANG: INT;
in_LX: INT;

END_VAR

MONTH_TO_STRING(in_MTH, in_LANG, in_LX);

END_PROGRAM
‘‘‘

Listing 4: Prompt to Construct a PLC Entrypoint. The
example documentation is for the MONTH_TO_STRING
function provided by OSCAT Basic [25].
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APPENDIX D
SAMPLE STRUCTURED TEXT PROGRAM

Listing 5 presents a real-world ST sample extracted from
the OSCAT basic library.

FUNCTION REPLACE_UML : STRING[STRING_LENGTH]
VAR_INPUT

str : STRING[STRING_LENGTH];
END_VAR
VAR

L : INT;
pt : REF_TO BYTE;
pto : REF_TO BYTE;
ptm : REF_TO BYTE;
pt1, pt2 : REF_TO BYTE;
su : STRING[2];
pos : INT;

END_VAR
VAR_TEMP

ptot,ptmt: LWORD;
END_VAR

PT := REF(str);
pto := REF(REPLACE_UML);
ptm := pto + INT_TO_DWORD(string_length);
pt1 := REF(su);
pt2 := pt1 + 1;
L := LEN(str);
WHILE pos < L AND pos < string_length DO

IF ptˆ < 127 THEN
(* no uml character simlply copy the

character*)
ptoˆ := ptˆ;

ELSE
(* convert the uml character *)
su := TO_UML(ptˆ);
(* we must make sure pointer are not out of

range *)
ptoˆ := pt1ˆ;
ptot := pto;
ptmt := ptm;
IF ptot < ptmt AND pt2ˆ > 0 THEN

pto := pto + 1;
ptoˆ := pt2ˆ;

END_IF;
END_IF;
(* increment pointers *)
pt := pt + 1;
pto := pto + 1;
pos := pos + 1;

END_WHILE;

(* properly close the output string *)
ptoˆ := 0;

END_FUNCTION

Listing 5: Sample of ST Program. This program was
extracted from the OSCAT Basic [25] library.
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