
DShield: Defending against Backdoor
Attacks on Graph Neural Networks

via Discrepancy Learning

Hao Yu∗, Chuan Ma†�, Xinhang Wan∗, Jun Wang∗, Tao Xiang†, Meng Shen‡, Xinwang Liu∗�
∗National University of Defense Technology, †Chongqing University, ‡Beijing Institute of Technology

∗{yu haocs, wanxinhang, wang jun, xinwangliu}@nudt.edu.cn, †{chuan.ma, txiang}@cqu.edu.cn, ‡shenmeng@bit.edu.cn

Abstract—Graph Neural Networks (GNNs) are vulnerable to
backdoor attacks, where triggers inserted into original graphs
cause adversary-determined predictions. Backdoor attacks on
GNNs, typically focusing on node classification tasks, are catego-
rized by dirty- and clean-label attacks and pose challenges due to
the interconnected nature of normal and poisoned nodes. Current
defenses are indeed circumvented by sophisticated triggers and
often rely on strong assumptions borrowed from other domains
(e.g., rapid loss drops on poisoned images). They lead to high
attack risks, failing to effectively protect against both dirty- and
clean-label attacks simultaneously. To tackle these challenges, we
propose DShield, a comprehensive defense framework with a
discrepancy learning mechanism to defend against various graph
backdoor attacks. Specifically, we reveal two vital facts during the
attacking process: semantic drift where dirty-label attacks modify
the semantic information of poisoned nodes, and attribute over-
emphasis where clean-label attacks exaggerate specific attributes
to enforce adversary-determined predictions. Motivated by those,
DShield employs a self-supervised learning framework to con-
struct a model without relying on manipulated label information.
Subsequently, it utilizes both the self-supervised and backdoored
models to analyze discrepancies in semantic information and
attribute importance, effectively filtering out poisoned nodes.
Finally, DShield trains normal models using the preserved nodes,
thereby minimizing the impact of poisoned nodes. Compared with
6 state-of-the-art defenses under 21 backdoor attacks, we conduct
evaluations on 7 datasets with 2 victim models to demonstrate
that DShield effectively mitigates backdoor threats with minimal
degradation in performance on normal nodes. For instance, on the
Cora dataset, DShield reduces the attack success rate to 1.33%
from 54.47% achieved by the second-best defense Prune while
maintaining an 82.15% performance on normal nodes. The source
code is available at https://github.com/csyuhao/DShield.

I. INTRODUCTION

Graph-structured data, such as social media networks [25]
and mobile payment networks [24], are ubiquitous. Within
these intricate networks, nodes serve as representations of
identities and are interconnected. Graph Neural Networks
(GNNs) leverage a message-passing mechanism to update node
representations by aggregating information from neighboring
nodes. This capability has proven instrumental in various tasks,
such as node classification [3] and graph classification [19].

Despite the significant achievements of GNNs, recent stud-
ies have revealed their susceptibility to backdoor attacks [38],
[42]. These attacks aim to induce undesirable behaviors in
backdoored models by injecting triggers into original graphs.
Triggers, varying from single nodes to subgraphs, allow the
compromised GNN to behave normally with unaltered graphs
but misbehave when presented with manipulated ones. Cur-
rent backdoor attacks on GNNs are divided into graph and
node classification attacks. The former misleads the model to
misclassify manipulated graphs, similar to image classification
attacks, and is defended by image domain defenses. In contrast,
the latter misclassifies nodes with triggers, presenting a greater
challenge due to the interconnection of normal and poisoned
nodes. In node classification attacks, this malicious behavior
is achieved by manipulating the training graph with a small
subset of poisoned nodes [5], [43]. These nodes are assigned
target labels, distinguishing between dirty- and clean-label
attacks based on whether their ground-truth labels match the
target labels. Specifically, in dirty-label attacks, the ground-
truth labels of poisoned nodes differ from the target labels,
and vice versa. Consequently, node classification attacks pose
a significant threat, and our primary focus is addressing them.

Deficiencies of Existing Defenses. Current defense mecha-
nisms can be broadly categorized into three types: preprocess-
based defenses [5], detection-based defenses [8], [20], and
poison-suppression-based defenses [29]. 1) Preprocess-based
defenses introduce a preprocessing operation to disrupt trigger
patterns, thereby preventing backdoor activation. 2) Detection-
based defenses, inspired by assumptions and observations in
other domains such as rapid loss drop on poisoned image data,
rely on scanning model predictions to detect the presence of a
backdoor in the graph. 3) Poison-suppression-based defenses
aim to diminish the impact of poisoned nodes, thereby pre-
venting the creation of backdoored models. However, these de-
fenses can be circumvented by custom trigger generation con-
straints, rendering comprehensive trigger detection challenging
and potentially compromising performance on normal nodes.
Furthermore, node classification attacks encompass both dirty-
and clean-label varieties (as discussed in Section IV), and
existing defenses cannot simultaneously mitigate both types.
Thus, effectively defending against node classification attacks
remains an ongoing and unresolved issue.

Our Goals and Contributions. To address these challenges,
we first observe semantic drift and attribute over-emphasis
facts of poisoned nodes, commonly exist in backdoor attacks
on node classification tasks. Motivated by these facts, we

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.240798
www.ndss-symposium.org

I. Graph Construction II. Node Selection III. Trigger Generation IV. Model Training V. Trigger Injection VI. Model Inference
DLBA

CLBA

Nodes with Other LabelsNodes with Other LabelsUnlabeled NodesUnlabeled Nodes The AdversaryThe Adversary Nodes within TriggersNodes within Triggers Model TrainingModel Training

Backdoored Model Backdoored Model

DLBA

CLBA

DLBA

CLBA

Unfrozen Backdoored ModelUnfrozen Backdoored Model Frozen Backdoored ModelFrozen Backdoored ModelNodes with Target LabelNodes with Target Label

Fig. 1: Illustration of the backdoor attack procedure. For brevity, a single node represents the trigger g, while different attacks
utilize various forms of triggers, such as single nodes or subgraphs. Triggers are injected into the original graph via attachment
or modification of attributes or structures of existing nodes.

propose a comprehensive defense, DShield, to leverage the
discrepancy learning mechanism to analyze the divergences be-
tween poisoned and normal nodes. It employs self-supervised
and backdoored models to obtain semantic information and
attribute importance of nodes, identifies poisoned nodes via
a clustering algorithm, and utilizes a backdoor-free training
mechanism to eliminate their influence. The defense consists of
three key components: 1) an auxiliary model training module
that creates a self-supervised model without manipulated labels
and a backdoored model with manipulated labels to analyze
semantic information and attribute importance of each node,
2) a discrepancy matrix construction module that builds the
discrepancy matrix to assess the relation among nodes with the
same label and identify poisoned nodes, and 3) a backdoor-
free model training module that discovers the target label and
obtains the normal model by removing identified poisoned
nodes. The contributions are summarized as follows:

• We observe semantic drift and attribute over-emphasis
among poisoned nodes in node classification backdoor at-
tacks and thereby devise a learning paradigm to obtain di-
vergences in semantic information and attribute importance
between poisoned and normal nodes.

• We propose DShield that employs self-supervised learning
and attribute importance analysis to learn two discrepancy
matrices for analyzing semantic drift and attribute over-
emphasis among nodes and utilizes a backdoor-free training
mechanism to develop a normal model.

• We conduct evaluations across 4 datasets to show that
DShield outperforms state-of-the-art baselines in defending
against various node classification backdoor attacks. Specif-
ically, DShield significantly reduces attack success rates to
below 10% on most attack cases.

• We evaluate DShield’s performance against 5 adaptive at-
tacks where the adversary employs multi-target attacks, e.g.,
mixtures of dirty- and clean-label attacks, and is aware of
DShield’s inner mechanisms. Experimental results indicate
that adaptive attacks cannot circumvent DShield.

• We further show the scalability of DShield by adapting
it to mitigate graph classification backdoor attacks on 3
datasets. Our findings show semantic drift and attribute
over-emphasis also rooted in graph classification attacks,
highlighting DShield’s ability to counter such attacks.

II. BACKGROUND AND RELATED WORK

A. Graph Neural Networks

We consider an attribute graph denoted as G = (A,X),
where the node set is V = {v1, · · · , vN}, and the structure

is expressed as E = {(v1, vi), · · · , (vj , vN)}. The matrices
A and X represent the adjacency and attribute matrices,
respectively. The binary adjacency matrix A ∈ {0, 1}N×N de-
fines node connections, with Aij = 1 indicating a connection
between nodes vi and vj , and Aij = 0 denoting no connection.
The attribute matrix X ∈ RN×F contains attributes for
each node, where xi represents the attributes of node vi. In
this paper, we focus on a semi-supervised node classification
task in the inductive setting [1], [22], commonly encountered
in practical scenarios. For instance, GNNs trained on social
networks often need to make predictions for newly registered
users. In this scenario, the entire graph G is partitioned into
the training graph Gtrain and the testing graph Gtest, with sets
of nodes within Gtrain and Gtest denoted as Vtrain and Vtest,
respectively. A subset of nodes V l ⊂ Vtrain is labeled with
Y l ∈ {0, 1}N×C , where C represents the total number of
labels. The test nodes Vtest are not included in the training
graph Gtrain, i.e., Vtrain ∩ Vtest = ∅.

GNNs have emerged as the dominant approach for mod-
eling graph data. Typically, the model f with parameters θ
applied to a node classification task takes a graph G as input
and employs the message-passing mechanism [36] to learn
representations of each node. Specifically, the message passing
towards node v at layer l is defined as follows:

hl+1
i = σ(ρ(hl

i, {hl
j ,∀ vj ∈ N (vi)})W l), (1)

where hl
i and W l represent the intermediate representations

of node vi and the trainable parameter at the l-th layer,
respectively. σ(·) denotes the activation function, and ρ(·) is
the aggregation function to collect information from neighbors
N (vi). The training loss is calculated as follows:

L(A,X,Y) =
1

|V l|
∑
vi∈Vl

CE(f(A,X)i,yi), (2)

where |·| represents the cardinality of a set, CE(·, ·) is the
cross-entropy loss, and yi denotes the one-hot label vector
corresponding to node vi within the label matrix.

B. Backdoor Attacks on Node Classification Tasks

Backdoor attacks constitute an emerging area of research
raising security concerns regarding training with third-party
resources. Existing attacks generally comprise six steps: 1)
graph construction, 2) node selection, 3) trigger generation,
4) model training, 5) trigger injection, and 6) model inference,
as depicted in Fig. 1. Further details about these six steps are

2

provided in Appendix A-A. Following existing studies [40],
[48], they can be divided into two types:

Dirty-Label Backdoor Attacks (DLBAs). The majority of
existing attacks belong to this category. During trigger gener-
ation, the adversary injects a trigger g into subgraphs centered
around a set of poisoned nodes Vp ⊂ Vtrain and assigns Vp

the target label yt, crafting a manipulated graph, described as:

G̃ = (Ã, X̃, Ỹ) = M(A,X,Y ; g, yt,Vp), (3)

where M represents the method of injecting triggers into the
original graph. The poisoning rate rp is calculated via rp =
|Vp|/|Vl|. GNNs trained on the manipulated graph are optimized
to predict the poisoned nodes Vp as the target label yt, linking
the trigger g with the target label. In the trigger injection step,
the adversary can inject the trigger g into the subgraph centered
around a test node v to classify v as the target label by the
backdoored GNN.

Initial efforts have been made for dirty-label graph back-
door attacks. SBA [50] formulates subgraphs as the trigger
g, and GTA [38] employs a trigger generator to acquire
optimal poisoned-node-specific triggers. EBA [43] applies
GraphLIME [12], a GNN explainability approach, to select
the optimal trigger-attaching position and modify a subset
of node features as triggers. TRAP [44] utilizes a surrogate
model to construct poisoned-node-specific and pattern-flexible
triggers. GB-FGSM [4] and LGCB [4] designate the trigger as
a single node, activating the backdoor when the trigger node is
connected to the poisoned node. UGBA [5] designs an adaptive
trigger generator to obtain inconspicuous triggers.

Clean-Label Backdoor Attacks (CLBAs). Recent research
focuses on clean-label attacks to improve the stealth of back-
door attacks, where ground-truth labels of poisoned nodes and
target labels are consistent. The adversary samples a subset of
training nodes Vp with the target label yt and alters attributes
of Vp as the trigger g without changing their structures and
labels, leading to a manipulated graph, expressed as:

G̃ = (A, X̃,Y) = M(X; g, yt,Vp). (4)

In the model inference step, the adversary’s goal is to cause the
backdoored model to misclassify the node v, whose ground-
truth label is not the target label yt, as yt, by attaching g.

Only two clean-label backdoor attacks exist for node
classification tasks. GCBA [49] adopts the poisoned node as
the trigger g and directly alters the attributes of poisoned
nodes to minimize the difference between embeddings of
poisoned nodes and embeddings of nodes with the target label,
manipulating the behavior of the downstream classifier built on
the pre-trained GNN encoder. Additionally, Yang et al. [45]
proposed PerCBA, devising a generator to generate different
perturbed attributes for the target label.

C. Defense against Node Classification Attacks

Defenses against attacks can be broadly categorized into
three groups: preprocess-based defenses, detection-based de-
fenses, and poison-suppression-based defenses.

Preprocess-Based Defenses. These defenses aim to disrupt
trigger patterns in manipulated graphs to prevent backdoor
activation. Motivated by real-world graphs, such as social

networks, exhibiting the homophily property where nodes with
similar attributes are connected, one such approach, introduced
by Dai et al. [5], employs a preprocessing operation called
prune to remove edges linking nodes with low cosine sim-
ilarities. However, they can be evaded by enhancing metrics
applied in the preprocessing operation. For instance, UGBA [5]
introduces an unnoticeable constraint to ensure that nodes
within triggers are similar to poisoned nodes.

Detection-Based Defenses. These defenses aim to identify
trigger presence in manipulated graphs through analysis of
model predictions. Motivated by the tendency of backdoored
GNNs to rely on simple sub-graphs for poisoned nodes and
more complex structures for normal nodes, Guan et al. [8] pro-
posed explanation-guided backdoor detection methods, such
as XGBD-PGExplainer and XGBD-GNNExplainer, leveraging
topological information to attribute model predictions to cru-
cial subgraphs. If the model’s loss value on an explanatory
subgraph of a node falls below a threshold, indicating that the
explanatory subgraph effectively preserves core information
for node classification, it is deemed poisoned. Additionally, Li
et al. [20] observed that in image domains, the loss on poisoned
images decreases notably faster compared to normal images
during training with a mixture of both. However, assumptions
or phenomena underlying these defenses may not universally
apply, as GNNs rely on smaller subgraphs for decision-making
on normal nodes as well, and graphs differ from images where
individual nodes are interconnected through edges. Excessive
removal of normal nodes could degrade model performance
on such nodes. Furthermore, the effectiveness of explanation-
guided defenses is influenced by explanation methods, and
generating explanatory subgraphs for each node individually
remains time-intensive.

Poison-Suppression-Based Defenses. These defenses aim to
diminish the impact of poisoned nodes during training to pre-
vent the creation of backdoored models. For instance, Zhang
et al. [49] utilized random smoothing to randomly subsample
subgraphs for GNN training, thereby corrupting potential trig-
gers within the graph. The subsampling procedure, controlled
by a subsampling ratio, involves removing a portion of nodes
and masking the features of the remaining nodes. Repeating
this process generates a set of subgraphs used for GNN
training, resulting in a smoother GNN. Nonetheless, these
defenses may lead to reduced performance on normal nodes
and cannot completely eliminate the influence of triggers.
Additionally, Zhang et al. [49] demonstrated that “random
smoothing” is ineffective against GCBA.

Unlike previous defenses, our DShield makes no assump-
tions about trigger specifications like size and is designed
based on intrinsic characteristics observed in backdoor attacks,
providing a comprehensive defense against both dirty- and
clean-label attacks, as well as graph classification attacks.

III. THREAT MODEL AND DESIGN GOALS

A. Threat Model

We consider a scenario where the defender leverages third-
party data to build a backdoor-free model denoted as f [48].
In this context, an evil actor, referred to as the backdoor
adversary, can manipulate a subset of nodes by injecting
triggers into the graph.

3

30 20 10 0 10 20
30

20

10

0

10

20

30

1
2

3
4

5
6

7
Poisoned

(a)
30 20 10 0 10 20 30

30

20

10

0

10

20

1
2

3
4

5
6

7
Poisoned

(b)
30 20 10 0 10 20

40

30

20

10

0

10

20

30

1
2

3
4

5
6

7
Poisoned

(c)

20 10 0 10 20

20

10

0

10

20

1
2

3
4

5
6

7
Poisoned

(d)
20 10 0 10 20

30

20

10

0

10

20

1
2

3
4

5
6

7
Poisoned

(e)
30 20 10 0 10 20

20

10

0

10

20

1
2

3
4

5
6

7
Poisoned

(f)

Fig. 2: Semantic Drift: t-SNE visualization of latent representations of
nodes within the manipulated graph generated by distinct backdoor attacks
on the Cora dataset. Fig. (a)-(c): GNNs trained with the manipulated
label information using the semi-supervised learning paradigm. Fig. (d)-
(f): GNNs trained with the manipulated label information using self-
supervised learning paradigm. Fig. (a)-(c): Manipulated graph generated
by GTA [38], GB-FGSM [4] and UGBA [5]. This fact indicates that the
semantic information of poisoned nodes differs from that of normal nodes
with the same label.

30 20 10 0 10 20

40

30

20

10

0

10

20

30

1
2

3
4

5
6

7
Poisoned

(a)
30 20 10 0 10 20 30 40

30

20

10

0

10

20

1
2

3
4

5
6

7
Poisoned

(b)

30 20 10 0 10 20 30

30

20

10

0

10

20

30

1
2

3
4

5
6

7
Poisoned

(c)
30 20 10 0 10 20 30

30

20

10

0

10

20

30

1
2

3
4

5
6

7
Poisoned

(d)

Fig. 3: Attribute Over-emphasis: t-SNE visual-
ization of attribute importance within the manip-
ulated graph on the Cora dataset. Fig. (a)-(b):
GNNs trained using the semi-supervised learning
paradigm. Fig. (c)-(d): Visualization of attribute
importance. Fig. (a)-(b): Manipulated graph gen-
erated by GCBA [49] and PerCBA [45]. This fact
denotes that backdoored models over-emphasize
certain attributes of poisoned nodes.

Adversary’s Knowledge and Abilities. Based on assumptions
from prior studies on backdoor attacks [5], [44], [49], [33],
it is assumed that the defender utilizes third-party data to
construct a GNN model. Naturally, the adversary: 1) possesses
knowledge of the graph, including poisoned nodes, partial
topology, and class count, 2) lacks knowledge of the defender’s
model architecture and parameters, 3) typically does not know
defenses, though we also explore a scenario where the adver-
sary is aware of DShield’s mechanism and employs adaptive
and multi-target attacks, e.g., mixtures of dirty- and clean-label
attacks, in the Subsection VI-C.

We presume the adversary is proficient in three aspects: 1)
Given the absence of direct access to the backdoored model,
they utilize a surrogate model in trigger construction, acknowl-
edging potential disparities in architecture and parameters. 2)
Triggers may manifest as nodes or subgraphs, with diverse
methods M employed for injecting triggers into the graph. 3)
Despite being unaware of defense mechanisms, the adversary
considers various defenses during trigger construction.

Adversary’s Goals. Broadly, the adversary’s objectives en-
compass efficiency and stealthiness. Regarding efficiency, the
adversary aims to enhance the performance of the backdoored
model f̃(·;ϕ), parameterized by ϕ, on poisoned nodes:

argmin
ϕ

1

|Vp|
∑

vi∈Vp

CE(f̃(Ã, X̃;ϕ)i,y
t), (5)

where yt is the one-hot vector with the yt-th index set to
1. Simultaneously, for stealthiness, the adversary aims for the
backdoored model to exhibit normal behavior for non-poisoned
nodes, expressed as:

f̃(Ã, X̃;ϕ)i =

{
yt, vi ∈ Vp;

f(A,X; θ)i, vi /∈ Vp.
(6)

Defender’s Knowledge and Abilities. Concerning the untrust-
worthy graph dataset from the third party, the defender remains
unaware of trigger presence. Even if triggers are injected, the
defender lacks information about target labels, the specific
backdoor attack employed, or trigger specifications like size
and poisoning rate rp.

Naturally, the defender has complete access to the ma-
nipulated graph and can utilize diverse analysis algorithms to
identify injected triggers. For instance, the defender may train
their models or detectors over the graph G̃. Unlike Jiang et
al. [16], we posit a practical scenario where defenders lack
validation datasets for identifying poisoned nodes, considering
the resource-intensive nature of creating such datasets [18].

Our Design Goals of Defense. Subsequently, aligned with
adversary objectives, we establish effectiveness and robustness
as core design goals for DShield. For effectiveness, regardless
of backdoor attacks, the model deployed with DShield should
perform comparably to a model trained exclusively on normal
nodes. Moreover, despite the attack’s efficiency, the defended
backdoored model should minimize performance degradation
on poisoned nodes. Regarding robustness, the defense must
effectively mitigate various attacks, including DLBAs and
CLBAs, and also protect against backdoor attacks in graph
classification tasks without making any assumptions about
trigger specifications.

IV. MOTIVATION

This section critically examines the current design of node
classification backdoor attacks and observes two facts among
poisoned ones. In this section, we set the target label yt = 2.

Semantic Drift of DLBAs. DLBAs involve injecting triggers
into the subgraph centered around poisoned nodes, thereby

4

I. Auxiliary Model Training

II. Discrepancy Matrix Construction

Clustering

Matrix Fusion

Attribute Importance DiscrepancySemantic Disrepancy

III. Backdoor-free Model Training

Minimizing Maxmizing

Normal Model

Model Training

Labeled GraphSelf-supervised ModelUnlabeled Graph

Model Training

Backdoored Model

Fig. 4: Illustration of DShield, consisting of the “auxiliary model training”, “discrepancy matrix construction”, and “backdoor-free
model training” modules for the construction of a backdoor-free model on the manipulated graph.

altering the labels of these nodes to a predefined target label.
Models trained on such manipulated graphs establish a strong
correlation between the trigger and the target label, resulting
in predictions associating nodes connected to the trigger with
the target label during model inference. Consequently, the
semantic information of poisoned nodes remains different from
that of normal nodes labeled yt, and DLBAs forge a strong
association between triggers and the target label, effectively
embedding backdoors in GNNs.

To verify this, we conduct three DLBAs, i.e., GTA [38],
GB-FGSM [4], and UGBA [5], on the Cora [32] dataset.
Specifically, we execute semi-supervised learning on the ma-
nipulated graph with the manipulated label information and
self-supervised learning on the manipulated graph without the
label information by leveraging GraphCL [46]. We visualize
the poisoned nodes in the latent representation space generated
by these two learned GNNs using t-SNE [35].

From the experimental results (Fig. 2), we observe that
poisoned nodes tend to cluster together after the standard
semi-supervised training process, which is close to normal
nodes with the target label yt. This observation implies why
existing DLBAs can succeed, aligning with findings in the
image domain [11]. Associated with the end-to-end semi-
supervised training paradigm, GNNs can shrink the distance
between poisoned nodes in the latent representation space and
connect the learned trigger-related features with the target
label. In contrast, as shown in Fig. (2d)-(2f), poisoned nodes
lie far from the normal nodes with the target label after the
self-supervised learning process on the unlabeled poisoned
graph. It indicates that the semantic information of poisoned
nodes remains different following the trigger injection. This
fact is called semantic drift between the semantic information
of nodes’ attributes and structures, and their labels.

Attribute Over-emphasis of CLBAs. Compared with DLBAs,
existing CLBAs do not inject new nodes into the original
graph, thereby ensuring the stealthiness of backdoor attacks.
Instead, they alter the attributes of poisoned nodes and prompt
GNNs to establish connections between altered attributes and
yt. Consequently, the altered attributes involuntary play a
crucial role in guiding backdoored GNNs to classify poisoned
nodes into the target label.

On the Cora dataset, we conduct two cutting-edge CLBAs,
namely GCBA [49] and PerCBA [45]. Specifically, we execute
semi-supervised learning on the manipulated graph with the
manipulated label information and perform attribute impor-
tance analysis using the gradient-guided explanation mecha-
nism [31] using backdoored GNNs. We visualize nodes in
the latent representation space generated by backdoored GNNs
and the attribute importance of nodes using t-SNE. Detailed
settings are available in Appendix A-B.

Based on the findings (Fig. 3), we observe that akin to
discoveries in DLBAs, latent representations of poisoned nodes
exhibit a propensity to aggregate and are situated close to the
cluster of normal nodes labeled the target label. This elucidates
why CLBAs can effectively implant backdoors into GNNs.
Moreover, evaluations on the attribute importance analysis
indicate that, since CLBAs alter attributes of poisoned nodes
to strengthen connections between altered attributes and the
target label, backdoored GNNs inevitably and excessively
rely on altered attributes to make predictions. As shown in
Fig. (3c) and (3d), poisoned nodes with altered attributes
demonstrate high similarities of important attributes, which is
called attribute over-emphasis.

In summary, the semantic drift of DLBAs reflects the
changes in latent representation distances of poisoned nodes
in self-supervised and backdoored models, while the attribute
over-emphasis of CLBAs reflects an excessive reliance on
specific attributes of poisoned nodes within backdoored mod-
els. The former highlights disparities in semantic information,
while the latter signifies variations in attribute importance.
Additionally, these discrepancies, stemming from the effective-
ness of DLBAs and CLBAs, remain consistent across various
backdoor attacks. Therefore, constructing self-supervised and
backdoored models to identify these discrepancies is essential
for detecting poisoned nodes.

V. THE PROPOSED DSHIELD

In this section, we propose a unified defensive framework,
namely DShield, that leverages these two discrepancies to
identify and mitigate the impact of poisoned nodes in both
dirty- and clean-label scenarios. Additionally, the proposed
scheme can also defeat attacks on graph classification tasks.

5

A. Overview

The DShield framework (Fig. 4), comprises three primary
modules: “auxiliary model training”, “discrepancy matrix con-
struction”, and “backdoor-free model training”. These modules
collectively aim to develop a backdoor-free model resilient to
backdoor attacks within the manipulated graph.

DShield employs three distinct GNN models: a self-
supervised model g, a backdoored model f̃ , and a normal
model f . The self-supervised model g uses an encoder-decoder
architecture, where genc(·) extracts latent representations h
of each node via a message-passing mechanism, and gdec(·)
reconstructs attributes during self-supervised learning. Addi-
tionally, f̃ and f are traditional node classification models with
no specific constraints.

Auxiliary Model Training Module. Given the high simi-
larity of latent representations between poisoned and normal
nodes and the significance of analyzing attribute importance in
CLBAs (Section IV), we train the backdoored model f̃ using
the manipulated graph. To address the lack of prior knowledge
about backdoor attacks, we utilize the self-supervised learning
paradigm to train the self-supervised model g. The backdoored
model f̃ and the self-supervised model g enable the analysis
of semantic differences between the two models and attribute
importance differences within the backdoored model.

Discrepancy Matrix Construction Module. Inspired by the
semantic and attribute importance discrepancies identified in
Section IV, two distinct discrepancy matrices are constructed.
Clustering algorithms are then applied to identify nodes whose
distributions of semantic information and attribute importance
deviate from those of the majority of nodes. Based on the
attribute drift fact observed in DLBAs, the semantic dis-
crepancy matrix quantifies variations in node latent represen-
tations between models trained via self-supervised learning
and backdoored models trained through semi-supervised learn-
ing. Meanwhile, following the attribute over-emphasis fact in
CLBAs, the attribute importance discrepancy matrix assesses
the influence of each attribute on prediction results using the
backdoored model.

Backdoor-free Model Training Module. The graph is par-
titioned into segments based on the nodes identified in the
previous module. A customized loss function is designed to
construct the backdoor-free model, enhancing performance on
the sub-graph without triggers while minimizing performance
on the sub-graph containing triggers.

B. Auxiliary Model Training

Due to the observed semantic drift in DLBAs, we opt
to analyze differences in latent representations of backdoored
models f̃ and self-supervised model g. Thus, we first train
the backdoored model f̃ on the manipulated graph G̃ using
the standard semi-supervised learning described in Eq. (2).
Subsequently, we adopt a self-supervised learning mechanism
to train the model g, which consists of the encoder model
genc and the decoder model gdec. The self-supervised learning
framework adopted by DShield follows the graph contrastive
learning paradigm, where the model aims to maximize the con-
sistency between diverse views [23], [41]. However, existing
paradigms face two challenges: 1) the augmentation function

might inadvertently overlook significant edges and attributes
when generating different graph views, and 2) the inclusion of
selected false negative node pairs in contrastive learning could
distort learned representations. To alleviate these challenges,
DShield employs a three-fold mechanism consisting of view
augmentation, view encoding, and contrast and reconstruction.

View Augmentation. Graph contrastive learning aims to en-
hance consistency between different augmented views, thereby
producing representations that resist perturbations introduced
by augmentation schemes [21], [39], [53], [34]. This stage
involves sampling two stochastic augmentation functions, de-
noted as t1 ∼ T and t2 ∼ T , with T representing the set
of all possible augmentation functions. The resulting graph
views denoted as Ĝ1 = t1(G̃) and Ĝ2 = t2(G̃), are obtained by
incorporating view augmentation functions, such as dropping
structures and masking attributes. The objective is to preserve
essential structures and attributes while perturbing potentially
less significant ones.

For structure-level augmentation, a direct method involves
randomly removing edges in the manipulated graph. The
modified subset Ê is sampled from the original edge set E
based on the probability distribution:

P{(vi, vj) ∈ Ê} = 1− psij , (7)

where (vi, vj) ∈ Ẽ represents an existing edge in the manipu-
lated graph, and psij is the probability of removing (vi, vj).
The importance of each edge (vi, vj) is quantified as psij ,
ensuring that the augmentation function is more likely to
corrupt unimportant edges while preserving crucial connective
structures. The homophily property of graphs, where nodes
tend to connect with similar others, informs the assessment of
edge importance, expressed as:

psij =
exp(−s(h̃i, h̃j))∑

(vk,vt)∈Ẽ exp(−s(h̃k, h̃t))
, (8)

where h̃i = f̃(Ã, X̃;ϕ1)i denotes the latent representation of
node vi in the backdoored models, and s(·, ·) is the similarity
function measuring distances between vectors. Given that the
backdoored model is a classification model, we denote ϕ1 as
the parameters of the middle layers used to obtain the latent
representations of nodes.

Attribute-level augmentation introduces noise to node at-
tributes by masking a fraction of dimensions with zeros. To
avoid masking crucial attributes, an adaptive attribute mask-
ing approach is designed based on attribute contributions to
prediction results. In detail, a random vector m̂i ∈ {0, 1}F is
sampled, where each dimension is independently drawn from
a Bernoulli distribution, i.e., m̂ij ∼ Bern(1 − paij), and paij
represents the probability of discarding the j-th attribute of
node vi. Each attribute’s importance is assessed through:

gi =
∂ CE(f(Ã, X̃;ϕ)i,yi)

∂xi
, (9)

where yi denotes the label within the graph. Subsequently,
attributes with positive contributions are retained and others
discarded, as indicated by wij = 1gij>0, where 1(·) denotes
the indicator function. Finally, the attribute importance is used
to modify the randomly sampled vector m̂i = m̂i⊕wi, where

6

Shared SharedMinimizing Minimizing Shared

View Augmentation Contrastive Learning Representation Augmentation Reconstruction Learning

Fig. 5: Framework of self-supervised learning adopted in the “auxiliary model training” module.

⊕ denotes the union operation. The perturbed attributes X̂ are
computed as:

X̂ = [x1 ◦ m̂1;x2 ◦ m̂2; . . . ;xN ◦ m̂N]
⊤
. (10)

Here, [·; ·] is the concatenation operator, and ◦ denotes element-
wise multiplication.

View Encoding. View encoding aims to extract latent repre-
sentations of nodes by feeding the data from two augmented
graphs, Ĝ1 and Ĝ2, into the encoder genc. This process ensures
that the generated representations preserve both the structure
and attribute information of augmented views, expressed as:

Ĥ1 = genc(Â1, X̂1), Ĥ2 = genc(Â2, X̂2). (11)

The encoder genc shows flexibility in graph contrastive learn-
ing, with examples including Graph Convolutional Networks
(GCNs) [17] and Graph Attention Networks (GATs) [36].

Contrast and Reconstruction. Contrastive learning aims to
obtain discriminative representations by distinguishing be-
tween representations of the same node in two different
views and those of other nodes. For a given node vi, its
representations in one view, e.g., Ĝ1, serve as the anchor, while
its representations in the other view, e.g., Ĝ2, constitute the
positive sample. Representations of nodes other than vi in the
other view are considered negative samples. Formally, for a
chosen anchor view, the contrastive loss is defined as:

Lc1 =
∑

vi∈Vtrain

− 1

|P(vi)|
∑

vj∈P(vi)

log
exp(s(ĥ1,i, ĥ2,j)/τ)∑

vk∈N (vi)
exp(s(ĥ1,i, ĥ2,k)/τ)

,

(12)
where P(vi) denotes the set of positive nodes for node vi,
and N (vi) represents the set of negative nodes for node vi.
The similarity function is denoted as s(·, ·), and the τ is the
temperature coefficient. Given that each view can serve as the
anchor and Eq. (12) treats Ĝ1 as the anchor view, we can
naturally deduce the contrastive loss Lc2 by replacing Ĝ1 of
Eq. (12) with Ĝ2. The contrastive loss is represented as:

Lc = 1/2Lc1 + 1/2Lc2 . (13)

In Eq. (12), the number of positive node pairs is consid-
erably smaller than the number of negative pairs, resulting in
numerous false negative samples. These false negative pairs,
under the objective of contrastive learning, are encouraged
to be distanced from the anchors in the representation space,
thereby potentially amplifying the divergence between nodes

with the same true labels. To address this challenge, we intro-
duce representation augmentation and reconstruction loss as
proposed by Zhao et al. [52] to enhance the mutual information
between original attributes and corresponding representations,
thus alleviating the loss of semantic information for false
negative nodes.

Specifically, a random vector m̂i ∈ {0, 1}F is sampled,
where each dimension is independently drawn from a Bernoulli
distribution, i.e., m̂i ∼ Bern(1−prij), with prij representing the
probability of masking the j-th dimension of the representation
of node vi. Subsequently, the perturbed representations are
computed as:

Ĥ ′
1 =

[
ĥ1 ⊙ m̂′

1; ĥ2 ⊙ m̂′
2; · · · , ĥN ⊙ m̂′

N

]⊤
, (14)

which is analogous to Ĥ ′
2. Subsequently, the masked represen-

tations are fed into the block gdec to reconstruct node attributes,
as expressed in:

X̂ ′
1 = gdec(Â1, Ĥ

′
1), X̂ ′

2 = gdec(Â2, Ĥ
′
2). (15)

The reconstruction loss is subsequently defined as:

Lr =
1

2

N∑
i=1

(
1− s(x̃i, x̂

′
1,i)

)2
+

1

2

N∑
i=1

(
1− s(x̃i, x̂

′
2,i)

)2
,

(16)
where x̂′

1,i represents the reconstructed attributes of node vi
in the first augmented view, and s(·, ·) denotes the similarity
function, set to the cosine function, considering variations in
attribute magnitudes [9].

In summary, the total loss is expressed as:

L = Lc + Lr. (17)

After constructing the self-supervised model g and the back-
doored model f̃ , we would analyze labeled nodes from the
perspective of two observed facts to identify potentially poi-
soned nodes.

C. Discrepancy Matrix Construction

To identify poisoned nodes, the defender strives to con-
struct a discrepancy matrix by considering the semantic drift
and attribute over-emphasis facts, as elucidated in Section IV.
Nevertheless, considering that the training graph may be ex-
traordinarily large, the task of building the discrepancy matrix
to detect potentially poisoned nodes from the entire pool of
labeled nodes remains formidable. Thus, a discrepancy matrix

7

0 50 100 150 200
Euclidean Distance

0%

15%

30%

45%

60%
S

a
m

p
le

R
a
ti

o

(a) Before Dimensionality Reduction

Distances among normal nodes

Distances between normal and poisoned nodes

0 50 100 150 200
Euclidean Distance

0%

30%

60%

S
a
m

p
le

R
a
ti

o

(b) After Dimensionality Reduction

Distances among normal nodes

Distances between normal and poisoned nodes

Fig. 6: Illustration of UMAP’s impact, showcasing its ability
to enlarge distances between normal and poisoned nodes.

is constructed for each label, as the defender is unaware of the
target label. Subsequently, noise-tolerant clustering algorithms
leverage these matrices to identify potentially poisoned nodes
for each label.

Semantic Discrepancy Matrix. In light of observed facts in-
dicating differences in semantic information between poisoned
nodes and normal nodes on DLBAs, the initial step involves
obtaining latent representations of training nodes with labels:

H̃sl = f̃(Ã, X̃;ϕ1), H̃ssl = genc(Ã, X̃), (18)

where f̃(·) denotes the backdoored model trained through
semi-supervised learning, ϕ1 is the parameters of the first layer
of the victim model, and genc represents the encoder part of
the self-supervised model g trained through self-supervised
learning. Subsequently, the Euclidean distance matrices [7] for
nodes with the label y are computed as:

Dy
sl = 1diag(H̃y

slH̃
y
sl

⊤
)⊤ − 2H̃y

slH̃
y
sl

⊤
+ diag(H̃y

slH̃
y
sl

⊤
)1⊤;

Dy
ssl = 1diag(H̃y

sslH̃
y
ssl

⊤
)⊤ − 2H̃y

sslH̃
y
ssl

⊤
+ diag(H̃y

sslH̃
y
ssl

⊤
)1⊤,
(19)

where 1 signifies the column vector of all ones, and diag(A)
denotes a column vector of the diagonal entries of A. The
matrix H̃y

sl ∈ RNy×d represents latent representations of nodes
labeled y, with Ny denoting the number of nodes labeled y.

Given substantial changes in the distance between poisoned
and normal nodes labeled yt in latent representations trained
through semi-supervised and self-supervised learning, the se-
mantic discrepancy matrix Ds captures these changes:

Dy
s = max(Dy

ssl −Dy
sl, 0). (20)

As explained in Section IV, poisoned nodes exhibit similarly
from normal nodes labeled with the target label in latent
representations trained through semi-supervised learning while
displaying a substantial distance in those trained through self-
supervised learning. Thus, only positive distance is preserved.

Attribute Importance Discrepancy Matrix. In alignment
with previous facts indicating that poisoned nodes manipulated
by CLBAs exhibit exaggerated attention to specific attributes
distinct from normal nodes, the attribute importance discrep-
ancy matrix is constructed to assess the dissimilarity between
nodes sharing the same labels. Formally, we derive the mask
matrix W indicating the positions of attributes contributing
positively to prediction results. Consequently, for nodes with
the label y, these attributes are obtained through the equation:

X̃y = X̃y ◦W y, (21)

where W y solely comprises the mask of nodes with the
label y. However, the calculation of Euclidean distance is not

directly applicable to node attributes due to their high dimen-
sionality, posing challenges of the curse of dimensionality [14].

To mitigate this challenge, we introduce a manifold-based
dimension reduction technique, specifically Uniform Manifold
Approximation and Projection (UMAP) [26], to reduce the
dimension of X̃y from RNy×F to RNy×d:

X
y
= UMAP(X̃y, d). (22)

UMAP is chosen due to its absence of restrictions on latent
representations’ dimensionality and its efficient computation
speed while preserving the global structure. In Fig. 6, we
present a visualization depicting alterations in distances among
poisoned nodes, as well as distances between normal and
poisoned nodes, both before and after employing dimension-
ality reduction on the Cora dataset. Our observation indicates
that UMAP effectively amplifies the divergences in attribute
importance between normal and poisoned nodes. Finally, the
distance of important attributes within nodes with the label y
is computed as:

Dy
a = 1diag(X

y
X

y⊤
)⊤ − 2X

y
X

y⊤
+ diag(X

y
X

y⊤
)1⊤.
(23)

Additionally, Fig. 12 (e)-(f) highlights the differences in the el-
ements of the attribute importance discrepancy matrix between
normal and malicious nodes in the Cora dataset.

Clustering. Given the unknown specific type of backdoor
attack to the defender, a fusion of the two discrepancy matrices
is performed based on the divergence observed in Euclidean
distances within nodes:

Dy =
std(Dy

s)

std(Dy
s) + std(Dy

a)
Dy

s +
std(Dy

a)

std(Dy
s) + std(Dy

a)
Dy

a . (24)

Here, the standard deviation std(·) of elements within the
discrepancy matrix is employed to quantify the information
magnitude contained therein.

For all nodes labeled y, a clustering algorithm is deployed
to partition these nodes into two clusters based on the merged
discrepancy matrix Dy . In this context, HDBSCAN [2] is
employed as the clustering algorithm, leveraging its capability
to cluster nodes based on the density of the distance distri-
bution while dynamically determining the required number of
clusters. Specifically, HDBSCAN designates nodes as outliers
if they do not conform to any cluster, allowing DShield to
categorize poisoned nodes as outliers. Since the number of
poisoned nodes is unknown to the defender, we assume the
attack can manipulate a maximum of 50% of nodes with the y
label, denoted as Ny/2+1, and set this as the minimum cluster
size. We then assume the cluster with the majority of nodes
to be normal, denoted as Vy

1 . All remaining nodes, potentially
poisoned, are designated as outliers and represented as Vy

2 :

Vy
1 ,V

y
2 = HDBSCAN(Dy). (25)

D. Backdoor-free Model Training

Having identified candidate poisoned nodes for each label,
the direct elimination of all candidate poisoned nodes, while
effective in bolstering defense performance, invariably leads to
a degradation in model performance on normal nodes. Thus,
an elegant approach involves determining the target label yt

and retaining nodes associated with other labels.

8

Target Label Discovery. Drawing insights from the case
study in Section IV, wherein poisoned nodes exhibit sub-
stantial semantic divergence or excessive focus on particu-
lar attributes, the identification of yt assigned to poisoned
nodes entails leveraging the differences in structures and
attributes between normal and poisoned nodes. A node clas-
sification model denoted as f ′, is trained on all normal nodes
{V1

1 , · · · ,V
y
1 , · · · ,VC

1 }, employing distances of latent repre-
sentations between normal nodes Vy

1 and candidate poisoned
nodes Vy

2 to determine the suspicious score of the y label.

To ensure the discernment of latent representation differ-
ences stemming from distinct structures and attributes, the
training graph structure is bifurcated into two parts:

Ãy,pos
ij

{
= Ãij , if vi /∈ Vy

2 and vj /∈ Vy
2 ;

= 0, if vi ∈ Vy
2 or vj ∈ Vy

2 ,
(26)

and

Ãy,neg
ij

{
= Ãij , if vi ∈ Vy

2 or vj ∈ Vy
2 ;

= 0, if vi /∈ Vy
2 and vj /∈ Vy

2 .
(27)

Here, Ãy,pos
ij ensures no edges are connected to potentially

poisoned nodes Vy
2 , while Ãy,neg

ij contains edges where at least
one node is from Vy

2 .

Subsequently, a customized loss function is devised to
maximize the model’s performance on normal nodes while
minimizing its performance on candidate poisoned nodes. The
first term can be defined as:

Lpos =
1

|Vy
1 |

∑
vi∈Vy

1

CE(f ′(Ãy,pos, X̃)i,yi). (28)

The second term can be expressed as:

Lneg =
1

|Vy
2 |

∑
vi∈Vy

2

CE(f ′(Ãy,neg, X̃)i,yi). (29)

The overall loss function for model training is then defined as:

L = Lpos − log(Lneg), (30)

where log(·) is incorporated to prevent a situation where the
difference between Lpos and Lneg is minimized while the
values of Lpos and Lneg increase.

The center of latent representations of nodes within the set
Vy
1 is obtained as:

hy =
1

|Vy
1 |

∑
vi∈Vy

1

f ′(Ãy,pos, X̃;ϕ′
1)i. (31)

Finally, the suspicious score for the label y is computed as:

sy =
1

|Vy
2 |

∑
vi∈Vy

2

∥∥∥f ′(Ãy,neg, X̃;ϕ′
1)i − hy

∥∥∥2
2
. (32)

Given that the defender cannot be certain whether the third-
party graph is manipulated or the number of target labels, we
adopt the anomaly detection technique with Median Absolute
Deviation (MAD) [30] to identify target labels, represented as:

y = {y | y ∈ [1, C] ∧ |sy−median(s)|/mad(s) ≤ β} , (33)

where median(s) is the median value of all suspicious scores,
and mad(s) is calculated as:

mad(s) = median(|s1 −median(s)|, · · · , |sC −median(s)|) .
(34)

Consequently, candidate poisoned nodes Vy2 are identified as
poisoned nodes, while candidate poisoned nodes with other
labels are considered normal nodes, resulting in:

V† =

C⋃
y=1

Vy
1 ∪

C⋃
y=1,y /∈y

Vy
2 ; V‡ = Vy2 , (35)

where V† and V‡ represent the sets of normal nodes and
identified poisoned nodes, respectively.

Backdoor-free Training. Based on identified normal nodes, a
classification loss is formulated to optimize model parameters:

Lclf =
1

|V†|
∑

vi∈V†

CE(f(Ã, X̃)i,yi). (36)

Some backdoor attacks, such as GB-FGSM [4], utilize
optimization-based methods to generate triggers, enhancing
their transferability to deceive models. To address this issue,
we introduce a penalty loss to minimize the performance of
the backdoor-free model f on these triggers, reducing the
transferability of these attacks. However, as poisoned nodes
V‡ are embedded within the structures, negative influences
introduced by the message-passing mechanism need to be
mitigated. Given the identified poisoned nodes, the subgraph
associated with them is constructed:

Ã′
ij =

{
Ãij , if vi ∈ V‡ or vi ∈ V‡;

0, if vi /∈ V‡ and vi /∈ V‡.
(37)

Subsequently, a penalty loss is then introduced to eliminate
the influences:

Lpenalty =
1

|V‡|
∑

vi∈V‡

CE(f(Ã′, X̃)i,yi). (38)

The total loss function is expressed as:

L = Lclf − γ logLpenalty. (39)

In summary, we introduce a self-supervised mechanism to
train the self-supervised model and utilize the self-supervised
and backdoored models along with an attribute importance
analysis technique to identify poisoned nodes through semantic
and attribute importance discrepancies. This approach effec-
tively defends against node classification attacks, including
DLBAs and CLBAs, and also mitigates backdoor attacks on
graph classification tasks with slight modifications (Details can
be found in Appendix A-E).

VI. EXPERIMENTAL EVALUATION

This section presents a comprehensive evaluation of the
performance of DShield across datasets of various scales. The
objective is to address the following research questions:

• RQ1-Effectiveness: To what extent does DShield effec-
tively mitigate the efficacy of various attacks while con-
currently preserving the performance of the victim model
on normal nodes?

9

TABLE I: Comparison of DShield’s effectiveness with state-of-the-art defenses against DLBAs (%) using GCN as the victim.

Datasets Defenses
SBA [50] GTA [38] EBA [43] GB-FGSM [4] LGCB [4] UGBA [5] TRAP [44]

ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑

Cora

no-defense 53.14±2.10 84.07±1.02 96.22±4.41 82.74±2.38 71.81±9.44 83.48±1.32 97.34±1.64 82.52±1.53 97.79±1.01 83.70±0.52 97.51±2.07 83.03±1.32 19.86±2.42 84.15±1.09

Prune [5] 30.26±2.78 83.26±0.96 16.42±2.35 84.00±1.80 100.0±0.00 80.74±1.57 56.98±1.00 81.92±3.36 56.98±0.93 81.92±1.95 54.47±2.19 83.41±1.52 11.36±2.08 81.48±1.87

Isolate [5] 04.06±2.42 37.19±1.07 03.54±1.85 77.78±1.48 96.43±1.66 80.67±1.29 56.09±0.78 81.85±1.08 56.46±0.78 81.63±1.97 56.02±0.80 80.74±3.21 10.15±1.94 67.26±1.63

PXGBD [8] 46.37±2.03 84.00±0.85 97.05±2.46 83.40±1.74 71.04±9.65 82.74±1.40 97.86±1.44 82.74±0.93 98.38±1.64 82.37±1.13 97.86±2.17 84.00±0.55 22.14±2.31 81.55±1.37

GXGBD [8] 56.28±1.31 84.17±1.30 83.77±1.56 83.42±1.10 88.19±2.81 73.52±2.75 98.16±1.16 84.07±1.09 98.43±1.01 84.26±0.98 80.81±2.30 83.15±2.31 19.70±3.84 81.18±0.80

ABL [20] 54.86±2.37 82.81±1.40 97.79±2.09 82.59±2.38 81.43±3.98 83.26±1.37 97.56±1.34 83.11±0.81 98.08±0.84 83.70±0.59 97.42±1.04 83.89±2.19 18.38±2.52 83.33±0.64

RS [49] 08.12±1.51 80.81±1.03 94.83±2.93 80.67±0.99 58.92±2.72 81.11±1.05 97.27±0.85 80.15±1.24 96.97±1.09 80.15±1.84 90.41±1.56 80.81±1.03 20.81±1.78 79.85±1.13

DShield 01.33±2.56 81.78±1.93 00.74±0.74 81.92±1.98 02.95±2.32 81.50±1.08 02.51±2.83 82.29±0.71 00.89±1.15 82.57±0.51 01.33±1.21 82.15±0.80 13.38±2.12 82.07±1.65

PubMed

no-defense 62.84±5.05 85.17±0.20 96.54±2.28 85.09±0.26 84.79±2.10 85.23±0.17 99.67±0.66 85.03±0.15 97.14±1.44 85.16±0.22 93.27±3.23 85.20±0.25 48.34±0.93 85.21±0.38

Prune [5] 53.01±2.59 85.33±0.37 46.15±0.40 85.30±0.21 99.95±0.00 85.44±0.18 70.28±0.40 85.31±0.25 69.36±0.56 85.36±0.18 66.85±1.47 85.38±0.29 41.77±0.28 85.33±0.25

Isolate [5] 40.69±0.47 81.25±0.28 45.46±0.22 84.47±0.21 99.36±0.38 84.56±0.22 70.16±0.31 85.14±0.15 69.80±0.90 85.11±0.13 67.62±1.34 85.14±0.20 43.30±3.41 83.34±1.59

PXGBD [8] 55.26±3.06 83.55±1.01 99.67±0.54 83.17±0.92 86.26±5.89 82.64±1.57 100.0±0.00 82.32±1.47 100.0±0.00 82.38±0.99 91.80±0.87 82.61±1.35 49.80±1.70 81.98±1.45

GXGBD [8] 56.20±1.18 83.93±0.76 99.71±0.35 82.57±0.64 90.21±2.27 75.45±2.23 100.0±0.00 82.31±0.85 100.0±0.00 82.41±0.82 81.95±0.00 82.82±0.91 49.36±3.16 82.84±1.47

ABL [20] 65.16±4.55 85.21±0.38 99.98±0.03 85.13±0.21 89.08±2.61 84.98±0.16 99.98±0.03 84.89±0.13 100.0±0.00 85.04±0.17 91.45±5.44 85.00±0.30 49.36±0.68 84.64±1.01

RS [49] 51.10±3.63 83.13±0.45 97.53±1.33 82.99±0.37 89.86±1.20 83.68±0.32 100.0±0.00 83.39±0.58 100.0±0.00 83.40±0.57 59.68±4.13 83.17±0.31 48.48±3.50 82.83±0.71

DShield 35.91±3.43 82.01±0.47 00.73±0.33 85.28±0.12 02.78±1.58 85.02±0.29 00.66±0.72 83.71±0.24 03.54±1.97 84.11±0.56 02.24±0.97 84.70±0.42 45.77±0.76 82.17±0.36

Flickr

no-defense 98.91±0.37 50.35±0.24 95.24±1.75 50.78±0.16 56.89±4.06 50.79±0.03 100.0±0.01 50.61±0.04 99.54±0.35 50.58±0.16 94.77±3.17 50.86±0.08 19.42±4.27 50.69±0.17

Prune [5] 10.29±4.19 50.80±0.14 91.89±6.26 50.70±0.09 100.0±0.00 42.24±0.25 99.93±0.01 50.61±0.00 99.53±0.27 50.58±0.20 95.22±1.91 50.84±0.08 14.06±1.58 49.94±0.24

Isolate [5] 00.30±0.67 27.76±0.42 93.99±1.66 50.75±0.16 57.59±6.60 50.86±0.01 99.92±0.00 50.71±0.16 99.47±0.30 50.64±0.11 95.30±2.38 50.95±0.13 20.36±4.50 50.25±0.26

PXGBD [8] 99.85±0.16 47.79±2.82 94.47±6.07 48.37±1.19 00.03±0.04 47.67±0.61 99.91±0.10 48.82±2.14 99.90±0.07 47.22±1.36 96.23±2.78 48.07±1.17 24.81±3.24 47.65±1.48

GXGBD [8] 98.96±0.83 44.29±4.17 99.37±0.58 40.96±0.70 38.64±2.06 41.05±0.08 100.0±0.01 41.57±0.02 100.0±0.01 41.31±1.41 97.93±1.93 40.98±0.61 00.10±0.21 40.34±0.02

ABL [20] 40.39±4.05 50.77±0.17 95.93±2.41 50.39±0.30 58.28±3.33 50.70±0.03 99.98±0.03 50.47±0.21 99.58±0.36 50.51±0.23 95.93±3.39 50.22±0.62 22.34±2.98 50.59±0.28

RS [49] 00.00±0.00 40.45±0.11 00.17±0.34 40.55±0.19 00.00±0.00 40.46±0.08 98.77±0.27 40.55±0.23 97.57±3.29 40.53±0.15 00.00±0.00 40.51±0.15 00.00±0.00 40.50±0.13

DShield 00.00±0.00 50.84±0.59 00.47±0.50 50.26±0.93 00.00±0.00 50.76±0.36 00.00±0.00 51.21±0.12 00.00±0.00 50.74±0.79 03.49±4.56 50.64±0.80 05.56±4.13 50.46±0.20

OGBN
-arXiv

no-defense 84.80±3.52 59.97±0.04 52.11±1.68 59.54±0.09 81.16±2.14 60.08±0.29 82.91±0.76 60.14±0.86 99.16±0.18 59.89±0.39 99.35±0.39 59.65±0.49 06.90±0.88 59.49±0.57

Prune [5] 80.95±5.68 60.33±0.38 12.41±0.78 59.55±0.00 64.64±2.77 60.09±0.19 82.64±1.88 60.27±0.69 99.23±0.13 59.96±0.64 99.39±0.18 59.35±0.99 06.56±0.14 59.64±0.83

Isolate [5] 03.30±1.03 44.09±0.09 11.66±1.20 59.64±0.01 63.56±6.55 60.10±0.29 83.01±0.95 60.19±0.68 99.16±0.21 59.90±0.37 99.41±0.13 59.39±0.78 06.56±0.37 59.91±0.10

PXGBD [8] 84.33±4.26 61.04±0.42 53.70±5.25 60.93±0.07 00.03±0.05 60.77±0.31 85.65±0.58 60.90±0.07 99.34±0.18 60.56±0.10 99.85±0.05 60.70±0.21 04.93±0.33 60.22±0.10

GXGBD [8] 92.21±3.08 54.68±1.07 48.35±4.19 53.73±0.47 44.91±6.92 54.60±1.27 80.26±2.02 54.77±0.30 98.76±0.09 53.47±0.11 99.61±0.06 52.87±0.37 19.56±1.39 41.13±0.97

ABL [20] 84.69±3.59 59.75±0.02 49.56±6.43 60.23±0.33 74.69±2.04 59.71±0.41 82.34±1.84 59.52±0.03 99.30±0.28 60.30±0.73 98.75±0.20 57.74±0.21 07.06±1.38 59.98±0.45

RS [49] 05.74±4.96 53.71±0.34 22.09±6.98 55.13±1.20 70.42±7.76 54.98±0.89 80.55±0.98 55.58±0.37 99.73±0.06 54.91±0.13 99.02±0.48 55.20±0.69 04.14±0.23 55.08±1.13

DShield 00.00±0.00 62.55±1.12 00.92±1.29 62.72±0.03 00.00±0.00 59.36±0.30 35.72±7.90 60.10±0.23 00.00±0.00 57.92±2.32 00.00±0.00 58.32±0.07 00.39±0.12 59.91±0.08

• RQ2-Robustness: Can DShield maintain its efficacy across
diverse configurations of attacks, including different poi-
soning rates (rp), trigger sizes, and adaptive attack scenar-
ios, e.g., mixtures of dirty- and clean-label attacks?

• RQ3-Sensitivity: Does the proposed approach exhibit con-
sistency in its performance across varying settings of hyper-
parameters, i.e., β and γ?

• RQ4-Ablation Studies: Do proposed mechanisms, such as
the reconstruction loss, enhance DShield’s performance?

• RQ5-Graph Classification Attacks: Can DShield defend
against backdoor attacks on graph classification tasks?

A. Experimental Setup

Datasets. The evaluation uses 7 public datasets: Cora [32],
Pubmed [32], Flickr [47], OGBN-arXiv [10], ENZYMES [15],
PROTEINS [15], and MNIST [27]. The first 4 datasets, com-
monly employed for inductive semi-supervised node classi-
fication, include citation networks (Cora, Pubmed), a large-
scale image caption graph (Flickr), and a substantial citation

network (OGBN-arXiv). The last 3 datasets are employed for
graph classification tasks. Dataset statistics are summarized
in Table VII. For node classification tasks, we adopt the
inductive task approach, where the adversary cannot access
the testing graph during the poisoning phase. Following the
dataset split approach by Dai et al. [5], we randomly mask
out 20% of nodes, with half designated as poisoned nodes
for attack evaluation and the other half as clean test nodes to
assess backdoored model predictions on normal nodes. The
training graph Gtrain comprises the remaining 80% of nodes,
with labeled and validation node sets each accounting for 10%.
For graph classification tasks, we randomly select 80% of the
data as the training dataset and 10% as the testing dataset.
All experiments are repeated 3 times, with mean values and
standard deviations reported.

Baselines. DShield is compared against 6 state-of-the-art de-
fenses: Prune [5], Isolate [5], XGBD-PGExplainer [8] (abbre-
viated as PXGBD), XGBD-GNNExplainer [8] (abbreviated as
GXGBD), ABL [20], and RandomSmoothing [49] (abbreviated

10

TABLE II: Comparison of DShield’s effectiveness with state-of-the-art defenses for 2 CLBAs (%). The victim model is GCN.

Defenses

Cora PubMed Flickr OGBN-arXiv

GCBA [49] PerCBA [45] GCBA [49] PerCBA [45] GCBA [49] PerCBA [45] GCBA [49] PerCBA [45]

ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑

no-defense 81.74±3.93 84.74±1.27 84.87±3.13 83.18±1.54 78.86±7.76 85.30±0.13 100.0±0.00 85.23±0.13 60.48±4.72 50.84±0.16 07.05±5.11 50.86±0.18 26.84±2.79 60.43±0.30 18.06±1.48 59.81±0.15

Prune [5] 99.70±0.31 82.37±0.42 69.01±1.31 82.66±0.55 99.83±0.18 85.55±0.16 95.58±4.50 85.34±0.30 78.50±3.63 49.97±0.27 30.38±2.70 50.12±0.15 23.14±0.30 60.40±0.35 19.03±1.15 59.78±0.17

Isolate [5] 99.88±0.21 71.92±2.05 81.73±2.35 69.04±2.07 99.10±1.09 84.12±0.14 97.88±1.05 84.26±1.01 66.44±5.40 50.34±0.08 30.15±3.17 50.52±0.18 22.24±0.98 60.43±0.08 19.00±0.64 59.75±0.18

PXGBD [8] 82.29±3.66 82.89±0.88 27.68±2.58 82.74±1.19 96.91±3.08 82.82±1.34 93.11±0.36 83.31±1.54 26.50±0.79 47.74±0.98 00.16±0.28 47.29±2.67 11.87±0.71 60.42±0.17 00.78±0.49 60.42±0.89

GXGBD [8] 04.61±1.77 82.96±0.52 80.69±2.98 84.30±1.07 97.30±0.51 82.43±1.11 72.90±1.18 82.78±0.32 49.90±2.39 40.57±0.30 02.42±4.19 40.61±0.44 09.21±1.54 55.94±0.16 00.34±0.14 48.51±0.43

ABL [20] 79.70±3.89 84.30±1.35 88.68±4.25 83.70±0.91 83.40±1.46 84.98±0.23 82.50±3.53 85.13±0.36 66.88±0.84 50.49±0.21 01.35±0.60 50.68±0.04 02.73±3.84 58.40±1.61 22.04±2.39 60.23±0.79

RS [49] 42.44±4.11 81.26±1.92 85.22±3.15 80.74±1.14 74.05±1.70 83.28±0.58 88.46±3.41 83.51±0.27 00.02±0.03 40.48±0.09 23.72±0.59 40.50±0.16 27.76±0.08 55.36±0.10 43.48±5.32 55.38±0.19

DShield 01.11±1.04 81.18±1.32 03.41±2.53 81.63±2.04 01.91±1.66 84.24±0.24 08.09±2.04 83.69±2.01 01.66±2.34 50.42±0.25 00.04±0.05 50.86±0.06 00.00±0.00 59.96±0.54 00.00±0.00 59.92±0.44

as RS). Details of each defense are listed in Section II.

Backdoor Attacks. The comprehensive assessment of DShield
includes 10 DLBAs (SBA [50], GTA [38], EBA [43], GB-
FGSM [4], LGCB [4], UGBA [5], TRAP [44], “TLN”,
DPGBA [51], and MLGB [37]) and 2 CLBAs (GCBA [49]
and PerCBA [45]) for node classification attacks. The “TLN”
denotes the attack in which the attributes of nodes within
the triggers correspond to attributes of the target label. A
two-layer GCN model serves as the surrogate model for
backdoor attacks. For graph classification attacks, we adapt
SBA [50], EBA [43], and GCBA [49] into G-SBA, G-EBA,
and G-GCBA, respectively, as detailed in Appendix A-E.
Additionally, we utilize SBAG [6] to inject triggers into the
original graphs. In all experiments, label 2 is designated as
the target label. The number of nodes within triggers for SBA,
GTA, UGBA, and TRAP is set to 3, and 1 for other attacks. The
number of poisoned nodes |Vp| is set to 10, 40, 80, and 160 for
Cora, PubMed, Flickr, and OGB-arXiv. For graph classification
attacks, we randomly sample 10% as poisoned graphs.

Victim Models. The victim models employed in evaluations
include GNNs with varying architectures: GCN [17] and
GAT [36]. Unless specified, the GCN model serves as the
default GNN model.

Metrics. Evaluation metrics comprise the Attack Success
Rate (ASR), measuring the effectiveness of the attack. ASR
quantifies the proportion of poisoned nodes with triggers (not
the target label) misclassified to the target label yt. Accuracy
(ACC), the rate of correctly classified normal nodes to all
normal nodes, is utilized to assess the backdoored GNN’s
performance on normal nodes.

B. Effectiveness Evaluation

In this subsection, we assess the defensive efficacy of
DShield against various attacks. Our investigation includes
experiments devised to mitigate 10 DLBAs and 2 CLBAs
across 4 node classification datasets. The assessments involv-
ing the GCN victim model are detailed in Table I, Table II,
and Table X, while the results for the GAT model are provided
in Appendix A-C. The findings reveal three observations:

1) DShield exhibits a notable performance against most
backdoor attacks, surpassing the efficacy of conventional de-
fenses. For instance, it achieves an average ASR of 1.33%,
significantly better than the second-best ASR of 54.47% when

5 10 15 20 25 30
Number of Poisoned Nodes

0%

30%

60%

90%

(a) UGBA

ASR ACC

5 10 15 20 25 30
Number of Poisoned Nodes

0%

30%

60%

90%

(b) GCBA

Fig. 7: DShield’s performance across various poisoning rates
on Cora dataset. The shading represents the standard deviation.

defending against UGBA on the Cora dataset. This superiority
stems from DShield’s precision in identifying nodes with struc-
tural or attribute distributions deviating from normal nodes,
consequently mitigating their influence during training.

2) Although DShield demonstrates superior defense perfor-
mance in most scenarios, a slight decline in model performance
on normal nodes is observed. For instance, when countering
SBA, the performance of the model trained with DShield on
normal nodes degrades by approximately 3% compared to the
model trained without any defenses. Since Eq. (39) degrades
the performance on poisoned nodes during the backdoor-
free training process, penalized poisoned nodes inevitably
affect model performance on normal nodes through inherent
connections between poisoned and normal nodes.

3) Notably, other defense mechanisms, except DShield, do
not consistently degrade attack performance. When defending
against EBA using the Prune method, the victim model suffers
a higher ASR (average 100.00%) than no defense (average
71.81%). This counter-intuitive result occurs because these
defense mechanisms remove normal nodes or edges, inadver-
tently amplifying the influence of poisoned nodes.

C. Robustness Evaluation

In this section, we investigate the performance of DShield
under diverse experimental settings.

Poisoning Rate rp. To assess DShield’s performance un-
der varying poisoning rates, we select 6 levels of rp, i.e.,
{5, 10, 15, 20, 25, 30}, while keeping the number of labeled
nodes constant. We deploy 6 different backdoor attacks on the
4 node classification datasets. The experimental results on the
Cora dataset against UGBA and GCBA are shown in Fig. 7,
with results against other attacks provided in Fig. 13. These
results show that DShield maintains stability across varying rp

11

1 2 3 4 5 6
Number of Poisoned Nodes

0%

30%

60%

90%

(a) UGBA

ASR ACC

1 2 3 4 5 6
Number of Poisoned Nodes

0%

30%

60%

90%

(b) GCBA

Fig. 8: The performance of DShield under different trigger
sizes on the Cora dataset.

TABLE III: Robustness of DShield against 5 adaptive attacks
(%) on the Cora and PubMed datasets.

Datasets Attacks
no-defense no-poison DShield

ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑

Cora

UGBA+LGCB 97.91±0.93 84.32±1.19 08.00±0.21 78.02±5.00 00.49±4.16 82.22±6.72

UGBA+GCBA 88.07±1.89 83.83±2.04 08.00±0.43 78.15±4.98 03.94±4.49 81.97±5.46

GCBA+PerCBA 74.78±3.77 83.82±1.13 08.24±0.93 77.53±3.36 08.49±2.82 80.99±4.64

AdaDA 84.51±2.61 84.07±0.52 07.75±0.64 84.07±1.29 04.43±3.13 76.86±0.26

AdaCA 89.85±6.52 82.59±0.52 09.47±5.18 84.69±0.94 00.74±0.98 81.23±2.46

PubMed

UGBA+LGCB 88.73±5.16 84.98±0.26 37.92±1.71 82.23±1.97 00.15±0.27 82.50±0.74

UGBA+GCBA 91.89±3.07 85.42±0.03 39.61±4.17 83.66±0.43 02.92±1.17 82.51±1.19

GCBA+PerCBA 89.01±5.25 84.53±0.62 39.52±3.38 83.49±0.61 13.39±2.08 81.28±1.17

AdaDA 88.72±3.34 85.22±0.04 40.23±0.72 83.17±3.57 32.61±8.89 79.17±1.47

AdaCA 87.88±5.12 85.13±0.31 03.82±1.68 85.39±0.13 05.68±0.79 82.60±1.87

by setting the minimum cluster size to at least 50% of nodes
with the same label.

Trigger Size. Additionally, we assess the robustness of
DShield across various trigger sizes on the Cora dataset. We
analyze 6 different backdoor attacks, where UGBA, SBA,
and GTA attach sub-graphs to poisoned nodes as triggers,
and LGCB, GCBA, and PerCBA directly modify attributes
of the poisoned nodes to use as triggers. Thus, we vary the
size of the trigger sub-graphs for the former 3 attacks (i.e.,
{1, 2, 3, 4, 5, 6}) and the number of perturbed attributes for the
latter 3 attacks (i.e., {100, 150, 200, 250, 300, 350}). Experi-
mental results against UGBA and GCBA attacks on the Cora
dataset, depicted in Fig. 8, demonstrate that DShield maintains
robustness across different trigger sizes without assuming
specific sizes as PXGBD and GXGBD do. Its effectiveness
lies in identifying nodes with disparate distributions of latent
representations or altered attributes, regardless of trigger size.

Adaptive Attacks. To assess the DShield’s performance
against more powerful backdoor attacks, we introduce 5 adap-
tive attacks: UGBA+LGCB, UGBA+GCBA, GCBA+PerCBA,
AdaDA (Adaptive DLBA), and AdaCA (Adaptive CLBA).
The first 3 attacks are multi-target attacks generating triggers
for half of the poisoned nodes: UGBA+LGCB uses two
dirty-label attacks (UGBA and LGCB), UGBA+GCBA com-
bines dirty- and clean-label attacks (UGBA and GCBA), and
GCBA+PerCBA employs two clean-label attacks (GCBA and
PerCBA). The target label yt for the first attack (e.g., UGBA
in UGBA+LGCB) is set to 2, while for the second attack (e.g.,
LGCB in UGBA+LGCB), it is set to 3. Additionally, AdaDA
and AdaCA incorporate two regularized losses to enhance the
attack stealthiness, aiming to circumvent the self-supervised
learning framework and UMAP used by DShield. Detailed
descriptions of these attacks are provided in Appendix A-D.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
β

0%

30%

60%

90%

(a) UGBA

ASR ACC F1 Score

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
β

0%

30%

60%

90%

(b) GCBA

Fig. 9: The impact of parameter β on the Cora dataset when
defending against UGBA.

0.0001 0.001 0.01 0.1 1
γ

0%

30%

60%

90%

(a) UGBA

ASR ACC

0.0001 0.001 0.01 0.1 1
γ

0%

30%

60%

90%

(b) GCBA

Fig. 10: The impact of parameter γ on the Cora dataset when
defending against GCBA.

Table III presents results on the Cora and PubMed datasets and
experimental results on other datasets are listed in Table XII,
where no-poison indicates scenarios where no triggers are
injected into the training graph. Key insights include:

1) DShield can simultaneously defend against dirty- and
clean-label attacks by using the threshold β and the median
absolute deviation to identify anomalous labels as target labels,
effectively defending against attacks aimed at multiple labels.

2) The efficacy of DShield stems from the execution of
the self-supervised learning framework and UMAP on the
manipulated graph. Consequently, during trigger generation,
the adversary lacks access to parameters utilized by DShield.
Furthermore, disparities in parameters between the adversary
and DShield hinder the crafted triggers from evading detection.

D. Sensitivity Analysis

In this subsection, we conduct the sensitivity analysis to
assess DShield’s performance under various hyper-parameter
configurations. Eq. (33) uses the threshold β to detect anoma-
lous nodes, while Eq. (39) utilizes γ to adjust the classifi-
cation loss for normal and poisoned nodes. Accordingly, we
assess the impact of different values of β and γ, specifically
choosing β ∈ {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0} and
γ2 ∈ {1, 0.1, 0.01, 10−3, 10−4} on the Cora dataset when de-
fending against UGBA and GCBA attacks. Since β determines
the number of identified poisoned nodes, we also report the
F1 Score metric for identification. Experimental results are
presented in Fig. 9 and 10, yielding the following observations:

1) The parameter β significantly affects identification preci-
sion. For example, in the UGBA attack, as β increases, the F1
Score gradually improves. However, if β becomes excessively
large, the F1 Score starts to decline. This occurs because an
overly large β regards no suspicious score as an outlier value.

2) Increasing the parameter γ results in a decline in the
victim model’s performance on poisoned nodes. This obser-
vation confirms the efficacy of the discrepancy matrix, which

12

TABLE IV: Ablation Studies of DShield against UGBA and
GCBA (%). The victim model is GCN.

Datasets Attacks
w/o Lr w/o Adaptive Dropping w/o UMAP

ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑

Cora
UGBA 63.84±4.70 83.82±0.57 63.84±4.70 83.82±0.57 00.12±0.21 82.59±1.85

GCBA 00.25±0.43 81.36±2.14 02.09±3.62 82.47±1.13 74.54±3.65 83.21±1.54

PubMed
UGBA 63.04±2.37 84.91±0.08 61.24±6.13 84.93±0.13 00.20±0.19 84.41±0.34

GCBA 01.07±0.60 84.34±0.47 00.95±1.21 84.46±0.64 15.91±1.56 85.29±0.33

Flickr
UGBA 07.31±1.23 51.39±0.06 06.84±5.23 51.02±0.50 03.00±5.20 51.07±0.15

GCBA 00.00±0.00 50.68±0.25 00.00±0.00 50.77±0.29 00.26±0.08 50.70±0.27

OGBN
-arXiv

UGBA 74.05±2.75 60.19±0.78 96.21±4.76 59.42±0.34 00.00±0.00 59.41±0.42

GCBA 00.20±0.24 60.06±0.55 01.09±1.38 60.08±0.60 04.87±1.23 60.24±0.54

adeptly detects distribution disparities in latent representations
or attributes between poisoned and normal nodes, thereby
enabling precise identification of poisoned nodes.

E. Ablation Studies

In this subsection, we assess the impact of DShield’s com-
ponents, including the reconstruction loss Lr, “Adaptive Drop-
ping”, and UMAP. “Adaptive Dropping” involves selectively
removing attributes and edges based on attribute importance
and node similarities connected by an edge. Our evaluations fo-
cus on defending against UGBA and GCBA attacks across four
node classification datasets. Table IV presents experimental
results, where “w/o Lr” denotes the absence of reconstruction
loss during self-supervised training, “w/o Adaptive Dropping”
indicates random removal of attributes and edges, and “w/o
UMAP” signifies no reduction in dimensionality for important
attributes when constructing the attribute importance matrix.

The loss Lr and “Adaptive Dropping” are crucial for
defending against DLBAs, whereas UMAP is effective against
CLBAs. For example, on the Cora dataset, in the absence of
Lr, UGBA achieves an average ASR of 63.84%, while GCBA
achieves only 0.25%. This disparity arises because Lr and
“Adaptive Dropping” operate within the self-supervised learn-
ing framework, whereas UMAP contributes to the attribute im-
portance matrix. Moreover, UMAP’s impact diminishes when
the attribute dimensionality is insufficiently large.

F. Defending against Attacks on Graph Classification Tasks

In this subsection, we assess DShield’s performance against
backdoor attacks on graph classification tasks. We adapt
DShield as G-DShield to suit this purpose with slight mod-
ifications. To inject triggers into the original graphs, we utilize
SBAG [6] and adapt SBA [50], EBA [43], and GCBA [49]
into G-SBA, G-EBA, and G-GCBA, respectively. All evalu-
ations are conducted on 3 graph classification datasets, i.e.,
ENZYMES, PROTEINS, and MNIST. Detail descriptions of
these attacks and G-DShield are provided in Appendix A-E.
Experimental results in Table V and Table XI show that
semantic drift and attribute over-emphasis also occur in graph
classification tasks and the defense efficiency is not limited to
node classification backdoor attacks.

TABLE V: DShield against backdoor attacks on graph classi-
fication tasks (%). The victim model is GCN.

Datasets Defenses
G-SBA G-EBA G-GCBA

ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑

ENZYMES
no-defense 100.0±0.00 32.67±0.94 100.0±0.00 27.50±3.54 100.0±0.00 23.33±0.00

G-DShield 01.67±2.35 35.00±2.36 02.50±3.54 31.67±2.35 00.00±0.00 30.84±1.18

PROTEINS
no-defense 100.0±0.00 66.67±1.27 99.56±0.63 71.62±3.18 99.11±0.00 73.43±5.73

G-DShield 00.00±0.00 74.63±4.04 04.29±6.06 74.33±3.19 00.98±1.39 71.17±1.27

MNIST
no-defense 100.0±0.00 36.33±0.67 100.0±0.00 36.89±0.02 100.0±0.00 38.34±0.66

G-DShield 00.00±0.00 38.86±0.37 01.87±2.64 39.77±1.65 00.00±0.00 40.57±1.89

TABLE VI: The execution time of various defenses against
UGBA and GCBA on the Cora and PubMed datasets (s).

Defenses
Cora PubMed

UGBA GCBA UGBA GCBA

Prune 0000.92±0.01 0000.89±0.10 0000.98±0.02 0000.91±0.13

Isolate 0000.87±0.09 0000.95±0.10 0000.93±0.08 0000.97±0.02

PXGBD 0120.14±0.25 0118.89±1.85 0908.47±2.60 0864.93±8.14

GXGBD 0209.72±1.37 0202.13±6.19 1564.67±5.90 1584.93±3.15

ABL 0001.08±0.03 0001.07±0.04 0002.86±0.20 0002.61±0.09

RS 0001.49±0.02 0001.49±0.01 0001.62±0.02 0001.62±0.01

DShield 0064.38±0.46 0064.51±1.13 0178.84±7.64 0193.21±4.55

DShield-cuML 0017.98±3.73 0020.41±0.67 0046.18±2.19 0044.42±0.29

VII. DISCUSSION

Effect on Benign Performance. Although DShield effectively
alleviates the influence of poisoned nodes, as demonstrated in
Section VI, it is essential to acknowledge that this mitigation
comes at the cost of a concomitant degradation in the perfor-
mance of the victim model on normal nodes. This degradation
is an intrinsic consequence, primarily stemming from the
pre-existing connections between poisoned and normal nodes
before the adversary’s injection of triggers. Such connections
cannot be completely severed without jeopardizing the accurate
predictions for the respective normal nodes.

Defense Execution Time. The execution time of various
defenses is shown in Table VI and Table XIII. It demonstrates
that DShield achieves optimal defense performance while
consuming a moderate amount of time. To further enhance
detection speed, we utilize the cuML library [28] for imple-
menting the UMAP and HDBSCAN algorithms, referred to as
DShield-cuML, which enables faster detection. Additionally,
efforts are underway to detect multiple labels in parallel to
further expedite the defense process.

VIII. CONCLUSION

In this paper, we proposed DShield, a comprehensive and
resilient framework based on discrepancy learning to safeguard
GNNs against backdoor attacks. We devised a self-supervised
learning framework and attribute importance analysis tech-
nique to construct a discrepancy matrix for semantic and
attribute importance differences between normal and poisoned
nodes. Subsequently, this matrix facilitates the identification
of poisoned nodes, followed by the implementation of a

13

backdoor-free training mechanism to train a GNN model
devoid of backdoors on node and graph classification tasks.
Extensive experimental results highlighted DShield’s effective-
ness in significantly mitigating the negative effects of poisoned
nodes, while also maintaining the model’s performance on nor-
mal nodes. Future research endeavors will focus on broadening
its mechanisms to counter backdoor attacks on other domains.

ACKNOWLEDGMENT

This work is supported by the National Key R&D Pro-
gram of China under Grant 2022YFB3103500, the Na-
tional Natural Science Foundation of China under Grants
62325604, 62276271, 62072062, 62222201, U20A20176, and
U23A20304, Beijing Nova Program with No. 20220484174,
Beijing Natural Science Foundation with Nos. M23020.

REFERENCES

[1] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A
geometric framework for learning from labeled and unlabeled examples.
J. Mach. Learn. Res., 7:2399–2434, 2006.

[2] R. J. G. B. Campello, D. Moulavi, and J. Sander. Density-based
clustering based on hierarchical density estimates. In PAKDD, volume
7819 of Lecture Notes in Computer Science, pages 160–172. Springer,
2013.

[3] D. Chen, Y. Lin, G. Zhao, X. Ren, P. Li, J. Zhou, and X. Sun. Topology-
imbalance learning for semi-supervised node classification. In NeurIPS,
pages 29885–29897, 2021.

[4] L. Chen, Q. Peng, J. Li, Y. Liu, J. Chen, Y. Li, and Z. Zheng.
Neighboring backdoor attacks on graph convolutional network. CoRR,
abs/2201.06202, 2022.

[5] E. Dai, M. Lin, X. Zhang, and S. Wang. Unnoticeable backdoor attacks
on graph neural networks. In WWW, pages 2263–2273. ACM, 2023.

[6] J. Dai, Z. Xiong, and C. Cao. A semantic backdoor attack against graph
convolutional networks. Neurocomputing, 600:128133, 2024.

[7] I. Dokmanic, R. Parhizkar, J. Ranieri, and M. Vetterli. Euclidean
distance matrices: Essential theory, algorithms, and applications. IEEE
Signal Process. Mag., 32(6):12–30, 2015.

[8] Z. Guan, M. Du, and N. Liu. XGBD: explanation-guided graph
backdoor detection. In ECAI, volume 372, pages 932–939. IOS Press,
2023.

[9] Z. Hou, X. Liu, Y. Cen, Y. Dong, H. Yang, C. Wang, and J. Tang.
Graphmae: Self-supervised masked graph autoencoders. In KDD, pages
594–604. ACM, 2022.

[10] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec. Open graph benchmark: Datasets for machine learning on
graphs. In NeurIPS, 2020.

[11] K. Huang, Y. Li, B. Wu, Z. Qin, and K. Ren. Backdoor defense via
decoupling the training process. In ICLR. OpenReview.net, 2022.

[12] Q. Huang, M. Yamada, Y. Tian, D. Singh, and Y. Chang. Graphlime:
Local interpretable model explanations for graph neural networks. IEEE
Trans. Knowl. Data Eng., 35(7):6968–6972, 2023.

[13] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in
Science & Engineering, 9(3):90–95, 2007.

[14] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards
removing the curse of dimensionality. In Proceedings of the Thirtieth
Annual ACM Symposium on the Theory of Computing, Dallas, Texas,
USA, May 23-26, 1998, pages 604–613. ACM, 1998.

[15] S. Ivanov, S. Sviridov, and E. Burnaev. Understanding isomorphism
bias in graph data sets. CoRR, abs/1910.12091, 2019.

[16] B. Jiang and Z. Li. Defending against backdoor attack on graph nerual
network by explainability. CoRR, abs/2209.02902, 2022.

[17] T. N. Kipf and M. Welling. Semi-supervised classification with graph
convolutional networks. In ICLR. OpenReview.net, 2017.

[18] S. Kolouri, A. Saha, H. Pirsiavash, and H. Hoffmann. Universal litmus
patterns: Revealing backdoor attacks in cnns. In CVPR, pages 298–307.
Computer Vision Foundation / IEEE, 2020.

[19] J. B. Lee, R. A. Rossi, and X. Kong. Graph classification using
structural attention. In SIGKDD, pages 1666–1674. ACM, 2018.

[20] Y. Li, X. Lyu, N. Koren, L. Lyu, B. Li, and X. Ma. Anti-backdoor
learning: Training clean models on poisoned data. In NeurIPS, pages
14900–14912, 2021.

[21] K. Liang, L. Meng, M. Liu, Y. Liu, W. Tu, S. Wang, S. Zhou, X. Liu,
F. Sun, and K. He. A survey of knowledge graph reasoning on graph
types: Static, dynamic, and multi-modal. IEEE TPAMI, 2024.

[22] K. Liang, L. Meng, S. Zhou, W. Tu, S. Wang, Y. Liu, M. Liu, L. Zhao,
X. Dong, and X. Liu. Mines: Message intercommunication for inductive
relation reasoning over neighbor-enhanced subgraphs. In AAAI, pages
10645–10653, 2024.

[23] M. Liu, K. Liang, Y. Zhao, W. Tu, S. Zhou, X. Gan, X. Liu, and
K. He. Self-supervised temporal graph learning with temporal and
structural intensity alignment. IEEE Transactions on Neural Networks
and Learning Systems, 2024.

[24] Y. Liu, X. Yang, S. Zhou, X. Liu, Z. Wang, K. Liang, W. Tu, L. Li,
J. Duan, and C. Chen. Hard sample aware network for contrastive deep
graph clustering. In Proc. of AAAI, volume 37, pages 8914–8922, 2023.

[25] Y. Liu, S. Zhu, J. Xia, Y. Ma, J. Ma, W. Zhong, X. Liu, S. Yu,
and K. Zhang. End-to-end learnable clustering for intent learning in
recommendation. In NeurIPS, 2024.

[26] L. McInnes and J. Healy. UMAP: uniform manifold approximation and
projection for dimension reduction. CoRR, abs/1802.03426, 2018.

[27] F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, and M. M.
Bronstein. Geometric deep learning on graphs and manifolds using
mixture model cnns. In CVPR, pages 5425–5434. IEEE Computer
Society, 2017.

[28] S. Raschka, J. Patterson, and C. Nolet. Machine learning in python:
Main developments and technology trends in data science, machine
learning, and artificial intelligence. arXiv preprint arXiv:2002.04803,
2020.

[29] E. Rosenfeld, E. Winston, P. Ravikumar, and J. Z. Kolter. Certified
robustness to label-flipping attacks via randomized smoothing. In ICML,
volume 119, pages 8230–8241. PMLR, 2020.

[30] P. J. Rousseeuw and M. Hubert. Anomaly detection by robust statistics.
WIREs Data Mining Knowl. Discov., 8(2), 2018.

[31] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra. Grad-cam: Visual explanations from deep networks via
gradient-based localization. Int. J. Comput. Vis., 128(2):336–359, 2020.

[32] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-
Rad. Collective classification in network data. AI Mag., 29(3):93–106,
2008.

[33] M. Shen, C. Li, Q. Li, H. Lu, L. Zhu, and K. Xu. Transferability
of white-box perturbations: Query-Efficient adversarial attacks against
commercial DNN services. In USENIX Security, pages 2991–3008,
2024.

[34] M. Shen, C. Li, H. Yu, Q. Li, L. Zhu, and K. Xu. Decision-based query
efficient adversarial attack via adaptive boundary learning. IEEE Trans.
Dependable Secur. Comput., 21(4):1740–1753, 2024.

[35] L. van der Maaten and G. Hinton. Visualizing data using t-sne. Journal
of Machine Learning Research, 9(86):2579–2605, 2008.

[36] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio. Graph attention networks. In ICLR. OpenReview.net, 2018.

[37] K. Wang, H. Deng, Y. Xu, Z. Liu, and Y. Fang. Multi-target label back-
door attacks on graph neural networks. Pattern Recognit., 152:110449,
2024.

[38] Z. Xi, R. Pang, S. Ji, and T. Wang. Graph backdoor. In USENIX
Security, pages 1523–1540, 2021.

[39] T. Xiao, X. Wang, A. A. Efros, and T. Darrell. What should not be
contrastive in contrastive learning. In ICLR. OpenReview.net, 2021.

[40] X. Xing, M. Xu, Y. Bai, and D. Yang. A clean-label graph backdoor
attack method in node classification task. CoRR, abs/2401.00163, 2024.

[41] D. Xu, W. Cheng, D. Luo, H. Chen, and X. Zhang. Infogcl: Information-
aware graph contrastive learning. In NeurIPS, pages 30414–30425,
2021.

[42] J. Xu and S. Picek. Poster: Multi-target & multi-trigger backdoor attacks
on graph neural networks. In CCS, pages 3570–3572. ACM, 2023.

14

30 20 10 0 10 20

30

20

10

0

10

20

30

1
2

3
4

5
6

7
Poisoned

(a)
30 20 10 0 10 20 30 40

20

10

0

10

20

1
2

3
4

5
6

7
Poisoned

(b)

30 20 10 0 10 20

20

10

0

10

20

30

1
2

3
4

5
6

7
Poisoned

(c)
30 20 10 0 10 20

20

10

0

10

20

1
2

3
4

5
6

7
Poisoned

(d)

Fig. 11: Semantic Drift: t-SNE visualization of latent repre-
sentations of nodes within the manipulated graph generated
by SBA [50] and EBA [43] on the Cora dataset. Fig. (a)
& (b): GNNs trained with the manipulated label information
using the semi-supervised learning paradigm. Fig. (c) & (d):
GNNs trained with the manipulated label information using
self-supervised learning paradigm. Fig. (a) & (b): Manipulated
graph generated by SBA [50] and EBA [43].

[43] J. Xu, M. Xue, and S. Picek. Explainability-based backdoor attacks
against graph neural networks. In WiseML@WiSec 2021, pages 31–36.
ACM, 2021.

[44] S. Yang, B. G. Doan, P. Montague, O. Y. de Vel, T. Abraham,
S. Camtepe, D. C. Ranasinghe, and S. S. Kanhere. Transferable graph
backdoor attack. In RAID, pages 321–332. ACM, 2022.

[45] X. Yang, G. Li, C. Zhang, M. Han, and W. Yang. Percba: Persistent
clean-label backdoor attacks on semi-supervised graph node classifica-
tion. In IJCAI (AISafety-SafeRL), volume 3505 of CEUR Workshop
Proceedings. CEUR-WS.org, 2023.

[46] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen. Graph
contrastive learning with augmentations. In NeurIPS, 2020.

[47] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. K. Prasanna.
Graphsaint: Graph sampling based inductive learning method. In ICLR.
OpenReview.net, 2020.

[48] Y. Zeng, M. Pan, H. A. Just, L. Lyu, M. Qiu, and R. Jia. Narcissus: A
practical clean-label backdoor attack with limited information. In CCS,
pages 771–785. ACM, 2023.

[49] H. Zhang, J. Chen, L. Lin, J. Jia, and D. Wu. Graph contrastive backdoor
attacks. In ICML, volume 202, pages 40888–40910. PMLR, 2023.

[50] Z. Zhang, J. Jia, B. Wang, and N. Z. Gong. Backdoor attacks to graph
neural networks. In SACMAT, pages 15–26. ACM, 2021.

[51] Z. Zhang, M. Lin, E. Dai, and S. Wang. Rethinking graph backdoor
attacks: A distribution-preserving perspective. In KDD, pages 4386–
4397. ACM, 2024.

[52] Z. Zhao, R. Wang, Z. Wang, F. Nie, and X. Li. Graph joint rep-
resentation clustering via penalized graph contrastive learning. IEEE
Transactions on Neural Networks and Learning Systems, pages 1–12,
2023.

[53] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang. Graph contrastive
learning with adaptive augmentation. In WWW, pages 2069–2080. ACM
/ IW3C2, 2021.

APPENDIX A
APPENDIX

A. Additional Details of Node Classification Attacks

In this subsection, we will provide additional details of
backdoor attacks on node classification tasks.

TABLE VII: Dataset Statistics.

Datasets |G| |V| |E| F C |Vl| or |Gl| |Vp| or |Gp|

Cora 1 2,708 5,429 1,443 7 541 10

PubMed 1 19,717 44,338 500 3 3,943 40

Flickr 1 89,250 899,756 500 7 17,850 80

OGBN-arXiv 1 169,343 1,166,243 128 40 29,091 160

ENZYMES 600 32 124 3 2 480 60

PROTEINS 1,113 39 145 3 2 668 222

MNIST 70,000 75 1,393 1 10 42,000 14,000

Node Selection. Nodes with representative features and struc-
tures are likely to lead to successful backdoor attacks when
triggers are attached. Therefore, existing studies select diverse
and representative nodes as poisoned nodes to enforce the
victim model to predict these nodes with triggers as the
target label yt. Dai et al. [5] introduce 5 approaches for
choosing poisoned nodes: “Random”, “Degree”, “Clustering
Coefficient”, “Cluster”, and “Cluster&Degree”. The “Random”
method arbitrarily selects nodes. The “Degree” method pri-
oritizes nodes with lower degrees to minimize disruption to
model performance on normal nodes. The “Clustering Co-
efficient” method chooses nodes with high clustering coeffi-
cients. The “Cluster” method identifies representative nodes
through clustering analysis. The “Cluster&Degree” method
combines clustering analysis and degree prioritization to select
representative nodes with relatively lower degrees. Since the
“Cluster&Degree” method has shown superior performance,
we use it as the default approach for poisoned node selection.

Trigger Generation. Backdoor attacks employ various forms
of triggers and methods for their generation. For instance, Dai
et al. [5] use small subgraphs as triggers and develop a trigger
generator to produce them. Xu et al. [43] use attributes as
triggers, leveraging GNN explainability to identify and modify
the least representative attributes for trigger injection.

Model Training. The adversary trains the GNN model using
the standard semi-supervised learning approach on the manip-
ulated graph.

Trigger Injection. The adversary follows the same trigger
generation process to produce and inject triggers into the
testing graph.

B. Detailed Settings for Case Studies

In Section IV, we conduct case studies to reveal ubiquitous
discrepancies in semantic information and attribute importance
between normal and poisoned nodes. This section elabo-
rates comprehensively on the setup of attacks, methodologies
for self-supervised training, analysis of attribute importance,
parameters for t-SNE visualization, and the presentation of
experimental results for SBA and EBA attacks.

Attack Setups. Seven distinct backdoor attacks are performed
on the Cora dataset, including SBA [50], GTA [38], EBA [43],
GB-FGSM [4], UGBA [5], GCBA [49], and PerCBA [45].
SBA, GTA, EBA, and UGBA utilize sub-graphs as triggers,
each comprising 3 nodes. Conversely, GB-FGSM, GCBA, and
PerCBA employ single nodes as triggers and directly modify
attributes of poisoned nodes, with trigger sizes set to 200. The

15

Normal Nodes Malicious Nodes Normal-Malicious Nodes

0.0

0.4

0.8

1.2

(a)
Normal Nodes Malicious Nodes Normal-Malicious Nodes

0.0

0.4

0.8

1.2

(b)
Normal Nodes Malicious Nodes Normal-Malicious Nodes

0.0

0.4

0.8

1.2

(c)

Normal Nodes Malicious Nodes Normal-Malicious Nodes

0.0

0.4

0.8

1.2

(d)
Normal Nodes Malicious Nodes Normal-Malicious Nodes

0.0

0.4

0.8

1.2

(e)
Normal Nodes Malicious Nodes Normal-Malicious Nodes

0.0

0.4

0.8

1.2

(f)

Fig. 12: Figs. (a)–(d) present the quantitative analysis of semantic drift on the Cora dataset for backdoored graphs generated by
GTA, GB-FGSM, UGBA, and SBA attacks, while Figs. (e) and (f) illustrate the analysis of attribute over-emphasis for graphs
generated by GCBA and PerCBA attacks. The visualized differences within the elements of the semantic discrepancy matrix Dy

s
and the attribute importance discrepancy matrix Dy

a among normal nodes, malicious nodes, and between normal and malicious
nodes, demonstrate a significant distance between normal and malicious nodes.

Cora dataset’s data splits remain consistent with those detailed
in Section VI, with 10 poisoned nodes. Additionally, the victim
model employed is a two-layer GCN model.

Self-supervised Training Setups. Following the removal of
all label information, self-supervised learning is conducted
on the unlabelled manipulated graph using GraphCL [46].
Two distinct data augmentations, i.e., edge perturbation and
attribute masking, are employed to generate varied perspectives
of the original graph. Both the edge dropout ratio and attribute
masking ratio are set to 0.2. Furthermore, the Adam optimizer
with a learning rate of 10−3 is utilized, with training continuing
until convergence.

Attribute Importance Analysis. Attribute importance is as-
sessed utilizing Eq. (9), followed by the derivation of the mask
matrix W , delineating the positions of attributes that positively
contribute to prediction results. Consequently, the truly positive
attributes influencing victim model predictions are obtained as
X̃ ′ = X̃ ◦W , which is subsequently visualized using t-SNE.

t-SNE Visualization Settings. The latent representations of
labeled nodes within the manipulated graph are visualized by
treating the output of the first layer f̃(·;ϕ1) of the victim
model as node representations. Additionally, for visualizing
attribute importance, X̃ ′ is employed as inputs. Matplotlib [13]
is utilized to generate two-dimensional embeddings, with all
labeled nodes utilized for enhanced visualization clarity.

Visualizations of SBA and EBA. The results of these two
attacks are depicted in Fig. 11. These visualizations distinctly
illustrate the semantic discrepancies between normal nodes and
those manipulated by these attacks.

C. Additional Effectiveness Evaluations

Beyond assessing the effectiveness of DShield with the
GCN model, we also investigate its performance when em-

5 10 15 20 25 30
Number of Poisoned Nodes

0%

30%

60%

90%

(a) SBA

ASR ACC

5 10 15 20 25 30
Number of Poisoned Nodes

0%

30%

60%

90%

(b) GTA

5 10 15 20 25 30
Number of Poisoned Nodes

0%

30%

60%

90%

(c) LGCB

5 10 15 20 25 30
Number of Poisoned Nodes

0%

30%

60%

90%

(d) PerCBA

Fig. 13: DShield’s performance across various poisoning rates
on Cora dataset. The shading represents the standard deviation.

1 2 3 4 5 6
Number of Poisoned Nodes

0%

30%

60%

90%

(a) SBA

ASR ACC

1 2 3 4 5 6
Number of Poisoned Nodes

0%

30%

60%

90%

(b) GTA

1 2 3 4 5 6
Number of Poisoned Nodes

0%

30%

60%

90%

(c) LGCB

1 2 3 4 5 6
Number of Poisoned Nodes

0%

30%

60%

90%

(d) PerCBA

Fig. 14: DShield’s performance against 3 DLBAs and 1 CLBA
under different trigger sizes on the Cora dataset.

ployed with GAT on the four node classification datasets. The
experimental results are presented in Table VIII and Table IX.

16

TABLE VIII: Comparison of DShield’s effectiveness with state-of-the-art defenses for DLBAs (%). The victim model is GAT.

Datasets Defenses
SBA [50] GTA [38] EBA [43] GB-FGSM [4] LGCB [4] UGBA [5] TRAP [44]

ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑

Cora

no-defense 57.20±6.78 82.34±2.17 89.49±9.13 82.96±0.98 99.45±0.78 84.20±1.40 63.10±0.52 83.82±0.77 71.96±4.70 82.10±2.80 99.26±1.05 84.94±0.22 18.08±2.56 79.75±1.30

Prune [5] 10.83±4.40 82.71±1.40 13.90±4.06 83.95±1.19 100.0±0.00 78.52±1.96 55.54±0.78 81.97±2.26 52.03±4.63 82.84±2.41 35.79±0.52 81.97±1.54 12.06±3.14 81.11±3.03

Isolate [5] 03.95±1.05 38.27±2.99 09.84±2.80 77.29±1.19 97.05±5.12 81.85±2.22 51.78±2.79 83.58±1.13 47.35±0.93 82.84±0.85 52.98±5.98 82.34±1.75 13.99±3.18 68.89±1.96

PXGBD [8] 27.18±5.73 83.58±0.43 97.11±3.57 80.62±0.77 46.94±3.55 80.62±1.30 55.19±0.23 80.74±0.74 71.59±5.73 80.86±2.04 82.66±1.56 81.36±2.10 14.76±0.52 79.88±0.93

GXGBD [8] 46.63±2.43 82.96±1.93 79.12±1.25 82.10±0.77 78.36±0.86 70.25±4.06 86.53±1.82 82.59±2.06 71.96±4.70 82.22±0.37 99.26±1.05 80.86±3.65 16.85±2.46 81.11±0.37

ABL [20] 71.98±1.53 84.82±2.57 42.51±1.67 82.59±0.98 90.59±4.44 83.83±1.50 43.93±1.07 81.73±1.54 80.45±3.13 82.59±2.60 10.83±4.40 84.57±1.41 15.13±2.24 82.59±1.96

RS [49] 06.64±1.33 71.11±3.76 54.71±1.18 70.62±2.99 78.78±2.87 72.22±2.90 61.38±3.14 71.36±3.52 79.95±7.60 71.11±3.39 83.27±3.58 71.85±0.74 17.34±2.96 69.51±2.04

DShield 04.82±0.63 81.73±0.77 00.00±0.00 81.85±1.28 00.00±0.00 82.47±1.40 07.61±1.28 82.59±1.28 02.71±4.37 81.48±2.43 00.00±0.00 83.21±0.77 10.82±3.70 82.22±1.70

PubMed

no-defense 50.61±5.02 83.88±0.49 39.99±1.72 84.10±0.24 90.54±1.47 83.52±0.50 96.45±1.07 83.54±0.18 100.0±0.00 83.23±0.33 98.73±1.76 84.27±0.60 47.52±0.57 83.64±0.40

Prune [5] 46.73±7.07 84.34±0.15 47.12±0.41 84.01±0.67 100.0±0.00 82.48±0.90 70.74±0.00 83.99±0.33 70.82±0.04 83.97±0.29 66.95±4.95 84.30±0.51 43.08±0.47 82.73±0.11

Isolate [5] 39.01±1.56 81.16±0.46 46.37±1.29 83.07±0.23 99.88±0.18 83.51±0.79 70.08±0.00 84.20±0.11 70.72±0.54 83.72±0.22 69.49±1.24 83.80±0.32 41.79±0.43 83.54±0.32

PXGBD [8] 57.05±9.68 83.83±0.37 85.12±2.26 84.17±0.42 36.83±0.10 83.41±0.50 95.08±2.22 83.82±0.71 99.30±1.00 83.64±0.54 100.0±0.00 83.97±0.15 46.60±0.86 83.84±0.25

GXGBD [8] 51.40±3.70 84.00±0.51 82.50±3.46 83.49±0.25 97.38±2.91 82.24±0.07 95.34±6.60 83.69±0.25 98.18±2.30 83.89±0.18 96.71±4.16 83.71±0.28 47.87±0.14 83.69±0.54

ABL [20] 65.32±5.66 84.11±0.37 91.23±3.44 84.30±0.18 91.10±2.83 83.82±0.29 97.34±3.76 83.64±0.18 46.66±4.73 83.67±0.22 96.31±3.81 83.71±0.44 47.60±1.11 83.87±0.57

RS [49] 32.31±1.58 75.19±0.51 93.36±0.22 74.18±1.29 95.62±1.18 73.57±1.15 100.0±0.00 77.26±5.72 96.77±2.50 78.31±5.93 98.41±1.11 75.04±1.49 44.88±7.96 78.34±5.31

DShield 19.08±1.64 81.89±0.40 00.05±0.00 84.51±0.23 00.00±0.00 84.29±0.10 00.00±0.00 83.66±0.40 00.03±0.04 84.12±0.13 00.03±0.03 83.68±0.38 46.14±0.97 82.63±0.98

Flickr

no-defense 00.10±0.13 49.12±0.16 89.08±1.63 49.37±0.17 85.62±1.11 49.13±0.02 93.01±1.31 49.32±0.15 97.62±0.06 49.33±0.59 91.90±2.21 49.28±0.27 04.22±0.15 49.34±0.01

Prune [5] 00.01±0.01 49.40±0.15 94.78±0.26 49.23±0.07 100.0±0.00 42.28±0.44 98.62±1.12 49.63±0.22 97.87±1.36 49.50±0.28 94.23±2.77 49.37±0.01 00.46±0.25 47.97±0.23

Isolate [5] 00.00±0.00 27.57±0.00 93.12±2.87 49.17±0.10 87.50±2.32 49.47±0.25 95.87±2.60 49.60±0.78 96.78±2.98 49.54±0.16 95.28±4.74 49.20±0.10 03.47±0.12 48.99±0.10

PXGBD [8] 00.00±0.00 47.89±1.13 97.65±1.33 48.48±0.66 00.15±0.21 45.96±2.71 99.23±0.49 49.08±0.77 99.03±0.74 48.91±0.08 89.99±1.24 48.04±0.33 01.76±0.49 48.19±0.01

GXGBD [8] 00.00±0.00 44.12±3.90 94.41±6.23 45.71±1.63 00.48±0.67 45.75±2.09 99.66±0.48 44.65±1.30 69.11±1.26 41.12±1.08 11.60±2.26 47.00±0.59 00.00±0.00 40.35±0.00

ABL [20] 01.84±0.71 49.57±0.11 95.92±2.12 49.50±0.28 98.03±1.46 49.48±0.01 98.33±1.17 49.24±0.21 98.23±0.81 49.54±0.15 93.97±0.74 49.15±0.40 13.36±1.19 49.19±0.38

RS [49] 00.00±0.00 40.35±0.00 00.00±0.00 40.35±0.00 00.00±0.00 40.35±0.00 00.00±0.00 40.35±0.00 00.00±0.00 40.35±0.00 00.00±0.00 40.35±0.00 00.00±0.00 40.35±0.00

DShield 00.01±0.01 49.03±0.57 00.04±0.05 49.37±0.34 00.00±0.00 48.36±0.15 00.00±0.00 49.18±0.45 00.00±0.00 49.67±0.09 00.00±0.00 49.19±0.37 00.01±0.01 49.68±0.01

OGBN
-arXiv

no-defense 21.43±1.41 61.16±0.01 80.87±0.71 61.30±0.21 99.46±0.71 61.34±0.27 80.55±0.71 61.30±0.21 01.21±0.71 61.04±0.16 50.68±0.20 59.53±1.00 04.15±0.71 61.17±0.03

Prune [5] 21.43±0.71 61.21±0.08 09.24±0.71 61.18±0.04 99.36±0.71 60.99±0.23 75.77±1.41 61.21±0.08 01.35±0.93 61.31±0.22 44.87±7.10 61.16±0.35 05.39±0.71 61.18±0.04

Isolate [5] 07.55±0.64 50.78±0.31 10.91±0.13 62.38±0.88 98.70±0.98 61.55±0.64 80.01±1.40 62.14±1.22 01.33±0.95 61.83±0.25 85.43±3.71 61.53±0.28 06.13±1.23 62.13±1.23

PXGBD [8] 28.74±0.37 62.42±0.83 04.20±1.13 62.33±0.95 99.98±0.03 60.79±1.12 82.78±1.73 62.98±1.44 01.31±0.98 62.35±0.92 96.28±4.50 61.70±0.27 04.29±1.00 62.47±0.75

GXGBD [8] 13.50±2.13 56.64±2.31 67.93±0.10 57.22±1.73 01.57±2.02 57.65±0.50 77.49±3.52 57.66±0.48 01.45±0.78 56.72±2.43 95.55±6.30 56.67±1.12 02.72±0.40 56.93±0.11

ABL [20] 02.84±1.18 60.99±0.01 82.69±0.44 58.43±0.81 99.90±0.14 56.96±2.77 82.13±1.59 53.84±0.23 00.57±0.80 56.13±1.59 01.99±1.91 48.48±1.22 04.62±0.88 56.29±1.82

RS [49] 01.24±0.33 54.14±0.20 04.84±0.23 55.45±2.19 55.00±1.41 53.71±0.41 47.70±0.42 55.20±1.14 04.66±0.49 54.58±0.59 66.23±1.74 52.28±3.22 02.39±0.86 55.47±2.16

DShield 00.00±0.00 64.62±0.00 31.89±2.52 65.49±0.33 00.99±1.40 65.09±0.40 32.01±2.33 64.17±0.16 00.00±0.00 64.68±0.13 00.43±0.61 64.76±1.21 01.01±0.49 64.53±0.49

TABLE IX: Comparison of DShield’s effectiveness with state-of-the-art defenses for 2 CLBAs (%). The victim model is GAT.

Defenses

Cora PubMed Flickr OGBN-arXiv

GCBA [49] PerCBA [45] GCBA [49] PerCBA [45] GCBA [49] PerCBA [45] GCBA [49] PerCBA [45]

ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑

no-defense 96.92±5.33 83.70±1.11 85.06±1.31 83.33±1.96 85.73±4.84 84.30±0.25 100.0±0.00 83.64±0.61 88.00±0.08 49.46±0.06 99.13±0.04 49.56±0.21 41.86±1.41 61.51±0.50 92.79±0.71 61.24±0.13

Prune [5] 99.88±0.21 81.97±2.04 95.54±5.70 83.45±0.77 100.0±0.00 83.76±0.00 97.52±2.30 83.26±0.50 90.23±1.85 48.33±0.84 91.97±0.52 48.15±1.13 52.95±0.71 61.47±0.45 87.11±2.12 61.44±0.40

Isolate [5] 17.18±2.84 73.58±2.04 82.04±5.93 72.22±0.64 100.0±0.00 83.38±0.47 99.47±0.75 83.01±0.36 89.51±1.78 49.26±0.34 97.06±0.10 49.16±0.06 34.08±1.31 62.25±1.06 92.77±1.75 62.09±1.29

PXGBD [8] 30.26±1.05 81.85±0.74 68.34±2.50 82.59±0.00 84.46±0.32 84.22±0.72 17.63±3.04 81.91±0.47 34.40±0.59 47.47±1.45 42.52±1.58 47.60±0.48 17.78±0.32 62.49±0.73 00.00±0.00 62.45±0.78

GXGBD [8] 37.33±2.02 82.34±1.90 33.77±5.48 81.48±1.70 85.81±0.13 84.10±0.76 03.99±1.04 81.31±1.32 00.13±0.18 43.01±3.75 06.25±1.77 40.35±0.00 02.28±1.03 57.68±0.45 03.01±4.24 57.19±1.15

ABL [20] 43.25±2.56 84.32±0.57 68.38±2.45 83.95±2.04 80.01±0.01 84.22±0.21 05.43±6.24 81.76±1.26 89.18±0.47 49.44±0.16 99.44±0.14 49.49±0.11 36.03±1.46 61.64±0.52 91.52±2.15 56.31±1.85

RS [49] 51.29±9.91 72.60±5.46 74.73±3.91 72.96±4.86 79.58±0.59 77.70±5.49 81.38±0.20 76.36±3.08 00.00±0.00 40.35±0.00 09.66±4.46 40.35±0.00 33.95±1.48 56.05±2.76 89.17±1.17 55.07±1.32

DShield 02.21±3.83 81.94±2.57 00.62±1.07 80.99±1.40 00.00±0.00 84.10±0.51 00.02±0.03 84.44±0.23 00.00±0.00 48.40±0.21 00.01±0.01 48.03±1.36 00.00±0.00 64.04±0.86 00.00±0.00 65.49±0.37

While aligning with the conclusions from Subsection VI-B,
key observations arise:

In certain situations, PXGBD and GXGBD demonstrate
effectiveness when defending against two CLBAs. For in-

stance, when defending against GCBA with the GAT victim
model, GXGBD achieves the second-lowest ASR at 2.28% on
the OGBN-arXiv dataset. This observation likely stems from
the fact that CLBAs primarily modify attributes of poisoned
nodes, leading the victim model to rely solely on these altered

17

TABLE X: DShield’s performance (%) against TLN, DPGBA,
and MLGB attacks on the Cora, PubMed, and Flickr datasets.

Attacks Defenses
Cora PubMed Flickr

ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑

no-defense 16.90±2.11 84.59±1.07 49.99±0.47 85.36±0.12 06.32±3.11 50.67±0.24
TLN

DShield 14.76±1.08 83.70±1.48 40.97±1.25 80.53±1.58 05.38±1.96 51.17±0.08

no-defense 96.18±5.40 84.57±0.57 87.43±1.68 85.19±0.18 19.93±3.66 50.76±0.15
DPGBA [51]

DShield 02.71±4.69 78.27±3.02 00.00±0.00 81.55±0.95 00.34±0.58 50.58±0.21

no-defense 14.51±4.26 84.69±0.21 77.48±2.43 85.10±0.11 07.54±0.23 50.79±0.07
MLGB [37]

DShield 02.09±0.93 78.62±1.52 00.03±0.03 82.14±0.75 00.00±0.00 51.02±0.12

TABLE XI: DShield’s performance (%) against SBAG on
graph classification tasks.

Attacks Defenses
PROTEINS ENZYMES

ASR ↓ ACC ↑ ASR ↓ ACC ↑

no-defense 97.32±2.36 62.46±3.17 99.44±0.96 25.56±0.18
SBAG [6]

DShield 00.00±0.00 59.46±3.01 00.00±0.00 23.33±1.67

attributes for predictions. Consequently, the explanatory sub-
graphs generated by PXGBD and GXGBD remain small.
Given an appropriately set threshold for the model’s loss value,
these defenses successfully identify the poisoned nodes.

D. Additional Robustness Evaluations

Adaptive Attacks. In Subsection VI-C, we evaluate DShield’s
performance against 5 adaptive attacks. UGBA+LGCB, UGB-
A+GCBA, and GCBA+PerCBA each combine two distinct
backdoor attacks with different target labels. The target label
yt for the first attack (e.g., UGBA in UGBA+LGCB) is set to
2, while for the second attack (e.g., LGCB in UGBA+LGCB),
it is set to 3. These experiments test DShield’s effectiveness
against simultaneous multiple attacks.

Additionally, we devise two adaptive attacks, AdaDA
(Adaptive DLBA) and AdaCA (Adaptive CLBA), to evaluate
DShield’s performance when the adversary is aware of its inner
mechanisms. AdaDA, derived from UGBA, uses a sub-graph
as the trigger and includes a trigger generator to craft node
attributes and structures. During trigger generator optimization,
a self-supervised model is trained without label informa-
tion, following the framework outlined in Subsection V-B.
A regularized loss is introduced to minimize the distances
between the latent representations of normal nodes with the
target label and poisoned nodes. AdaCA, derived from GCBA,
formulates a regularized loss to minimize the distances of low-
dimensional embeddings generated by UMAP between normal
nodes with the target label and poisoned nodes. The results in
Subsection VI-C show that using two regularized losses fails
to overcome DShield. This situation is akin to the chicken-
and-egg problem: the adversary alternates between optimizing
the trigger generator and the parameters of the self-supervised
model or UMAP, while the defender trains the self-supervised
model or UMAP using the manipulated graph produced by
the finalized generator. This divergence prevents the adversary
from accessing the parameters of the self-supervised model
and UMAP learned by DShield.

TABLE XII: Robustness of DShield against 5 adaptive attacks
(%) on the Flickr and OGBN-arXiv datasets. The victim model
is GCN.

Datasets Attacks
no-defense no-poison DShield

ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑

Flickr

UGBA+LGCB 93.37±2.15 50.48±0.08 00.65±0.16 46.54±3.23 00.10±0.17 49.95±0.68

UGBA+GCBA 57.66±6.26 50.46±0.49 03.17±0.55 49.44±1.38 00.00±0.00 50.37±0.14

GCBA+PerCBA 47.07±5.60 50.84±0.25 04.67±0.98 48.77±0.38 00.22±0.29 50.26±0.15

AdaDA 94.25±1.64 50.93±0.06 02.91±1.56 50.70±0.11 00.00±0.00 51.18±0.92

AdaCA 68.29±5.81 50.75±0.31 03.03±4.55 50.51±0.15 05.85±0.42 51.69±0.21

OGBN
-arXiv

UGBA+LGCB 66.43±3.85 59.64±0.01 01.80±0.48 56.86±0.58 02.18±0.88 59.56±0.31

UGBA+GCBA 45.07±2.29 59.83±0.20 01.02±0.19 55.76±0.18 00.50±0.55 59.39±0.17

GCBA+PerCBA 22.20±1.12 60.70±0.05 01.13±0.01 55.94±0.08 00.06±0.08 60.34±0.22

AdaDA 86.67±2.70 60.16±0.20 00.87±0.11 60.46±0.11 05.89±0.60 60.56±0.64

AdaCA 19.57±3.90 60.01±0.58 04.60±2.82 60.33±0.22 05.16±2.53 59.56±0.55

TABLE XIII: Execution time of defenses against UGBA and
GCBA attacks on Flickr and OGBN-arXiv datasets (s).

Defenses
Flickr OGBN-arXiv

UGBA GCBA UGBA GCBA

Prune 0001.33±0.02 0001.26±0.03 0003.53±0.02 0003.49±0.01

Isolate 0001.34±0.02 0001.42±0.10 0003.53±0.01 0003.52±0.00

PXGBD 1405.16±2.07 1410.61±8.47 2039.15±3.71 2020.80±5.76

GXGBD 0732.94±6.86 0769.42±4.45 0782.09±4.37 0774.23±1.93

ABL 0029.78±0.30 0022.02±0.00 0104.46±0.57 0069.74±1.02

RS 0002.27±0.00 0002.35±0.07 0004.81±0.07 0004.75±0.03

DShield 1068.12±2.40 1051.70±0.90 1205.46±4.09 1229.70±3.10

DShield-cuML 0151.71±2.59 0150.17±0.83 0180.55±1.31 0178.83±0.95

E. Defending Against Attacks on Graph Classification Tasks

To evaluate DShield’s performance against backdoor at-
tacks on graph classification tasks, we first adapt DShield to
G-DShield to suit graph classification tasks and then assess its
performance against these attacks.

Backdoor Attacks on Graph Classification Tasks. To gener-
ate triggers for poisoned graphs, we adapt SBA [50], EBA [43],
and GCBA [49] to G-SBA, G-EBA, and G-GCBA to inject
triggers into the original graphs. Specifically, G-SBA randomly
generates small graphs and attaches these to one node of the
original graphs. G-EBA uses the GNN explainability approach
to find the optimal trigger-attaching position and alters the
attributes of these positions. G-GCBA modifies the attributes
of the original graphs to minimize the difference between
the graph representations of poisoned and normal graphs.
Additionally, we utilize SBAG [6] to inject triggers into the
original graphs.

G-DShield. In Section V, we devised DShield for node classi-
fication attacks. For graph classification tasks, where each data
sample is a graph, we adapt node-level contrastive learning
to graph-level contrastive learning [41] in Eq. (12) and utilize
graph representations instead of node representations, resulting
in G-DShield. Consequently, G-DShield identifies poisoned
graphs rather than poisoned nodes. Results in Table V show
the performance of the proposed G-DShield.

18

APPENDIX B
ARTIFACT APPENDIX

A. Description & Requirements

This subsection provides all necessary information to recre-
ate the experimental setup for running the proposed artifact.

1) How to access: The artifact can be accessed at https:
//doi.org/10.5281/zenodo.14209303.

2) Hardware dependencies: None.

3) Software dependencies: As the code has been tested
on the Windows 11 platform, we recommend using this
operating system. The artifact is implemented in Python,
utilizing PyTorch, scikit-learn, umap-learn, and other libraries.
All required libraries must be installed before running the
evaluations. Detailed specifications for these dependencies are
provided in the requirements.txt file within the repository.

4) Benchmarks: This work focuses on defending against
backdoor attacks in graph neural networks. The datasets
used include Cora, PubMed, Flickr, OGBN-arXiv, ENZYMES,
PROTEINS, and MNIST, with statistics detailed in Table VII.
The GNN models employed are GCN, GraphSage, and GAT.
Due to time constraints (limited to one day), the evaluation
setups are designed for small datasets, i.e., Cora, PubMed,
and ENZYMES, and a single GNN model (GCN). However,
if reviewers have additional time for validation, larger datasets
and a wider variety of GNN models may also be feasible.

B. Artifact Installation & Configuration

This subsection provides the high-level steps required to
install and configure environments for evaluating the artifact.

1) Install Python: Download the Python installer from
https://www.python.org/downloads/release/python-31011/.

2) Install Required Python Libraries: The required Python
libraries are specified in the requirements.txt file, which in-
cludes the names and version numbers. To install these li-
braries, open the terminal and execute the following command:

pip install -r requirements.txt

Specifically, PyTorch (version 2.0.0) can be configured either
with or without GPU support.

C. Experiment Workflow

This work addresses both node and graph classification
tasks; accordingly, we provide two implementations of the
proposed DShield, located in the NodeClassificationTasks and
GraphClassificationTasks folders. The DShield implementa-
tion can be found in the dshield.py file within the defense
sub-folder. Detailed command lines for running the evaluations
are provided in the README.md file.

D. Major Claims

We summarize the key claims of our paper:

• (C1): SEMANTIC DRIFT and ATTRIBUTE OVER-EMP-
HASIS occur in node classification backdoor attacks, as

demonstrated by experiment (E1), with results shown in
Figures 2, 3, and 11.

• (C2): DSHIELD effectively identifies poisoned nodes,
reducing the Attack Success Rate (ASR) to below 10%
in most cases, outperforming state-of-the-art baselines, as
shown by experiment (E2) in Tables I and II.

• (C3): ADAPTIVE ATTACKS cannot bypass DShield, as
demonstrated by experiment (E3), with results presented
in Table III.

• (C4): DSHIELD can be adapted to mitigate graph classi-
fication backdoor attacks, supported by experiment (E4)
in Table V.

E. Evaluation

1) Experiment (E1): [10 human-minutes + 1.5 compute-
hours] This experiment conducts case studies to validate the
presence of both semantic drift and attribute over-emphasis.

[Preparation] Open the terminal and navigate to the Node-
ClassificationTasks directory:

cd NodeClassificationTasks/

[Execution] In the paper, we perform case studies on
five dirty-label backdoor attacks and two clean-label backdoor
attacks. To reduce the evaluation time, we focus on two dirty-
label attacks (GTA and UGBA) and two clean-label attacks
(GCBA and PerCBA) for the case studies. For instance, to
verify the existence of semantic drift in the GTA backdoor
attack on the Cora dataset, execute the following command:

python viz_main.py --seed=1027 --model=GCN
--dataset=Cora --benign_epochs=200
--trigger_size=3 --vs_number=10 --use_vs_number
--target_class=1
--selection_method=cluster_degree
--attack_method=GTA --gta_thrd=0.5
--gta_lr=0.01 --gta_trojan_epochs=400
--gta_loss_factor=0.0001 --defense_method=none

↪→

↪→

↪→

↪→

↪→

↪→

↪→

To check for attribute over-emphasis in the GCBA back-
door attack on the Cora dataset, run the following command:

python viz_main.py --seed=1027 --model=GCN
--dataset=Cora --benign_epochs=200
--trigger_size=3 --vs_number=10 --use_vs_number
--target_class=1 --selection_method=clean_label
--attack_method=GCBA --gcba_num_hidden=512
--gcba_feat_budget=100 --gcba_trojan_epochs=300
--gcba_ssl_tau=0.8 --gcba_tau=0.2
--gcba_edge_drop_ratio=0.5
--defense_method=none

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Other commands are provided in the README.md file.

[Results] 1) For the semantic drift analysis, the script
generates two files: Cora Supervised GTA.svg and Cora SSL

GTA.svg. The former provides a t-SNE visualization of latent
representations using a semi-supervised learning paradigm,
while the latter illustrates latent representations using a self-
supervised learning paradigm. In the semi-supervised case,
poisoned nodes (black nodes) cluster near normal nodes
with the target label 2. However, under the self-supervised
paradigm, poisoned nodes are distant from normal nodes with
the target label. 2) For the attribute over-emphasis analysis,
the script generates two files: Cora Supervised GTA.svg and

19

Cora Feat GTA.svg. The former shows a t-SNE visualization
of latent representations under semi-supervised learning, and
the latter illustrates attribute importance. The latent represen-
tations of poisoned nodes tend to cluster near normal nodes
labeled with the target label. Moreover, as GCBA modifies
node attributes to strengthen the correlation between altered
attributes and the target label, poisoned nodes form tighter
clusters, demonstrating increased similarity among important
attributes.

2) Experiment (E2): [40 human-minutes + 3 compute-
hours] This experiment evaluates DShield’s effectiveness in
defending against various backdoor attacks.

[Preparation] Open the terminal and navigate to the Node-
ClassificationTasks directory:

cd NodeClassificationTasks/

[Execution] In the paper, we evaluate seven dirty-label
backdoor attacks and two clean-label backdoor attacks. To
reduce the evaluation time, we select two of the strongest
dirty-label and two clean-label backdoor attacks to assess the
effectiveness of DShield. Additionally, we use the Cora and
PubMed datasets to further validate DShield’s performance.
For example, to execute the UGBA attack on the Cora dataset,
the following command is used:

python main.py --seed=1027 --model=GCN
--dataset=Cora --benign_epochs=200
--trigger_size=3 --vs_number=10 --use_vs_number
--target_class=1
--selection_method=cluster_degree
--attack_method=UGBA --ugba_thrd=0.5
--ugba_trojan_epochs=200 --ugba_inner_epochs=5
--ugba_target_loss_weight=5
--ugba_homo_loss_weight=50
--ugba_homo_boost_thrd=1.0
--defense_method=DShield
--dshield_pretrain_epochs=400
--dshield_finetune_epochs=400
--dshield_classify_epochs=200
--dshield_neg_epochs=100 --dshield_kappa1=5
--dshield_kappa2=5 --dshield_kappa3=0.1
--dshield_edge_drop_ratio=0.20
--dshield_feature_drop_ratio=0.20
--dshield_tau=0.9 --dshield_balance_factor=0.5
--dshield_classify_rounds=1
--dshield_thresh=2.5

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Additional command lines for other scenarios are provided
in the README.md file.

[Results] The scripts generate a series of intermediate
results, with the final two output lines displaying the ASR
and Accuracy (ACC), respectively. In general, the ASR and
ACC values should align closely with those reported in Table
I and Table II of the paper, with the ASR expected to be below
10%.

3) Experiment (E3): [20 human-minutes + 1 compute-
hour] This experiment evaluates DShield’s robustness against
adaptive attacks on node classification tasks.

[Preparation] Open the terminal and navigate to the Node-
ClassificationTasks directory:

cd NodeClassificationTasks/

[Execution] In the paper, we evaluate five adaptive attacks
across the Cora, PubMed, Flickr, and OGBN-arXiv datasets.
To minimize evaluation time, we focus exclusively on the Cora
dataset for our assessments. To execute the UGBA+LGCB
attack on the Cora dataset, use the following command:

python main.py --seed=1027 --model=GCN
--dataset=Cora --benign_epochs=200
--trigger_size=3 --vs_number=20 --use_vs_number
--target_class=1-2 --selection_method=mixture
--attack_method=UGBA-LGCB --UGBA_thrd=0.5
--ugba_trojan_epochs=200 --ugba_inner_epochs=5
--ugba_target_loss_weight=5
--ugba_homo_loss_weight=50
--ugba_homo_boost_thrd=1.0
--lgcb_num_budgets=200 --defense_method=DShield
--dshield_pretrain_epochs=400
--dshield_finetune_epochs=400
--dshield_classify_epochs=400
--dshield_kappa1=5 --dshield_kappa2=5
--dshield_kappa3=0.01
--dshield_edge_drop_ratio=0.20
--dshield_feature_drop_ratio=0.20
--dshield_tau=0.9 --dshield_balance_factor=0.5
--dshield_classify_rounds=1
--dshield_thresh=2.5

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

[Results] The last two lines of output present the ASR
and ACC, respectively. Typically, the values for ASR and
ACC should closely correspond with those reported in Table
III of the paper.

4) Experiment (E4): [30 human-minutes + 2 compute-
hour] This experiment evaluates DShield’s performance in
defending against graph classification attacks.

[Preparation] Open the terminal and navigate to the
GraphClassificationTasks directory:

cd GraphClassificationTasks/

[Execution] In the paper, we evaluate three graph clas-
sification attacks across the ENZYMES, PROTEINS, and
MNIST datasets. To save the evaluation time, we provide the
instructions on the ENZYMES dataset for our assessments.
Other larger datasets, such as PROTEINS and MNIST, will
cost more. For instance, to conduct the G-SBA attack on the
ENZYMES dataset, use the following command:

python main.py --seed=1027 --model=GCN
--dataset=ENZYMES --benign_epochs=200
--trigger_size=20 --vs_ratio=0.1
--target_class=1 --attack_method=SBA
--sba_attack_method=Rand_Gene
--sba_trigger_prob=0.5 --defense_method=DShield
--dshield_pretrain_epochs=400
--dshield_finetune_epochs=400
--dshield_classify_epochs=400
--dshield_neg_epochs=100 --dshield_kappa1=0.1
--dshield_edge_drop_ratio=0.20
--dshield_feature_drop_ratio=0.20
--dshield_tau=0.9 --dshield_balance_factor=0.5
--dshield_classify_rounds=1
--dshield_thresh=2.5

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

[Results] The last two lines of output present the ASR
and ACC, respectively. Typically, the values for ASR and
ACC should closely correspond with those reported in Table
V of the paper.

20

