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Abstract—Machine unlearning refers to the process of miti-
gating the influence of specific training data on machine learning
models based on removal requests from data owners. However,
one important area that has been largely overlooked in the
research of unlearning is reinforcement learning. Reinforcement
learning focuses on training an agent to make optimal decisions
within an environment to maximize its cumulative rewards.
During the training, the agent tends to memorize the features
of the environment, which raises a significant concern about
privacy. As per data protection regulations, the owner of the
environment holds the right to revoke access to the agent’s
training data, thus necessitating the development of a novel
research field, termed reinforcement unlearning. Reinforcement
unlearning focuses on revoking entire environments rather than
individual data samples. This unique characteristic presents three
distinct challenges: 1) how to propose unlearning schemes for
environments; 2) how to avoid degrading the agent’s perfor-
mance in remaining environments; and 3) how to evaluate the
effectiveness of unlearning. To tackle these challenges, we propose
two reinforcement unlearning methods. The first method is based
on decremental reinforcement learning, which aims to erase the
agent’s previously acquired knowledge gradually. The second
method leverages environment poisoning attacks, which encour-
age the agent to learn new, albeit incorrect, knowledge to remove
the unlearning environment. Particularly, to tackle the third
challenge, we introduce the concept of “environment inference”
to evaluate the unlearning outcomes. The source code is available
at https://github.com/cp-lab-uts/Reinforcement-Unlearning.

I. INTRODUCTION

Machine learning relies on the acquisition of vast amounts
of data. To safeguard the data privacy of individual users,
data protection regulations, e.g., the General Data Protection
Regulation [11], empower users to request the removal of their
data. It is imperative for model owners to adhere to users’
requests by removing revoked data from their datasets and
ensuring that any influence these revoked data may have on
the model is eliminated. This process is referred to as machine
unlearning [3], [2].

While significant progress has been made in conventional
machine unlearning [2], [13], [48], one area that remains an
unfilled gap for unlearning is reinforcement learning (RL).
RL is an essential research field in machine learning due to
its ability to address complex decision-making problems in
dynamic environments [42]. In RL, the primary objective is

to train an intelligent entity, known as an agent, to interact
with the environment through a specific policy. This policy
guides its actions based on the current state. With each action
taken, the agent receives a reward and updates its state, creating
an experience sample used to update its policy. The aim of
the agent is to learn an optimal policy that maximizes its
cumulative rewards over time.

However, in the course of RL, agents tend to memorize fea-
tures of their environments, raising security concerns. Consider
an agent designed for providing navigation guidance through
real-time data from Google Maps. During its training, the agent
learns from a dynamic environment using Google Street Views
for its photographic content [25]. However, privacy issues may
arise when the agent inadvertently learns sensitive information,
e.g., the locations of restricted areas.

Another example arises from RL-based recommendation
systems. Major platforms like YouTube [4], Netflix [36], and
Amazon [28] have successfully implemented RL to enhance
the quality of their recommendations, providing users with
more personalized services. In these systems, each user’s
interaction history and preferences represent a unique envi-
ronment. The system, i.e., the agent, learns to make per-
sonalized recommendations by adapting its strategy to each
user’s specifics, which often contain sensitive information,
such as purchasing habits. When users opt out or request
data deletion, the recommendation system must comply by
forgetting users’ specifics, giving rise to the novel field of
reinforcement unlearning.

Conventional machine unlearning methods are not directly
applicable to reinforcement unlearning due to fundamental
differences in their learning paradigms. In machine learning,
unlearning involves removing specific data samples from the
static training set, where data samples are independently and
identically distributed. In contrast, RL is a dynamic and
sequential decision-making process, where agents interact with
an environment in a series of actions, and agents’ experience
samples are temporally dependent.

Reinforcement unlearning is also distinct from privacy-
preserving RL [39], [10]. Reinforcement unlearning aims to
selectively erase learned knowledge from the agent’s memory,
ensuring the privacy of environment owners, while privacy-
preserving RL focuses on preserving the agent’s personal
information. In essence, reinforcement unlearning presents
three specific challenges.

• How can we unlearn an environment from the agent’s
policy? In machine unlearning, a data owner can specify
which data samples should be removed. However, in rein-
forcement unlearning, the environment owner cannot access
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the experience samples, as these samples are managed
by the agent. Thus, the key challenge lies in effectively
associating the environment that needs to be unlearned with
the corresponding experience samples.

• How can we prevent a degradation in the agent’s
performance after unlearning? In conventional machine
unlearning, removing samples may lead to a decrease of
performance. It is more challenging in reinforcement un-
learning as unlearning an environment requires forgetting a
significant number of experience samples.

• How can we evaluate the effectiveness of reinforcement
unlearning? In machine unlearning, one commonly used
evaluation is using membership inference [34] to assess
if the model has forgotten the revoked data. However, this
methodology cannot be directly applied to reinforcement
unlearning, as the environment owner cannot specify which
samples should be unlearned.

To address these challenges, we propose two distinct
unlearning methods: decremental reinforcement learning and
environment poisoning. Decremental reinforcement learning
involves deliberately erasing an agent’s learned knowledge
about a specific environment. This method can be applied
to scenarios where certain environments become obsolete
or need to be forgotten due to privacy concerns. Environ-
ment poisoning-based method aims to create poisoning ex-
perience samples by modifying the unlearning environment.
This method ensures that the agent’s performance in other
environments remains unaffected, eliminating any negative
impact on its overall capabilities. This method finds application
in situations where attacks or misinformation may be present.
Both methods enable an agent to unlearn specific environ-
ments while maintaining its performance in others, thereby
tackling the first two challenges. To tackle the third challenge,
we utilize environment inference to infer an agent’s training
environment by observing its behavior. If the inference result
after unlearning shows a substantial degradation compared to
the result before unlearning, it is indicative that the agent has
effectively unlearned that environment.

In summary, we make three main contributions:

• We provide a valuable step forward in machine unlearning
by pioneering the research of reinforcement unlearning. The
concept of reinforcement unlearning that selectively forgets
learned knowledge of the training environment from the
agent’s memory offers novel insights and lays a foundation
for future research in this emerging domain.

• Reinforcement unlearning exposes an impactful vulnera-
bility of RL – the risk of exposing the privacy of the
environment owner. This vulnerability can disclose sensitive
information about the environment owner’s preferences and
intentions. We introduce two innovative reinforcement un-
learning methods: decremental RL-based and environment
poisoning-based approaches to tackle this vulnerability.

• To confirm the unlearning results, we introduce a novel eval-
uation approach, “environment inference”. By visualizing
the unlearning results, this approach provides an intuitive
means of measuring the efficacy of unlearning techniques.

II. PRELIMINARIES

The notations used in this paper are listed in Table I.

TABLE I. SUMMARY OF NOTATIONS

Notations Description

M A learning environment/task
S A state set, S = {s1, ..., sn}
A An action set, A = {a1, ..., am}
T A transition function
r A reward function
γ The discount factor
π A policy learned by an agent

Q(s, a) The value of a Q-function by taking action a in state s
e An experience sample
B A batch of experience samples for agent learning
B A batch of experience samples for poisoning strategy update
τ A trajectory consisting of a sequence of state-action pairs

||x||∞ The maximum dimension in a vector x

Reinforcement Learning. In RL, a learning environment
is formulated by the tuple M = ⟨S,A, T , r⟩ [26], [35]. S
and A denote the state and action sets, respectively, while
T represents the transition function, and r represents the
reward function. At each time step t, the agent, given the
current environmental state st ∈ S , selects an action at ∈ A
based on its policy π(st, at). This action causes a transition
in the environment from state st to st+1 according to the
transition function: T (st+1|st, at). The agent then receives a
reward rt(st, at), along with the next state st+1. This tuple of
information, denoted as (st, at, rt(st, at), st+1), is collected
by the agent as an experience sample utilized to update its
policy π. Typically, the policy π is implemented using a Q-
function: Q(s, a), estimating the accumulated reward the agent
will attain in state s by taking action a. Formally, the Q-
function is defined as:

Qπ(s, a) = Eπ[

∞∑
i=1

γi · r(si, ai)|si = s, ai = a], (1)

where γ represents the discount factor.

In deep RL, a neural network is employed to approximate
the Q-function [27], denoted as Q(s, a; θ), where θ represents
the weights of the neural network. The neural network takes
the state s as input and produces a vector of Q-values as output,
with each Q-value corresponding to an action a. To learn the
optimal values of Q(s, a; θ), the weights θ are updated using
a mean squared error loss function L(θ).

L =
1

|B|
∑
e∈B

[(r(st, at) + γmax
at+1

Q(st+1, at+1; θ)

−Q(st, at; θ))
2],

(2)

where e = (st, at, r(st, at), st+1) is an experience sample
showing a state transition, and B consists of multiple expe-
rience samples used to train the neural network.

Machine Unlearning. Machine unlearning aims to erase the
impact of certain data samples on a trained model’s behavior
[3]. A straightforward unlearning method is removing the
revoked data and retraining the model from scratch. Formally,
given a dataset D, an unlearning set Du and a learning algo-
rithm A, the objective of machine unlearning is to guarantee
that the unlearned model A(D/Du) performs as if it had never
seen the unlearning set Du.
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III. REINFORCEMENT UNLEARNING

A. Problem Statement and Threat Model

Problem Definition. The definition of “forgetting” is
application-dependent [20]. For example, in a privacy-centric
application, the main goal of unlearning user data is to ensure
that the unlearned model has no exposure to the data, and a
successful membership inference would reveal that the data is
not in the training set for the unlearned model. Conversely, in a
bias-removing application, the aim of unlearning is to prevent
the unlearned model from predicting the assigned labels of the
forgotten data, as these labels may indicate unintended and
biased behavior.

The objective of reinforcement unlearning is to eliminate
the influence of a specific environment on the agent, i.e.,
“forgetting an environment”. We define “forgetting an envi-
ronment” as equivalent to “performing deterioratively in that
environment”. This definition aligns with common sense. For
example, when we have thoroughly explored a place and are
highly familiar with it, we can efficiently find things within
it, resulting in high performance. Conversely, when we have
forgotten a place, our ability to locate things diminishes,
leading to deteriorative performance. This definition may not
align with the conventional machine unlearning approach,
which usually focuses on ensuring the model’s performance
matches that of one retrained from scratch. This difference
arises because reinforcement unlearning operates within a dis-
tinct learning paradigm, characterized by sequential decision-
making and dynamic learning. Our definition is motivated by
the need to address privacy concerns and mitigate the impact
of sensitive or incorrect information within the environment.

Formally, let us consider a set of n learning environments:
{M1, . . . ,Mn}. Each environment Mi has the same state
and action spaces but differs in state transition and reward
functions. Consider the target environment to be unlearned
as Mu = ⟨Su,Au, Tu, r⟩, denoted as the ‘unlearning en-
vironment’. The set of remaining environments, denoted as
{M1, . . . ,Mu−1,Mu+1, . . . ,Mn}, will be referred to as the
‘retaining environments’. Given a learned policy π, the goal is
to update the policy π to π′ such that the accumulated reward
obtained in Mu is minimized:

min
π′

||Qπ′(s)||∞, (3)

where s ∈ Su, while the accumulated reward received in the
retaining environments remains the same:

min
π′

||Qπ′(s)−Qπ(s)||∞, (4)

where s /∈ Su. Note that if the agent needs to regain knowledge
of previously unlearned environments, it can treat them as new
environments. This process involves employing an incremental
learning approach, where the model is fine-tuned by focusing
specifically on the distinct features of these environments.

We assume that the owner of the trained RL model can
access Mu and gather trajectories within Mu. A trajec-
tory τ is denoted as a sequence of state-action pairs: τ =
((s1, a1), . . . , (sk, ak)), where k is the length of the trajectory.
In scenarios where environments become inaccessible after
training, the agent stores the experience samples collected
during its training and labels them based on their respective

environments. These labeled samples can be used to implement
the proposed unlearning methods by separating the samples
into those from the unlearning environment and those from
the remaining environments.

Note that our work can also be applied to unlearning in
a single environment, where the agent is trained within one
environment and aims to selectively forget specific aspects of
that environment. Detailed discussion and experimental results
regarding this adaptation are included in Appendix I.

Threat Model. Reinforcement unlearning primarily focuses
on mitigating the influence of a designated unlearning en-
vironment on the trained agent. This essentially involves
safeguarding the distinctive features of that environment by
thwarting a particular type of attack, namely environment
inference attacks. In these attacks, adversaries seek to infer
a learning environment by closely observing the actions of
the agent within that specific environment. Formally, consider
the unlearning environment as Mu = ⟨Su,Au, Tu, r⟩ and the
unlearned policy as π′. The adversary’s objective is to infer
the transition function Tu by accessing Su, Au, r, and π′.

Environment inference attack differs significantly from
conventional membership inference attacks in machine learn-
ing. Membership inference attacks typically involve point-level
inference, where the focus is on deducing information about
an individual sample. In contrast, the environment inference
attack operates at the object level, concentrating on the in-
ference of features characterizing an entire environment that
encompasses a substantial number of samples.

Methods Overview. Both decremental RL-based and the
poisoning-based methods share the common aim of intention-
ally degrading the agent’s performance within the unlearning
environment while preserving its performance in other envi-
ronments. However, they employ distinct strategies to achieve
this outcome. The decremental RL-based method involves
updating the agent by minimizing its reward specifically in
the unlearning environment. This is achieved through itera-
tive adjustments to the agent’s policy, aiming to reduce its
effectiveness within the unlearning environment. In contrast,
the environment poisoning-based method focuses on modify-
ing the unlearning environment itself. This method involves
introducing deliberate changes to the state transition function
of the environment and subsequently updating the agent in this
modified environment. The intention is to disrupt the agent’s
learned behavior in the unlearning environment.

B. Decremental RL-based Method

The implementation of this method involves two main
steps. The first one is the exploration of the unlearning
environment Mu. Initially, the agent is allowed to explore the
unlearning environment, collecting experience samples specific
to that environment. The nature of this exploration depends on
the scenario. For instance, in the grid-world setting, the agent
might traverse the unlearning grid using a random walk for
a predefined number of steps. The second step is fine-tuning
the agent using the collected experience samples. This fine-
tuning process employs a newly defined loss function (Eq. 5) to
update the policy π∗ with the experience samples accumulated
in the first step. This loss function is carefully designed to
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ensure that the agent’s performance within the unlearning
environment Mu degrades while preserving its performance in
other environments. Essentially, it guides the agent to unlearn
the knowledge associated with the unlearning environment.
The schematic diagram of this method is depicted in Figure
1, where the agent’s policy is updated from the optimal policy
π∗ to a deteriorative policy π′.
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Fig. 1. The schematic diagram of the decremental reinforcement learning-
based method

To accomplish the aim of unlearning, we establish an
optimization objective to guide the unlearning process (Eqs.
3 and 4). We also introduce a new loss function (Eq. 5) that
will be used to update the agent. This loss function is designed
to minimize the influence of the previously learned knowledge
and encourage the agent to modify its existing policy. With this
loss function, we can steer the agent’s learning process towards
unlearning the knowledge from the given environment.

Lu = Es∼Su
[||Qπ′(s)||∞]+Es ̸∼Su

[||Qπ′(s)−Qπ(s)||∞]. (5)

In Eq. 5, the first term encourages the new policy π′ to
work deficiently in the unlearning environment Mu, while
the second term drives the new policy π′ to have the same
performance as the current policy π in other environments.
Notably, the two terms in Eq. 5 have favorable properties.
The first term directs an agent to search and attempt different
policies to sufficiently explore the state space of environment
Mu. Thus, Mu can be adequately unlearned. This property is
particularly useful when Mu is a sparse reward setting, i.e.,
the reward is 0 in most of the states in Su. The second term
motivates an agent to strategically modify policies. This prop-
erty ensures that the agent performs consistently in those states
which are not in Su. Note that the accurate computation of the
second term is infeasible due to its involvement with all states
except Su. Thus, during implementation, we uniformly select a
consistent set of states across all environments, excluding Mu.
This approach is taken to mitigate computational burden and
ensure a balanced impact on performance preservation across
the remaining environments.

The decremental RL-based method is formally described as
follows. First, the agent explores the unlearning environment
using a random policy. Here, a random policy, defined by
the agent owner, refers to a policy where the agent selects
actions uniformly at random from the set of all possible actions
available in any given state. This means that the probability
of selecting any action a from the set of possible actions
A is 1/(|A|), where |A| is the number of available actions
in that state. For instance, in the grid world setting, where
the agent has four possible actions (moving up, down, left,
and right), the random policy dictates that, in each grid (i.e.,
state), the agent has an equal likelihood of selecting any of
the four directions. This policy ensures that the agent does
not leverage any previously learned strategies specific to the

unlearning environment. If the agent were to use a well-
established policy from its training, there is a risk of swift
achievement of the target, resulting in insufficient collection of
experience samples within the unlearning environment. During
its exploration, in each time step t, after taking an action
at, the agent receives a corresponding reward rt. Coupled
with the current state st and the subsequent state st+1, the
agent effectively creates an experience sample in the form
of (st, at, rt, st+1). When the agent is directed to explore
the unlearning environment for a specified number of steps,
denoted as m, the agent accumulates a total of m experience
samples: (s1, a1, r1, s2), . . . , (sm, am, rm, sm+1). In the sec-
ond step, the agent employs these collected experience samples
to fine-tune its current optimal policy π∗ to a new policy π′

by minimizing the custom loss function defined in Eq. 5.

Convergence Analysis of the Method. We proceed with
examining the convergence of the method by conducting a
separate analysis for each term in Eq. 5.

Let yπ = r(s, π(s)) + γmaxπ(s′)Q(s′, π(s′)) and δπ =
yπ −Q(s, π(s)). Then, Eq. 2 can be rewritten as:

L = Es∼S [δπ]. (6)

Similarly, the first term in Eq. 5 can also be rewritten as:
Es∼Su [|yπ′ − δπ′ |]. Based on the triangle inequality, we have:

Es∼Su
[|yπ′ − δπ′ |] ≤ Es∼Su

[|yπ′ |] + Es∼Su
[|δπ′ |]. (7)

As the convergence of the learning on the loss function in
Eq. 6 has been both theoretically and empirically proven
[27], [38], [8], we can also conclude the convergence of
Es∼Su

[|δπ′ |] in Eq. 7. For the term Es∼Su
[|yπ′ |] of Eq. 7,

as it is computed by accumulating the previously collected
discounted rewards (Eq. 1 and 2), the term converges if the
rewards are bounded. The reward bound can be acquired by
proper definition, i.e., r ∈ [−Rmax, Rmax]. Thus, as both
Es∼Su [|yπ′ |] and Es∼Su [|δπ′ |] converge, Es∼Su [|yπ′ − δπ′ |]
also converges, i.e., Es∼Su [||Qπ′(s)||∞] converges.

For the second term in Eq. 5, to analyze its convergence,
we need the following theorem.

Theorem 1 (Error Propagation [38]). Let (πi)
K
i=0 be a se-

quence of policies with regard to the sequence (Qi)
K
i=0 of Q-

functions learned using a fitted Q-iteration. Then, the following
inequality holds.

||Qi −Q∗||∞ ≤ ||ξi−1||∞ + γ||Qi−1 −Q∗||∞ + ζ||Qi−1||∞,

where Q∗ is the optimal value function, ξi denotes the approx-
imation error: ξi = TπiQi −Qi+1 which is also bounded, T
is the Bellman operator, and ζ is a constant.

Theorem 1 provides evidence that the disparity between
the learned Q-function and the optimal Q-function diminishes
as the learning process advances. This reduction signifies
convergence, given that the Q-function, denoted as Q, remains
uniformly bounded by Rmax

1−γ for any policy π [38]. Conse-
quently, if the number of learning iterations is sufficiently
large, the method converges.

In our problem, the second term in Eq. 5,
Es̸∼Su

[||Qπ′(s)(s)−Qπ(s)(s)||∞], is intended to minimize the
performance discrepancy between the unlearned policy π′ and
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the well-trained policy π across all environments except Mu.
In this context, the well-trained policy π can be considered as
the optimal policy, while the unlearned policy π′ represents
the policy we aim to learn. Notably, this learning process is
analogous to the one described in Theorem 1, implying that
the second term also exhibits convergence.

Note that the first and second terms in Eq. 5 may not con-
verge simultaneously due to their optimization for different ob-
jectives. However, their convergence contributes to the overall
convergence of Eq. 5. When both terms converge, it indicates
that the agent’s policy is gradually adjusting to achieve the
desired objectives outlined by each term. As the agent updates
its policy over time, these adjustments lead to a convergence of
the Q-values towards their respective targets. This convergence
implies that the agent’s policy becomes increasingly optimized
to fulfill both objectives. Our experimental results, depicted in
Figure 2, reveal that both terms converge gradually over time.
Although they exhibit different rates of convergence, they still
contribute to the overall convergence of Eq. 5.
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Fig. 2. Convergence of Eq. 5 and its two terms

C. Environment Poisoning-based Method

This method is implemented by modifying the unlearn-
ing environment itself. This modification can include various
changes, i.e., the poisoning actions, such as altering the layout
in the grid world scenario by adding or removing obstacles
and repositioning targets within the environment. After these
changes are introduced, the agent is updated in this modified
environment. This method aims to influence the agent’s policy
learning by creating a situation where its previously learned
knowledge becomes less effective.

The poisoning process operates as a Markov decision
process, resembling an RL problem. Here, the agent’s policies
serve as states, its modifications to the unlearning environment
act as actions, and the disparity between the current policy’s
performance and that of the updated policy within the unlearn-
ing environment functions as the reward. Consequently, the
poisoning strategy is updated using Eq. 2 as the loss function.

Specifically, this method consists of three steps. Firstly,
we apply a random poisoning strategy to alter the transition
function of the unlearning environment. Secondly, the agent
learns a new policy in this modified environment. Lastly, based
on the agent’s learned policy, we update the poisoning strategy
and re-poison the unlearning environment. These three steps
are iteratively repeated until a predetermined number of poi-
soning epochs is reached. The schematic diagram is presented
in Figure 3, illustrating that the unlearning environment Mu

is altered to M′
u with strategically introduced perturbations,
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Fig. 3. The schematic diagram of the environment poisoning-based method

e.g., adding fake obstacles, and the agent is retrained in this
poisoned environment to learn a new policy π′.

Let the learned policy be π∗, which is regarded as the
optimal policy. To refine the agent’s policy, we manipulate
the given environment Mu, involving poisoning the transition
function Tu(s′|s, a) [45], where Mu = ⟨Su,Au, Tu, r⟩. We
introduce a poisoned transition function denoted as T̂u(ŝ′|s, a).
After the agent takes action a in state s, instead of observing
the intended state s′, it will observe the manipulated state ŝ′.
The challenge now lies in determining the appropriate state ŝ′,
which can mislead the agent’s learning process. To address
this, we define a new learning environment for poisoning,
denoted as Mp = ⟨O,G,P,R⟩.

• O is the set of poisoning states. Each state πi ∈ O is the
policy used by the agent during the i-th poisoning epoch.

• G is the set of poisoning actions. A poisoning action g ∈
G is a modification made to the transition function of the
unlearning environment. This modification signifies which
state should be presented to the agent as the new state.

• P : O×G×O → [0, 1] defines the poisoning state transition.
It describes how the agent adjusts its policy in response to
poisoning actions. Here, P(π′|π, g) is the probability of the
agent transitioning from policy π to π′ when the unlearning
environment’s transition function is modified by g.

• R : O×G ×O → R represents the reward function, which
serves two purposes. Firstly, it quantifies the disparity be-
tween the current policy πi and the updated policy π′ in the
unlearning environment Mu. Secondly, it incorporates the
rewards obtained by the agent in other environments while
utilizing πi. Specifically, the reward function is defined as

Ri := λ1∆(πi(si)||π′(si)) + λ2

∑
s ̸∼Su

∑
a

πi(s, a)r(s, a).

(8)
Ri represents the reward received during the i-th poisoning
epoch. The term ∆(πi(si)||π′(si)) indicates the difference
between πi(si) and π′(si), which can be measured using
KL-divergence. Here, πi(si) is the probability distribution
over the available actions in state si under policy πi, and λ1

and λ2 are introduced to balance the two terms. Precisely
computing the second term is computationally infeasible due
to the involvement of states from all environments except
Mu. Thus, similar to the decremental RL-based method,
in the implementation of the poisoning-based method, a
uniform selection of states across all the environments,
except Mu, is performed in each poisoning epoch.

The poisoning-based method is outlined in Algorithm 1.
In each poisoning epoch i, we take the first step by choosing
a poisoning action gi to modify the transition function of the
unlearning environment (Lines 1-3). The selection process can
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Algorithm 1 The poisoning-based method
Input: The learned policy π∗, the learning tasks M1, ...,Mn, and

the unlearning task Mu;
Output: A refined policy π̂;

1: for poisoning epoch i = 1, ...,m do
2: Select a poisoning action gi from G;
3: Alter the transition function of the unlearning task from T̂u,i−1

to T̂u,i based on gi;
4: The agent learns a policy πi according to T̂u,i;
5: Receive reward Ri;
6: Update poisoning strategy using samples (πi−1, gi, πi,Ri) ∈

B by optimizing loss function Eq. 2;
7: end for
8: return π̂ ← πm;

be implemented using an ϵ-greedy strategy, where the best
action, which results in the highest Q-value, is chosen with
a probability of 1 − ϵ, and the remaining actions are chosen
uniformly with a probability of ϵ

|G|−1 . Here, ϵ is typically set
within the range of 0.1 to 0.2 to achieve a balance between
exploration and exploitation.

Next, the agent performs the second step by learning a new
policy πi in the altered environment (Line 4). This learning
phase can be performed using any RL algorithms, such as
deep Q-learning [27]. Once πi is learned, we execute the
third step by evaluating the reward using Eq. 8 and updating
the poisoning strategy using samples (πi−1, gi, πi,Ri) from
batch B (Lines 5 and 6). The update process is carried out
using the DDPG algorithm [22]. After all poisoning epochs
are completed, we obtain a refined policy π̂ (Line 8), which
allows the agent to perform poorly in the unlearning environ-
ment Mu, while maintaining satisfactory performance in other
environments.

Convergence Analysis of the Method. Algorithm 1 rep-
resents a deep RL algorithm employed by the model owner.
The interaction between the algorithm and the agent’s learning
process is illustrated in Figure 4. In this figure, the model
owner is engaged in learning how to poison the unlearning
environment Mu, while the agent is concurrently learning
within the poisoned environment M′

u.
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Fig. 4. The interaction between agent learning and model owner poisoning.
The owner observes the poisoning states about the unlearning environment
Mu, takes poisoning actions against Mu, and receives poisoning rewards.
The agent, on the other hand, is learning in the poisoned environment.

Given that our primary concern lies in the performance
of the agent’s policies, our analysis primarily revolves around
these policies. Each policy π is associated with a state distri-

bution denoted as µπ , which can be defined as:

µπ := (1− γ)

∞∑
t=0

γtP[st = s|s0 ∼ d0, π],

where d0 is the initial state distribution and µπ > 0 for
each state s. Here, µπ satisfies the following Bellman flow
constraints [30]:

µπ = (1− γ)d0 + γ
∑
s′

T (s′|π(s′), s)µπ(s′). (9)

Then, the score of policy π can be defined as:

ρπ(M, d0) :=
∑
s

µπ(s)r(s, π(s)).

The policy score ρπ quantifies the quality of a policy π, with
a higher score indicating a better policy. Specifically, ρπ has
the following property.

Lemma 1 ([7]). For two policies π and π′, the following
equation holds: ρπ − ρπ′ =

∑
s∈S µπ′(s)(Qπ(s, π(s)) −

Qπ(s, π
′(s))).

Let us examine the expression Qπ(s, π(s))−Qπ(s, π
′(s)).

To simplify the analysis, we introduce a seminorm called the
span. The span of Q is defined as sp(Q) = maxi Q(si, ai)−
minj Q(sj , aj). This seminorm measures the maximum dif-
ference between the highest and lowest values of the function
Q across different states and actions. Certainly, we have:
Qπ(s, π(s)) − Qπ(s, π

′(s)) ≤ sp(Qπ). Then, we have: ρπ −
ρπ′ ≤ sp(Qπ)|S|

∑
s∈S µπ′(s).

Based on Eq. 1 and 9, it can be inferred that the span
sp(Qπ) is limited by the cumulative reward, while µπ′ is
bounded by the transition function. The reward is predefined
by users, and the initial state distribution d0 remains fixed for a
given environment. Thus, the only variable that influences the
difference in policy scores, ρπ − ρπ′ , is the transition function
dictated by the environment. This rationale underscores why
we opt for environment-poisoning as our unlearning method.

D. Discussion of the Two Methods

Over-unlearning. The decremental RL-based method may
inadvertently suffer from over-unlearning, which occurs when
the model is fine-tuned to degrade the agent’s learning per-
formance in Mu. Even if efforts are made to restrict the
deterioration to Mu, it may still affect other environments
due to the shared distribution among them. However, the
poisoning-based method inherently avoids this issue by fo-
cusing on enabling the agent to learn new knowledge rather
than intentionally forgetting existing knowledge. Thus, the
poisoning-based method has the potential to achieve superior
performance in non-unlearning environments compared to the
decremental RL-based method.

Another factor contributing to the over-unlearning issue in
the decremental RL-based method is the delayed influence
of the second term in Eq. 5. This term is responsible for
fine-tuning the policy to sustain performance in the retained
environments. However, its impact may not manifest imme-
diately. This delayed interference implies that the policy is
tuned to initially focus solely on minimizing performance in
the unlearning environment, without considering the impact
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on performance in the retained environments. As a result, the
policy may prioritize forgetting the unlearning environment
over preserving knowledge from the retained environments.

Catastrophic Forgetting. A valid concern regarding the
poisoning-based method is the potential occurrence of catas-
trophic forgetting, which arises when the continual updating
of the model results in the overwriting of previously ac-
quired knowledge. However, this issue does not arise in the
context of the poisoning-based method. The primary cause
of catastrophic forgetting is a shift in the input distribution
across different environments [19], [33]. In our scenario, the
modified environment M′

u retains the same distribution as the
other environments. This is because the modification is solely
applied to the transition function, while the state and action
spaces, as well as the reward function, remain unchanged.
Specifically, the transition function dictates the evolution of
states based on the actions taken by the agent, governing how
states change over time. In contrast, the state and action spaces,
as well as the reward function, are pre-defined by the model
owner during the training of the agent. These foundational
elements remain relatively unaffected by modifications to the
transition function. Thus, there is no distribution shift across
environments in our problem, thereby mitigating the risk of
catastrophic forgetting.

Offline RL Settings. Although our methods are designed
to online RL settings, they can be adapted to offline settings,
where the agent cannot interact with the environment in real-
time but relies on previously collected experience samples. The
decremental RL-based method can utilize these samples by
adjusting the policy to minimize performance in the unlearn-
ing environment while maintaining performance in retained
environments. The poisoning-based method can modify the
collected experience samples, e.g., states and rewards, to
simulate the effect of altering the transition function.

Direct Reward Inversion. As both unlearning methods
focus on reducing the agent’s received reward in the unlearning
environment, a seemingly straightforward approach involves
directly inverting the received reward: changing a real reward
r to −r. However, this method risks deteriorating the agent’s
performance not only in the unlearning environment but also
in remaining ones. This occurs because such inversion dis-
rupts the entire reward structure foundational to the agent’s
learning and decision-making processes, potentially leading to
unintended behavior across all environments.

Mitigating Security Issues. The potential security issues
associated with our unlearning methods can be effectively
mitigated, particularly concerning adversarial attempts to re-
construct the unlearning environment by observing the agent’s
behavior and leveraging knowledge that this behavior results
from minimizing rewards. This is because both methods em-
ploy randomness in their action selection processes that goes
beyond merely minimizing rewards. In the decremental RL-
based method, while rewards are minimized, the policy also
includes a degree of randomness in action selection that are not
directly tied to reward signals. This randomness ensures that
the behavior observed by an adversary does not consistently
align with the most minimized rewards, thereby obscuring the
true characteristics of the unlearning environment. Likewise,

the poisoning-based method not only reduces reward, but also
alters the transition dynamics between states. This means that
even if an adversary can observe that certain actions are less
rewarded, the underlying state transitions are altered. This
alteration further obscures the patterns in the unlearning en-
vironment, complicating any adversary attempts to reconstruct
the environment based on minimized rewards alone.

E. Environment Inference

One of our contributions is to propose a new evaluation
methodology named environment inference. This kind of in-
ference aims to infer an agent’s training environments by
observing agent’s behavior [29]. By using this approach, we
can assess if the agent has successfully erased the knowl-
edge of the unlearning environment. If the removal of the
unlearning environment’s knowledge is executed correctly, the
agent’s behavior in that environment should be random rather
than purposeful. Thus, by observing the agent’s behavior, an
adversary can only infer a randomized environment.

A notable environment inference [29] utilizes a genetic
algorithm to identify a transition function that not only sat-
isfies specific constraints but also provides the best possible
explanation for the observed policy. Inspired by this approach,
our research also employs the same genetic algorithm to infer
the unlearning environments. Initially, we randomly generate L
transition functions, representing the population. These transi-
tion functions undergo iterative updates through crossover and
mutation operations. During the crossover process, pairs of
transition functions are selected based on their fitness, deter-
mined by their similarity to the learned optimal policy. New
transition functions are then created by combining elements of
the selected pairs. This promotes the exchange of information
between transition functions, leading to improved performance.
In the mutation stage, individual transition functions undergo
small, random changes to introduce diversity and explore
new regions of the solution space. The changes are made by
randomly adjusting the resulting next states for some state-
action pairs. This helps prevent premature convergence and
allows for the discovery of novel and effective transition
strategies. After completing a predefined number of iterations,
the transition function with the highest fitness score is chosen
as the optimal representation.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

Evaluation metrics in machine unlearning [46] are not
applicable to reinforcement unlearning. For instance, in re-
inforcement unlearning, there are no specific datasets to be
forgotten, rendering metrics like “accuracy on forget set”
irrelevant. Thus, it is necessary to propose new metrics.

Cumulative Reward quantifies the total sum of rewards
accumulated by an agent while utilizing the acquired policy.

The Number of Steps quantifies the total number of steps
taken by an agent to reach its goal or complete a task.

Environment Similarity quantifies the resemblance between
the inferred environment and the original one. It is evaluated by
doing an environment inference and calculating the percentage
of agreement between the inferred and original environments.
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1) Tasks: The experiments were primarily conducted
across three learning tasks: grid world, virtual home and maze
explorer. The grid world was developed by us, while the virtual
home and maze explorer tasks were sourced from the Virtu-
alHome [40] and MazeExplorer [16], respectively. Although
there are well-known RL tasks available, e.g., Gym [15] and
Atari [1], they were deemed unsuitable for our research as
those RL tasks are designed for single-environment and do
not support multiple environments.

Grid World. The objective for the agent in this task is
to navigate towards the predetermined destination. This task
mirrors numerous challenges present in real-world autonomous
driving and navigation scenarios, with each square akin to a
section of road, intersection, or obstacle.

Virtual Home. It is a multi-agent platform designed to
simulate various activities within a household setting. This task
mirrors real-world smart home challenges, where homeowners
can request the agent to forget certain features of their home.

Maze Explorer. It is a customizable 3D platform. The
objective is to guide an agent through a procedurally generated
maze to collect a predetermined number of keys. This task
represents scenarios where agents need to learn from visual
information, making it relevant to applications such as robotic
exploration in intricate environments.

In the three tasks, four available actions include moving up
(forward), down (backward), left, and right. Environments are
instantiated with predetermined sizes. The instantiation process
involves two steps. Firstly, each environment is randomly
generated, introducing variability in the placement of obstacles.
Subsequently, a manual inspection is carried out to eliminate
any instances of “dead locations”, which are inaccessible due
to being entirely surrounded by obstacles.

We have also expanded our study to include two addi-
tional tasks: recommendation systems and aircraft landing.
Recommendation systems are utilized to evaluate privacy risks
associated with unlearning, while aircraft landing scenarios
serve to assess the safety-critical aspects of our methods.

Recommendation Systems. We employ the MovieLens
dataset [18] to simulate a recommendation system using re-
inforcement learning. In this setup, each user represents a
unique training environment. Within this environment, a state
is defined by the movies the user has watched and their cor-
responding ratings. An action corresponds to recommending a
specific movie to the user. The reward is determined by the
user’s rating of the recommended movie.

Aircraft Landing. This task simulates an aircraft landing
on the ground by avoiding the obstacles with four available
actions: moving up, down, left, and right.

While our unlearning methods are evaluated in tasks with
discrete state and action spaces, they can also be applied to
tasks with continuous state and action spaces. Our approaches
are independent of the underlying RL algorithms. To address
continuous spaces, one can simply integrate our unlearning
techniques with suitable RL algorithms, e.g., [21], designed
for such environments.

2) Comparison Methods: As there are no closely related
existing works, to establish a benchmark, we propose two

baseline methods.

Learning From Scratch (LFS). This method entails remov-
ing the unlearning environment and then retraining the agent
from scratch using the remaining environments. However,
this method is not a desirable criterion for reinforcement
unlearning. We will experimentally show that this approach
fails to meet the objectives of reinforcement unlearning as
defined in Section III-A.

Non-transferable Learning From Scratch (Non-transfer
LFS). To align with the objectives of reinforcement unlearn-
ing, we introduce a non-transferable learning-from-scratch
approach. This approach is similar to the previously mentioned
learning-from-scratch approach. However, a crucial distinction
lies in the non-transferable version, which incorporates the
non-transferable learning technique [41] to restrict the ap-
proach’s generalization ability within the unlearning environ-
ments. In this approach, while training an agent, the model
owner meticulously stores experience samples acquired from
all learning environments, labeling them according to their
source environment. When an unlearning request is initiated,
the model owner engages in an offline retraining process.
Specifically, all the collected experience samples are utilized in
retraining the agent. If a sample originates from the unlearning
environment, an inverse loss function is applied to minimize
the agent’s cumulative reward. Conversely, for samples from
other environments, the standard loss function is used to
maximize the agent’s overall reward. Denoting the unlearning
environment as Mu = (Su,Au, Tu, r), the loss functions are
defined in Eq. 10.

L =


− 1

|B|
∑

e∈B [(r(st, at) + γmax
at+1

Q(st+1, at+1; θ)

−Q(st, at; θ))
2], if st ∈ Su,

1
|B|

∑
e∈B [(r(st, at) + γmax

at+1

Q(st+1, at+1; θ)

−Q(st, at; θ))
2], otherwise.

(10)

3) Sample Complexity of Unlearning Methods: In the
learning-from-scratch method (LFS), the retraining process
involves leveraging all the experience samples collected from
various environments, excluding the unlearning environment.
This extensive dataset is used for the comprehensive retraining
of the agent. Similarly, in the Non-transfer LFS, retraining
utilizes all experience samples, encompassing those from the
unlearning environment. In contrast, when evaluating the per-
formance of the decremental RL-based and the poisoning-
based methods, only a small subset of these samples, ap-
proximately one-tenth, is employed to fine-tune the agent to
generate the final experimental results.

There might be a concern about our proposed methods, as
they allow the agent to have additional interactions with the un-
learning environment. In contrast, both LFS and Non-transfer
LFS do not involve further interactions with any environments.
However, this additional interaction in our methods does not
bring any extra advantages. The purpose of engaging with the
unlearning environment is solely to collect experience samples.
These experience samples are not required for LFS, and for
Non-transfer LFS, they have already been collected. Therefore,

8



the lack of such interactions, does not impact the performance
of both LFS and Non-transfer LFS.

4) Underlying RL Algorithms: The primary RL algorithm
employed in this study is the Deep Q-Network (DQN) [27], a
well-established value-based method. We also evaluated other
RL algorithms, such as Proximal Policy Optimization (PPO)
[32] and Deep Deterministic Policy Gradient (DDPG) [22].
However, their performance was found to be inferior to that
of DQN (refer to Appendix III). Thus, PPO and DDPG were
not included in our experiments.

B. Overall Performance

The presented experimental results were derived by averag-
ing the outcomes across 100 rounds of repeated experiments,
and a 95% confidence interval of 3% was calculated. The
variances of the average reward and steps are both below 7
and 10, respectively. However, for clarity, they are not visually
presented in the figures.

To illustrate the effectiveness of unlearning, we introduce
the concept of “forget quality” as a quantitative measure of the
strength of forgetting, aligning with the latest machine unlearn-
ing evaluation criteria [23] and tailoring it to reinforcement
unlearning. We define the “cumulative truth ratio” to gauge
this strength, serving as the foundation for the computation of
forget quality. Specifically, the cumulative truth ratio Rtruth

can be written as follows.

Rtruth =

∑
s∈τ

1
|Aw|

∑
â∈Aw

π(â|s)∑
s∈τ π(ã|s)

, (11)

where â represents a wrong action from the wrong action set
Aw, ã is the correct action, and τ = ((s1, a1), . . . , (sN , aN ))
signifies a trajectory in Mu. Here, the correct action is defined
as the one capable of moving the agent closer to the target
compared to other available actions in a given state, while
the remaining actions are considered wrong. In particular,
the cumulative truth ratio Rtruth quantifies the ratio between
the average probability of selecting wrong actions and the
probability of taking the correct action. Thus, a to-be-unlearned
agent is expected to achieve a low Rtruth, while an effectively
unlearned agent in the unlearning environment should exhibit
a high Rtruth, resembling an agent that has never seen Mu.
For each agent, we obtain N values of Rtruth each from
the first i (i ∈ [1, N ]) step(s), and normalize them to serve
as an empirical cumulative distribution function (ECDF). A
two-sample Kolmogorov-Smirnov (KS) test [24] is conducted
between the ECDFs of the unlearned and retained agent
to generate a p-value to quantify forget quality. A high p-
value indicates a strong forgetting, implying that the Rtruth

distributions of the unlearned and retained agents are identical.

We compute the utility of the unlearned/retained model as
the average cumulative rewards of it in the retaining environ-
ments. Figure 5 illustrates the trade-off between model utility
and forget quality during unlearning in grid world, where a
larger marker denotes more unlearning epochs. The decremen-
tal RL-based method exhibits consistently high forget quality,
while the poisoning-based method displays some fluctuations
in forget quality but eventually attains a commendable level.
This variance may be attributed to the randomness introduced
by the RL algorithm in the poisoning-based approach. During
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Fig. 5. Forget Quality vs. Model Utility. Larger marker represents more
unlearning epochs.

the learning of the poisoning strategy, the method gradually
converges, ultimately achieving a favorable result. Further-
more, both methods attain a higher forget quality than before
unlearning, indicating the success of the unlearning process.

For model utility, both methods demonstrate robust per-
formance, fluctuating in a narrow range of (25.075, 25.175).
This performance is comparable to that of the retained models
trained by the two baseline methods, i.e., LFS and Non-
transfer LFS. A closer examination of model utility reveals
a dynamic shift in utility in both methods as the unleanring
progresses. This oscillation may arise from two factors. First,
the decremental RL-based method aims to erase the agent’s
knowledge, potentially leading to over-forgetting [17]. Second,
the poisoning-based method involves an intricate interplay
between the RL dynamics and the strategic introduction of
poison. This interplay can introduce randomness.
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Fig. 6. Four methods in the unlearning environment.

Next, we make detailed comparisons between our methods
and the baselines. Figure 6 shows that the unlearning results of
the LFS baseline method in all three experimental settings are
subpar. The agent’s performance in the unlearning environment
remains nearly unchanged before and after unlearning. The
reason for this result lies in the agent’s ability to general-
ize knowledge from other environments and apply it to the
unlearning environment, despite never having encountered it
before. During training, the agent learns underlying rules and
strategies from various environments. For instance, in the grid
world setting, the agent acquires knowledge that obstacles
should be avoided while collecting the target as quickly as
possible. This learned knowledge, even if it was acquired in
different environments, enables the agent to still perform well
in unseen environments, including the unlearning environment.

In contrast, the unlearning results of the Non-transfer
LFS method surpass those of the regular LFS due to the

9



limitation on its generalizability. Notably, Non-transfer LFS
shows a considerable performance deterioration in the un-
learning environment while maintaining effectiveness in other
environments. These outcomes underscore the effectiveness
of using an inverse loss function to minimize the agent’s
cumulative reward in the unlearning environment.
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Fig. 7. The decremental RL-based method in Grid World, where Environment
1 is the unlearning environment.

Figure 7 presents the overall performance of the decremen-
tal RL-based method in the grid world setting. The obtained
results provide compelling evidence of the profound impact of
the unlearning process on the agent’s performance, as evident
from the average number of steps taken and the average
received rewards metrics. Following unlearning, the agent
demonstrates a substantial increase in the average number of
steps taken and a notable reduction in the average received
rewards compared to the pre-unlearning stage.

For example, in Figure 7(a), after unlearning, it is evident
that the average number of steps taken by the agent in the
unlearning environment substantially increases from 19.34 to
55.8, while in Figure 7(b), its reward decreases from −44
to −273.5. These findings indicate a significant performance
reduction in the unlearning environment, which can be in-
terpreted as a successful unlearning outcome. Conversely,
in the retained environments, we observe minimal changes
in the agent’s steps and rewards. This implies a successful
preservation of performance in these environments.

En
v.1

En
v.2

En
v.3

En
v.4

En
v.5

En
v.6

En
v.7

En
v.8

En
v.9

En
v.1

0
En

v.1
1

En
v.1

2
En

v.1
3

En
v.1

4
En

v.1
5

En
v.1

6
En

v.1
7

En
v.1

8
En

v.1
9

En
v.2

0

Environment

0
10
20
30
40
50
60

Av
er

ag
e 

st
ep

s

Poisoning-based in grid world
Before Unlearning
After Unlearning

(a) The average number of steps before and
after unlearning

En
v.1

En
v.2

En
v.3

En
v.4

En
v.5

En
v.6

En
v.7

En
v.8

En
v.9

En
v.1

0
En

v.1
1

En
v.1

2
En

v.1
3

En
v.1

4
En

v.1
5

En
v.1

6
En

v.1
7

En
v.1

8
En

v.1
9

En
v.2

0

Environment

300
250
200
150
100
50
0

Re
wa

rd
s

Poisoning-based in grid world

Before Unlearning
After Unlearning

(b) The average rewards before and after
unlearning

Fig. 8. The poisoning-based method in Grid World, where Environment 1
is the unlearning environment.

Figure 8 presents the overall performance of the poisoning-
based method in the grid world setting. It exhibits a similar
trend to the decremental RL-based method. The reason for
this similarity lies in the shared objective of both methods,
which is to degrade the agent’s performance within the targeted
unlearning environment while maintaining its performance in
other environments. As a result, both methods effectively
achieve the goal of reinforcement unlearning by selectively
modifying the agent’s behavior within the specified context.

However, upon closer comparison between Figures 7 and
8, we can observe slight differences in the performance of

the two methods in some remaining environments, such as
Environments 18 and 19. In these environments, the poisoning-
based method maintains almost unchanged steps and rewards
between the pre-unlearning and post-unlearning stages, while
the decremental RL-based method does not achieve this. This
result suggests that the decremental RL-based method can
potentially suffer from the over-unlearning issue to some
extent, while the poisoning-based method demonstrates its
ability to overcome this issue and retain better performance in
the remaining environments after unlearning. These findings
highlight the different characteristics and strengths of the two
unlearning methods.
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Fig. 9. The decremental RL-based method in Virtual Home, where Environ-
ment 1 is the unlearning environment.

En
v.1

En
v.2

En
v.3

En
v.4

En
v.5

En
v.6

En
v.7

En
v.8

En
v.9

En
v.1

0

Environment

0
10
20
30
40
50
60
70
80

Av
er

ag
e 

st
ep

s

Decremental RL-based in Maze Explorer
Before Unlearning
After Unlearning

(a) The average number of steps before and
after unlearning

En
v.1

En
v.2

En
v.3

En
v.4

En
v.5

En
v.6

En
v.7

En
v.8

En
v.9

En
v.1

0

Environment

0
20
40
60
80

100
120
140

Re
wa

rd
s

Decremental RL-based in Maze Explorer
Before Unlearning
After Unlearning

(b) The average rewards received by the
agent before and after unlearning

Fig. 10. The decremental RL-based method in Maze Explorer, where
Environment 1 is the unlearning environment.

Figures 9 and 10 demonstrate the overall performance of
the decremental RL-based method in the context of virtual
home and maze explorer, respectively. In the two scenarios, the
agent’s behavior exhibits a notable increase in steps taken and
a significant decrease in rewards achieved after the unlearning
process. The reason for these trends in the two scenarios is
rooted in the fundamental nature of reinforcement unlearning.
The unlearning process seeks to selectively modify the agent’s
behavior to forget specific environments or aspects of its
learning history. Thus, the agent must re-explore and adapt to
new circumstances, leading to fluctuations in its performance.
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Fig. 11. The poisoning-based method in Virtual Home, where Environment
1 is the unlearning environment.

Figures 11 and 12 provide a comprehensive view of the
poisoning-based method’s performance in the virtual home
and maze explorer settings, respectively. Remarkably, the
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Fig. 12. The poisoning-based method in Maze Explorer, where Environment
1 is the unlearning environment.

performance trend in the two scenarios is similar to that
of the decremental RL-based method. This observation re-
inforces the effectiveness of the poisoning-based approach
in reinforcement unlearning, as it consistently achieves the
objective of degrading the agent’s performance in the targeted
unlearning environment while preserving its capabilities in
other environments. The consistent performance trend across
different settings shows the method’s versatility and potential
applicability in various RL scenarios.

C. Hyperparameter Study

Impact of Environment Size. The alteration in the envi-
ronment size allows us to evaluate how well the unlearning
methods adapt and perform across different scales.
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Fig. 13. The decremental RL-based and poisoning-based methods in Grid
World with different sizes.

In grid world, we extend the size of the environment
from 5 × 5 to 15 × 15, resulting in a larger grid. Figure
13 visually depicts the impact of this increased environment
size on both methods. As illustrated in the figure, we observe
that with the expansion of the environment, the discrepancy in
rewards between the pre-unlearning and post-unlearning stages
is magnified for both methods. The reason is that the larger
grid size introduces a greater number of states for the agent to
navigate. Thus, unlearning becomes a more challenging task
as the agent must modify its learned behavior to adapt to the
enlarged environment. Also, this magnification effect can be
attributed to the increased number of possible trajectories and
interactions in the expanded grid world. After unlearning, the

behavior of the agent in the unlearning environment becomes
randomized. Thus, a wider range of possible trajectories and
interactions often leads to longer paths taken by the agent,
thereby resulting in lower rewards attained. Hence, the dis-
crepancy in rewards between the pre-unlearning and post-
unlearning stages becomes more pronounced.

Impact of Environment Complexity. The complexity of an
environment can be characterized by the presence and arrange-
ment of obstacles within it. By modifying the complexity of
the environment, we can assess the adaptability of the proposed
methods. In the grid world setting, we examine the impact of
increasing the environment complexity by introducing more
obstacles, with the environment size maintained at 10 × 10.
Figures 14(a) and 14(b) show the outcomes of the decremental
RL-based method.
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Fig. 14. The decremental RL-based and poisoning-based methods in Grid
World with different complexity

We observe that as the number of obstacles is raised from
10 to 15, there is a notable increase in both the number of steps
taken by the agent and the disparity in rewards between the
pre-unlearning and post-unlearning stages. This observation
suggests that with a moderate increase in complexity, the
unlearning process becomes more challenging, resulting in
a substantial alteration in the agent’s behavior, leading to
changes in both step count and rewards. However, intriguingly,
as we further augment the number of obstacles from 15 to 20,
the difference in both steps and rewards between before and
after unlearning seems to stabilize or vary less significantly.
The reason behind this behavior lies in the agent’s learning
adaptability. When the environment complexity rises from 10
to 15 obstacles, the agent faces substantial alterations in the
optimal path and must undertake considerable unlearning to
adjust its behavior accordingly. As a result, we observe a
noticeable increase in step count and disparity in rewards.
Conversely, when the number of obstacles increases from 15 to
20, the agent has already adapted its behavior to accommodate
the increased complexity. As the agent’s policy has already
been modified, further increases in obstacle count have a
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diminishing impact on step count and reward disparity.

However, when employing the poisoning-based method
(depicted in Figures 14(c) and 14(d)), an interesting obser-
vation emerges. Unlike the decremental RL-based method,
the difference in both steps and rewards between the pre-
unlearning and post-unlearning stages remains relatively stable
even as the number of obstacles increases. The reason behind
this intriguing behavior lies in the nature of the poisoning-
based approach. When we introduce additional obstacles to the
environment, the poisoning-based method operates differently
compared to the decremental RL-based approach. Instead of
modifying the agent’s learned policy gradually, the poisoning-
based method incorporates an element of targeted perturbation.
As the number of obstacles increases, the poisoning-based
method strategically poisons the agent’s policy by introducing
deceptive information during the unlearning process. This
targeted perturbation causes the agent’s behavior to deviate
from the optimal path more significantly, leading to relatively
constant differences in both step count and reward between the
pre-unlearning and post-unlearning phases.

By undertaking a comparative analysis, it becomes evident
that the poisoning-based method introduces a higher level of
stability in performance compared to the decremental RL-
based method. This enhanced stability is of significant interest
and has several underlying reasons. Firstly, the poisoning-
based approach leverages targeted perturbations to strategically
poison the agent’s policy during the unlearning process. By
introducing adversarial elements in a controlled manner, this
method consistently influences the agent’s behavior, leading to
more predictable changes in its performance.

Secondly, the poisoning-based method’s targeted pertur-
bations are designed to cause deviations from the optimal
path. Thus, the agent’s policy becomes consistently misled
in the presence of additional obstacles, leading to a stable
performance difference between pre- and post-unlearning.

Moreover, the consistent impact of the poisoning-based
method can be advantageous in certain scenarios. For instance,
in safety-critical environments, e.g., autonomous driving,
where stability and predictability are crucial, the poisoning-
based approach offers a more controlled and reliable means of
unlearning unwanted behaviors. On the other hand, the decre-
mental RL-based method, gradually modifying the agent’s
policy, leads to more varied and less predictable changes in
behavior as the environment complexity increases. This ap-
proach makes it challenging to precisely anticipate the agent’s
performance changes in response to additional obstacles.

Impact of Poisoning Level. The hyperparameter, poisoning
level, serves as a pivotal factor in evaluating and testing the
poisoning-based method exclusively. This parameter governs
the quantity of poison introduced to the agent during the
unlearning process, enabling us to investigate how the method
performs under varying levels of poisoning. Specifically, the
poisoning level is measured by the difference between the
intended state s′ and the manipulated state ŝ′. To illustrate, in
the grid world context where an agent’s state comprises eight
dimensions, a poisoning level of 3 indicates that the two states
differ in three dimensions. The poisoning level is consistently
set to 3 throughout the experiments, unless otherwise specified.
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Fig. 15. Poisoning-based method in Grid World, different poison levels

Figure 15 illustrates the impact of changing the poisoning
level on the evaluation metrics in the grid world setting. As
the poisoning level increases, the values of all the evalua-
tion metrics demonstrate a consistent downward trend. This
trend indicates an improvement in the unlearning results with
higher poisoning amounts. The reason behind this promis-
ing phenomenon lies in the nature of the poisoning-based
method and its strategic use of targeted perturbations. As
the poisoning level escalates, the method introduces a more
substantial amount of deceptive information into the agent’s
policy, causing a stronger deviation from the optimal path.

This increase in poisoning intensity effectively compels the
agent to unlearn its previous behaviors more forcefully, en-
couraging it to abandon suboptimal policies. Thus, the agent’s
learned policy becomes more adaptable and resilient, leading
to enhanced performance in unlearning unwanted knowledge.
Moreover, higher poisoning amounts facilitate a more efficient
exploration of the policy space, allowing the agent to escape
local optima and discover better solutions. Thus, the unlearning
process becomes more effective in refining the agent’s behavior
and enhancing its performance.

Consistent results across the remaining scenarios, shown in
Figure 16 (virtual home) and Figure 17 (maze explorer), further
strengthen the observations in grid world. The increased poison
during unlearning correlates with improved results.
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Fig. 16. Poisoning-based method in Virtual Home, different poison levels

D. Adaptability Study

Dynamic Environments. To simulate dynamic environments,
where the features and layouts of environments can change
during agent training, we introduce a slight modification to
the unlearning problem. Specifically, considering an unlearning
environment Mu, we employ time steps to represent changes
in the environment. As time progresses in t steps, the evo-
lution of the unlearning environment can be represented as
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Fig. 17. Poisoning-based method in Maze Explorer, different poison levels

M1
u, . . . ,Mt

u. Thus, the problem of unlearning Mu trans-
forms into the task of unlearning M1

u, . . . ,Mt
u.
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Fig. 18. The four methods in dynamic environments in Grid World

The experimental results, shown in Figure 18, were derived
by setting t = 5 and averaging the outcomes across the five
environments. Similar outcomes can be observed for other
values of t, e.g., 3 and 8. The results indicate that even in this
dynamic setting, the outcomes of post-unlearning remain no-
tably favorable. The effectiveness is attributed to the carefully
designed mechanisms inherent in our reinforcement unlearn-
ing methods. The decremental RL-based method dynamically
adjusts the agent’s knowledge, ensuring it remains effective
even as the environment undergoes alterations. Similarly, the
poisoning-based method introduces dynamism by modifying
the unlearning environment, ensuring the agent to perform
optimally in the evolving environment.

Generalization. To assess the generalization capability of
our unlearning methods, we evaluated the unlearned models in
unseen environments. We established the ratio between training
environments and unseen environments as 4 : 1, employing
20 training environments and 5 unseen environments. This
configuration is analogous to the typical setting of the ratio
between the size of the training set and the test set in
conventional machine learning.
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Fig. 19. Generalization of the four methods in Grid World.

The outcomes, shown in Figure 19, were derived by
averaging the results across the five unseen environments.

The results indicate that the performance is sustained in
these unseen settings. This suggests that our methods do not
compromise the models’ generalization ability; instead, they
selectively impact the models’ performance in the unlearning
environments. This success can be attributed to the precision
of our unlearning methods, which erase only the features
specific to each unlearning environment while preserving the
underlying rules gained from training environments.

Robustness. Robustness gauges the strength and resilience
of a method in the face of external perturbations. Evaluating
robustness entails assessing how the unlearning methods per-
form when subjected to external perturbations. To conduct the
evaluation, we introduce noise to the agent’s actions during
both training and unlearning. The introduction of noise is
achieved by randomly perturbing the probability distribution
over the agent’s actions. This perturbation involves adding a
small randomly generated number, falling within the range of
[−0.1, 0.1], to a randomly selected probability in the distribu-
tion. This noise represents random variations or disturbances
that can occur in real-world scenarios.
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Fig. 20. The decremental RL-based and poisoning-based methods in Grid
World with and without noise

The corresponding results of the grid world setting are
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presented in Figure 20. Upon analyzing the outcomes, a
notable observation emerges: both the decremental RL-based
and poisoning-based methods exhibit remarkable robustness
against external noise. Despite the introduction of noise, the
agent’s performance in both the unlearning and remaining
environments remains consistently stable across both meth-
ods, showing no significant difference compared to conditions
without noise. This robustness can be attributed to the inherent
adaptability and resilience of the unlearning methods. In the
decremental RL-based method, the gradual modification of
the agent’s policy allows it to withstand minor variations
in observations, ensuring that its learned behavior remains
stable despite external noise. Similarly, the poisoning-based
method’s strategic use of targeted perturbations enables the
agent to develop a more adaptive policy. Thus, the agent’s
behavior proves to be less affected by the noise, maintaining
its consistency in unlearning undesired knowledge.

The results observed in the virtual home (Figure 21) and
maze explorer (Figure 22) scenarios closely align with those in
the grid world setting, showcasing the robustness of both the
decremental RL-based and poisoning-based methods against
external noise. In these two scenarios, the agent’s behavior
continues to exhibit consistent patterns even when external
noise is introduced during both the training and unlearning
process. This consistency is crucial for practical real-world
applications, where agents must maintain their adaptability and
performance despite uncertainties and disturbances.

Computational Adaptability. To assess the computational
adaptability of the four methods, we initially examined their
computational overhead in scenarios where one environment
is unlearned from a set of twenty. This evaluation was then
expanded to the scenario of unlearning ten environments from
a hundred. The outcomes are detailed in Table II.

TABLE II. COMPUTATION OVERHEAD OF THE FOUR METHODS IN
GRID WORLD (SECONDS)

Methods Computation time of
unlearning 1 environment

Computation time of
unlearning 10 environments

Decremental RL 18.80s 64.83s
Poisoning 20.17s 73.56s

LFS 198.62s 746.25s
Non-transfer LFS 196.97s 742.51s

In comparison with the two baseline methods, the proposed
decremental-RL and poisoning approaches show greater com-
putational efficiency due to their less exhaustive exploration
of the environments. Specifically, the decremental RL-based
method is more efficient than the poisoning-based method.
For instance, when the number of unlearning environments
increases to 10, the poisoning-based method requires 73.56
seconds, whereas the decremental RL-based method only takes
64.83 seconds, approximately 12% faster. This efficiency stems
from the decremental RL-based method’s straightforward pol-
icy adjustments impacting rewards directly without the ex-
tensive need to recompute environmental dynamics, unlike
the poisoning-based method, which involves computationally
intensive alterations to the transition dynamics.

E. Privacy Study

The privacy study is conducted using recommendation
systems, where the key indicator is recommendation accuracy.
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(a) Average steps of the decremental RL-
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(b) Average steps of the decremental RL-
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(c) Rewards of the decremental RL-based
method with noise

En
v.1

En
v.2

En
v.3

En
v.4

En
v.5

En
v.6

En
v.7

En
v.8

En
v.9

En
v.1

0
En

v.1
1

En
v.1

2
En

v.1
3

En
v.1

4
En

v.1
5

En
v.1

6
En

v.1
7

En
v.1

8
En

v.1
9

En
v.2

0

without noise

20

0

20

40

60

80

Re
wa

rd
s

Decremental RL-based in Virtual Home
Before Unlearning
After Unlearning

(d) Rewards of the decremental RL-based
method without noise
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(e) Average steps of the poisoning-based
method with noise
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(f) Average steps of the poisoning-based
method without noise
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(g) Rewards of the poisoning-based
method with noise
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(h) Rewards of the poisoning-based
method without noise

Fig. 21. The decremental RL-based and poisoning-based methods in Virtual
Home with and without noise

Higher accuracy indicates a deep understanding of users’ pref-
erences and habits, reflecting potential privacy risks. There-
fore, after a user revokes their data, the system’s unlearning
effectiveness is demonstrated by a decrease in recommendation
accuracy for that user, suggesting the recommender has effec-
tively forgotten the user’s preferences and is now generating
recommendations randomly.

TABLE III. COMPARISON OF RECOMMENDATION ACCURACY AND
REWARDS BEFORE AND AFTER UNLEARNING

Methods
Performance for

the unlearned user
Average performance for

the remaining users
Accuracy Reward Accuracy Reward

Before Unlearning 92.07% 41.42 91.52% 39.9
Decremental RL 68.63% 20.03 90.89% 38.82

Poisoning 64.41% 18.25 91.43% 37.17

Table III presents the recommendation results before and
after unlearning. Initially, the recommendation accuracy for the
unlearned user is high at 92.07%, indicating a strong under-
standing of the user’s preferences. However, after unlearning,
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(a) Average steps of the decremental RL-
based method with noise
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(b) Average steps of the decremental RL-
based method without noise
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(c) Rewards of the decremental RL-based
method with noise
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(d) Rewards of the decremental RL-based
method without noise
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(e) Average steps of the poisoning-based
method with noise
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(f) Average steps of the poisoning-based
method without noise
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(g) Rewards of the poisoning-based
method with noise
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(h) Rewards of the poisoning-based
method without noise

Fig. 22. The decremental RL-based and poisoning-based methods in Maze
Explorer with and without noise

accuracy significantly decreases to 68.63% and 64.41% for
the decremental RL-based and poisoning-based approaches
respectively, suggesting effective unlearning and enhanced
user privacy protection. This shift towards randomness in
recommendations is further evidenced by the dramatic drop in
rewards from 41.42 to 20.03 and 18.25, indicating dissatisfac-
tion with the recommendations after unlearning. Importantly,
recommendations to other users remain consistent, highlighting
the targeted nature of the proposed unlearning methods.

F. Safety Study

Since conventional machine unlearning can introduce se-
curity issues, such as reducing the adversarial robustness of
unlearned models [49], we aim to investigate whether rein-
forcement unlearning might lead to similar vulnerabilities. Our
study focuses on a safety-critical scenario: aircraft landing. In
this scenario, we measure safety performance by the number
of collisions the agent encounters with obstacles. An increase
in collisions after unlearning would indicate a higher level
of safety concerns, suggesting that reinforcement unlearning

could potentially compromise the safety of the system in
ways analogous to the security issues observed in conventional
machine unlearning.
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Fig. 23. Collision count before and after unlearning in Aircraft Landing.

The results shown in Figure 23 reveal that after unlearning,
the number of collisions under both methods has tripled com-
pared to before unlearning. This substantial increase highlights
the safety risks introduced when the agent forgets critical
features of the environment. In safety-critical scenarios like
aircraft landing, this observation underscores the need for
extreme caution when implementing unlearning strategies. The
trade-off between ensuring privacy and maintaining safety
must be judiciously managed, as compromising safety can have
serious consequences. Therefore, in contexts where safety is
paramount, the approach to unlearning must prioritize minimal
impact on operational safety.

G. Environment Inference Testing

This inference enables us to infer the environment that
the agent needs to forget, allowing for a comparison of the
inference outcomes before and after unlearning. We incor-
porate the l0 distance as a quantitative measure to assess
the inference results. Specifically, consider the unlearning
environment as Mu, and the inferred environments before and
after unlearning as Mbefore

u and Mafter
u , respectively. The l0

distance between two environments is defined as the number
of differing dimensions between them.

The unlearning environment Inference before unlearning Inference after unlearning

Fig. 24. Inference results in Grid World

In Figure 24, we present the results of the grid world
setting for the decremental RL-based method. The inference
successfully recreates 50% of the unlearning environment
before unlearning, resulting in l0(Mu,Mbefore

u ) = 12 for
this 5 × 5 environment. However, after unlearning, this in-
ference result significantly reduces to only 20%, yielding
l0(Mu,Mbefore

u ) = 20. This result provides clear evidence
of a successful unlearning process. Note that the inference
results before unlearning may not appear fully accurate due to
the specific inference approach used, which is only intended
to verify the effectiveness of the unlearning process, rather
than to demonstrate an adversary’s capabilities. The primary
objective here is to assess how well the unlearning method
obscures the agent’s prior knowledge of the environment.
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The reason behind this success lies in the unlearning meth-
ods’ capability to modify the agent’s learned policy effectively.
Both of the proposed methods adapt the agent’s behavior to
forget specific aspects of the environment while preserving
essential knowledge. Thus, the environment inference becomes
less effective in recreating the forgotten parts after unlearning.
Also, the visual comparison highlights the unlearning methods’
efficiency in refining the agent’s policy to eliminate unwanted
behaviors. The process of inferring the forgotten environment
confirms the success of our unlearning methods in reducing
the agent’s reliance on previously learned information and
adapting to changes in the environment.

V. THREATS TO VALIDITY

Definition Validity. The study defines unlearning in a specific
way (minimizing performance in the unlearning environment).
Alternative definitions of unlearning might yield different re-
sults. Moreover, the defined reward function might not capture
all aspects of the agent’s behavior and performance, leading
to incomplete assessments of unlearning efficacy.

Methodology Validity. The effectiveness of the proposed
unlearning methods may be dependent on the specific RL
algorithms used in the study. Additionally, the unlearning
process might be influenced by factors not accounted for
in the study. For example, in recommendation systems, user
preferences can change over time, making it challenging for
the agent to provide accurate recommendations. While we have
tested various RL algorithms and incorporated environmental
dynamism into our experiments, our evaluations are not ex-
haustive in capturing all potential variables.

Generalization Validity. The experiments were conducted in
simulated environments, which may not fully represent the
complexities of real-world scenarios. Furthermore, the metrics
used to evaluate unlearning performance might not capture all
aspects of the agent’s behavior in real-life applications.

VI. RELATED WORK

Machine Unlearning. The concept of machine unlearning
was initially introduced in [3]. They employed statistical query
learning and decomposed the model into a summation form,
enabling efficient removal of a sample by subtracting the corre-
sponding summand. Later, Bourtoule et al. [2] proposed SISA
training, which involves randomly partitioning the training
set into multiple shards and training a constituent model for
each shard. In the event of an unlearning request, the model
provider only needs to retrain the corresponding shard model.
Warnecke et al. [43] shifted the focus of unlearning research
from removing samples to removing features and labels. Their
approach is based on the concept of influence functions, which
allows for estimating the influence of data on learning models.
Machine unlearning has also been explored from a theoretical
perspective. Ginart et al. [12] introduced the concept of (ϵ, δ)-
approximate unlearning, drawing inspiration from differential
privacy (DP) [6], [31], [9]. Then, Guo et al. [13] formu-
lated unlearning as certified removal and provided theoretical
guarantees. They achieved certified removal by employing
convex optimization followed by Gaussian perturbation on the
loss function. Gupta et al. [14] considered update sequences
based on a function of the published model. They leveraged

differential privacy and its connection to max information to
develop a data deletion algorithm. Thudi et al. [37] argued that
unlearning cannot be proven solely by training the model on
the unlearned data. Instead, unlearning can only be defined at
the level of the algorithms used for learning and unlearning.

Reinforcement Learning Security. While reinforcement un-
learning remains an underexplored area, considerable research
has been devoted to reinforcement learning security [44], [47].
For instance, Chen et al. [5] proposed a backdoor detection and
removal approach for DRL via unlearning, involving the re-
initialization of the top L neurons’ weights to erase the most
vulnerable shortcuts. However, these studies differ significantly
from reinforcement unlearning for three reasons. Firstly, the
focus of these studies revolves around identifying and address-
ing vulnerabilities within the learning process. In contrast, our
work centers on the task of effectively forgetting previously
acquired knowledge. Secondly, these studies commonly aim
to train robust agents capable of withstanding diverse adver-
sarial activities. Our goal, however, is to develop techniques
for unlearning knowledge in RL agents, allowing them to
adapt their policies based on unlearning requests. Lastly, these
studies endeavor to explain learned policies, particularly within
security applications. In contrast, our research extends beyond
security concerns to address broader issues related to policy
adaptation and forgetting in reinforcement learning.

VII. CONCLUSION

This paper presents a pioneering research area, termed
reinforcement unlearning, which addresses the crucial need
to protect the privacy of environment owners by enabling an
agent to unlearn entire environments. We propose two distinct
reinforcement unlearning methods: decremental RL-based and
environment poisoning-based approaches. These methods are
designed to be adaptable to different situations and provide
effective mechanisms for unlearning. Also, we introduce a
novel concept termed “environment inference” to evaluate the
outcomes of the unlearning process.

Our future work focuses on developing a unified framework
for reinforcement unlearning that integrates various unlearning
methods and supports easy application to different RL algo-
rithms and environments. This includes designing a modular
architecture that allows for interchangeable unlearning compo-
nents tailored to specific needs of different RL scenarios.
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APPENDIX

I. UNLEARNING IN A SINGLE ENVIRONMENT

Problem Definition. Unlearning within a single environment
primarily focuses on selectively forgetting specific knowledge
from that environment. We formally define the problem as
follows. Given an environment M = {S,A, T , r}, a set
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of n trajectories (τ1, ..., τn) occur within it. Each trajectory
τi = ((si1, a

i
1), . . . , (s

i
k, a

i
k)) is a sequence of k states and

actions experienced by the agent as it interacts with the
environment according to a policy. Assume the agent aims to
unlearn a trajectory τu, the goal is to update the policy π to π′

such that the reward obtained along trajectory τu is minimized:

min
π′

E(s,a)∼τu [Qπ′(s, a)], (12)

while unaffecting the reward in other trajectories:

min
π′

E(s,a) ̸∼τu |Qπ′(s, a)−Qπ(s, a)|. (13)

In Eq. 12, minimizing the reward for specific state-action pairs
teaches the agent these pairs are less valuable. Consequently,
the agent may select alternative actions in those states to avoid
the reduced rewards. This change in action selection leads to
different subsequent states, effectively altering the unlearned
trajectory. Essentially, this makes the trajectory unlikely to
occur, achieving the effect of forgetting it. In comparison,
Eq. 13 focuses on preserving the integrity of the remaining
trajectories, effectively ensuring they remain unaffected. This
goal is to maintain stability and reliability in the agent’s per-
formance across these trajectories, emphasizing remembering
them, while selectively forgetting the specified trajectory.

Methods. To adapt our methods to unlearning in a single-
environment scenario, we have modified the loss and reward
functions accordingly. For the decremental RL-based method,
the revised loss function is:

Lu = E(s,a)∼τu [Qπ′(s, a)] + E(s,a)̸∼τu |Qπ′(s, a)−Qπ(s, a)|,

where the first term reduces rewards along the trajectory τu,
and the second term maintains policy performance elsewhere.
Similarly, the reward function for the poisoning-based method
is reformulated as:

Ri := λ1∆(πi(si)||πi+1(si)) + λ2

∑
s̸∼τu

∑
a

πi(s, a)r(s, a),

targeting a higher divergence between successive policies
πi and πi+1 and ensuring good performance on remaining
trajectories.

Experimental Results. The results of unlearning within a sin-
gle environment in the grid world scenario, depicted in Figure
25, align with those observed in multi-environment settings:
the agent performs deterioratively in the unlearning trajectory,
receiving lower rewards, while continuing to perform well in
other trajectories. Note that counting steps is less relevant as an
evaluation metric in the single-environment setting compared
to multi-environment settings, because the focus is now on
ensuring the agent effectively avoids specific states or actions,
rather than on the speed or distance covered.

II. MODEL ARCHITECTURE

In the grid world and aircraft landing settings, we em-
ploy a fully-connected neural network as the model for our
reinforcement learning agent. The neural network architecture
consists of an input layer, two hidden layers, and an output
layer. The input layer takes a 10-dimensional vector as input,
representing the relevant features of the environment. The
output layer generates a 4-dimensional vector, representing
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Fig. 25. The two methods in unlearning Trajectory 1 within a single
environment using the grid world setting.

the probability distribution over the four possible actions:
up, down, left, and right. The first hidden layer comprises
64 neurons, while the second one consists of 32 neurons.
Similarly, for recommendation systems, the architecture is
slightly adjusted with an input layer, two hidden layers, and
an output layer with neuron counts of 4, 128, 128, and 2
respectively. The input layer manages four movie attributes:
ID, release year, genre, and rating, while the output layer
determines whether to recommend the movie.

In the virtual home and maze explorer settings, we employ
a Convolutional Neural Network (CNN) comprising three
CNN blocks and one hidden layer with 512 neurons. This
network receives visual information as input with a size of
140×120 and produces a 4-dimensional vector, indicating the
probability distribution across the four possible actions: up,
down, left, and right. The weights of these neural networks
are randomly initialized.

III. COMPARISON OF VARIOUS RL ALGORITHMS
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Fig. 26. Performance of the three RL algorithms in grid world.

To assess the effectiveness of different RL algorithms in our
setting, we evaluate the performance of PPO and DDPG and
compare them with the adopted DQN algorithm. As illustrated
in Figure 26, PPO and DDPG closely mirrors that of the
DQN algorithm during the unlearning process, albeit with
inferior results. Specifically, the agent achieves lower rewards
and requires more steps to complete tasks. Several factors
may contribute to this disparity. Firstly, DQN’s exploration-
exploitation trade-off may be better suited for efficiently
navigating complex environments. Additionally, its experience
replay mechanism enhances sample efficiency and learning
convergence, further bolstering its performance. Thus, PPO
and DDPG are not extensively utilized in our experiments.
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