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Abstract—As cyber attacks grow increasingly sophisticated
and stealthy, it becomes more imperative and challenging to
detect intrusion from normal behaviors. Through fine-grained
causality analysis, provenance-based intrusion detection systems
(PIDS) demonstrated a promising capacity to distinguish benign
and malicious behaviors, attracting widespread attention from
both industry and academia. Among diverse approaches, rule-
based PIDS stands out due to its lightweight overhead, real-
time capabilities, and explainability. However, existing rule-based
systems suffer low detection accuracy, especially the high false
alarms, due to the lack of fine-grained rules and environment-
specific configurations.

In this paper, we propose CAPTAIN, a rule-based PIDS capable
of automatically adapting to diverse environments. Specifically,
we propose three adaptive parameters to adjust the detection
configuration with respect to nodes, edges, and alarm generation
thresholds. We build a differentiable tag propagation framework
and utilize the gradient descent algorithm to optimize these
adaptive parameters based on the training data. We evaluate
our system using data from DARPA Engagements and simulated
environments. The evaluation results demonstrate that CAPTAIN
enhances rule-based PIDS with learning capabilities, resulting
in improved detection accuracy, reduced detection latency, lower
runtime overhead, and more interpretable detection procedures
and results compared to the state-of-the-art (SOTA) PIDS.

I. INTRODUCTION

Advanced Persistent Threats (APT) are becoming a grow-
ing threat to both government and industrial sectors, caus-
ing significant societal impacts [1]. The Equifax breach in
2017 resulted in the theft of vast amounts of personal data,
highlighting the severe privacy and security risks [2], [3].
Moreover, attackers continuously innovate to find new ways to
penetrate systems and remain undetected for extended periods.
In recent years, provenance-based intrusion detection systems
(PIDS) have gained attention from both the security industry
and academia for their causality analysis capability. However,
prevailing alarm fatigue, excessive runtime overhead, long

†The first two authors made equal contribution.

detection latency, and opaque detection processes (based on
black-box) are still open research problems in real-world
scenarios [4], [5], [6], [7], [8].

Alarm fatigue [9], [10] is a significant issue plaguing the
security industry. A recent survey [11] indicates that security
analysts are required to handle an overwhelming average of
5,000 alarms daily, with a majority being false alarms. The
excessive volume of alarms can lead to serious consequences.
For instance, in the 2013 Target data breach [2], the malicious
activities were detected and reported by security tools but
overlooked by analysts, resulting in delayed response and
expanded losses [12]. In practice, false alarms are equally
detrimental as missed alarms. Moreover, significant challenges
also arise from runtime overhead and detection latency. High
runtime overhead compromises the scalability of detection
systems, hindering their deployment on a large scale [4].
Moreover, detection latency critically affects performance,
as prolonged latency delays the response to threats, thereby
impeding analysts’ efficiency in managing alarms.

In academia, a recent trend of PIDS [13], [14], [15],
[16] leverage embedding techniques like word2vec [16] and
graph2vec [14] to encode system entities and events, and
neural networks like Graph Neural Networks (GNNs) [16],
[15], [13], [17] and Recurrent Convolutional Neural Networks
(RCNNs) [14] to analyze information flow and produce detec-
tion results. We refer to them as embedding-based PIDS. Al-
though these systems have demonstrated notable achievements
in detection performance, they face the following challenges:

• High Computational Resource Cost. Embedding-based
systems need to embed the graph features into vectors, usually
with deep learning techniques [14], [16], [13], [15], which re-
quire a significant amount of computational resources. More-
over, many systems require caching of embeddings and deep
learning models, leading to high memory consumption [4];
• Long Detection Latency. Embedding-based systems take

the input structured as graphs or paths, requiring time win-
dows [15], [18] or log batches [16], [14] in their design, which
leads to the additional detection delay.
• Uninterpretable Results. Many systems [19], [13], [20],

[16], [15], [18] only flag deviations from normal behaviors
without attack semantics. Moreover, we are unable to open the
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“black box” of the deep learning models to better understand
the detection process.

On the other hand, a group of PIDS [21], [22], [23], [24],
[7] operates based on human-defined mechanisms to generate
representations for system entities, propagate information flow,
and trigger alarms. We refer to them as rule-based PIDS.
Leveraging these rules, they take actionable leads, allowing
themselves to provide semantic-rich alarms and pinpoint spe-
cific suspicious events for further investigation. Besides, the
rule-based approach operates on simple arithmetic calcula-
tions, which require far fewer computational resources than
complex matrix calculations by neural networks. Furthermore,
some rule-based approaches process streaming data once it ar-
rives, significantly reducing storage requirements and enabling
rapid response with minimal delay. In summary, rule-based
PIDS shows advantages in real-world detection tasks due to
its fine-grained detection, semantic-rich alarms, lightweight
overhead, and minimal detection delay.

Despite rule-based PIDS excelling in the aforementioned
perspectives, they also face challenges in real-world deploy-
ment. These systems often employ simplistic and univer-
sal rules to distinguish between graphs (such as discrete
trustworthiness levels of node in [22], [21], [23], universal
system parameters in [22], [21], [23], [7]). The inflexible
rules lead these PIDS to be either too lenient or too strict. In
security operations centers (SOCs), analysts have to manually
configure the models, which is a time-consuming process [25].
This highlights the need for an automated configuration
methodology and scheme. To achieve this, a rule-based PIDS
must be capable of adjusting its rules autonomously based
on detection feedback from the training set, without human
intervention. This requires an automatic feedback mechanism
that establishes a direct connection between the rules and
detection results, allowing the system to dynamically adjust
its configuration based on the detection outcomes.

In this paper, we propose CAPTAIN, a rule-based PIDS with
adaptive configuration learning capability. We aim to leverage
the advantages of traditional rule-based PIDS while enabling
the system to acquire suitable configurations autonomously.
Specifically, we introduce three adaptive parameters to the
rule-based PIDS, giving it more flexibility during detection.
Moreover, we design a learning module to adjust these pa-
rameters automatically based on the detection results during
training. We calculate and record the gradients of each adaptive
parameter, transferring the rule-based system to a differen-
tiable function. With the help of a loss function, the gradient
descent algorithm can be utilized to optimize the adaptive
parameters based on the benign training data and thus reduce
the false alarms in testing.

We evaluate CAPTAIN in diverse detection scenarios, which
are drawn from the widely acknowledged public datasets [26]
provided by DARPA Engagement [27] and datasets collected
from simulated environments in collaboration with a SOC.
The evaluation results demonstrate that CAPTAIN can reduce
false alarms by over 90% (11.49x) on average compared to
traditional rule-based PIDS. Additionally, CAPTAIN achieves

much better detection accuracy with less than 10% CPU usage
and significantly lower memory usage and latency compared
to the SOTA embedding-based PIDS. We then select a few
scenarios as cases to study the explainability of the learned
configurations.

In summary, this paper makes the following contributions:
• We propose CAPTAIN, a rule-based PIDS that can adjust

its rules using benign data to reduce false alarms. Our design
endows CAPTAIN with the lightweight nature, low latency,
and interpretability of rule-based PIDS while also having fine
detection capability and adaptability.
• We parameterize the rule-based PIDS and propose a novel

differentiable tag propagation framework that allows us to
optimize adaptive parameters using the gradient descent al-
gorithm.
• We systemically evaluate CAPTAIN across various scenar-

ios, including widely used DARPA datasets and simulated
datasets from a partner SOC. The evaluation result demon-
strates that CAPTAIN can automatically adapt to various envi-
ronments, offering superior detection accuracy with reduced
latency, lower overhead, and more interpretable detection.

We make the code of our system, all datasets, and all ex-
periments publicly available for future analysis and research1.

II. BACKGROUND AND RELATED WORK

In this section, we begin by introducing PIDS and highlight-
ing mainstream approaches to clarify our design choices. Next,
we provide background on the optimization problem, followed
by a description of the threat model and the assumptions.

A. Provenance-based Intrusion Detection

Provenance-based intrusion detection has drawn wide atten-
tion for its powerful correlation and causal analysis capabili-
ties. In provenance analysis, the system behaviors are modeled
as directed acyclic graphs, called provenance graphs [28], [29],
in which nodes represent system entities, such as processes,
files, sockets, pipes, memory objects, etc., and edges repre-
sent interactions between entities, such as reading files and
connecting to a remote host.

Graph 
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Detection 
Results

(Alarms)

Feature Extraction Result GenerationGraph Construction

Audit Logs

Provenance Graph

Graph Embedding

Sub-Graph Extraction

Tag Propagation
…

Machine Learning
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Predefined Rules
…

Fig. 1: A brief overview of the workflow and commonly used
techniques in mainstream PIDS.

Fig. 1 illustrates an overview of typical PIDS workflow.
Based on how to model and aggregate the entity information,
the data/control flow, and the system behaviors, we identify
two major groups of PIDS: the embedding-based approach
and the rule-based approach.

1https://github.com/LexusWang/CAPTAIN
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Embedding-based PIDS. Embedding-based systems [18],
[19], [30], [31], [13], [16], [15], [17] use numerical vec-
tors to represent, propagate, and aggregate the information
of system entities, events, data/control flow in the graph.
Various techniques in machine learning have been employed to
embed the graph features into numerical vectors. Since these
techniques typically require the input structured as graphs or
paths, embedding-based PIDS usually adopt time windows
or log batches in their design, leading to the additional
detection delay, which we named as buffer time in this paper.
Concretely, buffer time refers to the time window duration
in which all streaming logs are stored to create a graph
structure for subsequent processing. Previous studies have
implemented a fixed-length window based on time [15] or
the number of events [16], while some works [14] utilize the
variable length window. Buffer time is crucial in real-world
detection scenarios because, in the worst-case scenario, after
an attack has been launched, the PIDS would have to wait for
the duration of the buffer time before starting the detection
procedure.

The methods for embedding graphs differ across various
systems. For instance, PROVDETECTOR [32] selects rare paths
based on historical event frequency to generate embedding
vectors for sequence learning and anomaly detection. AT-
LAS [31] classifies the extracted sequences from the graph
with Long Short-term Memory (LSTM). UNICORN[19] em-
beds the graph histograms and clusters the embedded graph
sketches. WATSON [30] learns the node embedding and event
semantics from training traces. More recent embedding-based
systems [16], [15], [17] employed graph neural networks in
detection. While such systems can achieve better detection
accuracy, they fail to provide the rationale for generated
alarms. For example, SHADEWATCHER [13] provides the
probability of malicious system events without further context.
FLASH [16] highlights suspicious entities with causal links but
does not provide further attack semantics of those interactions.
In practice, more manual efforts are required to review the
relevant audit logs thoroughly for further response.
Rule-based PIDS. Rule-based systems [21], [24], [23], [22],
[7] leverage human-designed rules to map system entities
and events to predefined semantic units (e.g., tags [21], [22],
[24], TTP [23], etc.) and propagation these units along the
information flow to capture causality. NODOZE[7] assigns
an anomaly score to each edge based on the frequency it
appears in the benign data and propagates the scores on the
graph. POIROT [33] models the detection as a graph-matching
problem that aligns manually constructed query graphs on the
provenance graph. SLEUTH [21] and MORSE [22] assign tags
to system entities and propagate tags among the graph. Rule-
based systems have become popular due to their real-time
processing capabilities and lightweight properties. However,
they usually suffer low detection accuracy due to the lack
of fine-grained rules and environment-specific configurations.
Most rule-based PIDS [22], [21], [24], [23] implement sim-
ple and universal rules, making them inflexible to adapt to
different environments. These systems typically rely on a

discrete classification to denote system entity properties, such
as private/public, and trusted/untrusted, and apply identical
rules to all nodes and events. As a result, they lack the nuance
required to accurately distinguish between similar graphs,
often being either overly lenient or overly strict, which leads
to false alarms or missed true alarms. We will elaborate on
these challenges in §III.

Table I summarizes the detection granularity of existing
PIDS and indicates whether the detection requires buffer time.

In this paper, we build our system CAPTAIN following
the rule-based methodology for four reasons: 1) rule-based
detection is computationally more efficient [33], [19], [21]; 2)
rule-based methods are suitable for real-time detection because
they can process the event stream incrementally [29]; 3)
rule-based methods offer more explainability to the detection
process and results than embedding-based methods [34]; 4)
rule-based methods are robust against mimicry attacks [35].
Additionally, CAPTAIN introduces a significant advancement
over traditional rule-based PIDS. Unlike systems that rely
on simple, universal, and inflexible rules, CAPTAIN offers a
mathematically complete framework for automatically fine-
tuning detection rules, enabling more precise detection and
response to security threats.

TABLE I: Comparison of existing PIDS. Buffer time refers to
the waiting time before threat analysis.

Detection
Granularity

Require
Buffer Time

CAPTAIN Edge No
FLASH Node Yes
R-CAID Node Yes
KAIROS Graph1 Yes

NODLINK Node Yes
PROGRAPHER Node Yes

SHADEWATCHER Edge Yes
POIROT Path Yes
MORSE Edge No

UNICORN Graph Yes
HOLMES Edge No

PROVDETECTOR Path Yes
NODOZE Path Yes

1Although KAIROS triggers alarms on the graph level, it can highlight
anomaly nodes and edges in the subgraphs.

B. Configuration as an Optimization Problem

Finding the best configuration for a rule-based PIDS can be
formalized as an optimization problem, which, in short, aims
to find the best elements θ in a searching space to minimize
or maximize an objective function J(θ). Gradient descent is
one of the most common algorithms to solve the optimization
problem [36]. It utilizes the gradient of the objective function
to the parameters ∇θJ(θ) to update θ according to θ = θ −
l · ∇θJ(θ), where l is the learning rate. Many variants have
been proposed based on the gradient descent algorithm. We
discuss more algorithms and their applicability to CAPTAIN
in § VII-B.

While the optimization problem and its gradient-based
solutions play a significant role in quantitative science and
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Fig. 2: Three motivating examples from the real-world dataset
where the more fine-grained rules are needed in the rule-based
PIDS.

engineering [37], it is rarely discussed in the previous rule-
based PIDS because of the following challenges. First, no
existing work formally defined the adjustable parameters with
clear meanings in the context of rule-based PIDS. Second,
designing an objective function, calculating, updating, and
saving the gradients needed in the gradient descent algorithm
are knotty problems for a rule-based PIDS.

C. Threat Model & Assumptions

Similar to many previous works [22], [21], [19], [32], [7],
[18], we assume that OS kernels and auditing tools are a part of
the trusted computing base (TCB), which means the attackers
are not able to tamper system auditing data. Meanwhile, we
do not consider hardware manipulation and any other attacks
that leave no traces on the provenance graph.

In each detection environment, we presume the availability
of audit logs encompassing daily activities and devoid of any
malicious activities to serve as the training data. In other
words, we adopt the assumption that any alarm generated from
this training data is a false alarm.

III. MOTIVATION EXAMPLES

In this section, we present motivating examples to elucidate
the challenges encountered by traditional, coarse-grained rule-
based PIDS, as depicted in Fig. 2. These scenarios contain
similar benign and malicious behaviors, which pose challenges
to existing rule-based PIDS [22], [21], [23], [7] in adjusting
their rules to effectively select an optimal trade-off point
between excessive false alarms and missing true alarms.

“Grey” Nodes: With the advancement of cloud computing,
connections to Function as a Service (FaaS) platforms like
AWS Lambda and Cloudflare Workers have become a typical
pattern in provenance graphs. However, recent reports indicate
that attackers are exploiting these commercial FaaS services
to redirect traffic to Command and Control (C2) servers, as
illustrated in Fig. 2a. Existing rule-based PIDS are often too
coarse to depict those IPs. For example, SLEUTH [21] only
defined three trustworthiness levels: Benign Authentic, Benign,
and Unknown for the nodes, and MORSE [22] used a binary
initial tag for the trustworthiness. But in this scenario, since
both benign and malicious behavior can involve communi-
cations with the external FaaS IPs, the coarse-grained rules
either lead to excessive false alarms or missing true alarms.
A more fine-grained configuration to reflect the “grey scale”
of these IPs may help solve the issue, i.e., we can assign a

trustworthiness value (a float between 0 and 1) to every node
in the provenance graph.

Dependency Explosion: Dependency explosion refers to
the scenario where all the subsequent events are treated as
they depend on the previous ones, and thus a single suspicious
event can lead to millions of system entities considered suspi-
cious [22]. As shown in Fig. 2b, a prolonged and furcate event
chain can spread the maliciousness carried by the suspicious
entities to entities involved in all subsequent events. Many
existing efforts have been made to solve this issue [38], [39],
[40], [41], [42]. Unfortunately, their solutions usually require
extensive instrumentation of applications/OS [40], [41], [42]
and expertise, which limits the usage in the real-world system,
especially in end-point host deployment.

To deal with the dependency explosion problem without
extensive instrumentation, existing rule-based PIDS adopt
methods like event whitelisting [21], cost-based pruning, or
dividing suspicious events into different stages in a typical
APT lifecycle [23]. MORSE [22] proposed the decay and
attenuation mechanisms to reduce the maliciousness carried
by the system entities over time to mitigate the dependency
explosion. However, the decay and attenuation factor is the
same for all nodes and edges. Such identical configuration
can lead to the dilemma between excessive false alarms and
missing true alarms as attackers may deliberately fork many
irrelevant processes or connect to benign entities to evade
detection. As shown by the two provenance graphs in Fig. 2b,
we want to confine the dependency explosion in the left graph
while preserving the maliciousness in the right (the right graph
depicts a rare pattern where a firefox process forks a
Python process, indicating the possibility of suspicious script
execution from a website.) Ideally, we aim to set a propagation
rate for each individual event, allowing for more customized
control. This ensures that the maliciousness of unusual events
does not fade away too quickly, while it can reset rapidly for
more common events.

Customized Alarm Triggering: In rule-based PIDS, alarms
are triggered based on predefined conditions that are uniformly
applied to all events, regardless of their context. These one-fits-
all approaches can lead to suboptimal detection performance.
For instance, MORSE sets a series of detection rules and
thresholds to trigger alarms and the rules are identical for
all processes and events. As the motivating example shows
in Fig. 2c, firefox and sshd are two processes that
often have network activities with various IP addresses. While
sshd may commonly use bash for script execution, it is
unusual and suspicious for firefox to do the same. Despite
the similarities in event types and related entities between
firefox and sshd, applying a uniform threshold for all
“fork” events could either result in false alarms for sshd
or miss genuine threats involving firefox. To distinguish
between such two behaviors, a specific rule is needed: for the
common events, we want to set a higher threshold to avoid
excessive false alarms, while for rare events, we want to keep
the threshold low to avoid missing true alarms. A knottier
question then follows: how to set different thresholds about
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Fig. 3: The overall framework of CAPTAIN. Phases 1⃝- 5⃝ show
the lifecycle of the detection module and the learning module
within one training epoch.

the “execute bash” event for each process?
The three motivating examples underscore the challenges

that existing rule-based PIDS face in balancing false and true
alarms due to their coarse-grained rules. Additionally, these
systems lack the flexibility to dynamically adjust rules to ac-
commodate different environments. Theoretically, embedding-
based PIDS, leveraging the power of deep learning, can
effectively create customized “rules” for every event and entity
in the graph by embedding them into the feature space.
However, training and deploying deep neural networks require
numerous calculation resources and storage space, leading to
high runtime overhead. Moreover, these PIDS usually lack the
explainability of the detection process and result, making it
difficult to pinpoint the malicious behaviors at the event level.

To overcome these limitations, we aim to refine rule-based
PIDS using fine-grained rules. By allowing the rule-based
detector to learn and adapt from training data, we can enhance
detection accuracy without the extensive resource demands and
runtime overhead. Our system improves the overall efficacy of
rule-based PIDS but also maintains its operational simplicity
and clarity.

IV. SYSTEM DESIGN

A. System Overview

As shown in Fig. 3, CAPTAIN consists of two major parts:
the detection module and the learning module. The detection
module takes the audit logs as input and produces detection
results, while the learning module leverages the false alarms
during the training phase to fine-tune the detection module.

B. Adaptive Detection Module

The detection module in CAPTAIN comprises three major
components: tag initialization, tag propagation, and alarm
generation. System entities are assigned initial tags when they
appear in the system. As system events happen, tags get
updated among system entities, which we refer to as “tag
propagation”. At the same time, CAPTAIN determines whether
to generate alarms based on the pre-defined rules.
Tag Design: Inspired by previous provenance-based method-
ology based on data flow and control flow [43], [44], [21],
[22], CAPTAIN designs two types of tags: data tags and code
tags. As shown in Table II, data tags exist on all nodes in the

provenance graph. A data tag is represented as a numerical
vector <c, i>, where c denotes the confidentiality score of
the data, and i denotes the integrity score of the data. In
contrast, code tags only exist on process nodes, denoted by
<p> to indicate the integrity of the code. All scores (c, i,
and p) are real numbers ranging from 0 to 1. A low integrity
score suggests that the data/code might be compromised and,
therefore, is considered untrusted. A low confidentiality score
is counterintuitively associated with highly sensitive data (to
make the scoring scheme consistent), such as passwords.

TABLE II: Tags in CAPTAIN

Tag Type Value Range

Data Tag Confidentiality (c) 0 (Most Confidential) to 1 (Public)
Integrity (i) 0 (Lowest) to 1 (Highest)

Code Tag Integrity (p) 0 (Lowest) to 1 (Highest)

The tag system used by CAPTAIN is inspired by previous
rule-based PIDS [22], [21]. The focus of this paper is not
on the design of the tag system. In essence, any new type
of tag can be integrated with CAPTAIN as long as it satisfies
the following conditions: 1) The tags are numerical; 2) The
tags are updated through arithmetic calculation; 3) Alarms are
triggered based on the tag values. For example, we can define
an additional “exploitability” tag for all web service nodes
and propose the corresponding propagation rules and alarm-
triggering rules. We leave tag designing as a practical problem
in specific scenarios and use the tags mentioned above to
show the improvement purely brought by CAPTAIN’s learning
module.

We then introduce three adaptive parameters, which are the
core of the fine-grained rule-based PIDS:
• Tag Initialization Parameter (A) determines the initial

tags of system entities.
• Tag Propagation Rate Parameter (G) adjusts the prop-

agation effect of system events on tags.
• Alarm Generation Threshold Parameter (T ) makes

adjustments to the alarm generation rules.
We will elucidate how CAPTAIN uses the three parameters to
achieve more flexible rule-based detection.
Tag Initialization: Proper tag initialization rules play a crucial
role since they determine the initial states of system entities.
For instance, if a socket associated with a benign IP address
is assigned low integrity, it could lead to many false alarms.
However, it is relatively less discussed in previous works [22],
[21]. They usually assign the initial tags based on domain
knowledge without further adjustments. Although MORSE
admits tag initialization policies could be learned from the
previous tracing data, it did not discuss it in detail or propose
a practical methodology.

We initialize the tags on the nodes when they are initially
added to the provenance graph. As illustrated in Fig. 3 step
1⃝, the detection system first checks for new system entities in

the event upon receiving the system audit logs. If new entities
are identified, they are added to the provenance graph and
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assigned initial data tags. Please note that when adding a new
process node, we do not specifically initialize its code tag and
data tag. A process node’s code tag value is inherited from the
data tag of the files loaded by the process, and its data tag is
propagated from its parents. For non-process nodes, we define
the adaptive parameter A at the node level to facilitate fine-
grained tag initialization rules. Specifically, for any node ni ∈
N in the provenance graph, A stores its initial data tag with
respect to its node feature. The node features depend on the
information granularity of audit logs, such as file path, process
name, command line, IP address, port, etc. For example, if the
node feature for a socket is its IP address, then all sockets with
the same IP address will be assigned the same initial data tag.

CAPTAIN’s learning module refines A through the training
process, which will be elaborated upon in §IV-C. The training
process starts from the default value A0. Since we train
CAPTAIN on the benign data, we set A0 conservatively. In this
paper, “conservative” means the assumption of the worst-case.
Under conservative settings, we aim to capture true attacks as
much as possible without considering excessive false alarms.
Rule-based PIDS such as MORSE has to use the conservative
setting to capture all potential attacks [22], while CAPTAIN
only uses the conservative setting as the initial state for training
on benign data. For example, we assign all IP addresses an
initial integrity of 0 so we do not miss any attackers entering
through network communications.

Although the confidentiality scores could be customized
in CAPTAIN, we find it hard to learn them from the false
alarms on the benign training data. Instead, it often requires
specific domain knowledge or personal, subjective judgments
to determine what files are sensitive. Therefore, we manually
set the initial confidentiality scores and do not adjust them
with the learning module.
Tag Propagation: As shown in Fig. 3 step 2⃝, once the
tags are initialized, specific system events will trigger the
propagation of these tags along the direction of the information
flow, resulting in changes to code and data tags. In CAPTAIN,
tag propagation will pass and accumulate malicious intentions
through tag values. For example, the (Firefox, read,
IP) event updates the data tag of Firefox to the lower value
between the data tags of Firefox and IP. This ensures that
potential malicious intentions carried in the information flow
are preserved. We designed the propagation rules based on
existing work [21], [22] as detailed in Table VIII.

Unfortunately, such a tag propagation mechanism can suffer
from the dependence explosion issue [22], leading to excessive
alarms. For example, as shown in III, (bash, write,
/home/user/.bash_history) is a common event that
appears in many propagation chains of false alarms, which
means this event causes large-scale maliciousness propagation
on the provenance graph. However, our investigation shows
this is a commonly seen benign activity.

To mitigate such a problem, we introduce another adaptive
parameter G, to regulate the propagation rate. Specifically, for
any edge e ∈ E identified with (src node feature, event type,
dest node feature) in the provenance graph, G stores its

propagation rate parameter ge ∈ [0, 1]. Given ge, the source
node src, and the destination node dest, we update tagdest as
follows during tag propagation.

tagnewdest = ge · tagrule + (1− ge) · tagdest (1)

Where tagrule is the tag value given by the propagation rules
defined in Table VIII. Usually, it equals to tagsrc. If ge is
close to 0, the corresponding tag propagation will lead to small
changes in the tag values and vice versa. In this way, G allows
CAPTAIN to fine-tune the propagation rules at the edge level.

CAPTAIN refines G through the training process in the
learning module, which will be elaborated upon in §IV-C. We
also conservatively establish the default values of G (G0) to
ensure all true alarms can be captured before the training starts.
Particularly, we set ge = 1 for all edges e ∈ E to make all
propagation fully effective.
Alarm Generation: The alarm generation rules determine
whether an alarm should be triggered. As shown in Fig. 3
step 3⃝, whenever an event happens, we will assess whether it
satisfies the criteria to trigger alarms. For example, if a process
with a data integrity value smaller than 0.5 writes to a normal
file, a file corruption alarm will be triggered. As shown in
Table IX, we generate alarms based on the event type, the
subject and object tags, and the threshold. The threshold could
be fine-tuned to control the number of alarms. For example, if
event (sshd, execve, bash) triggers many false alarms
during training, it suggests that we should decrease the alarm-
triggering threshold for this event.

We introduce an adaptive parameter T to enable fine-
grained adjustment of the alarm threshold. Specifically, for
any edge e ∈ E identified with (src node feature, event type,
dest node feature), T stores its alarm threshold thre ∈ [0, 1].
For an edge e, the detection function f(e) is defined as follows.

f(e) = tag − thre =

{
malicious, if f(e) < 0

benign, otherwise
(2)

where tag is the relevant tag on the node of interest on
edge ei. A low threshold prevents the system from generating
the alarms, while a high threshold encourages the system to
generate the alarms. In this way, T allows CAPTAIN to adjust
the alarm-triggering rules at the edge level.

Like A and G, CAPTAIN’s learning module refines T can
be refined through the training process (§IV-C). Before the
training, we set the default thresholds (T0) neutrally. In other
words, we set thri = 0.5 for every edge ei so that we do not
encourage or suppress all alarms.

Please note that CAPTAIN’s methodology is independent of
specific rules or tags, making it broadly applicable to various
rule-based PIDS, especially those using taint-analysis methods
like SLEUTH [21], HOLMES [23], and CONAN [24].

C. Learning Module

With the three adaptive parameters (A, G, and T ) we defined
in the previous section, the problem of adaptative configuration
for the detector is then converted to the optimization problem
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of the multi-variable function aiming to find the optimal
values for A, G, and T . In this section, we present our
efforts to solve this optimization problem with the gradient
descent algorithm, including defining the objective function
and constraints, calculating gradients, and searching for the
optimal values.

1) Loss Function: The first step of solving the optimization
problem is to define the objective function, i.e., the loss
function in the context of learning tasks. The learning module
aims to find the parameters that can reduce false alarms
while maintaining the sensitivity to the true malicious events.
Therefore, the loss function comprises two terms: the term of
false alarms and the regularizer term.

The false alarm term mainly focuses on penalizing erro-
neously triggered alarms. Specifically, an event e triggers a
false alarm means f(e) should be greater than 0 but it does
not. Since f(e) ∈ [−1, 1], we can use the Mean Squared Error
(ye − f(e))2 as the loss function for all events that trigger a
false alarm. ye is set as 1 for those benign events, and −1
for the malicious events. Because we only use benign data
for training, all ye should be 1. Please also note that we
do not calculate the loss for the correctly classified events,
i.e., we do not make f(e) close to 1 if f(e) is already
greater than 0. This is because the events that do not cause
alarms are significantly more than the alarm-triggering events,
considering them, therefore, is inefficient and would make the
detection system insensible to the malicious events. Thus, the
false alarm term in the loss function can be formalized as

L(e) = max(0, (1− f(e))2 − 1) (3)

Next, we introduce the second component: the regularizer
term. As we mentioned, CAPTAIN is trained on benign data
to learn the normal behaviors in the detection environment.
This is due to the fact that benign behaviors on a system are
more consistent than attack activities. Another reason is the
malicious training data is much harder to acquire. However, a
big challenge is how to guarantee that the detection capability
would not be affected if there is no malicious sample in the
dataset, i.e. we would not be too lenient to capture the true
alarm when reducing false alarms.

To capture all potential malicious events, the adaptive pa-
rameters are configured conservatively before training. During
training, we only want to make small adjustments to a small
portion of the parameters according to the false alarms on
training data. For the rest parameters, we would like to
keep them as conservative as possible so that the sensitivity
to the maliciousness is not compromised. In the area of
machine learning, One-class classification (OCC) algorithms
are proposed to deal with the situation where only one class of
samples is available in the training set [45]. Inspired by [46],
[47], we add a regularizer term in the loss function to avoid the
parameters becoming too lenient when the malicious training
sample is absent. The essential thought is to make the adaptive
parameters as close to the default values (A0, G0, T0) as
possible. By minimizing the l2 distance between the adaptive
parameters and the default values, we protect the detection

capability during training. Therefore, the detection loss can
be formalized as

Loss =
∑
e∈E

L(e)+α||A−A0||2+γ||G−G0||2+τ ||T −T0||2

(4)
where, α, γ, and τ are the regularizer coefficients. In the
evaluation section, we discuss the effect of the regularizer
coefficients (§VI-D2) and methods used to fine-tune them
(§VI-A2).

2) Differentiable Detection Framework: One of the funda-
mental steps of using gradient descent algorithms is calculating
the gradient of each variable. To adjust the adaptive parameters
based on the loss function, we need to design a differentiable
detection framework, which allows us to keep the gradients of
the adaptive parameters with respect to Loss.

According to the chain rule, for the parameter an, we have

∂Loss

∂an
=

∑
e∈E

∂L(e)
∂f

· ∂f

∂an
+ α · (an − a0) (5)

The equations for ge and thre (presented in Appendix §C)
hold similarly to Eq. 5. The most challenging part of building
an adaptative rule-based PIDS is to compute the gradients,
i.e., ∂f/∂an, ∂f/∂ge, and ∂f/∂thre. This is because the
rule-based detection process is usually modeled as the branch
selection based on rules, rather than a differentiable function.
To the best of our knowledge, no previous work has formalized
or recorded the gradients of parameters in a rule-based PIDS.
In CAPTAIN, we model the detection process as a differen-
tiable function and calculate the gradients of each adaptive
parameter. When the tags are propagated, the corresponding
gradients are updated and recorded. In so doing, we associate
the adaptive parameters with the loss, making it possible to
perform the gradient descent algorithm to find the optimal
parameters that minimize the loss.

As per Eq. 2, ∂f/∂thre = −1. This means every time when
we want to increase the value of f (the direction of benign),
we have to decrease the value of thre, and vice versa. This
aligns with our intuition because a lower tag value means more
maliciousness in our system. Therefore, if we want to be more
lenient in the detection, we should set a lower threshold.

The formalization and calculation of ∂f/∂an and ∂f/∂ge
are more complicated. According to Eq. 2, calculating the
gradients of the detection function f is essentially computing
the gradients with respect to the variable tag for each node.

We start from the gradients of an. According to the
propagation policies shown in Table VIII, the updated tag
value tagrule is either the lower tag values of involved nodes
min(tagsrc, tagdest) or a constant value c. Note the subscripts
src and dest denote the propagation direction. If tagrule = c,
then

∂tagnewdest

∂an
= (1− ge)

∂tagdest
∂an

(6)

If tagrule = tagsrc, then

∂tagnewdest

∂an
= ge

∂tagsrc
∂an

+ (1− ge)
∂tagdest
∂an

(7)
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Since an is defined as the initial value of the tag on node
n, the initial gradient of an is

∂tagn′

∂an
=

{
1, if n′ = n

0, if n′ ̸= n
(8)

Then we focus on calculating gradients of ge, which is more
complicated. From Eq. 1, we know that tagnewdest is determined
by tagdest, tagrule, and ge. And tagdest, tagrule are related
to the propagation rates of previous events. Therefore, tagnewdest

is influenced by the propagation rates of the current event
(denoted by ge) and all previous events (denoted by ge′ )
happened on src and dest nodes. Consequently, for each
propagation, we must update ∂tagnewdest/∂ge and ∂tagnewdest/∂ge′

simultaneously. The case of ge′ is similar to that of an, we
have

∂tagnewdest

∂ge′
= ge

∂tagrule
∂ge′

+ (1− ge)
∂tagdest
∂ge′

(9)

Calculating gradients of ge involves the Product Rule in
calculus, which is

∂tagnew
dest

∂ge
= ge

∂tagrule
∂ge

+ (1− ge)
∂tagdest

∂ge
+ tagrule − tagdest

(10)

The full proof of Eq. 9 and Eq. 10 can be found in the
Appendix §C.

As previously stated, ge are set according to the event fea-
tures (src node feature,event type,dest node feature). There-
fore, before the propagation happens,

∂tagn
∂ge

= 0,∀ e ∈ E,∀ n ∈ N (11)

We use Eq. 11 to initialize the gradient of ge and update them
according to Eq. 9 and 10.

In summary, to employ the gradient descent algorithm, we
calculate the gradients of the adaptive parameters with respect
to the loss. We first calculate the initial gradient for each
node. Afterward, the gradients are updated according to our
equations when the tags are propagated. Please note that unlike
GNN models such as GCN [48] and GraphSage [49], which
only consider the n-hop neighbor of a node, CAPTAIN fine-
tunes every edge and node in the graph that can influence the
detection results by propagating their gradients.

3) Training and Testing: After calculating the gradients
of the adaptive parameters with respect to the loss using
the differentiable detection framework, we can now utilize
the gradient descent algorithm to optimize the parameters. In
machine learning, this process is referred to as “training”. The
learned parameters are stored as a customized configuration,
which is then used to set up CAPTAIN prior to testing.

As shown in Fig. 3, an epoch in training comprises the
forward and backward propagation. Before training starts, all
adaptive parameters, A, G, and T , are configured as the default
settings A0, G0, and T0. Instead of random initialization[50],
we use the most conservative setting as the starting point to
keep the sensitivity to the maliciousness during training.

When CAPTAIN processes the events, tags are propagated
among the graph, updating the gradients according to Eq. 7, 9
and 10, and generate the detection results. Next, we calculate
the loss and back-propagate the gradients of loss according to
Eq. 5. Finally, parameters are updated in the opposite direction
of the gradient as follows:

pnew = pold − l · ∂Loss
∂pold

(12)

where p is the adaptive parameters (which could be an, ge,
or thre), pnew is the new parameters, pold is the old one,
∂Loss
∂pold

is the gradient, and l is the learning rate. We repeat the
training process when the maximum epoch is reached or the
changes in the result become sufficiently small. Before testing,
we configure the parameters according to what we learned in
the training stage. Then, CAPTAIN can process audit data and
conduct detection as introduced in § IV-A.

V. IMPLEMENTATION

The entire system (including data parsing, tag initializ-
ing, tag propagating, alarm generating, and training/testing
framework) consists of 5KLoC of Python. We implement the
differentiable detection framework by creating two dictionaries
for each tag to store the gradients with respect to A and G.
As for T , because its gradients are unrelated to the node tags,
there is no need to store them within the node. The space used
to store those gradient dictionaries during training is analyzed
in § VI-C2 and § E-A

VI. EVALUATION

Our evaluation aims to answer the following five research
questions: 1) How effectively can CAPTAIN detect the attacks,
especially in terms of reducing false alarms? 2) How efficient
is CAPTAIN compared with the SOTA PIDS in terms of detec-
tion latency and runtime overhead? (§VI-C) 3) How robust is
CAPTAIN against adversarial attacks such as mimicry attacks
and data poisoning attacks? (§VI-D) 4) How do different
components affect the training outcome and the detection
performance of CAPTAIN? (§VI-E) 5) Can CAPTAIN acquire
explainable knowledge via our learning module? (§VI-F)

A. Experiment Settings

1) Datasets: We evaluate CAPTAIN using public forensic
datasets from the DARPA Transparent Computing program
and datasets generated within simulated environments in col-
laboration with an SOC.
DARPA Datasets. The DARPA Transparent Computing pro-
gram was organized between 2016 and 2019 to perform
several red team assessments. In two weeks, the data collecting
teams deploy collectors on several target hosts [27]. We use
the public-available datasets from Engagement 3 (E3) and
Engagement 5 (E5) in our evaluation. [51], [52] provides a
detailed description of attacks performed in relevant DARPA
datasets.
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Simulated Environments. Moreover, we collaborate with an
industry SOC to acquire additional datasets within realisti-
cally simulated scenarios to avoid the problem of “close-
world data” [18]. Specifically, the SOC furnishes detailed host
setups from real-world operating environments. Subsequently,
we simulate APT attacks [53] employing the Atomic Red
Team [54] and online malware repositories [55]. The simulated
scenarios encompass five APT attacks across three distinct
real-world operational settings, elaborated in detail in §A.
Data Labeling. For each attack scenario, we label entities
and events on the kill chains as malicious according to the
attack reports. Although previous work [20], [16] provided
entity-level data labels, they did not specify the data labeling
strategy or context. We also observed that the amount of
malicious labels in their dataset is excessively large (e.g., over
12 thousand system entities were marked as malicious within a
30-hour period on the CADETS from DARPA Engagement 3),
which is impractical for a real-world SOC. Thus, we decided
to use our data labels in the evaluation for a fair and unbiased
comparison between CAPTAIN and the baseline systems. We
also make our data labels publicly available to facilitate future
research.

2) Experiment Setup: We deployed CAPTAIN and per-
formed all experiments on an Ubuntu 22.04.3 Linux Server
with an Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz and
1.0 TB memory. We partition each dataset into training and
testing sets, adhering to the assumption stated in §II-C that
the training set should not contain any malicious activities.
Specifically, we find the starting time of the first attack. Then,
all data produced before that date becomes the training set,
whereas the remaining data becomes the testing set.

To avoid biased results due to overfitting, we performed
cross-validation when evaluating the performance of CAP-
TAIN. However, standard k-fold cross-validation is unsuitable
for streaming logs because the time series cannot be freely split
into k groups, as the subsequent tags depend on the previous
ones. Therefore, we utilized time series cross-validation, which
preserves the chronological order of data. We set a time
window and trained the parameters using the data within this
window. Afterward, we moved the time window forward until
creating k different training sets. In our experiment, we set
k=3 and the length of the time windows to be around 2/3 of
the total length of the training set. We also discuss overfitting
in § VII-A.

Like many other machine learning systems, CAPTAIN also
relies on appropriate hyperparameters, especially three regular-
izer coefficients α, γ, τ , to train the accurate and robust model
(the effect of these hyperparameters are shown in §VI-D2).
We provide two methods to fine-tune the hyperparameters,
depending on whether a validation set is available. If a
validation set exists, we perform grid searching, a generic
hyperparameter tuning approach. We train multiple models
with different hyperparameter combinations and evaluate their
performance on the validation set. The default conservative
detector is run on the validation set as the baseline. We
select the hyperparameters from the model with the fewest

false alarms and equivalent true alarms to the baseline. For
instance, the optimal hyperparameters of E3-CADETS is α =
0.1, γ = 0.1, τ = 0.1 and the learning rate is 0.01. However,
a validation set is usually not available for a PIDS in practice.
Even if it exists, it may not encompass all possible attacks.
In this case, we propose a heuristic-based method to fine-
tune the regularizer coefficients. Recall that the training starts
from the conservative adaptive parameters, false alarms in
the training set will loosen the conservative settings. The
regularizer coefficients are added to the loss function to avoid
being too lenient and missing the true alarms. Therefore,
the values of the regularizer coefficients α, γ, and τ are
determined by the following question: how many false alarms
caused by a node/edge can we tolerate in the training set
to avoid being overly lenient? Before training starts, we set
a number for the allowed false alarms (N ), and we can
estimate an approximate value of the regularizer coefficients
based on N : α ≈ 3N, γ ≈ 3N, τ ≈ 12N (see Appendix
§D for the mathematical proof). Please note that these are
approximate estimations depending on the extent to which we
trust the “benign” training data. A practical way might be:
set regularizer coefficients using heuristics; if missing alarms
occur compared to the conservative baseline, multiply the
coefficients by a factor (e.g., 10) and retrain. Conversely, if no
alarms are missed for a long time T , reduce the coefficients
by a factor and retrain.

3) Baseline Detectors: We compare CAPTAIN with
five SOTA PIDS: FLASH [16], KAIROS [15], SHADE-
WATCHER [13], NODLINK [18], and MORSE [22] to eval-
uate their performance from different perspectives. We chose
FLASH, KAIROS, and NODLINK because they are the SOTA
embedding-based PIDS. In addition, their implementations are
open-sourced, allowing us to test them on different datasets.
Since some other embedding-based PIDS [20], [19], [23] have
already been evaluated in these works and the result shows that
FLASH, KAIROS, and NODLINK outperform them, we didn’t
include them in our evaluation. We chose MORSE since it
is the SOTA rule-based PIDS, and we want to evaluate the
improvements from our differentiable adaptation framework
in CAPTAIN. To get a fair and unbiased comparison, we
use the settings from MORSE in the evaluation. According
to [15], [16] and our communication with the authors, the
detection systems of SHADEWATCHER and PROGRAPHER are
not fully open-source due to proprietary license restrictions.
Although the data preprocessing module of SHADEWATCHER
is open-sourced, we tried our best but could not locate the
preprocessing output files used for the following training and
testing. We then realized that it was not feasible for us to
perfectly replicate their systems for an unbiased comparison.
Therefore, we used the code to evaluate the efficiency and
latency of data preprocessing and the detection results reported
in their paper to evaluate detection accuracy. For FLASH,
KAIROS, and NODLINK, we used their open-sourced code
as the basis for the evaluation. We reimplemented MORSE
according to their paper.
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B. Detection Accuracy

1) False Alarm Events Reduction: We first focus on the
reduction of false alarm events, which requires the detection
granularity at the event level. We compare CAPTAIN with the
SOTA event-level PIDS SHADEWATCHER and the classical
rule-based PIDS MORSE. Due to the close-source nature of
SHADEWATCHER, we used the reported detection results in
their paper. The results show that both MORSE and CAPTAIN
successfully detected all attacks in the testing dataset. But
CAPTAIN reduces the false alarm rate by over 93% (15.66x)
compared to SHADEWATCHER and over 95% (20.45x) com-
pared to MORSE. Additionally, SHADEWATCHER holds 80%
of events for training and only 10% for testing, while the test-
ing set of CAPTAIN is over seven times larger than the testing
set of SHADEWATCHER. This shows that CAPTAIN does not
require as much data as SHADEWATCHER for training.

TABLE III: Comparison with the baselines on the TRACE
dataset from Engagement 3 in terms of false alarm events

MORSE SHADEWATCHER CAPTAIN

# of Consumed Events 5,188,230 724,236 5,188,230
# of False Alarm Events 22,500 2,405 1,099

False Alarm Rate 0.434% 0.332% 0.0212%

One advantage of the rule-based PIDS like CAPTAIN and
MORSE is that it can offer semantic-rich alarms, while
SHADEWATCHER only flags deviations from patterns observed
during training without explaining the alarms. We then com-
pared the number of false alarms generated by CAPTAIN and
MORSE into different categories, shown in Table IV.

Table IV shows that CAPTAIN can reduce false alarms by
over 90% (11.49x) on average for all datasets compared with
the non-adaptive MORSE. It outperforms MORSE in every
alarm category. Those remaining false alarms, especially in C-
5, S-2, and S-3, cannot be removed for the following reasons.
First, some “false” alarms are not purely benign. They are
related to some (potential) attack nodes (e.g., configuration
files in /tmp/atScript/atomic-red-team-Gray_dev1.0/* in
S-2) but cannot be mapped to specific attack steps directly, thus
not labeled as “malicious.” Second, some nodes and edges do
not exist or trigger any alarm in the training set. Third, since
our approach aims to be as conservative as possible, some
parameters are tuned just enough to eliminate false alarms in
the training set. However, these conservative settings may still
cause false alarms when applied to the testing set.

2) False Alarm Entity Reduction: While CAPTAIN op-
erates as an event-level detector, we still compare CAP-
TAIN with the SOTA entity-level PIDS FLASH, KAIROS, and
NODLINK(KAIROS and NODLINK give the result at graph-
level, but they also support entity-level detection). We trans-
formed the alarm events triggered by MORSE and CAPTAIN
into alarm entities using the following method: an entity is
considered an alarm entity if it is involved in any alarm events.

It is noteworthy that only a subset of each DARPA dataset
is utilized for training and testing in [20], [16], [15]. To
simulate the real scenarios in SOC, we utilize the entire

dataset for evaluation, dividing the training and testing sets as
described in §VI-A2. We retrained the model and performed
detection using their code. Additionally, we noticed FLASH
and THREATRACE did not count the FPs within the two-
hop distance from the labeled attack entities in the ground
truth while counting the TPs within the two-hop distance
from the detected entities [15]. To ensure a fair comparison
without providing excessive leniency, we report the TP and FP
results, as well as the one-hop FP result, in which we exclude
the FP entities within a one-hop distance from the ground
truth. We also did not count the attack entities in the 2-hop
neighborhood of the detected entities as TP like [16], [15], [20]
did. These strict experiment settings and data labeling methods
can explain the difference between our results and the results
in their papers, but we believe it is fair and necessary to assess
the performance of PIDS in real-world scenarios.

We evaluated the detection accuracy on CADETS, TRACE,
and THEIA from Engagement 3 since those datasets were
commonly used by the baselines. Table V illustrates the com-
parison among CAPTAIN and the baselines. On all datasets,
CAPTAIN demonstrates superior performance in identifying
more TPs while maintaining fewer FPs. FLASH can report a
fair amount of TPs but produce an excessive amount of FPs. It
leverages GNN to learn k-hop neighborhood structures. While
this technique shows promising performance when there is
a significant anomaly within k hops, it could degrade when
the training set is limited [16]. KAIROS can filter out FPs
with the Anomalous Time Window Queue [15]. Although
it guaranteed decent detection accuracy at the time-window
level; the entity-level accuracy, however, is not satisfactory.
NODLINK detects most attack processes. However, missing
other relevant entities, such as files and network sockets,
requires additional expert efforts to investigate the reported
alarms. MORSE and CAPTAIN achieve a lower false positive
rate in node-level detection. This is attributed to the semantic-
rich alarms that provide additional information for alarm
filtering. For instance, a file corruption alarm involves two
entities: the process and the corrupted (benign) files. As the
corrupted files should not be reported as malicious entities,
they can be easily filtered out. This explains why MORSE
triggers thousands of false alarms at the event level, but only
hundreds of nodes are incorrectly alarmed. For embedding-
based PIDS, there is no such semantics for alarm filtering.
We include the filtered results in Table V as we believe it
highlights an advantage of rule-based PIDS.

CAPTAIN successfully detects all attacks in the dataset. As
an event-level detector, CAPTAIN does not report entities that
are not directly related to the attack events. For example, if
a malware is downloaded and executed, CAPTAIN reports the
MalFileCreation alarm and the FileExec alarm, which reveals
the malware process, file, and parent process. We do not
immediately report the entry network node used by attackers
to avoid alarm fatigue, which explains the FNs of CAPTAIN.
The investigations on the relevant nodes can be conducted after
the first response.
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TABLE IV: Comparison with the baseline on different datasets regarding false alarms. T-3, T-5, C-3, and C-5 represent the
TRACE and CADETS datasets from Engagement 3 & 5. S-1 to S-3 denote Cloud, Streaming, and Dev datasets from the SOC.

Datasets FileExe MemExec ChPerm Corrupt DataLeak Escalate Total False Alarms

Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours Reduction

T-3 9 0 49.3K 3.76K 1 1 626 2 955 14 673 0 52.1K 3.78K 13.78x
C-3 41 14 N/A N/A 6 6 13.2K 272 96 50 81 1 13.4K 343 39.07x
T-5 181 170 403K 79.8K 0 0 34.4K 19.9K 26.9K 1.20K 18.4K 28 483K 101K 4.78x
C-5 1.63K 0 N/A N/A N/A N/A 1.81M 6.64K 7.87K 2 1.42K 0 1.83M 6.64K 276x
S-1 3.16K 0 N/A N/A 26 0 100 73 22 21 N/A N/A 3.31K 94 35.21x
S-2 177 53 N/A N/A 0 0 12 9 14 7 N/A N/A 203 69 2.94x
S-3 18 0 N/A N/A 0 0 29 16 23 22 N/A N/A 60 38 1.58x

TABLE V: Comparison with the baselines in terms of node-
level detection accuracy

TP FP(0-hop) FP(1-hop) FN(0-hop)

Engagement3 CADETS

FLASH 16 4503 4485 10
KAIROS 15 1017 1003 11

NODLINK1 3 120 114 2
MORSE 16 51 43 10

CAPTAIN 16 34 26 10

Engagement3 TRACE

FLASH 5 27202 27178 19
NODLINK1 4 170 170 0

MORSE 10 243 234 14
CAPTAIN 10 12 11 14

Engagement3 THEIA

FLASH 2 53230 53050 13
KAIROS 12 3566 3422 3

NODLINK1 4 62 58 0
MORSE 11 220 213 4

CAPTAIN 11 194 187 4
1Since NODLINK only provides detected process, we evaluate it on process
detection accuracy.

C. Efficiency

In previous sections, we highlighted the simplicity of CAP-
TAIN’s rule-based detection framework compared to other
embedding-based PIDS. In this section, we compare CAP-
TAIN with the SOTA PIDS FLASH, KAIROS, NODLINK,
SHADEWATCHER2, and MORSE to evaluate their efficiency
by running their code on our test environment.

1) Detection Latency: The detection latency analysis en-
compasses three dimensions: buffer time, preprocessing
time, and detection time. We have already introduced buffer
time in II-A. Preprocessing time refers to the duration taken
to convert the raw audit logs into a data structure that the
detection systems can process. It involves data parsing, data
cleaning, noise reduction, preprocessing, feature extraction,
and so on. Detection time refers to the interval between the
completion of data processing and the moment the result is
produced. It is noteworthy that since the detection granularity
is different in different PIDS, the detection time might not
reflect the actual latency of each system. For instance, a
detector based on the whole graph may take longer to deliver
detection results of each graph compared with a detector on

2Our evaluation was based solely on the open-sourced portion of SHADE-
WATCHER.

the entity/event level. However, this does not necessarily mean
the former is slower because a large graph could contain many
entities and events. Therefore, we calculate the total time spent
on detection across the entire dataset.

We evaluated the latency on TRACE and CADETS from
DARPA Engagement 3 since they are covered in the experi-
ments of all baselines. Our evaluation focuses on the testing
stage since training can be conducted offline. We modified
their code to obtain unbiased results. For example, FLASH
divides the data processing into two stages in their code and
uses files to store intermediate results. And KAIROS employs
the PostgreSQL database and stores the intermediate results in
files. These are the steps not required in a real-time streaming
pipeline. Consequently, we exclude the I/O time to focus solely
on measuring the “pure” preprocessing and detection time.

The result is shown in Table VI. Unlike other PIDS that
embeds the graphs and thus require a buffer time ranging from
several minutes to hours, CAPTAIN processes audit logs in a
streaming fashion, eliminating the need for any buffer time.
CAPTAIN is also faster in preprocessing because the logs are
not preprocessed for the machine-learning model. Moreover,
the tags of CAPTAIN are much simpler than the state vectors
used by FLASH and KAIROS. By avoiding the use of text
embedding or GNNs to aggregate semantic and contextual
graph information, CAPTAIN achieves detection speeds over
10 times faster than the baseline methods. Lastly, compared
to the rule-based PIDS MORSE, CAPTAIN only takes a few
seconds longer to detect logs spanning 4 to 7 days, once again
demonstrating the superiority of rule-based PIDS in terms of
latency.

TABLE VI: Comparison of detection latency

Buffer Time Preprocessing Time Detection Time

Engagement3 TRACE

FLASH 57:49 107:50 64:24
SHADEWATCHER N/A1 100:22 3:402

NODLINK 00:10 135:42 2:48
MORSE 0 58:20 1:29

CAPTAIN 0 58:20 1:31

Engagement3 CADETS

KAIROS 15:00 15:34 29:46
FLASH 82:52 18:57 7:41

NODLINK 00:10 6:18 6:41
MORSE 0 7:22 1:19

CAPTAIN 0 7:22 1:23
1We did not find a clear number in their codes or paper.
2SHADEWATCHER extracts the last 10% interactions as the testing set,
while the testing set of us is around 2.5 times larger.
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2) Runtime Overhead: Another important metric reflecting
the efficiency of a PIDS is the runtime overhead to the system.
In this section, we evaluate the runtime overhead of CAPTAIN
during detection and conduct a comparative study with other
SOTA PIDS. We also analyze the memory consumption of
CAPTAIN during the training stage.

Runtime Overhead in Detection: We use the Python
resource module to evaluate the resource consumption of
detectors on CPU mode. As admitted in [13], GPUs may not
be available in most real-life threat detection scenarios. We
calculate the total CPU time in user mode. The result is shown
in Fig. 4a. Please note that the total CPU time used in Fig. 4a
could be more than the detection time in Table VI because
of the multi-core CPU usage by deep learning models. Since
CAPTAIN only relies on straightforward arithmetic operations
on real-number tags, it requires significantly less CPU time
than the embedding-based PIDS (around 2% of FLASH and
around 0.02% of KAIROS), which need complex matrix and
vector operations due to their use of neural networks. More-
over, CAPTAIN’s fine-grained detection rules only increase
CPU time by a modest 5.6% compared to MORSE. Given
the significant improvement on MORSE in detection accuracy
(over 90% reduction in false alarms) and the substantial
decrease in CPU time compared to other embedding-based
PIDS, we believe the slightly higher CPU usage than MORSE
is acceptable in real-world detection scenarios.

We use the psutil library in Python to monitor the live
memory usage during detection. The comparison of memory
usage over time is shown in Fig 4b. CAPTAIN finishes detec-
tion much faster than the embedding-based PIDS (as already
shown in Table VI) and achieves the lowest memory usage
throughout the entire detection process. The memory usage
and detection time of CAPTAIN and MORSE are similar, shown
by the overlapping curves in Fig. 4b. The slight difference in
memory usage between CAPTAIN and MORSE is due to the
storage of fine-grained rules. In general, CAPTAIN retains the
lightweight and fast characteristics of the rule-based PIDS.

Runtime Overhead in Training: The training of the detec-
tors can be performed offline, where users can allocate ample
time and computing resources, including GPUs. Therefore,
we did not evaluate the runtime overhead and the time used
for training. However, as CAPTAIN records and propagates
the gradients for each tag among the big provenance graph,
a reasonable concern is that saving those gradients would
consume much memory when there is a dependency explosion
problem. We evaluated the number of non-zero gradients saved
by CAPTAIN during training. The results, shown in Fig. 8,
illustrate that most nodes only need to store a small number
of non-zero gradients during training. Due to the space limit,
the detailed analysis can be found in §E-A.

D. Resilience Against Adversarial Attacks

In this section, we discuss the robustness of CAP-
TAIN against two main-stream adversarial attacks: adversarial
mimicry attack and training set poisoning attack.
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Fig. 4: Comparison of resource consumption when detecting
on DARPA Engagement 3 CADETS. In Fig. 4b, the memory
usage curve of CAPTAIN and MORSE are overlapped, showing
their similar efficiency performance.

1) Adversarial Mimicry Attack: Mimicry attacks on PIDS
involve altering the provenance data and incorporating more
benign features to “mimic benign behaviors”, thereby evading
detection. In this section, we evaluated the robustness of CAP-
TAIN against mimicry attacks using the attack methodology
in [35], [16], i.e. inserting benign structures into the attack
graphs. Our mimicry attack contains two steps. First, we
extract some events of benign system entities from the normal
training data. Next, we create “fake” events by substituting
the benign entities with the attack entity, simulating the attack
entity performing activities similar to those of the benign
entities. To verify the effectiveness of the mimicry attack, we
use FLASH as the baseline. For evaluation purposes, we use
the CADETS from Engagement 3 because of its relatively small
scale. The details about our mimicry experiment can be found
in the Appendix E-B. The result is shown in Fig. 5.
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Fig. 5: Adversarial mimicry attack against CAPTAIN and
FLASH (use the attack entity /tmp/test as an example)

In general, both CAPTAIN and FLASH showed robustness
against our mimicry attack attempt to some extent. The attack
entity /tmp/test is still detected by both systems even
after we add some normal activities. However, we see a
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significant drop in the anomalous score of FLASH when we
introduce a relatively small number of events (fewer than 10),
which is also confirmed in their paper [16]. On the other
hand, CAPTAIN remains unaffected against the mimicry attack,
demonstrating superior robustness compared to the baseline.

The robustness of CAPTAIN results from three main reasons.
First of all, the propagation of CAPTAIN is guided by heuristic-
based rules, while the propagation and aggregation of FLASH
and other embedding-based PIDS are based on the neural
network. Second, CAPTAIN is an event-level detector with
a finer granularity than entity-level detectors. As mentioned
before, CAPTAIN gives the detection result for each streaming
event without any buffer time, which means any mimicry
insertion after the real attack activities is useless. For those
PIDS with the buffer time, any events within the same time
window and related to the same entity can affect the final
detection result. Third, CAPTAIN is not an anomaly-based
detector. In other words, the detection is performed based
on the conservative, heuristic rules, while the normal data is
only used to reduce the false alarms. Therefore, adding normal
features can not compromise the detection capability as it is
guaranteed by the conservative detection rules.

2) Training Set Poisoning Attack: Training set poisoning
refers to the malicious manipulation of the training set. In the
context of cyber security and intrusion detection, it usually
involves polluting the benign training set with adversarial
events/entities. When the detector is trained on a “benign”
dataset that has been polluted, it learns patterns or features
introduced by attackers. These patterns and features, once
learned, could assist attackers in evading detection in future
instances.

We add the regularizer term to the loss function to control
the sensitivity of CAPTAIN to the training set. This enhances
CAPTAIN’s robustness against dataset poisoning attacks. In
this section, we present a real case of Pine Backdoor &
Phishing Email attack from Engagement 3 TRACE. In this
attack, a vulnerable pine connected to the email server
128.55.12.73, downloaded and executed an email attach-
ment. However, IP 128.55.12.73 had multiple activities
and caused some “false” alarms in the training set. Please
note that this violates our assumption stated in § II-C that the
training set must not be compromised by attack entities or
events. Nevertheless, this makes it a perfect example to test
the robustness against data poisoning attacks.

We analyze the critical parameters for detecting this attack:
the initial integrity tag (a) of IP node 128.55.12.73, to
illustrate the effect of the regularization term. Without the
regularization term in the loss function, 128.55.12.73 will
be assigned a high integrity score (near 1.0) due to its activities
in the training set, which lets us miss the phishing email attack
starting from it. However, with the help of the regularizer terms
(α = 10), CAPTAIN is more cautious during training. Like the
“grey node” motivating example in §III, CAPTAIN assigns the
integrity score as the mediocre 0.488, which removes many
false alarms caused by this IP while successfully capturing
the phishing email attack during testing (more details can

be found in §VI-F). The propagation rate of event (pine,
read, 128.55.12.73) is also more conservative against
the polluted training set due to the regularizer term.

E. Ablation Study

1) Individual Adaptive Parameters: We conduct an ablation
study on each adaptive parameter. As each parameter can be
learned independently, we have seven separate experiments,
each optimizing a subset of the parameters, i.e. {A}, {G},
{T}, {A,G}, {A, T}, {G,T}, and {A, T,G}.

According to Fig.6, adjusting the threshold (T ) alone may
not have much effect on the detection results because without
changing the initial tags and the propagation rates, the updated
tags still tend to be 0 or 1. Fig.6 also shows that tuning all
these three parameters can accelerate the training process. Al-
though {A, T} and {A, T,G} achieve similar good detection
results on the testing set, {A, T,G} converges using fewer
epochs during training. It should be noted that tuning A plays
the most major role in mitigating false alarms among these
three adaptive parameters. In certain datasets (S-3 and C-3),
adjusting A alone sometimes results in fewer false alarms than
tuning parameters A, G, and T together because, without the
benefit of learning propagation rates and thresholds, we have
to assign higher integrity scores to more nodes to counteract
false alarms during training. However, reducing false alarms
more crudely carries the risk of being excessively lenient.
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Fig. 6: Ablation study on each parameter.

2) Learning Rate in Optimization: We conducted an exper-
iment on different learning rates on the DARPA Engagement
3 CADETS. The detailed results can be found in § E-C.
As illustrated in Fig. 9, a higher learning rate usually leads
to a sharper loss decline during the initial training epochs.
However, for ongoing training, a lower learning rate may yield
a finer-tuned search process and lower loss, necessitating a
balance between training speed and training quality.

F. Case Study

To illustrate the interpretability of CAPTAIN’s detection
process, we delve into the training outcomes of the E3-TRACE
dataset as a case study. These cases also show the improvement
of CAPTAIN compared to existing rule-based PIDS.

1) Better Detection Capability due to Fine-Grained Rules:
The most significant improvement of CAPTAIN is its fine-
grained detection capability, enabled by the adaptive parame-
ters. As mentioned in § III, unlike the discrete, human-assigned
trustworthiness levels and universal rules used in [22], [21],
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[23], the fine-tuned numerical parameters of each entity and
event in the graph can better help distinguish nuances between
benign and malicious patterns.

Fig. 7a demonstrates how CAPTAIN outperforms the base-
lines in distinguishing between two similar behaviors using
fine-tuned parameters. In both cases, process pine reads
from 128.55.12.73 (possibly the email server) and creates,
writes, and changes the permissions of a new file. It is difficult
for previous rule-based PIDS [21], [22] to assign a tag for
128.55.12.73. Take the SOTA MORSE as an example - if
MORSE initialize the node 128.55.12.73 as a benign node
with the data integrity score as 1.0, it would miss at least
the first stage of the attack. On the other hand, if MORSE
assigns the initial tag as “Untrusted” (this is what they did
in order to capture all attacks), it would trigger multiple
false “Malicious File Creation” and “Change Permissions”
alarms on the benign graph. Instead, CAPTAIN assigns a
moderate initial tag an, 0.488, to this IP and slightly tunes
down the threshold thr for the event (pine, create,
/home/admin/pinerc174500) from 0.5 to 0.478. As
0.478 < 0.488, the creation of the file will not be alarmed,
but in real attacks, the thr for the event (pine, create,
/tmp/tcexec) is still 0.5, meaning creating a malicious file
would still trigger alarms (0.5 > 0.488).
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set, while the graph on the right side depicts an attacker executing a
malicious email attachment.
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control dependency explosion more precisely.

Fig. 7: Case study from Engagement 3 TRACE. We omitted
some irrelevant details to keep the graphs clean and succinct.

CAPTAIN’s fine-grained rules also help address the depen-
dency explosion issue caused by libresolv.so.2. Unlike
MORSE, which sets universal decay/attenuation factors for
all processes, CAPTAIN learns distinct propagation rates for

different events. As shown in Fig. 7b, CAPTAIN assigns lower
propagation rates to events that frequently cause dependency
explosions (e.g., being read by sshd or firefox) while
maintaining high propagation rates for other events. Even for
the same process, firefox, CAPTAIN learns to suppress the
dependency propagation when reading this file (ge = 0.63)
and remains sensitive to maliciousness propagation when load-
ing this file (ge = 0.99). Consequently, CAPTAIN avoids being
overly lenient for potential attack events when addressing the
dependency explosion issue.

The fine-grained parameters of CAPTAIN also outperform
many embedding-based PIDS in detecting mimicry attacks.
For instance, in Fig. 7a, the attacker can modify the file
name of /tmp/tcexec with the knowledge that pine might
interact with a file like /home/admin/pinerc+numbers.
Since generalization techniques like Word2Vec and Sen-
tence2Vec are widely used in embedding-based PIDS, they
can manipulate the file name by appending random digits to
pinerc, making it similar to pinerc174500 after embed-
ding. However, to evade CAPTAIN, the attacker must know the
exact file name of pinerc174500. In addition, deep learning
usually relies on the amount of training data. But there are only
four events related to file /home/admin/pinerc174500
during the 7-day training set, making it challenging for the
neural networks to learn such patterns.

2) Robustness brought by Differentiable Tag-Propagation
Framework: Some previous rule-based PIDS [7] can cus-
tomize their detection system using benign training data. How-
ever, the adjustments are based on the training set rather than
the detection results. For example, NODOZE assigns a distinct
anomaly score to each event based on its frequency in the train-
ing set. However, due to training set poisoning and living-off-
the-land attack techniques, the frequent events in the training
set cannot be fully trusted. For instance, the events related to
dbus-daemon are very common in the training set of TRACE
in Engagement 3. Typical events such as dbus-daemon
writes or reads /var/run/dbus/system_bus_socket
occur over 100,000 times during seven days. Such events
and the dbus-daemon entity would be assigned with a
low anomaly score in frequency-based systems like NODOZE.
However, the low anomaly scores allow the attackers to
deceive the detectors using living-off-the-land techniques re-
lated to the D-Bus process [56]. In contrast, CAPTAIN does
not change the parameters related to dbus-daemon be-
cause, despite the large number of events associated with
dbus-daemon in the training set, no false alarms are trig-
gered by it. CAPTAIN adjusts the parameters related to an
event based on the false alarms caused by it rather than the
frequency of it.

VII. DISCUSSION AND FUTURE WORK

A. Overfitting in Parameter Learning

Overfitting is an important issue in machine learning. As
CAPTAIN learns the benign patterns in the one-class manner
starting from conservative settings, overfitting is, however, a
preferred and safer strategy. In one-class learning, we want
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to generate a tightest boundary for the target class (benign
patterns). Therefore, CAPTAIN avoids generalizing excessively
to minimize the risk of evasion, as demonstrated in our
example in §VI-F.

B. More Optimization Algorithms and Online Learning

In this paper, we utilize the gradient descent algorithm
for optimization due to its simplicity and clearness. We can
reach optimal values more quickly and accurately, using al-
gorithms such as Nesterov Accelerated Gradient (NAG) [57],
Adadelta [58], RMSprop, Adagrad [59], Adam [60], AdaMax,
Nadam, and so on. These algorithms require the first-order
gradient, offered by the differentiable detection framework in
CAPTAIN. We leave the implementation of these algorithms
as the extensions of CAPTAIN.

Long-term maintenance is important in real-world scenarios.
Although we assess CAPTAIN in an offline setting, CAP-
TAIN’s learning module can compute loss upon receiving the
feedback for each event. Subsequently, the learning module
can promptly update the adaptive parameters for subsequent
detection.

VIII. CONCLUSION

This paper introduces CAPTAIN, a rule-based PIDS capable
of automatically adapting to detection environments, enhanced
by three adaptive parameters: tag initialization (A), propaga-
tion rate (G), and threshold (T ). The differentiable detection
framework enables the optimization using the gradient descent
algorithm. To our knowledge, this is the first effort to in-
corporate gradient descent methods in optimizing rule-based
PIDS. We evaluated CAPTAIN on several datasets. The results
demonstrate the superior detection capability, significantly
reducing false alarms, detection latency, and runtime overhead,
outperforming the SOTA baselines.
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APPENDIX A
ATTACK SCENARIOS IN DATASETS

For benign scenarios, the SOC collaborating with us pro-
vided three detailed operation environments in the real world:
Streaming simulates a data store and streaming server; Dev
simulates a development server; Cloud simulates a cloud
server. The simulated APT attack chains are generated using
the Atomic Red Team [54]. We designed three types of
simulated attacks: fully randomized, partially randomized, and
deterministic attacks. Each step in a fully randomized attack
is randomly selected from the Atomic Red Team library. A
partially randomized attack has determined steps at some
stages but randomly chooses steps for the rest of the steps.
A deterministic attack has defined steps at every attack stage.
We generated one deterministic and three partially randomized
attacks in our evaluation. We conduct the experiments follow-
ing the attack campaign pattern in DARPA Engagements to
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make it as realistic as possible. Table VII specifies the apps
or processes running in each simulated environment.

TABLE VII: Simulated Scenario Summary

Attack Attack Description

ReverseShell(RS) Connect to the victim’s host, collect system information,
and install multiple applications

WebShell(WS) Connect to the victim’s host, collect system information and
modify system configurations

AttackChain(AC) A randomly generated attack chain using Atomic Red
Team [54]

Kimsuky(Kim) A simulated North Korean APT Kimsuky
Chaos A malicious payload that allows remote control

Benign App or Process Involved

Streaming Kafka, Mysql, Nginx, Redis, Zookeeper
Developing Iptables, Zabbix, Gitlab, VSCode, Influxdb, lvextend, redis-

server, Qingtengyun, Baota, docker
Cloud finalshell, postgres, web.py, Apache Struts 2, saltstack,

Cloud Workload Protection Platforms

APPENDIX B
CAPTAIN POLICIES

We adopt tag propagation rules, detailed in Table VIII, from
MORSE [22] for unbiased comparison. dtag refers to the data
tag and ptag refers to the code tag. Please refer to the original
paper for formal and detailed descriptions of the hyperparam-
eters such as Tqb, Tqe, db, and de. All hyperparameters are set
according to the recommendation in [22]. We also adopt the
alarm generation rules from MORSE [22], detailed in Table IX.
incl exec(p) means p is contains the execution permission.
socket(o) holds when o refers to a socket.

APPENDIX C
MATHEMATICAL PROOF OF THE OPTIMIZATION

In this section, we prove the equations of gradients of A,
G, and T to the loss, i.e. Eq. 7, Eq. 9, and Eq. 10 in §IV-C.
According to the loss function Eq.4 and the chain rule in
calculus, we have:

∂Loss

∂an
=

∑
e∈E

∂L(e)
∂f

·
∂f

∂an
+ α · (an − a0)

∂Loss

∂ge
=

∑
e∈E

∂L(e)
∂f

·
∂f

∂ge
+ γ · (ge − g0)

∂Loss

∂thre
=

∑
e∈E

∂L(e)
∂f

·
∂f

∂thre
+ τ · (thre − thr0)

(13)

where ∂L
∂f is identical for all events according to Eq. 3 and

α, γ, and τ are pre-defined hyperparameters. We have

f(e) = tagnew
dest − thre

= ge · tagrule + (1− ge) · tagdest − thre

∂f

∂thre
= −1

∂f

∂an
= ge ·

∂tagrule

∂an
+ (1− ge) ·

∂tagdest

∂an

f(e) is influenced by the propagation rate of the current
event (denoted by ge) and all previous events (denoted by
ge′ ). Consequently, every time when tagnewdest is updated, we
recalculate ∂f

∂ge
and ∂f

∂ge′
.

Since
∂ge

∂ge′
= 0,

∂f

∂ge′
= ge ·

∂tagrule

∂ge′
+ (1− ge) ·

∂tagdest

∂ge′

(14)

The calculation of ∂f
∂ge

involves the product of two func-
tions. According to the Product Rule:

if h(x) = f(x)g(x), then h′(x) = f ′(x)g(x) + f(x)g′(x)

we have
∂f

∂ge
= ge

∂tagrule

∂ge
+ tagrule + (1− ge)

∂tagdest

∂ge
− tagdest (15)

APPENDIX D
MATHEMATICAL PROOF OF THE HEURISTIC

HYPERPARAMETER SETTING

According to Eq.13, to let ∂Loss
∂an

, ∂Loss
∂ge

, and ∂Loss
∂thre

be zero,
we have

α = −
∑
e∈E

∂L(e)
∂f

·
∂f

∂an
· (an − a0)

−1

γ = −
∑
e∈E

∂L(e)
∂f

·
∂f

∂ge
· (ge − g0)

−1

τ = −
∑
e∈E

∂L(e)
∂f

·
∂f

∂thre
· (thre − thr0)

−1

(16)

Since L(e) = max(0, (1− f(e))2 − 1) and −1 < f(e) < 0,

−
∑
e∈E

∂L(e)
∂f

=
∑
e∈E

2(1− f(e))

∂f
∂thre

= −1, 0 < ∂f
∂an

< 1, −1 < ∂f
∂ge

< 0. As mentioned
in §IV-B, a0 is usually 0 while g0 is 1. We can make the
following estimations:

f(e) ≈ −0.5, ∂f/∂an ≈ 0.5, ∂f/∂ge ≈ −0.5

an − a0 ≈ 0.5, ge − g0 ≈ −0.5, thre − thr0 ≈ −0.25
(17)

Let N(e) be the number of the allowed false alarms related
to event e and N(n) be the number of the allowed false alarms
related to node n.

α =
∑
e∈E

2(1− f(e)) ·
∂f

∂an
· (an − a0)

−1 ≈ 3N(n)

γ =
∑
e∈E

2(1− f(e)) ·
∂f

∂ge
· (ge − g0)

−1 ≈ 3N(e)

τ =
∑
e∈E

2(1− f(e)) ·
∂f

∂thre
· (thre − thr0)

−1 ≈ 12N(e)

(18)

APPENDIX E
ADDITIONAL EXPERIMENT RESULTS

A. Gradients Storage During Training

We maintain two dictionaries for each node n to save
the gradients of tagn, ∇A

n : {n′ : ∂tagn
∂a′

n
, n′ ∈ N} and

∇G
n : {e : ∂tagn

∂ge
, e ∈ E}. Theoretically, the worst case for

saving ∇A
n is O(|N |2), and O(|N ||E|) for saving ∇G

n . Please
note that we only store non-zero gradients. Every time after the
gradients are calculated, we add the non-zero values into ∇A

n

and ∇G
n and discard the too-small gradients (e.g., < 10−5).

In practice, most gradients would always be zero for three
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TABLE VIII: Tag propagation policies

Event Tag to update New tag value for different subject types
benign suspect suspect environment

create(s, x) x.dtag s.dtag s.dtag s.dtag
read(s, x) s.dtag min(s.dtag, x.dtag) min(s.dtag, x.dtag) min(s.dtag, x.dtag)
write(s, x) x.dtag min(s.dtag + ab, x.dtag) min(s.dtag, x.dtag) min(s.dtag + ae, x.dtag)

load(s, x)
s.ptag min(s.ptag, x.itag)
s.dtag min(s.dtag, x.dtag)

exec(s, x)
s.ptag x.itag min(x.itag, susp env) x.itag
s.dtag ⟨1.0, 1.0⟩ min(s.dtag, x.dtag) min(s.dtag, x.dtag)

inject(s, s′)
s′.stag min(s′.stag, s.itag)
s′.dtag min(s.dtag, s′.dtag)

periodically: s.dtag max(s.dtag, db ∗ s.dtag + (1 − db) ∗ Tqb) no change max(s.dtag, de ∗ s.dtag + (1 − de) ∗ Tqe)

TABLE IX: Alarm generation policies

Name Description Operation(s) Data integrity condition Other conditions

MemExec Prepare binary code for execution mmap(s, p), mprotect(s, p) s.itag < 0.5 incl exec(p)
FileExec Execute file-based malware exec(s, o), load(s, o) s.itag < 0.5 s.ptag > 0.5

Inject Process injection inject(s, s′) s.itag < 0.5 s′.ptag > 0.5
ChPerm Prepare malware file for execution chmod(s, o, p) s.itag < 0.5 incl exec(p)
Corrupt Corrupt files write(s, o), mv(s, o), rm(s, o) s.itag < 0.5 -
Escalate Privilege escalation any(s) s.itag < 0.5 changed userid

DataLeak Confidential data leak write(s, o) s.itag < 0.5 s.ctag < 0.5, socket(o)
MalFileCreation Ingress Tool Transfer create(s, o) s.itag < 0.5 File(o)

reasons: 1) In most cases, the provenance graph is relatively
sparse. For example, a specific process would only read a small
set of files on the system; 2) The gradients only get updated
when the event changes the tags. Therefore, most benign nodes
and edges would not be added to ∇A

n and ∇G
n ; 3) As ge

is smaller than 1, some gradients would become near-zero
after many iterations. Fig. 8 clearly illustrates the long-tailed
distribution of the non-zero gradients on the DARPA dataset,
which means we only need to store a tiny number of non-zero
gradients for most nodes. The average numbers are less than
5 for all those four datasets. Hence, the additional overhead
is reasonable during training.
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Fig. 8: The distribution of the numbers of non-zero gradients to
A and G that each nodes need to save during tag propagation.

B. Mimicry Attack Experiment

We insert events into the dataset to mimic benign behaviors
involving malicious entities. we used the E3 CADETS for this
experiment. In the attack, /tmp/test file is downloaded
and executed, serving as a command and control malware to
carry out the rest of the attack. We identified a benign file
/dev/tty to serve as the target to mimic and replicated inter-
actions with /dev/tty on /tmp/test to let /tmp/test
mimic normal behaviors.

C. Ablation Study on Learning Rate
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Fig. 9: Training loss using different learning rates.

Fig. 9 shows the training loss with different learning rates
on CADETS from DARPA Engagement 3. From the figure, if
the training is limited to 20 epochs (due to time and resource
issues), a learning rate of 0.01 is advisable; for longer training
durations, 0.001 is likely a more preferred choice.
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