
Delay-allowed Differentially Private Data
Stream Release

Xiaochen Li†, Zhan Qin∗,�, Kui Ren∗, Chen Gong†, Shuya Feng‡, Yuan Hong‡, Tianhao Wang†
∗The State Key Laboratory of Blockchain and Data Security, Zhejiang University

†University of Virginia, ‡University of Connecticut
{qinzhan, kuiren}@zju.edu.cn; {xiaochenli, chengong, tianhao}@virginia.edu; {shuya.feng, yuan.hong}@uconn.edu

Abstract—The research on tasks involving differentially private
data stream releases has traditionally centered around real-time
scenarios. However, not all data streams inherently demand real-
time releases, and achieving such releases is challenging due to
network latency and processing constraints in practical settings.
We delve into the advantages of introducing a delay time in
stream releases. Concentrating on the event-level privacy setting,
we discover that incorporating a delay can overcome limitations
faced by current approaches, thereby unlocking substantial
potential for improving accuracy.

Building on these insights, we developed a framework for
data stream releases that allows for delays. Capitalizing on
data similarity and relative order characteristics, we devised two
optimization strategies, group-based and order-based optimiza-
tions, to aid in reducing the added noise and post-processing
of noisy data. Additionally, we introduce a novel sensitivity
truncation mechanism, significantly further reducing the amount
of introduced noise. Our comprehensive experimental results
demonstrate that, on a data stream of length 18, 319, allowing
a delay of 10 timestamps enables the proposed approaches to
achieve a remarkable up to a 30× improvement in accuracy
compared to baseline methods. Our code is open-sourced.

I. INTRODUCTION

The continuous collection and release of data streams
play a crucial role in various industries. For example, Smart
Grids continuously gather data from smart meters and grid
sensors to optimize energy distribution and improve overall
efficiency [11]; Wearable devices continuously capture patient
vitals to enable healthcare professionals to monitor patients’
health status [12]. Typically, data streams are gathered by
local devices from data providers and then released to data
consumers. This process means that once data leaves the
client’s device, it falls outside the data provider’s control,
inevitably leading to privacy concerns among the public. As
a result, dedicated research efforts using Differential Privacy

This paper was completed while Xiaochen Li was visiting University
of Virginia as a PhD student at Zhejiang University. Zhan Qin is the
Corresponding author.

(DP) techniques focus on privacy-preserving data stream re-
lease [35], [42], [29], [10], [14], [26], [9].

DP is widely acknowledged as a standard privacy definition
for statistical databases. It adds crafted noise to either the data
or the statistical outcomes, thwarting any attempts to discern
sensitive information from the perturbed results. Meanwhile,
the noise inevitably reduces the utility of the released results,
it poses a particularly challenging issue for releasing infinite
data streams with a vast data domain. This is especially true
for real-time data collection and release, an area where much
of the existing research is concentrated. Therefore, the central
focus of existing research, including our work, is on how to
release a data stream that adheres to DP guarantees while
maintaining optimal utility.

To advance the DP real-time data stream release, we propose
two key questions as follows. (a) Is real-time release required
for all data streams in practice? While many data stream
tasks necessitate real-time decisions based on streaming data
from client devices, e.g., identifying defects in manufacturing
or potential drug interactions in healthcare, not all tasks
demand absolute real-time requirements. Some tasks, like user
behavior analysis for personalized product recommendations
or load forecasting for utility planning, exhibit high time
sensitivity but can tolerate a short or even longer delay. (b)
Can approaches theoretically designed for real-time release
truly achieve real-time in practice? The attainment of absolute
real-time approaches faces formidable challenges, considering
factors like network latency and processing time in practical
scenarios where data collectors and consumers are distinct en-
tities. Acknowledging these challenges, we propose exploring
the feasibility of incorporating a tolerance for releasing delays
introduced by local client devices, in addition to tolerances for
communication and processing delays.

In this paper, we focus on the event-level DP setting, where
each streaming data is protected by ϵ-DP. Reducing the amount
of noise addition [42], [35] and post-processing of the noisy
results [28], [9], [40], [34], [27], [5] are the only two ways
to optimize the accuracy of the released data stream under
the event-level privacy setting. Among these post-processing
solutions, we find that they all follow the group-based post-
processing framework proposed in PeGaSuS [9]. The core idea
is to smooth the noisy data together with others similar to it
at consecutive timestamps to reduce the error introduced by

Network and Distributed System Security (NDSS) Symposium 2025
24–28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.230828
www.ndss-symposium.org

noise. However, we identify two issues with this framework.
One is that it is difficult to meet the conditions for accuracy
improvement brought by post-processing at consecutive times-
tamps. The other is that data can only be smoothed with histor-
ically released results in a group. These two issues may even
lead to potential accuracy disasters in the released results but
are inherently unsolvable in real-time data release scenarios.
Driven by the above observations, we further contemplate:
How much could data-releasing approaches benefit from a
delay time?

Introducing a delay time during data release can be a
solution to the challenges faced by the existing works, un-
locking substantial potential for accuracy improvement. This
is attributed to two key advantages: (a) the release strategy
can be tailored based on the data to be released, eliminating
the reliance on predictions from historical data. (b) processing
multiple data points together within a delay time window
offers an opportunity to reduce the added noise, while the
estimation error in real-time scenarios is at least Ω(

√
t) (t

is the length of the stream prefix) as post-processing cannot
mitigate the noise amount.

In this paper, we introduce a delay-allowed data-releasing
framework, comprising three integral modules: optimization
module, noise addition module, and post-processing module.
Specifically, the optimization module is tailored to capture
the characteristics of streaming data within a delay time,
strategically aiding in noise reduction or mitigating noise
impact through post-processing. Leveraging the output from
the optimization module, the noise addition module introduces
noise to the data or data summation. Following this, the post-
processing module smooths the noisy results by applying a
smoother, enhancing the overall utility of the released data.

Within the optimization module, we present two distinct
strategies rooted in the similarity and order of the data. Firstly,
we present two group-based strategies to process streaming
data in batches. In particular, our proposed non-continuous
grouping strategy greatly alleviates the limitation of group
length on the effectiveness of the post-processing. Addition-
ally, we propose two order-based optimization strategies from
a novel perspective, as the order consistency of the noisy
results is also a crucial factor in enhancing the utility of the
released results. They are more advantageous than group-based
strategies on short delay times.

In the noise addition module, we implement two enhance-
ments aimed at reducing the amount of added noise. Firstly,
we utilize the similarity of data to add noise to the data
summation in the same group or bucket within a delay time.
Then the noisy results are evenly distributed to each data
through the post-processing module. This approach effectively
reduces the total noise amount from Ω(

√
t) to Ω(

√
ng), where

ng represents the number of groups/buckets. Furthermore, we
design a sensitivity truncation mechanism to mitigate issues
of excessive noise addition due to an excessively large data
domain or outliers.

We conduct comprehensive experiments and the results vali-
date the effectiveness of the proposed approaches. Specifically,

allowing a 10 timestamps delay with ϵ = 0.1 on a data stream
of length 18, 319, BucOrder shows a remarkable almost 30×
improvement in accuracy, and the discontinuous grouping
approach also attains a notable nearly 2.5× improvement
in accuracy compared to PeGaSuS. Moreover, our sensitivity
truncation mechanism proves impactful, showcasing a sub-
stantial 2.8× improvement in accuracy for the continuous
grouping approach on a data stream with a domain size of
2, 260, 794.

Contributions. We make the following contributions:
• We are the first to consider the practical implications of de-

lay time in data stream release and its potential to surmount
limitations in the accuracy achieved by existing approaches.

• We propose a novel delay-allowed framework, featuring two
kinds of optimization strategies, a data sensitivity truncation
mechanism, and an optimized noise addition method.

• Through comprehensive experiments, our results showcase
a substantial improvement in accuracy facilitated by the
introduced approaches harnessing the power of delay time.

II. PRELIMINARY

A. Problem Statement

We assume that there exists a server that has a data stream
D = {x1, x2, ...} and aims to release a noisy stream D̃ for
multiple analyses while preserving privacy. We will discuss the
privacy requirement, namely, differential privacy (DP), later.
We evaluate the accuracy of D̃ by computing the distance
between D̃ and D.

One specific relaxation we introduce in this paper is we
allow a delay time of w timestamps (instead of real-time
release assumed in existing literature). Specifically, the server
could release the noisy value x̃i−w at the ith timestamp. There
are two settings to process the data stream with a delay time:
• Batch setting. This setting is equal to partitioning the data

stream into |D|/w batches. The server can design release
strategies and randomization methods based on all streaming
data received in the entire delay time. The processing results
of streaming data within a delay period are released collec-
tively at the timestamp when the delay time concludes. It’s
important to note that the batched data here possess temporal
relationships, which should be preserved after release.

• Sliding window setting. This setting releases privacy-
preserving data at each timestamp, except for the initial
w timestamps. At any given timestamp, all streaming data
within the current delay time window is visible. As the
window slides, the server continuously releases the data at
the beginning timestamp of the window. This also implies
that the release strategy and randomization method for each
streaming data are formulated based on different windows.
In essence, processing the streaming data in batch can be

considered a special case of processing in a sliding window,
where each batch corresponds to a sliding window with w
windows sliding next to each other. For the privacy setting in
this paper, which does not involve privacy budget allocation
between different timestamps, processing the streaming data

2

in a sliding window does not necessarily offer advantages
over processing in batch. Therefore, the methods proposed in
this paper, unless explicitly applied for processing in sliding
window, are predominantly designed for processing in batch.

B. Differential Privacy
Definition of Differential Privacy. In this paper, we focus on
providing event-level Differential Privacy (DP) protection. We
first present the definition of event-level DP.

Definition 1 ((ϵ, δ)-Differential Privacy) [17]. An algorithm
M satisfies (ϵ, δ)-differential privacy, where ϵ, δ ≥ 0, if and
only if for any neighboring streams D, D′, and any possible
output set O ⊆ Range(M), we have

Pr [M(D) ∈ O] ≤ eϵPr [M(D′) ∈ O] + δ.

where xi = x′
i for all i except one index in any two

neighboring streams D = {x1, x2, ...} and D′ = {x′
1, x

′
2, ...}.

Here, ϵ indicates privacy budget, which is a non-negative pa-
rameter that measures the privacy loss in the data. The smaller
ϵ means that the outputs of M on two neighboring streams
are more similar, and thus the provided privacy guarantee is
stronger. In addition, δ indicates the probability of M failing
to satisfy DP. In this paper, we consider the case of δ = 0, we
write ϵ-DP for convenience.

Laplace Mechanism. In this paper, we provide DP protection
by adding noise sampled from the Laplace distribution to
the streaming data or statistical results. This mechanism is
commonly used in the DP field to achieve ϵ-DP privacy
guarantee. Specifically, the probability density function of
Laplace distribution with an expected value of 0 is given by

Pr(x) =
1

2λ
e

−|x|
λ .

Here, λ is the scale parameter, where λ = ∆f/ϵ. ∆f is the l1-
norm global sensitivity of the statistical result, which is defined
as

∆f = max
Di,D′

i

∥f(Di)− f(D′
i)∥.

In this paper, we add noise to streaming data, so the default
sensitivity ∆f is the size of the data domain |D|. To mitigate
the impact of excessive ∆f on the accuracy of noisy results,
this paper also proposes method to optimize it.

Sequential Composition. For a sequence of DP mechanisms
and there is a correlation between the statistical results of these
mechanisms, the privacy can be calculated by composition the-
orem [33]. We present the definition of sequential composition
as follows:

Definition 2 (Sequential Composition) [33]. For a sequence
of k mechanisms M1,M2, ...,Mk and Mi provides ϵi-DP,
let D be a dataset, publishing t = (t1, t2, .., tk), where
t1 =M1(D), t2 =M2(t1, D), ..., tk =Mk (t1, ..., tk−1, D),
satisfies

(∑k
i=1 ϵi

)
-DP.

In this paper, we divide the privacy budget of each streaming
data into several parts for computation in multiple steps. As

Algorithm 1 Group-based Post Processing.
Input: Stream {x1, x2, . . .}, privacy budget ϵg for grouping, thresh-

old θ.
Output: {x̃1, x̃2, . . .}

1: G← ∅,∆s ← |D|, θ̃ ← θ + Lap (2∆s/ϵg)
2: for i← 1, 2, . . . do
3: if dev(G ∪ xi) + Lap (4∆s/ϵg) < θ̃ then
4: G← G ∪ xi

5: x̂i ← perturb xi

6: Ĝ← Ĝ ∪ x̂i

7: x̃i ←SMOOTHER(Ĝ, x̂i)
8: else
9: x̂i ← perturb xi, x̃i ← x̂i

10: G← ∅, θ̃ ← θ + Lap (2∆s/ϵg)
11: end if
12: end for
13: return {x̃1, x̃2, . . .}

long as the sum of these privacy budgets is equal to ϵ, the final
released results still satisfy ϵ-DP according to this composition
theorem.

C. Existing Solutions

The most basic method to release the event-level privacy-
protected data streams for multiple analyses is to add noise
to each data point and release the noisy results. Throughout
the entire process, there are mainly two optimizations: one
is truncating the data to an appropriate range to reduce the
sensitivity of added noise [42], [35], and the other is applying
post-processing to the noisy results to decrease the expected
error [28], [9], [40], [34], [27], [5]. Existing work primarily
focuses on one of the two optimizations. In this paper, we
propose improvement strategies for both optimizations, while
mainly focusing on designing post-processing methods.

We observe that all the current post-processing methods for
streaming data [40], [27], [5] still rely on the group-based
framework proposed in PeGaSuS [9]. Therefore, this paper
starts by analyzing this group-based framework to identify key
obstacles in the current real-time data publishing setting.

Group-based Post-Processing Framework. The framework
maintains a data structure called ‘group’ to partition the data
stream, which aggregates several consecutive similar noisy re-
sults and smoothes each current data utilizing the data already
present in the group. The process is shown in Algorithm 1.

Specifically, the framework determines whether to accept
the data into the group by calculating the deviation dev(G)
of the group at each timestamp. Denote c1, c2, ... is data in
the group G and |G| is the size of the group G, dev(G) is
calculated as follows,

dev(G) =
∑
i∈G

∣∣∣∣ci −
∑

j∈G cj

|G|

∣∣∣∣ . (1)

If involving the current data in the group causes the dev(G)
to exceed a pre-defined threshold, then the data does not meet
the similarity requirement and cannot be added to the group.
Once a data point cannot be involved, the group is closed, and
an empty group is created. Since the data in the same group

3

TABLE I
THEORETICAL SIMILARITY THRESHOLD dev(G) FOR ACCURACY

IMPROVEMENT UNDER VARYING GROUP LENGTHS n AND PRIVACY
BUDGETS ϵ. SMALLER n OR LARGER ϵ DEMAND HIGHER dev(G).

n 2 20 40 60 80 100

ϵ = 0.4 1.96 3.59 4.50 5.16 5.69 6.14
ϵ = 0.6 1.31 2.39 3.00 3.44 3.79 4.09
ϵ = 0.8 0.98 1.79 2.25 2.58 2.84 3.07
ϵ = 1.0 0.78 1.43 1.80 2.06 2.28 2.46

must come from consecutive timestamps, we refer to this as
the continuous grouping method.

To satisfy DP, the entire process is controlled through
Sparse Vector Technique (SVT) [32], which adds noise to both
dev(G) and the threshold, preventing privacy leakage from the
grouping results. Note that if a data point cannot be involved in
the current group, its noisy result should be directly released,
as shown in Line 9 in Algorithm 1. The reason is that it has
already consumed the privacy budget in the previous group’s
SVT process, and participating in the new group would result
in additional privacy leakage.

Each data added to the group is post-processed using the
noisy data in the group already released. This process is carried
out by a SMOOTHER function, which has several alternatives,
e.g., AverageSmoother, which estimates the current data by
averaging all the noisy data in the group, MedianSmoother,
which uses the median noisy data in the group to approximate
the current data. Chen et al. prove that when the following
condition is met,

dev(G) ≤
√
2(n− lnn− 1)

1 + ln(n− 1)ϵp
(2)

where n is the number of streaming data in the group and
ϵp is the privacy budget used for adding noise, the group-
based post-processing framework can obtain the accuracy
improvement [9, Theorem 3.6].

Observation and Inspiration. Based on the analysis of the
group-based post-processing framework, we identify some
challenges that are difficult to overcome in real-time settings,
which may cause accuracy disasters.

Challenge 1. The condition for accuracy improvement
through post-processing is difficult to satisfy, as occasional
changes in the stream can result in groups being constantly
closed. We apply some commonly used privacy parameters
and various group lengths to calculate dev(G), and the results
are presented in Table I. We observe that a smaller group
length or larger privacy budget demand higher data similarity,
e.g., with ϵp = 1, accuracy can only be improved when each
group consists of at least 100 data, and their dev(G) can not
exceed 2.46, regardless of the domain size.

Challenge 2. Each newly involved data can only be
smoothed with data added to the group before the current
timestamp. This implies that the data earliest involved in
each group inevitably cannot benefit from post-processing, as
Equation 2 cannot be satisfied. Therefore, ensuring a sufficient
number of data in each group is crucial to improve the

accuracy of the results, but solely increasing the length of
each group is still not enough.

Allowing for a delay time provides us with opportunities
to address these issues. To challenge 1, the delay time can
provide a buffer period before closing the group, alleviating
the issue of premature closure of the group due to fluctuations
in the stream. To challenge 2, data added to the group can
be post-processed in delayed batches, allowing data in the
group to equally obtain the accuracy improvement. Challenge
2 is also constrained by Challenge 1, since the accuracy
improvement effect of delayed post-processing on data still
depends on the length of the group. Besides, these benefits
brought by delay time can also help develop other more
accurate and stable data-releasing approaches.

III. OVERVIEW OF OUR APPROACH

This paper develops the group-based post-processing frame-
work into a general privacy-preserving and delay-allowed
data-releasing framework. Our framework consists of three
parts: Optimization strategy module, Noise addition module,
and Post-processing module. We present the overview of this
framework in Figure 1.

A. Optimization Strategy Module

As streaming data is continuously input into the frame-
work, there is always w timestamps gap between the release
timestamp and the current timestamp. The data from these w
timestamps is initially processed in the optimization strategy
module. The module analyzes and records data features with
an optimization strategy to assist in subsequent noise addition
and post-processing steps. Here, we refer to the strategies as
optimization strategies since the strategies designed in this
module aim to enhance the accuracy of the released results.

Specifically, we design two kinds of optimization strategies:
one leveraging the similarity between the streaming data and
the other focusing on their orders.
• Group-based. We preserve the continuous grouping ap-

proach in the original group-based post-processing frame-
work and address the aforementioned challenge 2 in sub-
sequent noise addition and post-processing modules. To
overcome the challenge of challenge 1, we propose a dis-
continuous grouping strategy, which mitigates the hindrance
of small group lengths to accuracy improvement by delaying
group closure and allowing discontinuous grouping.

• Order-based. Recognizing the significance of preserving
the order relationship in the released results for the utility,
we propose entirely new strategies based on orders. These
include one that compares the current data with all w data in
the delay time, recording the comparison results to guide the
post-processing of noisy data. The other strategy employs
buckets to aggregate streaming data with a similar order for
noise addition and post-processing, where the ‘bucket’ is
partitioned based on fixed intervals in the data domain.

We present the algorithmic details of all strategies, rigorous
privacy, and utility proofs in Section IV.

4

Smoother

Input Stream

Continuous

Output Stream

Order-based

Methods

𝜺g
𝒙𝟏…𝒙𝒕

Noise AdditionOptimization Strategy Post-Processing

CurrentRelease

3 5 4 11 18 1 30 15

3 5 4 11 18 1 30 15

Discontinuous

CurrentRelease

𝑩𝒖𝒄

3 5 4 11 18 1 30 15

3 5 4 11 18 1 30 15[1,0,1,1,0,1,1]
11 0 11 0 1

CompOrder

BucOrder

Group-based

Methods

Add noise to summation

𝒔𝒖𝒎𝒊+
Lap(

∆

𝜺𝒑
)

ෟ𝒔𝒖𝒎𝒊

Update ∆ with 𝜺𝒔

ෟ𝒔𝒖𝒎𝒊

𝒏𝒊
𝒙𝒊

𝒙𝒓 + 𝒙𝒍
𝟐

𝒙𝒊

𝒙𝟏, … , 𝒙𝒕

𝒙𝒊 +
Lap(

∆

𝜺𝒑
)

ෝ𝒙𝒊

Add noise to data

𝒏𝒊 = 𝒔𝒊𝒛𝒆 𝒐𝒇 𝑮𝒊 or 𝑩uc𝒊

Compute Mean

𝑭𝒊𝒏𝒅 𝒙𝒓 𝒂𝒏𝒅 𝒙𝒍 from
{𝒙𝒊−𝒘, … , 𝒙𝒊−𝟏}

Smooth Wrong Order

𝒘 timestamps

𝒘 timestamps

Fig. 1. Overview of the privacy-preserving and delay-allowed data releasing framework. This framework identifies the optimal strategy for the input stream,
then introduces noise to comply with differential privacy (DP) standards, and finally post-processes the noised data stream before its release.

TABLE II
SUMMARY OF OPTIMIZED INSTANTIATIONS UNDER THE FRAMEWORK.

FOUR DESIGNS GUIDE NOISE ADDITION AND POST-PROCESSING.
METHODS OTHER THAN COMPORDER CAN ADD NOISE TO THE DATA

SUMMATION TO REDUCE THE NOISE AMOUNT.

Strategies Noise Addition Post Processing Type

ContinGroup Add to data summation Compute mean Batch
DiscontinGroup Add to data summation Compute mean Batch
BucOrder Add to data summation Compute mean Batch
CompOrder Add to single data point Align results with order Sliding Window

B. Noise Addition Module

The noise addition module is responsible for adding noise to
the streaming data, which encompasses a mechanism for eval-
uating and updating data sensitivity, along with two methods
for adding noise to the data.

We discussed earlier that reducing data sensitivity is one
of the ways to improve the accuracy of released results under
the event-level privacy setting. Estimating a reasonable data
sensitivity for a data stream remains challenging in the context
of the delay-allowed setting. We provide a detailed solution to
this problem in Section VI.

In addition to the conventional approach of adding noise
to each streaming data, the delay time provides us with the
opportunity to leverage the similarity of data within the same
group or bucket to reduce the amount of added noise. While
this introduces additional bias as a cost, it can still achieve
significant accuracy improvement when the group or bucket
size is large, and data similarity is high.

C. Post-Processing Module

After noise addition, the noisy data is transmitted to the
post-processing module, which incorporates a smoother func-
tion that integrates multiple smoothing methods for noisy data.

For group-based optimization strategies, noise is added to
the summation of all data within the same group or bucket.
The smoother function computes the mean or median of the
noisy summation as the final noise result for each timestamp
contained in the group or bucket. In this paper, we default to
using the mean in the smoother function.

Unlike other methods, CompOrder adds noise to each data
point individually and requires a special smoothing operation.
Since the w timestamps before the release timestamp all record
a comparison result between their data and the data at the
release timestamp, the smoother calculates the minimum noisy
result among the w data that should be greater than the
releasing data and the maximum noisy result among the w
data that should be smaller than the releasing data. If the data
at the release timestamp is not between them, it takes the
midpoint of the two values as the result of the release.

D. Privacy Budget Allocation

As a privacy-preserving data-releasing framework, it is
imperative to ensure that none of the three modules violate
the DP guarantee. Among these modules, the post-processing
module exclusively processes noisy data and does not interact
with the raw data, thereby avoiding any privacy disclosure.
The privacy budget ϵ is divided into two parts: ϵg is allocated
for capturing the characteristics of the data stream, and ϵp is
reserved for adding noise to the data for release. If there is an
update to the data sensitivity in the noise addition module,
a portion of the privacy budget ϵs needs to be allocated
from ϵp. Since this paper focuses on strategies design within
each module, we utilize the standard sequential composition
theorem [33]. As long as ϵg+ϵs+ϵp = ϵ, the entire framework
satisfies ϵ-DP. Other composition theorems such as advanced
composition [19] and zCDP [8] can also be applied in practical
deployment to compose a smaller total privacy budget.

We summarized all approaches that can be instantiated
under the framework in Table II.

IV. TECHNICAL DETAILS OF OPTIMIZATION STRATEGY

In this section, we dive into the details of the optimiza-
tion strategies. We present group-based and order-based ap-
proaches, respectively.

A. Group-Based Methods

The core idea of the group-based strategy is to aggregate
similar data into a group and then utilize the data similarity
to reduce the noise amount or smooth the added noise. We
introduce two group-based methods in this part: the continuous

5

grouping method and the discontinuous grouping method. The
continuous grouping method follows the group-based post-
processing framework proposed in PeGaSuS, but involves
some differences in the details since the data is processed in
batches in our setting. The discontinuous grouping method
is an optimized group-based method to further leverage the
advantages introduced by a delay time.

Continuous Grouping. The continuous grouping method
maintains an open group, with the algorithm continuously
judging the similarity between the streaming data at the current
timestamp and the data in the group to decide whether to
involve it in the group. If the current data cannot be involved
in the current group, it is treated as an independent group,
and the current group is closed. Note that treating the current
data as an independent group ensures the algorithm does
not violate the DP guarantee. In the delay-allowed setting,
this continuous grouping method does not undergo significant
changes. We defer the details of the grouping process within
each delay time (batch) to Algorithm 6 in Appendix A-B.
The primary distinction is that, unlike the real-time setting
where noise is added or post-processing is performed once a
data point is involved in a group, these operations can take
place after a group is closed in the delayed setting, which can
provide benefits in optimizing noise addition and improving
post-processing accuracy.

A noteworthy detail in the continuous grouping algorithm
presented in this paper is that the current group is always
closed at the end of each batch, and a new group is initiated
at the beginning of the next batch. An alternative approach
could retain the last group at the end of a batch. If the
group is still open, it can continue to absorb new streaming
data at upcoming timestamps in the next batch. This has the
potential to enhance the effectiveness of smoothing for groups
spanning two consecutive batches. However, it is necessary to
first process the data currently involved in the group to avoid
exceeding the allowed delay before allowing the processed
data to continue being involved in the processing of subse-
quent data within the same group. Therefore, the accuracy
improvement of the first processed data is still limited to the
current data batch. Considering the introduced computational
complexity, we do not incorporate this alternative approach in
the continuous grouping strategy.

Discontinuous Grouping. In terms of enhancing post-
processing effectiveness, processing the batched data with
continuous grouping method can only partially addresses the
challenge 2 mentioned in Section II-C, that is ensuring that
data within the same group obtains the same benefits from
the post processing. The problem of insufficient accuracy
improvement due to short group length persists. Therefore,
we propose a discontinuous grouping strategy.

Differing from the continuous grouping method, discontin-
uous grouping allows for the simultaneous maintenance of
multiple open groups. For each streaming data, the algorithm
traverses through all current groups until a suitable group is
found for inclusion. If none of the current groups can involve

Algorithm 2 Discontinuous Grouping in A Data Batch.
Input: A data batch Bi = xi·w, ..., x(i+1)·w−1, privacy budget ϵg

for grouping, threshold θ.
Output: G = {G1, G2, ...}

1: G ← ∅, c← 1, θ̃1 ← θ + Lap (2 · (2w − 1)∆s/ϵg)
2: for xi ∈ Bi do
3: Flag ← 1.
4: for Gj ∈ G do
5: if dev (Gj ∪ xi) + Lap (4 · (2w − 1)∆s/ϵg) < θ̃j then
6: Involve xi into Gj .
7: Flag ← 0.
8: Break.
9: end if

10: end for
11: if Flag == 1 or i == 1 then
12: Create Gc ← ∅, involve xi in Gc, add Gc into G
13: θ̃c ← θ + Lap (2 · (2w − 1)∆s/ϵg), c← c+ 1.
14: end if
15: end for
16: return G = {G1, G2, ...}

the current data, then the algorithm creates a new group and
adds the current data to it. In this way, the length of non-
continuous grouping is no longer affected by data fluctuations.
The larger the delay time, the greater the advantage of dis-
continuous grouping strategy. The algorithm for discontinuous
grouping in a batch is presented in Algorithm 2.

For discontinuous grouping, it is not advisable to keep all
groups from the previous batch open when moving to the next
batch. Since discontinuous grouping methods lack conditions
for closing the groups, maintaining excessively long lengths
of groups can result in an explosion of privacy budget.

B. Order-based Methods

Our designed group-based method can effectively address
the challenges faced by the existing approaches in real-time
scenarios when delay time is sufficient. However, a short delay
time naturally limits the accuracy enhancement of group-based
methods. To address this limitation, we design two strategies
from a completely new perspective. Considering that order
consistency is also a crucial aspect of the utility of released
results, we design two non-strict order-preserving approaches.

CompOrder. The core idea of CompOrder is to continuously
record pairwise comparisons between the data at the release
timestamp and its subsequent w data within the delay time. At
the same time, it can follow the comparison results recorded
at the preceding w timestamps to adjust the noisy result at the
release timestamp. All comparison processes need to adhere to
DP protection. In this way, CompOrder can release the noisy
stream with a non-strict order consistency compared with the
raw data stream.

The detailed process of CompOrder is shown in Algo-
rithm 3. In the setting where the delay time is allowed to be w
timestamps, we have visibility into the data for the subsequent
w timestamps when processing and releasing streaming data
at ith timestamp. The algorithm utilizes SVT to compare the
data at ith timestamp with the data at the next w timestamps,
recording the order relationships in a one-dimensional array
OrderList of length w. Specifically, for all j ∈ [i+ 1, i+w],

6

Algorithm 3 CompOrder.
Input: Stream {x1, x2, ...}, privacy budget ϵg for recording orders.
Output: OrderList

1: OrderList← ∅, ρ← Lap (4∆s/ϵg)
2: for i← 1, 2, . . . do
3: for j ∈ [i+ 1, i+ w] do
4: if xi − xj + Lap (8w∆s/ϵg) > ρ then
5: Add 0 into OrderList[i].
6: else
7: Add 1 into OrderList[i].
8: end if
9: end for

10: end for
11: return OrderList

Algorithm 4 Post-processing for CompOrder.
Input: Noisy stream {x̂1, x̂2, ...}, OrderList.
Output: {x̃1, ..., x̃t}

1: for i← 1, 2, . . . do
2: for j ∈ [i− w, i− 1] do
3: Finds x̃l with OrderList[j][i− j − 1] = 0.
4: Finds x̃r with OrderList[j][i− j − 1] = 1.
5: x̃l, x̃r ∈ {x̃i−w, ..., x̃i−1}
6: if x̂i < x̃l or x̂i > x̃r then
7: x̃i ← (x̃l + x̃r)/2.
8: else
9: x̃i ← x̂i.

10: end if
11: end for
12: end for
13: return {x̃1, ..., x̃t}

if xi > xj , then 0 is recorded in OrderList; otherwise, 1 is
recorded. Therefore, except for the initial w timestamps in the
data stream, each timestamp’s preceding w timestamps have
recorded the order relationship with the data at that timestamp.

The post-processing method we designed for CompOrder
is shown in Algorithm 4. The algorithm finds the minimum
value x̃r among the noisy released data at the preceding w
timestamps that should be greater than the current timestamp
and the maximum value x̃l among w noisy released data that
should be less than the current timestamp. Then we check
whether the current noisy data falls between x̃l and x̃r. If it
does not satisfy this condition, we adjust the current noisy data
with (x̃r + x̃l) /2 to release.

BucOrder. CompOrder acquires order information by con-
tinuously comparing the order between two streaming data,
consuming a large amount of privacy budget. We propose a
new order-based approach BucOrder that obtains the order
information by partitioning the data domain and randomizing
the partition in which the data is located. BucOrder processes
the data in each delay time (batch) separately and only ensures
the orders of the data within one batch.

The detailed algorithm is shown in Algorithm 5. First, the
data domain is divided into nb ← ⌈|D|/m⌉ buckets of length
m. Each data is then mapped to the corresponding bucket
based on the range to which it belongs. Then, the algorithm
randomizes the bucket mapped by each data using the GRR
mechanism [41], that is each data remains in its original bucket
with a probability p = eϵg/(eϵg +n− 1), and randomly maps

Algorithm 5 BucOrder in A Data Batch.
Input: A data batch Bi = xi·w, ..., x(i+1)·w−1, m is the size of

data domain covered by each bucket, privacy budget ϵg and ϵp
for sorting and adding noise, respectively.

Output: {Buc1, ..., Bucnb}
1: Compute the number of the buckets nb ← ⌈|D|/m⌉
2: Divide the data domain into nb buckets: {Buc1, ..., Bucnb}.
3: Map Bi into n buckets, p← eϵg/(eϵg + nb − 1)
4: for xi ∈ Bi do
5: Map xi into the ⌈xi/m⌉th bucket.
6: b← Ber(p)
7: if b = 1 then
8: xi stays in the current bucket.
9: else

10: Put xi into an Uniformly and Randomly selected bucket.
11: end if
12: end for
13: return {Buc1, ..., Bucnb}

into other buckets with a probability of 1− p.
The noise addition and post-processing for the data in each

bucket are the same as those in group-based approaches. The
bias introduced during this process is mainly controlled by the
size of the bucket m, since the data mapped to the same bucket
differs by at most m with the probability p. Besides, we can
add an additional post-processing step to further improve the
accuracy after post-processing. As the ranges of buckets are
ordered, if the mean of the noisy data in a bucket is less than
the lower boundary of the bucket, it is processed to be the
value lower boundary. For example, if the mean of noisy data
in the jth bucket is smaller than its low boundary j×m, then
the summation of noisy data in this bucket is set to j ·m·Bucj .

V. THEORETICAL ANALYSIS FOR OUR APPROACHES

In this section, we analyze the privacy and accuracy of the
all approaches that apply different optimization strategies, as
shown in Table II.

A. Privacy Analysis.

Firstly, we analyze that all four approaches satisfy ϵ-DP pri-
vacy guarantee. We focus on analyzing the privacy guarantee
in the optimization strategy module since the noise addition
module provides (ϵs+ϵp)-DP privacy guarantee through noise
sampling and the post-processing module does not consume
any privacy budget.

Privacy of Continuous Grouping. In the continuous grouping
method, each streaming data only participates in one SVT
process when grouping, which provides a strict ϵg-DP privacy
guarantee [32, Theorem 2].

Privacy of Discontinuous Grouping. The calculation of
privacy budget consumption for the discontinuous grouping
method is more complex than for continuous grouping. Ac-
cording to the privacy guarantee provided by SVT [32, The-
orem 2], every time a data point does not meet the condition
for joining a group, it consumes the privacy budget. The
continuous grouping method concludes the current group when
encountering non-satisfying data, so each timestamp incurs
privacy budget consumption at most once. However, in the

7

discontinuous grouping, each data participates in multiple SVT
judgments, leading to multiple compositions of privacy budget
consumption. We analyze the privacy guarantee provided by
Algorithm 2 in Theorem 1.

Theorem 1 Discontinuous grouping strategy satisfies ϵg-DP.

Proof (Sketch) We assume that the stream D and D′ differ by
the data at the ith timestamp. Gi represents the grouping status
at ith timestamp. The probability distribution of group states
Gi at the i − 1 timestamps preceding the ith timestamp are
all identical. From the ith timestamp onwards, the probability
distribution of group states at each timestamp may have differ-
ence between D and D′. According to the privacy guarantee
provided by SVT, we have

Pr[M(G′w−1, xw) = G]
Pr[M(Gw−1, xw) = G]

=
Pr[M(Gi−1, x

′
i) = G′i] ·

∏w
j=i+1 Pr[M(G′j−1, xj) = G′j]

Pr[M(Gi−1, xi) = Gi] ·
∏w

j=i+1 Pr[M(Gj−1, xj) = Gj]

≤eϵg ·
∏w

j=i+1 Pr[M(G′j−1, xj) = G′j]∏w
j=i+1 Pr[M(Gj−1, xj) = Gj]

≤ e(2w−1)ϵg

Here, M(Gj−1, xj) using the group set up to the previous
timestamp and the current data as input, output the group
set for the current timestamp. Therefore, when we provide
ϵg/(2w − 1) privacy guarantee for each SVT judgement,
Algorithm 2 satisfies ϵg-DP.

The detailed proof is deferred to Appendix A-C. □

Privacy of CompOrder. Then, we analyze the privacy guar-
antee of CompOrder strategy in Theorem 2.

Theorem 2 CompOrder strategy satisfies ϵg-DP.

Proof (Sketch) In Algorithm 3, recording the comparison
results between the current data and the subsequent data
within the delay time follows the SVT design [32]. To satisfy
DP, we divide the privacy budget ϵg , which is used to record
the order information, by 2 for the two SVT algorithms.
Additionally, since the maximum possible number of positive
answers for each SVT is w, ϵg needs to be divided by w. In
this way, we ensure that CompOrder strategy satisfies ϵg-DP.
The detailed proof is deferred to Appendix A-E. □

Privacy of BucOrder. Finally, we prove the privacy of the
BucOrder strategy in Theorem 3.

Theorem 3 BucOrder strategy satisfies ϵg-DP.

Proof In Algorithm 5, using the GRR mechanism to randomly
flip the bucket mapped by data satisfies eϵg/(eϵg+nb−1)

1/(eϵg+nb−1) = ϵg .
Therefore, BucOrder strategy satisfies ϵg-DP. □

B. Error Analysis

Next, we analyze the error of the noisy results released by
all approaches, respectively.

Error of Continuous and Discontinuous Grouping. Firstly,
we theoretically analyze the accuracy of the results released
by the group-based approaches in Theorem 4.

Theorem 4 The expected squared error of group-based meth-
ods within a delay time is bounded by ng · 2 |d|2

ϵ2p
+ (1 −

β)wθ2 + βw
(
θ + 4 log(2/(2−β))

ϵg

)2

, where ng is the number
of groups, |d| is the size of the data domain, and β ∈ [0, 1]
is the probability of SVT incorrectly adding data above the
threshold into a group.

Proof (Sketch) The error in a released data batch comes
from Laplace noise, the bias introduced by approximating data
within a group with their mean, and the error introduced by
SVT for grouping. Denote ng as the number of groups in a
delay time, β is the failure probability of SVT, and m>θ is
the approximate bias in the data added to a group due to the
misjudgment of SVT. We have

E
[
(B̂i −Bi)

2
]
= ng · 2

|d|2

ϵ2p
+ (1− β)wθ2 + βw(m>θ)

2

We first need to obtain the privacy guarantee of SVT. There are
no existing conclusions can be directly applied to our current
computation. We prove that the probability of Dev(Gi∪xi) ≥
θ+α is at most β when log(2/β)

ϵg
≤ α ≤ 4 log(2/(2−β))

ϵg
. Based

on this conclusion, we have:

E
[
(B̂i −Bi)

2
]
≤ ng · 2

|d|2

ϵ2p
+ (1− β)wθ2

+ βw

(
θ +

4 log(2/(2− β))

ϵg

)2

The detailed proof is deferred to Appendix A-D. □

The conclusion in Theorem 4 applies to both continuous
and discontinuous grouping approaches. When the same θ
is set, ng of the continuous grouping can be greater than
discontinuous grouping. Besides, ϵg should be ϵg

(2w−1) in
discontinuous grouping due to the multiple involvements of
each data in SVT.

If we multiply the error bound in Theorem 4 by t/w, the
error bound of the data stream released up to the tth times-
tamp is approximately O

(
t
w ·

2|d|2
ϵ2p

+ tθ2
)

. As w decreases,
it approaches the naı̈ve method. This indicates that the length
of the delay time has a significant impact on the accuracy of
the group-based methods.

Error of CompOrder. In CompOrder, the distribution of the
data stream, such as the order and distance between streaming
data, directly influences the accuracy of comparisons and the
bias introduced by post-processing. Moreover, the accuracy of
SVT indirectly affects the calculation of xl and xr, which in
turn impacts the bias introduced by post-processing. All these
factors combined increase the difficulty in deriving the error
bound for the released results. As a compromise, we provide
a lower bound of the probability that the noisy result of any
x̂i remains in the correct order position.

8

Theorem 5 In CompOrder, the lower bound on the probabil-
ity that the post-processed noisy data x̂i maintains the same
order as the noisy results corresponding to the two timestamps
whose data’s true orders are on either side of the xi within
preceding w timestamps is (1−2e−ϵga/16)2

(
1− 3

4e
− a∆s

ϵp

)w

,
where a represents the assumed minimum distance between
adjacent ordered streaming data.

Proof The proof is deferred to Appendix A-F. □

The impact of delay time’s length on the accuracy of
CompOrder is not linear. Specifically, for xl and xr among
the preceding w timestamps of xi, if extending w by k
includes new streaming data {xi−w−k . . . xi−w} that lie out of
[xl, xr], it has no impact on the accuracy of post-processed xi.
Besides, when w is large, the privacy budget allocated to each
comparison decreases, which may even lead to a reduction
in the overall accuracy of the released results. Therefore,
CompOrder significantly reduces the impact of the length of
delay time on the accuracy of the released results compared
to the group-based approaches. Inevitably, post-processing the
noisy data to follow the noisy comparison results may involve
a large computational complexity and result in a continuously
accumulating error backward.

Error of BucOrder. Finally, we provide the expected squared
error of the BucOrder within a data batch in Theorem 6.

Theorem 6 The expected squared error of BucOrder within
a delay time is nb · 2 |d|2

ϵ2p
+ w · m

2+(nb−1)|d|2/9
eϵg+nb−1 , where nb is

the number of the buckets, m is the size of domain covered by
each bucket, |d| is the size of the data domain.

Proof (Sketch) The error in a released data batch comes from
the Laplace noise, the bias introduced by approximating data
within a bucket with their mean, and the error introduced by
GRR mechanism for mapping the data into the buckets. Denote
nb as the number of buckets in a delay time, p = eϵg

(eϵg+nb−1)
is the probability that a data is in the right bucket, and mout

is the approximate bias introduced by data randomized to the
wrong bucket by GRR.

E
[
(B̂i −Bi)

2
]
= nb · 2

|d|2

ϵ2p
+ w · m

2 + (nb − 1)m2
out

eϵg + nb − 1

Since the GRR uniformly maps data to other buckets with
a probability 1

eϵg+nb−1 , it’s difficult to constrain mout. We
calculate the approximate expected value of mout is |d|

3 .
Substituting the approximate expected mout into the equation,
we get

E
[
(B̂i −Bi)

2
]
= nb · 2

|d|2

ϵ2p
+ w · m

2 + (nb − 1)|d|2/9
eϵg + nb − 1

The detailed proof is deferred to the Appendix A-G. □

VI. OPTIMIZATION WITH TRUNCATING DATA SENSITIVITY

In this section, we delve into calculating an optimized data
sensitivity, which can not only aids in adding noise to data
streams with unknown data domains but also helps prevent

the introduction of unnecessary noise due to the potential wide
range of variations in streams.

Calculation of the Data Sensitivity. Firstly, we address how
to find the optimal sensitivity. In the practical data streams,
usually only a small number of data are distributed at the
extremes of the data domain. We need to choose an optimal
sensitivity based on the actual data distribution to truncate ex-
cessively large data, thereby reducing the amount of introduced
noise. We design a quality function in Equation 3 to score
each possible sensitivity τi in the data domain, where higher
scores indicate sensitivities that can bring greater accuracy
improvements to the released results.

q(D, τi) = Benefit(Lap (·))− Loss(Bias(D>τ))

=

√2m · |d| − τi
ϵp

−
∑

v∈D>τ

(v − τi)

/
(m · |D|)

(3)
Specifically, Benefit(Lap (·)) represents the decrease in error
introduced by Laplace noise when reducing the sensitivity
to τi, and Loss(Bias(D>τ)) represents the additional bias
introduced by truncating streaming data greater than τi. To
avoid the fluctuation range of scores being highly correlated
with the actual data domain when varying τ , we divide the
scoring results by m · |D| to normalize the sensitivity of the
scoring function to 1.

If we directly choose the τi with the highest score as data
sensitivity, it would leak the privacy of the raw streaming
data. Therefore, we use the Report Noisy Max [18] to sample
the optimal τi under DP protection. This algorithm adds
independently generated Laplace noise Lap (1/ϵs) to each
score obtained from Equation 3 and return the score with the
largest noisy value, where ϵs is the privacy budget used for
updating the data sensitivity. The Report Noisy Max is proved
to satisfies ϵ-DP guarantee in [18].

Data Sampling and Update Frequency. After addressing
the issue of calculating the optimal data sensitivity, another
important problem to discuss is when and with which data to
calculate the data sensitivity. In addition to CompOrder, all
other approaches proposed in this paper treat the streaming
data within the delay time as a batch, and we can also
update the data sensitivity in the batch. Although the strategy
of CompOrder processes the data in the form of a sliding
window, we can also update the data sensitivity based on
batch. In a batch, the privacy budget for each streaming
data has already been divided into ϵg for the optimization
strategy and ϵp for adding noise. We can further allocate ϵs
from ϵp for data sensitivity calculation. Considering that in
reality, although streaming data fluctuates over time, it rarely
undergoes significant shifts in the range of data fluctuations
in a short period. Therefore, we can update data sensitivity at
intervals of several batches to save the privacy budget.

For group-based approaches and BucOrder, there is an
optimization strategy that can further save privacy budgets by
utilizing the groups or buckets obtained from the optimization

9

strategy module. Since most of the streaming data in the same
group or in the same bucket fluctuates within the same range,
we can also sample p percent representative data from each
group or bucket for data sensitivity calculation. The sampled
data and the remaining data used to calculate the released
results can both consume the entire ϵp. Regardless of the
noise addition and post-processing method, we can use the
remaining data in the group or bucket to calculate the noisy
released results. For example, for the summation noise addition
method, the released results for all data in the group or bucket
can be calculated as:

(
∑

j∈Gr[i]
xj) + Lap (∆s/ϵp)

|Gr|i||
where Gr[i] represents the group after sampling, and ∆s is
the current data sensitivity.

VII. EVALUATION

In this section, we design experiments to evaluate our
proposed approaches. The evaluation focuses on three aspects:
(1) Allowing a delay time can bring about how much accuracy
improvement in the streaming data releasing tasks; (2) How
different designs of the three modules in the framework lead
to differences in accuracy; (3) How key parameters affect the
accuracy of the proposed approaches. Toward these goals, we
conduct experiments on real-world data streams. Note that the
source codes of PeGaSuS have not been formally released,
we implemented it with our best effort and included it for
comparison purposes.

A. Setup

Datasets. We run experiments on the following datasets:
• COVID19 DEATH [2]. It is collected by The National

Center for Health Statistics (NCHS). It records the number
of deaths per week occurring in the United States from 2019
to 2023. The streaming data ranges from 0 to 25, 974.

• Unemployment [1]. It records the Unemployment Level of
16-19 Yrs., Black or African American per month from 1972
to 2023. The streaming data ranges from 72 to 612.

• Outpatient [4]. It is collected through the U.S. Outpatient
Influenza-like Illness Surveillance Network (ILINET). It
contains patient information for each week from 1997 to
2023. We select the ‘TOTAL PATIENTS’ attribute for evalu-
ation. The streaming data ranges from 27, 263 to 2, 260, 794.

• FoodMart [3]. It contains customer transactions from a retail
store. 18, 319 records are contained and the streaming data
ranges from 1 to 1559.

Competitors. Three baselines are involved in our experiments.
• Naı̈ve. Adding Laplace noise satisfying ϵ-DP to each stream-

ing data before releasing.
• PeGaSus [9], PeGaSus Delay. A widely used group-based

post-processing framework and its variant. The variant bene-
fits from the delay time without changing the original design
of the framework, enables the post-processing of noisy data
for an entire group.

• DPI [26]. A state-of-the-art method for responding to stream
queries and publishing under the user-level privacy setting.

• Adapub [40]. An existing method for stream releasing under
the w-event-level privacy setting.

To evaluate the different designs within each module, besides
the methods under the proposed framework as shown in
Table II, experiments also include a comparison with methods
involving adding noise to the single data point. Three group-
based approaches: Contin reduce uses the continuous group-
ing strategy and adds noise to the summation of the entire
group; Discontin pp and Discontin reduce use the discontin-
uous grouping strategy and add noise to the data independently
and to the summation of the entire group, respectively. Two
order-based approaches: CompOrder and BucOrder. BucOrder
adds noise to the summation of the data in each bucket.

Metrics. In our experiments, we use Mean Absolute Error
(MAE) as the accuracy metric, measuring the difference
between released results and the actual data streams. In
particular, for released stream prefix D̂t at tth timestamp we
measure

MAE(D̂t) =
1

|Dt|
∑

xi∈Dt

|x̂i − xi|.

All results in experiments are averaged with 20 repeats.

Environment. All the approaches are implemented using
Python 3.7.11 and numpy 1.24.3 libraries. Experiments are
carried out on servers running Ubuntu 22.04.1, equipped with
E5-2620 v4 2.10GHz processors and 128 GB of memory.

B. Analysis of Experimental Results

The Accuracy Improvement of the Delay-allowed Ap-
proaches. In Figure 2 and Figure 3, we respectively show
the accuracy improvement of the delay-allowed approaches
compared to the real-time releasing approaches when the
length of the delay time w = 10 and w = 100. Firstly, we
can observe that allowing a delay of only 10 timestamps can
bring about a substantial increase in accuracy for the released
streams. Especially for the Outpatient dataset, which contains
1366 timestamps, BucOrder can achieve more than 32-fold
accuracy improvement compared to PeGaSuS and the naı̈ve
method when allowing a delay of 10 timestamps.

Secondly, the results in Figure 2 and Figure 3 both show
that the performance of PeGaSuS is not improved compared to
the naı̈ve approach and is even lower than the naı̈ve approach.
Even when we apply a delay to PeGaSuS, conduct the post-
processing of the results for the entire group together, or
add noise to the summation to reduce the noise addition
amount, it does not significantly improve the accuracy of
the released results. This further confirms our theoretical
analysis in Figure II-C. The discontinuous grouping strategy
increases the length of each group, thus achieving more
accuracy improvement. The advantage is not significant when
the delay time is short, it can be seen that the accuracy of the
discontinuous grouping strategy is much higher than PeGaSuS
and approaches based on the same grouping strategy with
PeGaSuS on all four datasets.

10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

2

3

M
AE

1e5

(a) COVID19 DEATH

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2000

4000

6000

M
AE

(b) Unemployment

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

2

M
AE

1e7

(c) Outpatient

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

5000

10000

15000

M
AE

(d) Foodmart

Naive CompOrder Discontin_pp PeGaSus_Delay Pegasus BucOrder Contin_reduce Discontin_reduce

Fig. 2. Comparison of all methods on four dataset with varying ϵ, where delay time w = 10, and threshold θ = 3. Each bucket size m of BucOrder in
Outpatient dataset is 10, 000, and is 100 in other three datasets.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

2

M
AE

1e5

(a) COVID19 DEATH

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2000

4000

6000

M
AE

(b) Unemployment

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

2

M
AE

1e7

(c) Outpatient

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

5000

10000

15000

M
AE

(d) Foodmart

Naive CompOrder Discontin_pp PeGaSus_Delay Pegasus BucOrder Contin_reduce Discontin_reduce

Fig. 3. Comparison of all methods on four dataset with varying ϵ, where delay time w = 100, and threshold θ = 3. Each bucket size m of BucOrder in
Outpatient dataset is 10, 000, and is 100 in other three datasets.

Naive Contin
Discontin

CompOrder
BucOrder

0

20000

40000

M
A

E

(a) COVID19 DEATH

Naive Contin
Discontin

CompOrder
BucOrder

0

500

1000

(b) Unemployment

Naive Contin
Discontin

CompOrder
BucOrder

0

1

2

3

4

1e6

(c) Outpatient

Naive Contin
Discontin

CompOrder
BucOrder

0

1000

2000

3000

(d) Foodmart

No Sensitivity Reduce Sensitivity Reduce

Fig. 4. The effectiveness of data sensitivity truncation algorithm for all methods on four dataset, where ϵ = 0.5, θ = 3, and w = 100. Each bucket size m
of BucOrder in Outpatient dataset is 10, 000, and is 100 in the other three datasets. Both group-based approaches add noise to each data individually.

Thirdly, the advantage of the order-based approach is more
pronounced when the delay time is short compared to the
group-based approaches. BucOrder and CompOrder achieve
the highest accuracy on all datasets when w = 10, and ϵ < 0.5.
However, as the delay time increases from 10 to 100, the
accuracy of CompOrder decreases on the COVID19 DEATH
and Unemployment. We think the reason is that a longer
delay time helps improve the order consistency of the released
streams, but at the same time, it means that each timestamp
needs to be compared more times, reducing the privacy budget
allocated to each comparison, resulting in low accuracy of the
recorded comparison results. BucOrder effectively avoids this
issue by providing privacy protection after sorting the results,
rather than during sorting. At the same time, it reduces the
dependence on the length of the delay time since it is based
on mapping streaming data to buckets in the data domain.
Additionally, note that we set the bucket size w = 10, 000
on the Outpatient because the data domain of this stream
is too large. A small bucket size would greatly reduce the
computational efficiency of the BucOrder and the accuracy of
the GRR mechanism used by BucOrder.

The Effectiveness of Data Sensitivity Truncation Algo-
rithm. In Figure 4, we demonstrate the effect of adding data
sensitivity truncation on the accuracy improvement of all ap-
proaches, including the naı̈ve approach. To highlight the effect
of data sensitivity truncation, we add noise independently for
each data for both group-based and order-based approaches.
We set the delay time w = 100 and update the data sensitivity
every 5 delay times for all datasets. During the delay times
when data sensitivity needs to be updated, we allocate half
of privacy budget used for releasing the data ϵp/2 to estimate
the data sensitivity. To apply our data sensitivity truncation
algorithm, we also introduce the same length of delay time in
the naı̈ve approach and update the data sensitivity as the same
intervals as other approaches.

We can observe that the data sensitivity truncation algorithm
has an improvement for all approaches (except BucOrder) on
all datasets, especially on streams with large data domains such
as Outpatient and Foodmart, i.e., the accuracy improvement
of the continuous-based approach in the released results is
approximately 3-fold on the Outpatient and Foodmart. Addi-
tionally, we find that the data sensitivity truncation algorithm

11

w=10 w=30 w=50 w=70 w=90
0

100

200

300

400

500

M
A

E

(a) Unemployment
w=10 w=30 w=50 w=70 w=90

0.0

0.5

1.0

1.5

1e6

(b) Outpatient

Discontinuous CompOrder BucOrder

Fig. 5. Comparison of group-based method and order-based methods with
varying the length of delay time w on Unemployment and Outpatient datasets,
where ϵ = 0.5, and θ = 3. m = 100 and 10, 000 in BucOrder for
Unemployment and Outpatient, respectively. The group-based approach adds
noise to the summation of the data in the group.

10 20 30 40 50 60 70 80 90 100
Bucket size m

130

140

150

160

M
AE

(a) Unemployment

10k 20k 30k 40k 50k 60k 70k 80k 90k100k
Bucket size m

7.6

7.8

M
AE

1e5

(b) Outpatient

= 0.4 = 0.6 = 1.0

Fig. 6. Impact of each bucket size m on the accuracy of BucOrder under
different privacy budget ϵ, where w = 100.

has almost no accuracy improvement for BucOrder. This is
because BucOrder limits the bias within the same bucket by
setting m much smaller than the domain size. The accuracy
improvement brought by post-processing Lap

(
∆
ϵp

)
noise is

already close to the optimal accuracy improvement achiev-
able by the data sensitivity truncation algorithm with adding
Lap

(
2∆s

ϵp

)
noise.

Comparison of Group-based Approaches and Order-based
Approaches. In Figure 5, we vary the length of the delay
time to run one group-based approach and two order-based
approaches. We aim to observe the impact of the delay time
on these two different types of approaches and to make
comparisons between them. We select the best-performing
discontinuous grouping approach as a representative of group-
based approach and apply noise addition to the summation of
the entire group to reduce the noise.

Firstly, we can observe that the performance of the dis-
continuous approach improves as the length of the delay
time increases. However, the order-based approaches do not
show a clear pattern of accuracy variation with changes in
the delay time. Additionally, we observe that when the delay
time is short, order-based approaches have an advantage over
group-based approaches. The same observation can also be
obtained in Figure 2, and the advantage of CompOrder is more
significant for data streams with faster fluctuations, such as
COVID19 DEATH, especially when ϵ is small.

The reason is that the improvement of the group-based
approaches depends on the length of each group, which is
limited to the length of the delay time w. Therefore, when the

1 5 9 13 17
Threshold

1270

1280

1290

M
AE

(a) Unemployment

1 5 9 13 17
Threshold

4.70

4.72

4.74

4.76

M
AE

1e6

(b) Outpatient

Fig. 7. Impact of threshold θ on the accuracy of the continuous group-based
approach, where ϵ = 0.4, and w = 100. The noise is added to the summation
of the data in the group.

1 5 9 13 17
Threshold

150

152

154

156

M
AE

(a) Unemployment

1 5 9 13 17
Threshold

5.32

5.34

5.36

M
AE

1e5

(b) Outpatient

Fig. 8. Impact of threshold θ on the accuracy of the discontinuous group-
based approach, where ϵ = 0.4, and w = 100. The noise is added to the
summation of the data in the group.

delay time is very short, it limits the accuracy improvement
of the group-based optimization strategy. For compOrder,
increasing the length of the delay time can enhance the data
consistency of the released results, thereby improving the
accuracy. However, the number of times each data needs to
be used for comparison increases, and the privacy budget
for each comparison decreases, leading to inaccurate recorded
comparison results at the same time. Additionally, when the
similarity between streaming data within a certain length is
higher, shorter delay time are more advantageous, while longer
delay time are more favorable for CompOrder in the opposite
case. These factors intertwined weaken the impact of delay
time variations on CompOrder. For BucOrder, the accuracy
improvement comes from enhancing the order consistency of
the released results through bucketing and reducing the error
introduced by noise. Buckets are partitioned based on the
data domain, and for data streams where the data is relatively
concentrated within a certain range, changing the delay time
may not significantly alter the number of buckets the data falls
into, thereby not noticeably reducing the noise error.

Impact of the key parameters. In Figure 6, we evaluate the
impact of the bucket size on the accuracy of BucOrder under
three different levels of privacy protection strength. We vary
the bucket size m from 10 to 100 on the Unemployment and
vary m from 100, 000 to 100, 000 on the Outpatient due to
its excessively large data domain. From the results on the
Unemployment, we can observe that when ϵ is small, i.e.,
ϵ = 0.4, 0.6, too small bucket sizes can lead to a decrease
in the accuracy of the released results. The reason is that a
too-small bucket size implies a large number of buckets, this
can increase the variance introduced by the GRR mechanism
used by BucOrder. However, it does not imply that a larger
m leads to higher accuracy, a larger m can introduce greater
bias to the noisy results. The optimal m is highly correlated

12

TABLE III
COMPARISON OF PROPOSED METHODS WITH 10 TIMESTAMPS DELAY AND

EXISTING METHODS OF OTHER PRIVACY SETTINGS UNDER ϵ = 0.1, 0.5, 1.
DPI IS THE STATE-OF-THE-ART METHOD UNDER USER-LEVEL PRIVACY

SETTING, WHILE ADAPUB IS DESIGNED UNDER w-EVENT LEVEL PRIVACY

SETTING. WE MODIFY THEM TO THE EVENT-LEVEL PRIVACY SETTING,
AND COMPARE ALL METHODS AGAINST THE ACCURACY OF THE NAÏVE

APPROACH AS A REFERENCE VALUE.

Methods
Unemployment Outpatient

0.1 0.5 1.0 0.1 0.5 1.0

Naı̈ve 1.0× 1.0× 1.0× 1.0× 1.0× 1.0×
DPI-event 0.08× 0.38× 0.76× 0.05× 0.25× 0.48×
Adapub-event 1.26× 1.24× 1.26× 1.23× 1.25× 1.23×
Discontin 0.41× 0.41× 0.41× 0.41× 0.41× 0.41×
CompOrder 0.19× 0.28× 0.40× 0.20× 0.39× 0.56×
BucOrder 0.03× 0.17× 0.35× 0.03× 0.15× 0.29×

with the distribution of the data stream. Although we cannot
theoretically derive the optimal m, suboptimal m do not
significantly decrease the accuracy, i.e., m = 100 is not
optimal, but the accuracy of BucOrder remains superior to
others in Figure 2 and Figure 3.

In Figure 7 and Figure 8, we evaluate the impact of the
threshold θ used for grouping on the accuracy of the con-
tinuous grouping and the discontinuous grouping approaches.
All approaches add noise to the summation of the group, and
the evaluation results for adding noise independently to each
data are shown in Figure 9 and Figure 10 in Section A-A. We
observe that the accuracy of both continuous and discontinuous
approaches does not monotonically change with the threshold
θ. The reason is that increasing θ can increase the length
of each group while reducing the similarity of data within
the group. However, the specific grouping results obtained
according to θ are related to the distribution of the data stream,
making it challenging to determine the optimal θ theoretically.

C. Comparison with Other Competitors

To comprehensively evaluate the significance of delay time
in improving the accuracy of the stream releasing, we also
compared the proposed methods with a user-level privacy
method DPI [26] and a w-event-level privacy method Ada-
pub [40]. Although both methods are not optimized for the
settings in this paper, we modified them to run under the event-
level setting with the aim of comparing the effectiveness of
our designs. Besides, DPI conducts the learning process of
data in the form of timeslots. We divide 25% data for each
timeslot and increase the corresponding privacy budget in the
comparison to satisfy the event DP. The comparison results
are shown in Table III. The comparison results indicate that
even with just 10 timestamps delay, the proposed algorithm
shows accuracy advantages over state-of-the-art solution.

VIII. RELATED WORK

While the standard definition of differential privacy (DP)
[16] is proposed on the concept of neighboring datasets, its
application is not limited to the processing of the dataset. With

the development of the internet and sensor technologies, the
applications of privacy-preserving data stream processing have
become more widespread. The high variability, unpredictabil-
ity, and correlations in streaming data make it challenging to
directly apply DP algorithms designed for datasets to handle
data streams.

The earliest studies in DP for streaming data collection
originate from continuous observation of private data [21],
[6], [20], [13], [17], [24]. These studies mainly consider the
degradation of privacy guarantee due to the repeated appear-
ance of streaming data when the user’s state not changing
for a period of time. Subsequently, some studies propose
methods to predict and reduce the actual sensitivity of data
streams to avoid the overestimation of sensitivity caused by
outliers [35], [42]. Some studies focus on adding correlated
noise on correlated streaming data to prevent privacy leakage
[37], [7]. Considering the potential vast data domain of the
large data volumes, recent work focuses on improving the
memory efficiency of privacy-preserving collection of data
streams [31]. In addition to the works satisfying the tradi-
tional definition of DP (event-level DP), there are also efforts
focusing on more stringent DP definitions, such as w-event-
level DP and user-level DP. w-event-level DP provides ϵ-DP
protection for any neighboring w timestamps. Related research
is dedicated to studying the sampling of streaming data for
release and allocating appropriate privacy budgets for them
within any w-length sliding window [29], [10], [30], [39], [38],
[36]. User-level DP provides ϵ-DP protection for all streaming
data contributed by one user. To avoid the privacy budget
explosion, the existing works [14], [26], [22], [25], [15], [23]
primarily employing strategies like adaptively allocate privacy
budget from exponentially decreasing series or limiting user
contributions.

To the best of our knowledge, all existing stream-releasing
solutions are designed under real-time settings. In practice,
not all stream requires absolute real-time and it is challenging
to achieve due to various factors such as data processing
and transmission delays. A slight relaxation of timeliness
may provide opportunities for all aforementioned studies to
significantly enhance the utility.

IX. CONCLUSION

In this paper, we explore improving the accuracy of stream-
ing data release results by allowing a delay time. We propose
a new delay-allowed data stream releasing framework and
design two kinds of optimization approaches based on group-
ing strategy and order-preserving strategy. Furthermore, we
effectively reduce the amount of added noise by adding noise
to the summation result of the data and truncating the data
sensitivity. The experimental results demonstrated the effec-
tiveness of the proposed methods. For future work, we believe
that leveraging delay time can also break accuracy limitations
for streaming data releasing tasks under other privacy settings,
such as w-event level and user-level. Furthermore, delay-
allowed strategies can be extended to other tasks related to
the data stream, such as range queries, heavy hitter detection.

13

ACKNOWLEDGMENT

This research is supported by the National Key Re-
search and Development Program of China under Grant
2021YFB3100300 and the National Natural Science Founda-
tion of China under Grants 62072395 and U20A20178. Yuan
Hong is partially supported by the National Science Founda-
tion (NSF) under Grants CNS-2302689, CNS-2308730, CNS-
2319277, and CMMI-2326341. Additionally, we would like
to express our sincere gratitude to the anonymous reviewers
for their valuable time and insightful comments, which greatly
contributed to the quality and rigor of this paper.

REFERENCES

[1] “Unemployment.” https://fred.stlouisfed.org/series/LNU03000018,
2023.

[2] “Covid19 death.” https://gis.cdc.gov/grasp/fluview/mortality.html, 2024.
[3] “Foodmart.” https://www.philippe-fournier-viger.com/spmf/index.php?

link=datasets.php, 2024.
[4] “Outpatient.” https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html,

2024.
[5] M. Almashor, A. Fadiansyah, C. Pathmabandu, M. Amos, and M. A. P.

Chamikara, “Mitigating privacy leakage in anomalous building data
streams,” in Proceedings of the 10th ACM International Conference
on Systems for Energy-Efficient Buildings, Cities, and Transportation,
BuildSys 2023, Istanbul, Turkey, November 15-16, 2023. ACM, 2023,
pp. 333–339.

[6] N. Bansal, D. Coppersmith, and M. Sviridenko, “Improved approx-
imation algorithms for broadcast scheduling,” in Proceedings of the
Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2006, Miami, Florida, USA, January 22-26, 2006. ACM Press,
2006, pp. 344–353.

[7] E. Bao, Y. Yang, X. Xiao, and B. Ding, “Cgm: an enhanced mechanism
for streaming data collection with local differential privacy,” Proceedings
of the VLDB Endowment, vol. 14, no. 11, pp. 2258–2270, 2021.

[8] M. Bun and T. Steinke, “Concentrated differential privacy: Simplifica-
tions, extensions, and lower bounds,” in Theory of Cryptography - 14th
International Conference, TCC 2016-B, Beijing, China, October 31 -
November 3, 2016, Proceedings, Part I, ser. Lecture Notes in Computer
Science, M. Hirt and A. D. Smith, Eds., vol. 9985, 2016, pp. 635–658.

[9] Y. Chen, A. Machanavajjhala, M. Hay, and G. Miklau, “Pegasus: Data-
adaptive differentially private stream processing,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017,
B. Thuraisingham, D. Evans, T. Malkin, and D. Xu, Eds. ACM, 2017,
pp. 1375–1388.

[10] M. Cheng, Y. Sun, B. Zhao, and J. Su, “An event grouping approach
for infinite stream with differential privacy,” in Advances in Services
Computing - 10th Asia-Pacific Services Computing Conference, APSCC
2016, Zhangjiajie, China, November 16-18, 2016, Proceedings, ser.
Lecture Notes in Computer Science, G. Wang, Y. Han, and G. M. Pérez,
Eds., vol. 10065, 2016, pp. 106–116.

[11] J.-S. Chou and N.-T. Ngo, “Smart grid data analytics framework
for increasing energy savings in residential buildings,” Automation in
construction, vol. 72, pp. 247–257, 2016.

[12] D. Dias and J. Paulo Silva Cunha, “Wearable health devices—vital sign
monitoring, systems and technologies,” Sensors, vol. 18, no. 8, p. 2414,
2018.

[13] B. Ding, J. Kulkarni, and S. Yekhanin, “Collecting telemetry data
privately,” in Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, I. Guyon, U. von Luxburg,
S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and
R. Garnett, Eds., 2017, pp. 3571–3580.

[14] W. Dong, Q. Luo, and K. Yi, “Continual observation under user-level
differential privacy,” in 44th IEEE Symposium on Security and Privacy,
SP 2023, San Francisco, CA, USA, May 21-25, 2023. IEEE, 2023, pp.
2190–2207.

[15] C. Dwork, “Differential privacy in new settings,” in Proceedings of the
Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2010, Austin, Texas, USA, January 17-19, 2010, M. Charikar,
Ed. SIAM, 2010, pp. 174–183.

[16] C. Dwork, F. McSherry, K. Nissim, and A. D. Smith, “Calibrating noise
to sensitivity in private data analysis,” J. Priv. Confidentiality, vol. 7,
no. 3, pp. 17–51, 2016.

[17] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum, “Differential privacy
under continual observation,” in Proceedings of the 42nd ACM Sympo-
sium on Theory of Computing, STOC 2010, Cambridge, Massachusetts,
USA, 5-8 June 2010, L. J. Schulman, Ed. ACM, 2010, pp. 715–724.

[18] C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy,” Found. Trends Theor. Comput. Sci., vol. 9, no. 3-4, pp. 211–
407, 2014.

[19] C. Dwork, G. N. Rothblum, and S. P. Vadhan, “Boosting and differential
privacy,” in 51th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA.
IEEE Computer Society, 2010, pp. 51–60.

[20] Ú. Erlingsson, V. Pihur, and A. Korolova, “RAPPOR: randomized
aggregatable privacy-preserving ordinal response,” in Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications
Security, Scottsdale, AZ, USA, November 3-7, 2014, G. Ahn, M. Yung,
and N. Li, Eds. ACM, 2014, pp. 1054–1067.

[21] A. V. Evfimievski, J. Gehrke, and R. Srikant, “Limiting privacy breaches
in privacy preserving data mining,” in Proceedings of the Twenty-Second
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, June 9-12, 2003, San Diego, CA, USA, F. Neven, C. Beeri, and
T. Milo, Eds. ACM, 2003, pp. 211–222.

[22] L. Fan and L. Xiong, “Real-time aggregate monitoring with differential
privacy,” in 21st ACM International Conference on Information and
Knowledge Management, CIKM’12, Maui, HI, USA, October 29 -
November 02, 2012, X. Chen, G. Lebanon, H. Wang, and M. J. Zaki,
Eds. ACM, 2012, pp. 2169–2173.

[23] ——, “An adaptive approach to real-time aggregate monitoring with
differential privacy,” IEEE Transactions on knowledge and data engi-
neering, vol. 26, no. 9, pp. 2094–2106, 2013.

[24] L. Fan, L. Xiong, and V. Sunderam, “Differentially private multi-
dimensional time series release for traffic monitoring,” in IFIP Annual
Conference on Data and Applications Security and Privacy. Springer,
2013, pp. 33–48.

[25] F. Farokhi, “Temporally discounted differential privacy for evolving
datasets on an infinite horizon,” in 11th ACM/IEEE International Confer-
ence on Cyber-Physical Systems, ICCPS 2020, Sydney, Australia, April
21-25, 2020. IEEE, 2020, pp. 1–8.

[26] S. Feng, M. Mohammady, H. Wang, X. Li, Z. Qin, and Y. Hong, “Dpi:
Ensuring strict differential privacy for infinite data streaming,” arXiv
preprint arXiv:2312.04738, 2023.

[27] S. Ghayyur, Y. Chen, R. Yus, A. Machanavajjhala, M. Hay, G. Miklau,
and S. Mehrotra, “Iot-detective: Analyzing iot data under differential
privacy,” in Proceedings of the 2018 International Conference on
Management of Data, SIGMOD Conference 2018, Houston, TX, USA,
June 10-15, 2018, G. Das, C. M. Jermaine, and P. A. Bernstein, Eds.
ACM, 2018, pp. 1725–1728.

[28] M. Hay, V. Rastogi, G. Miklau, and D. Suciu, “Boosting the accuracy
of differentially private histograms through consistency,” Proc. VLDB
Endow., vol. 3, no. 1, pp. 1021–1032, 2010.

[29] G. Kellaris, S. Papadopoulos, X. Xiao, and D. Papadias, “Differentially
private event sequences over infinite streams,” Proc. VLDB Endow.,
vol. 7, no. 12, pp. 1155–1166, 2014.

[30] H. Li, L. Xiong, X. Jiang, and J. Liu, “Differentially private histogram
publication for dynamic datasets: an adaptive sampling approach,” in
Proceedings of the 24th ACM International Conference on Information
and Knowledge Management, CIKM 2015, Melbourne, VIC, Australia,
October 19 - 23, 2015, J. Bailey, A. Moffat, C. C. Aggarwal, M. de Ri-
jke, R. Kumar, V. Murdock, T. K. Sellis, and J. X. Yu, Eds. ACM,
2015, pp. 1001–1010.

[31] X. Li, W. Liu, J. Lou, Y. Hong, L. Zhang, Z. Qin, and K. Ren, “Local
differentially private heavy hitter detection in data streams with bounded
memory,” CoRR, vol. abs/2311.16062, 2023.

[32] M. Lyu, D. Su, and N. Li, “Understanding the sparse vector technique
for differential privacy,” Proc. VLDB Endow., vol. 10, no. 6, pp. 637–
648, 2017.

[33] F. McSherry, “Privacy integrated queries: an extensible platform for
privacy-preserving data analysis,” in Proceedings of the ACM SIGMOD

14

https://fred.stlouisfed.org/series/LNU03000018
https://gis.cdc.gov/grasp/fluview/mortality.html
https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

International Conference on Management of Data, SIGMOD 2009,
Providence, Rhode Island, USA, June 29 - July 2, 2009, U. Çetintemel,
S. B. Zdonik, D. Kossmann, and N. Tatbul, Eds. ACM, 2009, pp.
19–30.

[34] Y. Nie, L. Huang, Z. Li, S. Wang, Z. Zhao, W. Yang, and X. Lu,
“Geospatial streams publish with differential privacy,” in Collaborate
Computing: Networking, Applications and Worksharing - 12th Inter-
national Conference, CollaborateCom 2016, Beijing, China, November
10-11, 2016, Proceedings, ser. Lecture Notes of the Institute for Com-
puter Sciences, Social Informatics and Telecommunications Engineering,
S. Wang and A. Zhou, Eds., vol. 201. Springer, 2016, pp. 152–164.

[35] V. Perrier, H. J. Asghar, and D. Kaafar, “Private continual release of real-
valued data streams,” in 26th Annual Network and Distributed System
Security Symposium, NDSS 2019, San Diego, California, USA, February
24-27, 2019. The Internet Society, 2019.

[36] X. Ren, L. Shi, W. Yu, S. Yang, C. Zhao, and Z. Xu, “LDP-IDS:
local differential privacy for infinite data streams,” in SIGMOD ’22:
International Conference on Management of Data, Philadelphia, PA,
USA, June 12 - 17, 2022, Z. G. Ives, A. Bonifati, and A. E. Abbadi,
Eds. ACM, 2022, pp. 1064–1077.

[37] H. Wang and Z. Xu, “CTS-DP: publishing correlated time-series data via
differential privacy,” Knowl. Based Syst., vol. 122, pp. 167–179, 2017.

[38] Q. Wang, X. Lu, Y. Zhang, Z. Wang, Z. Qin, and K. Ren, “Secweb:
Privacy-preserving web browsing monitoring with w-event differential
privacy,” in Security and Privacy in Communication Networks - 12th
International Conference, SecureComm 2016, Guangzhou, China, Oc-
tober 10-12, 2016, Proceedings, ser. Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications
Engineering, R. H. Deng, J. Weng, K. Ren, and V. Yegneswaran, Eds.,
vol. 198. Springer, 2016, pp. 454–474.

[39] Q. Wang, Y. Zhang, X. Lu, Z. Wang, Z. Qin, and K. Ren, “Res-
cuedp: Real-time spatio-temporal crowd-sourced data publishing with
differential privacy,” in 35th Annual IEEE International Conference on
Computer Communications, INFOCOM 2016, San Francisco, CA, USA,
April 10-14, 2016. IEEE, 2016, pp. 1–9.

[40] T. Wang, X. Yang, X. Ren, J. Zhao, and K. Lam, “Adaptive differentially
private data stream publishing in spatio-temporal monitoring of iot,” in
38th IEEE International Performance Computing and Communications
Conference, IPCCC 2019, London, United Kingdom, October 29-31,
2019. IEEE, 2019, pp. 1–8.

[41] T. Wang, J. Blocki, N. Li, and S. Jha, “Locally differentially private
protocols for frequency estimation,” in 26th USENIX Security Sympo-
sium, USENIX Security 2017, Vancouver, BC, Canada, August 16-18,
2017, E. Kirda and T. Ristenpart, Eds. USENIX Association, 2017,
pp. 729–745.

[42] T. Wang, J. Q. Chen, Z. Zhang, D. Su, Y. Cheng, Z. Li, N. Li, and
S. Jha, “Continuous release of data streams under both centralized and
local differential privacy,” in CCS ’21: 2021 ACM SIGSAC Conference
on Computer and Communications Security, Virtual Event, Republic of
Korea, November 15 - 19, 2021, Y. Kim, J. Kim, G. Vigna, and E. Shi,
Eds. ACM, 2021, pp. 1237–1253.

APPENDIX A
A. Supplementary Experimental Results

The impact of threshold θ on the group-based approaches
with adding noise to the individual data is shown in Figure 9
and Figure 10, respectively.

1 5 9 13 17
Threshold

1520

1540

1560

M
AE

(a) Unemployment

1 5 9 13 17
Threshold

5.66

5.68

5.70

M
AE

1e6

(b) Outpatient

Fig. 9. Impact of threshold θ on the accuracy of the continuous group-based
approach, where ϵ = 0.4, and w = 100. The noise is added individually to
the data.

1 5 9 13 17
Threshold

460

480

500

M
AE

(a) Unemployment

1 5 9 13 17
Threshold

1.70

1.71

1.72

M
AE

1e6

(b) Outpatient

Fig. 10. Impact of threshold θ on the accuracy of the discontinuous group-
based approach, where ϵ = 0.4, and w = 100. The noise is added individually
to the data.

B. Algorithm of Continuous Grouping in Batch

The algorithm of continuous grouping in a data batch is
shown in Algorithm 6.

Algorithm 6 Continuous Grouping in A Data Batch.
Input: Streaming data Bi = xi·w, ..., x(i+1)·w−1, privacy budget ϵg

for grouping, threshold θ.
Output: G = {G1, G2, ...}

1: G ← ∅, c← 1
2: for xi ∈ Bi do
3: if i equals 1 or Gc is closed then
4: c← c+ 1, Gc ← ∅, θ̃ ← θ + Lap (2∆s/ϵg)
5: end if
6: if dev(Gc ∪ xi) + Lap (4∆s/ϵg) < θ̃ then
7: Involve xi into Gc and Gc still open.
8: else
9: Close Gc, Add Gc to G, c← c+ 1

10: Involve xi into a new group Gc and then close Gc, Add
Gc to G.

11: end if
12: end for
13: if Gc is open then
14: Add Gc to G.
15: end if
16: return G = {G1, G2, ...}

C. Proof of Theorem 1

Proof We assume that the stream D and D′ differ by the
data at the ith timestamp. Gi represents the grouping status
at ith timestamp. The probability distribution of group states
Gi at the i − 1 timestamps preceding the ith timestamp are
all identical. From the ith timestamp onwards, the probability
distribution of group states at each timestamp may have
difference between D and D′. We have

Pr[M(Gw−1, xw) = G] =
i−1∏
j=1

Pr[M(Gj−1, xj) = Gj]

· Pr[M(Gi−1, xi) = Gi] ·
w∏

j=i+1

Pr[M(Gj−1, xj) = Gj]

Here, M(Gj−1, xj) using the group set up to the previous
timestamp and the current data as input, output the group

15

set for the current timestamp. Then according to the privacy
guarantee provided by SVT [32], we have

Pr[M(G′w−1, xw) = G]
Pr[M(Gw−1, xw) = G]

=
Pr[M(Gi−1, x

′
i) = G′i] ·

∏w
j=i+1 Pr[M(G′j−1, xj) = G′j]

Pr[M(Gi−1, xi) = Gi] ·
∏w

j=i+1 Pr[M(Gj−1, xj) = Gj]

≤eϵg ·
∏w

j=i+1 Pr[M(G′j−1, xj) = G′j]∏w
j=i+1 Pr[M(Gj−1, xj) = Gj]

When xi and x′
i are assigned to the same group, we have

Pr[M(D′) = G]
Pr[M(D) = G]

≤ eϵg · e(w−i)ϵg = e(w−i+1)ϵg ≤ ewϵg

Otherwise, we have

Pr[M(D′) = G]
Pr[M(D) = G]

≤ eϵg · e2(w−i)ϵg = e(2(w−i)+1)ϵg ≤ e(2w−1)ϵg

Therefore, when we provide ϵg/(2w − 1) privacy guarantee
for each SVT judgement, Algorithm 2 satisfies ϵg-DP. □

D. Proof of Theorem 4

Proof The expected squared error comes from Laplace noise,
the bias introduced by approximating data within a group with
their mean, and the error introduced by SVT for grouping.
Denote ng as the number of groups in a delay time, β is the
failure probability of SVT, and m>θ is the approximate bias
in the data added to a group due to the misjudgment of SVT.
We have

E
[
(B̂i −Bi)

2
]
= ng · 2

|d|2

ϵ2p
+ (1− β)wθ2 + βw (m>θ)

2

(4)

We first need to obtain the privacy guarantee of SVT. There are
no existing conclusions can be directly applied to our current
computation. Our proof is inspired by Theorem 3.24 in [18].
We want to approve that except with at most β, we have:

Dev(Gi ∪ xi) + vi ≥ θ̂ ≥ θ + |θ̂ − θ|
Dev(Gi ∪ xi) ≥ θ + (|θ̂ − θ| − |vi|) ≥ θ + α

Recall that if Y ∼ Lap (b), then it has Pr[|Y | ≥ t · b] = e−t.
Thus, we have:

Pr[|θ̂ − θ| ≥ 2α] = e−αϵg

When α ≥ log(2/β)
ϵg

, this quantity to be at most β/2.

Pr[|vi| ≤ α] = e−
ϵgα

4

When α ≤ 4 log(2/(2−β))
ϵg

, this quantity to be at most β/2.
Therefore, we can obtain the conclusion that the probability
of Dev(Gi ∪ xi) ≥ θ + α is at most β when log(2/β)

ϵg
≤ α ≤

4 log(2/(2−β))
ϵg

.

Based on this conclusion, the Equation 4 is:

E
[
(B̂i −Bi)

2
]
≤ ng · 2

|d|2

ϵ2p
+ (1− β)wθ2

+ βw

(
θ +

4 log(2/(2− β))

ϵg

)2

□

E. Proof of the Theorem 2

Proof In Algorithm 3, recording the comparison results be-
tween the current data and the subsequent data within the
delay time follows the SVT design. The standard version of
SVT and the proof of its privacy guarantee can be found
in [32]. As shown in Figure 11, essentially, the streaming
data at each timestamp participates in two independent SVT
algorithms. For the streaming data at the ith timestamp, in
the first SVT, each query checks whether xj − xi is greater
than 0, where xj represents the data preceding xi within
the w timestamps. In the second SVT, each query checks
whether xi − xj is greater than 0, where xj represents the
data following xi within the w timestamps.

To satisfy DP, we divide the privacy budget ϵg , which is
used to record the order information, by 2 for the two SVT
algorithms. Additionally, since the maximum possible number
of positive query answers for each SVT is w, ϵg needs to be
divided by w. Therefore, the algorithm of CompOrder satisfies
ϵp-DP. □

𝑥𝑖𝑥𝑖−𝑤 𝑥𝑖−𝑤+1 𝑥𝑖−𝑤+2 𝑥𝑖+𝑤−2 𝑥𝑖+𝑤−1 𝑥𝑖+𝑤

SVT for judging 𝒙𝒋 − 𝒙𝒊 > 𝟎, SVT for judging 𝒙𝒊 − 𝒙𝒋 > 𝟎,

𝒋 ∈ [𝒊 − 𝒘, 𝒊 − 𝟏] 𝒋 ∈ [𝒊 + 𝟏, 𝒊 + 𝒘]

𝒘 = 𝟑

Fig. 11. Taking a delay time w = 3 as an example, it can be seen that each
streaming data xi participates in two SVT.

F. Proof of Theorem 5

Proof In CompOrder, the streaming data xi at each timestamp
is compared with w data within the delay time. Assuming the
average distance between adjacent ordered streaming data
is always larger than a, we calculate the probability of the
maximum data x̂l below xi and the minimum data xr above
xi remaining the maximum and minimum after adding noise.

Firstly, we calculate the probability of xl and mr being
surpassed by the values that are adjacent in the sorted order
after adding noise. Since the probability calculations for xl

and mr exhibit symmetry, let’s first focus on calculating one
side (Denote this case as Hr for convenience of expression).

Pr
[
H1

r

]
=

1

2λ

∫ a

−a

e−
x
λ dx+ 2

∫ +∞

a

1

2λ
e−

y
λ

∫ +∞

y−a

1

2λ
e−

x
λ dxdy

= 1− 3

4
e−

a
λ

16

Then, assuming there are s data on the left and w− s data
on the right, the probability that both xl and xr simultaneously
maintain the maximum on the left and minimum on the right
is

Pr[HlHr] =

(
1− 3

4
e−

a
λ

)(
1− 3

4
e−

2a
λ

)
· · ·

(
1− 3

4
e−

sa
λ

)
·
(
1− 3

4
e−

a
λ

)(
1− 3

4
e−

2a
λ

)
· · ·

(
1− 3

4
e−

(w−s)a
λ

)
≥

(
1− 3

4
e−

a
λ

)w

If we simultaneously consider the errors introduced by SVT
and want both Hl and Hr to hold, we only need to calculate
the probability that xl and xr are both judged correctly. This
is because the bound of Pr[HlHr] holds true regardless of
whether other data, excluding these two, are misjudged by
SVT and fall on the opposite side of xi. We have

Pr[HlHr] ≥ β1β2

(
1− 3

4
e−

a
λ

)w

Here, β1 and β2 are the probabilities of SVT making accurate
comparison. According to the error bound for SVT provided by
Theorem 3.24 in [18], β1 and β2 satisfies β1, β2 ≥ 1−2e−ϵa/8.
Therefore, we have

Pr[HlHr] ≥
(
1− 2e−ϵga/16

)2
(
1− 3

4
e
− a∆s

ϵp

)w

□

G. Supplement Proof of Theorem 6

Proof We analyze the expected squared error in a batch
of the BucOrder. The error comes from Laplace noise, the
bias introduced by approximating data within a bucket with
their mean, and the error introduced by GRR mechanism for
mapping the data into the buckets. Denote nb as the number
of buckets in a delay time, p = eϵg

(eϵg+nb−1) is the probability
that a data is in the right bucket, and mout is the approximate
bias introduced by data randomized to the wrong bucket by
GRR.

E
[
(B̂i −Bi)

2
]
= nb · 2

|d|2

ϵ2p
+ pw ·m2 + (1− p)w · (mout)

2

= nb · 2
|d|2

ϵ2p
+ w · m

2 + (nb − 1)m2
out

eϵg + nb − 1

Since the GRR uniformly maps data to other buckets with
a probability 1

eϵg+nb−1 , it’s difficult to constrain mout. We
calculate the approximate expected value of mout is |d|

3 . We
assume that the mean of the data in the ith bucket falls at a
distance of η from the left boundary of the bucket. Since values
outside the bucket are uniformly mapped into the current
bucket with equal probability, we can calculate the expected

mout as

E[mout]

=
∑

0≤i≤nb

∑
(m−η)≤j≤m−η+|d|−(i+1)m j +

∑
η+1≤j≤η+im j

(|d| −m)nb

≃
∑

0≤i≤nb

(|d| − (i+ 1)m)2 + (i ·m)2

2(|d| −m)nb
(assume m≪ |d|)

≃
∑

0≤i≤nb

(
(|d| −m)− 2im

2nb
+

(im)2

(|d| −m)nb

)
≃ (|d| −m)− 2im

2
+

m(nb + 1)

2
+

m2(nb + 1)(2nb + 1)

6(|d| −m)

≃ |d|
3

Substituting the approximate expected mout into the equa-
tion, we get

E
[
(B̂i −Bi)

2
]
= nb · 2

|d|2

ϵ2p
+ w · m

2 + (nb − 1)|d|2/9
eϵg + nb − 1

□

APPENDIX B
ARTIFACT APPENDIX

A. Description & Requirements

1) How to access: We have stored the code repository on
the Zenodo platform, and you can access it via the link https:
//doi.org/10.5281/zenodo.13643225.

2) Hardware dependencies: None.
3) Software dependencies: Python 3.10 and above.

‘numpy’, ‘math’, ‘random’, ‘os’, ‘sys’, ‘matplotlib’, and
‘scikit-learn’ libraries are required.

4) Benchmarks: All datasets used in the experiments are
stored in the ‘./data’ folder.

B. Artifact Installation & Configuration

We have tested the source code in Python 3.10.8 and
3.11.4 environments, the code runs without issues in these
environments. Additionally, please ensure that the ‘numpy’,
‘math’, ‘random’, ‘os’, ‘sys’ and ‘matplotlib’ libraries are
installed. The code does not have high hardware requirements;
a single-core CPU is sufficient.

C. Major Claims

• (C1): Allowing a delay of only 10 timestamps can bring
about a substantial increase in accuracy for the released
streams (Compare CompOrder, Discontin pp, BucOrder,
Contin reduce, Discontin reduce with Naive, PeGaSus,
PeGaSus delay).

• (C2): The performance of PeGaSus is not improved
compared to the naı̈ve approach and is even lower than
the naı̈ve approach.

• (C3): The advantage of the order-based approach (Com-
pOrder, BucOrder) is more pronounced when the delay
time is short compared to the group-based approaches

17

https://doi.org/10.5281/zenodo.13643225
https://doi.org/10.5281/zenodo.13643225

TABLE IV
THE RUNNING TIME OF EXPERIMENT (E1)

Delay COVID Unemploy Outpatient Foodmart

w = 10 5.9s 5.7s 1min33s 2min42s
w = 100 8.9s 22.5s 3min10s 13min12s

(Discontin pp, Contin reduce, Discontin reduce, PeGa-
Sus delay).

• (C4): The data sensitivity truncation algorithm has an
improvement for all methods (except BucOrder) on all
datasets, especially on streams with large data domains
such as Outpatient and Foodmart datasets.

D. Evaluation

In this section, we provide a detailed step-by-step verifi-
cation of the experimental results included in the paper. (E1)
and (E2) involve validating the effectiveness of the approaches
proposed in this paper. (E3) and (E4) evaluate the impact of
parameters on the proposed approaches, (E5) compares the
proposed methods with state-of-the-art methods from other
privacy settings.

1) Experiment (E1): [The Accuracy Improvement of the
Delay-allowed Approaches.][About 21min]

This part of the experiment corresponds to Figures 2 and
Figure 3 in the paper. The approximate running times for the
four datasets under two different delay time parameters are
shown in Table IV.

[Execution] There are two steps for verifying Figure 2 and
Figure 3.

Step 1. Set ‘delay time=10’ and run ‘python
est compall.py’. The terminal will sequentially display
the error results of all methods on the four datasets, and
comparison line charts for all methods will pop up. Please
manually close the popped-up line charts for the code to
continue running the next dataset.

Step 2. Set ‘delay time=100’ and rerun ‘python
est compall.py’. Other operations are the same as in
Step 1.

[Results] In each step, the results displayed in the terminal
and the line charts popped up by the code correspond to
Figures 2/Figure 3 (a), (b), (c), and (d) in the paper. There may
be some fluctuations, the trend of each method’s error with
changes in ϵ, and the relative magnitudes should be consistent
with those in the paper. The observed results in this part verify
C1, C2, and C3 in the Major Claims.

2) Experiment (E2): [The Effectiveness of Data Sensitivity
Truncation Algorithm.][About 7min47s]

This part corresponds to Figure 4 in the paper and is used to
evaluate the effectiveness of the sensitivity reduction method
proposed in this paper.

[Execution] Run ‘python est sensitivity.py’.
[Results] The terminal will sequentially display the results

of the Naive, Contin, Discontin, CompOrder, and BucOrder
methods on the four datasets, both without sensitivity reduc-
tion and with sensitivity reduction. The data under “No Sen-
sitivity Reduce” correspond to the red bars in Figure 4, while

the results under “Sensitivity Reduce” correspond to the blue
bars. Although there may be fluctuations due to randomness,
the magnitude of the data should be consistent with those in
Figure 4. For all datasets, except for the BucOrder method,
the data under “Sensitivity Reduce” should show a decrease
compared to “No Sensitivity Reduce”. The observed results in
this part verify C4 in the Major Claims.

3) Experiment (E3): [Comparison of Group-based Ap-
proaches and Order-based Approaches.][About 58s]

This part corresponds to Figure 5 in the paper, illustrating
the impact of delay time length on group-based and order-
based methods respectively.

[Execution] Run ‘python est delaylength.py’.
[Results] In the terminal, the results for the discontinuous,

CompOrder, and BucOrder methods on two datasets will be
sequentially displayed, showing the error in published results
as the parameter w varies from 10 to 90. The results for each
dataset will be between “Results” and “Results End”. All data
should correspond to the bars in Figure 5.

It should be observed from the results: a. The performance
of the discontinuous approach improves as the length of
the delay time increases. b. The order-based (CompOrder
and BucOrder) approaches do not exhibit a clear pattern
of accuracy variation with changes in the delay time. c.
When the delay time is short, order-based (CompOrder and
BucOrder) approaches demonstrate an advantage over group-
based (discontinuous) approaches.

4) Experiment (E4): [Impact of the key parameters.][About
18s and 12s]

This part of the experiment corresponds to Figures 6, 7, 8, 9,
and 10, primarily evaluating the impact of parameter variations
on the performance of the proposed algorithms.

[Execution] There are two steps in this part. We have
already set all the parameters.

Step 1. Run ‘python est order.py’ and manually close the
popped-up line charts to proceed with running the next dataset.

Step 2. Run ‘python est group.py’.
[Results] For Step 1, line charts similar to those in Figure

6 from the paper will pop up. It should be observed that too-
small bucket size m can lead to a decrease in the accuracy of
the released results.

For Step 2, the terminal will sequentially display the accu-
racy of the publication results for four group-based methods
across different values of τ on two datasets. The results
will show that the impact of θ on group-based methods is
not monotonical. The magnitudes of the error results should
correspond to the respective figures in the paper.

5) Experiment (E5): [Compare with existing works come
from other privacy settings.][DPI: 31s, Adapub: 4s] This part
of the experiment corresponds to Table III in the paper. The
source code for DPI and Adapub comes from their corre-
sponding open-source libraries. We only made some minor
modifications to make them meet the event-level privacy and
set the parameters for comparison in our experiment.

[Execution] There are two steps in this part.
Step 1. Run ‘python est other.py’.

18

Step 2. Run ‘python DPI DEMO script.py’.
[Results] In Step 1 of E1, it will show the error results of

ϵ ∈ [0.1, 1] for Naı̈ve, Discontin, CompOrder, and BucOrder
on the Unemployment and Outpatient datasets. By dividing
the error results (MAE) of all methods by the error results
of naı̈ve, the correctness of Table III can be verified. The
proposed algorithm should show accuracy advantages over
state-of-the-art solutions. Directly comparing the error results
of these methods can also validate this.

E. Acknowledgement

We would like to express our sincere gratitude to the AE
reviewers for their thorough evaluation of our work. Your
valuable feedback and insightful comments have significantly
contributed to improving both the quality of our code and the
clarity of our paper.

19

	Introduction
	Preliminary
	Problem Statement
	Differential Privacy
	Existing Solutions

	Overview of Our Approach
	Optimization Strategy Module
	Noise Addition Module
	Post-Processing Module
	Privacy Budget Allocation

	Technical Details of Optimization Strategy
	Group-Based Methods
	Order-based Methods

	Theoretical Analysis for Our Approaches
	Privacy Analysis.
	Error Analysis

	Optimization with truncating data sensitivity
	Evaluation
	Setup
	Analysis of Experimental Results
	Comparison with Other Competitors

	Related Work
	Conclusion
	References
	Appendix A
	Supplementary Experimental Results
	Algorithm of Continuous Grouping in Batch
	Proof of Theorem 1
	Proof of Theorem 4
	Proof of the Theorem 2
	Proof of Theorem 5
	Supplement Proof of Theorem 6

	Appendix B: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Major Claims
	Evaluation
	Experiment (E1)
	Experiment (E2)
	Experiment (E3)
	Experiment (E4)
	Experiment (E5)

	Acknowledgement

