
CCTAG: Configurable and Combinable Tagged
Architecture

Zhanpeng Liu∗†, Yi Rong§, Chenyang Li∗†, Wende Tan§,
Yuan Li¶†∥‡�, Xinhui Han∗∥‡�, Songtao Yang¶, Chao Zhang†¶∥

∗Wangxuan Institute of Computer Technology (WICT), Peking University
†Institute for Network Sciences and Cyberspace (INSC), Tsinghua University, §Tsinghua University, ¶Zhongguancun Laboratory,

∥JCSS, Tsinghua University (INSC) - Science City (Guangzhou) Digital Technology Group Co., Ltd.

Abstract—Memory safety violations are a significant concern in
real-world programs, prompting the development of various mit-
igation methods. However, existing cost-efficient defenses provide
limited protection and can be bypassed by sophisticated attacks,
necessitating the combination of multiple defenses. Unfortunately,
combining these defenses often results in performance degrada-
tion and compatibility issues.

We present CCTAG, a lightweight architecture that simpli-
fies the integration of diverse tag-based defense mechanisms.
It offers configurable tag verification and modification rules
to build various security policies, acting as basic protection
primitives for defense applications. Its policy-centric mask de-
sign boosts flexibility and prevents conflicts, enabling multiple
defense mechanisms to run concurrently. Our RISC-V prototype
on an FPGA board demonstrates that CCTAG incurs minimal
hardware overhead, with a slight increase in LUTs (6.77%)
and FFs (8.02%). With combined protections including ret
address protection, code pointer and vtable pointer integrity,
and memory coloring, the SPEC CPU CINT2006 and CINT2017
benchmarks report low runtime overheads of 4.71% and 7.93%,
respectively. Security assessments with CVEs covering major
memory safety vulnerabilities and various exploitation techniques
verify CCTAG’s effectiveness in mitigating real-world threats.

I. INTRODUCTION

Memory safety vulnerabilities are the most common at the
binary level [2], [1], including out-of-bounds access, deref-
erencing expired pointers, usage of uninitialized resources,
and type confusion in dynamic language runtimes. These
issues can create invalid pointers and memory errors, allowing
attackers to manipulate the program’s internal state and leading
to control flow hijacking, data-only attacks, and information
leakage [47]. Despite numerous defenses developed to miti-
gate increasing software vulnerabilities at runtime, most offer
only limited protection guarantees. They often target specific
vulnerability types [38], [27], [53], [21] or prevent certain
exploitation steps in the exploitation workflow [4], [18], [28],

‡�Corresponding authors: lydorazoe@gmail.com, hanxinhui@pku.edu.cn

[34]. For comprehensive protection, it’s advisable to integrate
multiple defenses. Based on a step-by-step memory exploita-
tion model proposed by [47], defenses can be combined in
two ways:
• Horizontal integration combines defense mechanisms at
the same layer to cover more types of vulnerabilities or block
a broader range of exploitation techniques. For example, inte-
grating spatial and temporal memory safety solutions provides
more comprehensive protection than individuals.
• Vertical integration blocks different stages of the exploita-
tion workflow, providing a “defense in depth” strategy. With
this approach, even though individual protection mechanisms
are only moderately precise, the combined protection can
significantly hinder attackers. An example of this would be
combining memory safety techniques with Control Flow In-
tegrity (CFI) methods.

Integrating multiple defense mechanisms is challenging due
to compatibility issues, accumulated performance degradation,
and other associated costs. Pure software-based defenses often
have high performance and memory overhead [19], [20], [21],
and when combined, this overhead can become unaccept-
able for production deployment. Hardware-assisted defenses
leverage specific hardware features to reduce performance
impacts [41], [56], [59], [43], [42], [25]. However, integrating
these solutions by combining underlying hardware features
increases hardware costs (e.g., chip area) and results in a
more complex design that’s difficult to maintain and verify.
These challenges require a solution that makes hardware
more versatile and configurable, enabling multiple defense
applications to run concurrently. Configurable or even pro-
grammable security features have been seen in several tagged
architecture designs [15], [7], [17], [14], [46], [49]. Existing
multipurpose tagged architectures lack flexibility and cannot
support efficient defense integration. Their complex designs,
high hardware requirements, and significant runtime overhead
make them impractical for real-world applications.

In this paper, we present CCTAG, a novel, lightweight tagged
architecture designed to be both configurable and combinable,
addressing the need for efficient and compatible integration of
various defense mechanisms. CCTAG supports a wide range
of customizable tag verification and manipulation rules and
can be used as building blocks to construct various protection

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.240862
www.ndss-symposium.org

primitives, including fine-grained access control, data-flow
isolation, dynamic information tracking, etc. Such primitives
can then be utilized to implement different defense mecha-
nisms. For example, with the primitive to temporarily mark a
word as read-only, it can effectively prevent the overwriting
of sensitive data. CCTAG offers great flexibility and only
incurs little complexity to hardware design. On the other hand,
CCTAG introduces a policy-centric mask that enables multi-
level, fine-grained control over tag rules applied at the level
of threads, pages, and variable granularity within a cache line.
This design facilitates the simultaneous support for multiple
defense mechanisms, allowing them to collaborate to provide
stronger security properties.

We have developed a prototype of CCTAG running on
a Field Programmable Gate Array (FPGA), which includes
modifications to both the processor and the operating system.
We extended the RISC-V instruction set architecture (ISA)
and augmented the Rocket Core to support the tag operations.
Such extension introduces low hardware resource overhead,
as the LUTs usage increases by only 6.77% while the FFs
usage increases by 8.02%. Additionally, we have made minor
modifications to the Linux kernel, introducing system calls
that enable the configuration of tag policies for each thread
and each memory page, as well as exception handling for
tag check failures. With the prototype, we demonstrate that
CCTAG can provide various memory protection primitives, and
showcase 4 specific primitives in §V, including fine-grained
permission, sensitive data flow isolation, memory coloring,
and runtime information tracking. For each primitive, we port
a defense application for verification, including stack frame
protection, sensitive pointers isolation, heap overflow and
use-after-free mitigation, and dangling pointer scan. We also
discuss other potential applications of CCTAG beyond memory
safety mitigation in §VI-D.

We evaluated the performance of the prototype CCTAG
system with the SPEC CINT2006 and CINT2017 bench-
mark suites. Additionally, we assessed its security capabilities
against real-world CVEs and various exploitation techniques.
Results showed that CCTAG incurs an acceptable level of run-
time overhead (4.71% on CINT2006 and 7.93% on CINT2017)
with combined defense mechanisms, which can effectively
mitigate a broad range of memory safety vulnerabilities. In
summary, we make the following contributions:
1) We propose a policy-centric mask design that enables

flexible tag configurations and supports multiple defense
mechanisms simultaneously without conflicts.

2) We introduce CCTAG, a tagged architecture with a policy-
centric mask that is configurable and combinable to meet
diverse defense requirements effectively.

3) We demonstrate CCTAG’s capability by supporting four
memory protection primitives, each verified with a ported
defense application.

4) We evaluated CCTAG by developing a RISC-V prototype
on an FPGA. Results show that CCTAG only slightly
increases hardware resources and incurs low runtime over-
head, confirming its viability for real-world applications.

TABLE I: Statistics of CVE types related to memory safety.
CWE-ID Name Count Rank

CWE-787 Out-of-bounds Write 5,616 1

CWE-416 Use After Free 1,889 4

CWE-125 Out-of-bounds Read 1,467 8

CWE-120 Buffer Copy without Checking Size
of Input (’Classic Buffer Overflow’) 1,338 9

CWE-843 Access of Resource Using Incompatible
Type (’Type Confusion’) 230 37

CWE-415 Double Free 182 44

CWE-908 Use of Uninitialized Resource 106 64

CWE-824 Access of Uninitialized Pointer 96 66

II. BACKGROUND & RELATED WORK

A. Memory Safety Vulnerabilities

Memory safety violations are the root cause of many
exploitable conditions. These violations generally fall into two
categories [44]:
• Spatial violations. As seen in buffer overflow attacks, a
pointer accesses memory outside its intended object.
• Temporal violations. A pointer is dereferenced after the
lifecycle of its associated object has ended, leading to issues
such as double frees and use-after-free.

To obtain a clear understanding of the prevailing memory
safety vulnerabilities in recent years, we conducted a statistical
analysis of high-severity Common Vulnerabilities and Expo-
sures (CVEs) from the National Vulnerability Database (NVD)
spanning 2020 to 2024. Our study categorized a total of 43,112
CVEs according to their Common Weakness Enumeration
(CWE) types. Part of the results are listed in Table I.

Notably, CWE-787 (Out-of-bounds Write) emerged as the
most prevalent vulnerability among all CWE types, accounting
for 5,616 instances, while CWE-416 (Use After Free) ranked
fourth with 1,889 instances. These two types can directly
lead to spatial and temporal memory safety violations, respec-
tively. Other CWEs closely associated with memory safety
violations include CWE-125, CWE-120 and CWE-415, and so
on. Furthermore, we identified 208 instances of vulnerabilities
related to uninitialized memory (CWE-457, CWE-824, and
CWE-908) and 230 instances of type confusion vulnerabilities
(CWE-843). These types of vulnerabilities are also intimately
related to memory errors. For example, they can result in the
use of out-of-context pointers which might be controlled by
attackers. Although these numbers are lower than those for
spatial and temporal memory safety violations, they remain
substantial enough to warrant serious attention.

B. Tagged Architecture

Tagged architectures represent a significant category of
hardware security primitives that can assist memory safety
enforcement at runtime. In these architectures, program data is
augmented with an additional metadata tag that stores security-
related information, typically at the granularity of a word [32].
Benefiting from the close coupling of tags and the data,

2

the tags can be checked and updated concurrently with the
execution of each instruction. Different rules for verifying and
updating tags constitute various tag policies, each tailored to
meet different and specific security requirements and provide
corresponding memory safety guarantees.

C. Memory Safety Violation Mitigation

Many runtime defense mechanisms have been developed to
mitigate memory safety violations. These solutions balance
protection capability, compatibility, efficiency, and hardware
overhead for hardware-assisted methods. Below, we discuss
mainstream approaches and introduce representative works.

1) Spatial Memory Safety Enforcement: A direct way to
ensure spatial memory safety is to associate each pointer with
its base address and size, performing explicit bounds checks
during dereferencing. In-Fat [56] achieves this by storing 16-
bit metadata in unused pointer bits, allowing hardware to
efficiently access bounds and layout information. CHERI [51]
extends 64-bit pointers into capability pointers that encode
bounds directly, enhancing efficiency but creating compat-
ibility challenges with existing systems and software. The
red zone is another approach that adds inaccessible regions
around protected buffers. While less accurate, it offers the
advantage of significantly lower hardware and performance
costs. ARM MTE [5] (memory coloring) enhances this by
embedding 4-bit tags in pointers and every 16-byte memory
block. A pointer dereference is valid only if its tag matches
the memory block’s tag. Careful tag allocation ensures strong
spatial memory safety.

2) Temporal Memory Safety Enforcement: One-time allo-
cation [53], [26] effectively enforces temporal memory safety
by never reusing freed memory, but it incurs high memory
overhead. Quarantining delays memory reuse by placing freed
blocks in a quarantine pool. MineSweeper [21] verifies no
remaining references before release, while Cornucopia [52]
(based on CHERI) uses capability pointers to free quarantined
memory and invalidate dangling pointers after scanning. ARM
MTE supports temporal memory safety by re-tagging memory
on each allocation and deallocation, enabling probabilistic
detection of violations.

3) Control Flow Integrity: Control Flow Integrity (CFI [4])
is designed to ensure the integrity of a program’s control flow,
preventing attackers from arbitrarily hijacking it, even if mem-
ory safety vulnerabilities are exploited. Although researchers
have proposed various CFI schemes[18], [34], [28] to improve
the accuracy of the control flow graph, attacks [22], [40],
[11] that successfully bypass these defenses have also been
continuously introduced. In addition, some works [10], [57]
have shown that even fully-precise CFI can still be attacked.

4) Intra-Process Isolation: Intra-process memory isolation
extends the principle of least privilege within a single process,
restricting memory access for different parts of the code to
prevent one compromised component from affecting the entire
memory space. Mondriaan [54] and Loki [58] implement
word-level data tagging with permission lists, enabling mul-
tiple protection domains, while Intel MPK [39] uses page-

level granularity for similar protection. CHERI also offers
sophisticated support for isolation. This approach facilitates
compartmentalization, where programs are divided into com-
partments with access to specific resources and communi-
cate via controlled channels, as seen in PANIC [55] and
HAKCs [37]. Another use case is to isolate sensitive data.
VIP [31] uses MPK-protected shadow memory to safeguard
sensitive information. HDFI [43] employs 1-bit tags for each
memory word to separate sensitive and non-sensitive data
flows, revoking tags if unauthorized writes occur.

5) Pointer Integrity: Pointer integrity mechanisms prevent
pointers from being tampered with or forged, effectively
blocking control flow hijacking and limiting memory corrup-
tion. Protecting code pointers offers stronger security than
classic CFI [40], [10], while safeguarding data pointers fur-
ther restricts attack capabilities. ARM Pointer Authentication
(PA) cryptographically signs and verifies pointers. With above
mentioned intra-process isolation to isolate pointers is also a
way to guarantee pointer integrity.

6) Dynamic Information Flow Tracking: Dynamic Infor-
mation Flow Tracking (DIFT [45]) monitors data movement
at runtime to detect unintended or malicious information
flows. By tracking data through the system, DIFT can identify
suspicious activities like unauthorized access to sensitive data
or the misuse of untrusted data in critical operations. Tagged
architecture is commonly used in this area [13], [49], [33].

D. Multipurpose Tagged Architecture Designs

Researchers have developed general-purpose tagged archi-
tectures to support multiple policy paradigms. We categorize
these designs into two main types based on their versatility:

1) Configurable Tagged Architecture: Configurable tagged
architectures use hardware modules with predefined rules (set
via control registers) for tag checking and updating. This
approach offers limited flexibility and cannot be updated after
fabrication but maintains low hardware and runtime overhead.
Examples include Raksha [13], which employs configurable
registers for flexible DIFT policies, and its derivatives Flex-
iTaint [49] and the DIFT co-processor [33]. LowRISC [36]
also supports permission checks and DIFT using function
unit masks. CCTAG builds on this model by using control
registers to configure the tag module with enhanced versatility
and flexibility, allowing easier integration of diverse security
applications while keeping overhead low.

2) Programmable Tagged Architecture: In programmable
tagged architectures, the rules for tag checking and updating
can be defined by the program, typically through a software-
managed rule cache that allows hardware to quickly lookup.
FlexiTaint [49] uses configurable caching for tag checking and
updating rules, transferring control to an exception handler
on cache misses. This approach is adopted by systems like
Harmoni [15], SAFE [7], and PUMP [17], [16], which differ
in the context used for tag rule lookup. Increasing context
input improves versatility and enables stronger memory safety
policies but results in significant hardware and runtime over-
head, such as PUMP’s 2.1× area increase. Additionally, these

3

systems often suffer performance penalties from rule cache
misses, especially with complex configurations or multiple
policies, leading to frequent cache misses and reduced perfor-
mance. Another approach uses a co-processor or extra core for
tag checking and updating. FlexCore [14] employs an FPGA
as a programmable co-processor, but it operates slower than
the main processor and can block it when busy. Dover [46]
uses an additional core for tag management, which is more
efficient than FlexCore but doubles hardware resources and
power consumption.

Table II compares the discussed general-purpose tagged
architectures in terms of versatility, efficiency, and overhead
using data from their respective studies. Despite different
platforms and evaluation methods, the table provides a general
performance overview. Most existing designs either lack the
efficiency and compatibility needed for major architectures or
do not support a wide range of protection paradigms. CCTAG
achieves an optimal balance by supporting various defense
mechanisms while remaining simple and elegant, making it
easily integrable into industrial architectures.

III. MOTIVATION AND THREAT MODEL

A. Motivation to Combine Protections

We propose two ways to integrate defensive mechanisms:
horizontal and vertical. Horizontal integration offers clear
advantages of expanding the coverage of more vulnerability
types. Vertical integration enables each layer to be moderately
precise rather than excessively strict, creating opportunities to
balance security gains with various costs, such as hardware
resources, memory overhead, and performance loss.

Highly accurate defense techniques often incur significant
costs. For instance, In-Fat [56] performs bounds checking
at sub-object granularity, resulting in over 50% more CPU
logic and over 20% overhead in memory and performance.
ARM MTE offers a lighter solution but faces intra-object over-
flow issues and cannot prevent pointer forgery. Incorporating
pointer integrity mechanisms can substantially improve overall
security. ARM platform also includes PA, which can provide
pointer integrity. When used in conjunction with MTE, PA
complements its capabilities by addressing gaps in MTE’s
defense. However, the combination remains insufficient. PA
protects against pointer tampering, and MTE enhances object-
level memory security, but data-only attacks that exploit intra-
object buffer overflows can evade both.

Listing 1 shows a crafted vulnerable program that can
not be protected by CFI and MTE-based memory protection.
In function update, the name buffer is copied from the
input name without any length check, which can overwrite
the permissions field. MTE can not prevent this attack
because the permissions field is within the same object
as the name buffer. And because it is not a pointer, PA
can not ensure its integrity either. This example illustrates
the inherent limitation of existing combinations of hardware
features, which can only provide a limited level of defense. So
there is an urgent need for mechanisms integrating different
defense strategies to combat evolving novel attacks.

1 struct Client {
2 char name[8];
3 unsigned long permissions;
4 };
5

6 void update(struct Client *client, char *name)
{

7 // May overwrite permissions
8 strcpy(client->name, name);
9 };

10

11 void serve(struct Client *client) {
12 do {
13 if (has_admin_perm(client.permissions)) {
14 do_admin_stuff();
15 } else {
16 do_user_stuff();
17 }
18 } while (1);
19 }

Listing 1: Motivating Example

B. Threat Model

We assume there are memory safety vulnerabilities (e.g.,
out-of-bounds access, UAF, uninitialized memory, and type
confusion) in victim programs and that adversaries are aware
of CCTAG’s protections. We aim to prevent control flow
hijacking, data-only attacks, and information leakage with the
best effort. Though CCTAG’s design can be used to protect the
kernel, we currently focus on user-space memory safety and
assume a trusted operating system kernel with no vulnerabil-
ities. We also assume the hardware is trusted and free from
vulnerabilities, so side-channel and row-hammer [35] attacks
are beyond the scope of this paper.

IV. SYSTEM DESIGN

In this section, we introduce the high-level design of
CCTAG. We first present our novel policy-centric mask, es-
sential for the system’s configurable and combinable features.
Then, we discuss the detailed design, including the hardware
microarchitecture, supported tag rules, and kernel adaptation.

A. Policy-Centric Mask

In general purpose tagged architectures, though they can
be configured with different tag policies, the underlying tag
storage and part of the hardware logic are shared, which
prevents their coexistence. CCTAG introduces the concept of
policy-centric mask to address this issue. We’ll first give our
motivation and intuitions behind this concept, followed by a
detailed explanation of how it is designed.

1) Co-variation of Tag Bits and Tag Granularity: Different
tag policies necessitate varying levels of memory granularity.
While most tagged architectures operate at word granularity,
particular scenarios may require finer or coarser granularity.
For instance, when implementing Dynamic Information Flow
Tracking (DIFT) policies for taint analysis, byte granularity
is preferable. Conversely, ARM’s Memory Tagging Extension
(MTE) utilizes a 16-byte granularity, which is consistent with
the 16-byte alignment of heap-allocated chunks. Interestingly,
scaling both the number of tag bits and the granularity of
tagging has no impact on memory and data traffic overhead

4

TABLE II: Comparison of CCTAG and other tagged architectures.

Versatile
Configurability

Efficient
Multi-Policy

Support

Efficient
Policy
Switch

Per-page
Configuration

Configurable
Granularity Platform

Hardware
Resource
Overhead

Runtime
Overhead

FlexCore ✓ ✗ ✗ ✗ ✗ LEON3 32.5% 5%-44%

Harmoni ✓ ✗ ✗ ✗ ✗ LEON3 38%-54.9% 1%-8%

lowRISC ✗ ✓ ✓ ✗ ✗ Rocket / /

Dover ✓ ✗ ✗ ✗ ✗ Alpha / /

Pump ✓ ✗ ✗ ✗ ✗ Alpha 110% 10%

CCTAG ✓ ✓ ✓ ✓ ✓ Rocket 6.77%-8.02% 4.71%-7.93%

as long as the memory granularity fits within a cache line. If
ARM MTE were to operate at 32 bytes, it could support an
8-bit tag without incurring additional memory overhead.

Fig. 1: Memory tag partition.

Thus, to support various tag policies, instead of providing a
fixed tag granularity and tag width, the design should provide
a fixed tag ratio and allow tag granularity and width to co-
variate. As illustrated in Figure 1, in a 16-bit tag for the 64-
byte data scenario, we could use 8 bits to tag each of the 32
bytes data, or use 1 bit for each of the 4 bytes data. Such
a feature can be achieved with a mask generated based on
address and access size.

2) Verify then Update: Tagged memory architectures in
defense solutions typically adhere to a universal two-step
process for each executed instruction. The first step involves
optionally validating register and memory tag with some
context. If this verification passes, the system will optionally
update the tag as needed. Different tag policies vary in when
and how they perform validation and updating. For instance,
in DIFT, tags are propagated between registers and memory
during ALU operations and may be checked when executing
a branch instruction. In contrast, ARM MTE checks memory
tags during every load and store operation, while updating only
occurs during specialized instructions.

To integrate multiple tag-based defense mechanisms, one
must apply and combine their tag verification and updating
rules to the same piece of tag. A practical approach to
achieve this integration is through the use of policy masks for
each policy. Provided that these masks are disjoint, different
policies can perform their own partial verification and updating
concurrently without interference.

3) Per-Page Configuration: Different memory ranges ex-
hibit distinct access patterns and, thus, require specialized
tag policies. For instance, applying memory coloring on the

Policy 2
1 bit per 8 B

Apply to All Data

Policy 0
4 bits per 32 B
Apply to Heap

Policy 1
1 bit per 8 B
Apply to Stack

Fig. 2: Distinct policies coexist without interference.

stack can be challenging, as most stack memory accesses are
based on the stack pointer or frame pointer. In contrast, heap
memory is typically accessed through pointers returned by an
allocator, making it more suitable for matching tags in pointers
with memory tags. Furthermore, if two policies are applied to
different memory ranges, they won’t conflict with each other,
even if they share the same tag mask.

4) Design: Based on the above intuitions, we propose a
policy-centric mask design as follows:
• Tag Policy: Each tag policy is configured with a policy
mask, granularity, and rules for tag checking and updating.
• Per-Page Configuration: For each page, a bitmap is used
to indicate which policies should be activated when accessing
that page. If a policy is not activated for the accessing page,
simply generate a mask with all bits set to 0.
• Access Mask: Based on the policy’s granularity and the
memory address accessed, generate a mask to indicate which
subunit of the whole piece of the tag should be checked or
updated. If the policy’s granularity is not the same as the
memory access size, the mask should be generated based on
the larger granularity. Such a design ensures coarser memory
access can perform all finer subunit tag operations.
• Tag Checking and Updating: When memory access occurs,
for each policy, the access mask is generated as described
above, then AND with the policy mask to get the final mask
for partial tag checking and updating.

This design provides two key benefits over configuring how
individual tag bits should operate. First, it allows different tag
policies to work with different granularities and tag bit widths,
which is essential for supporting various defense mechanisms.
Second, it allows policies to be applied to different memory
ranges, maximumly utilizing the available tag bits.

Figure 2 illustrates a scenario where three distinct policies

5

coexist in a program without interference. For instance, policy
0, functioning similarly to MTE, provides heap protection
using 4 bits for every 32 bytes. Policy 1, on the other hand,
is designed to safeguard the stack’s return address, utilizing
a 1-bit tag for every 8 bytes. Since policies 0 and 1 operate
on separate pages, they can share the same tag bits without
conflict. Together, they utilize 8 of the 16 available tag bits,
leaving the remaining 8 bits for policy 2. This final policy can
be universally applied across all data pages.

B. CCTAG Overview

Fig. 3: The overview of CCTAG design.

Figure 3 presents the overview of CCTAG design, which is
comprised of three principal components:
1) Processor Core. This component features tag extensions

and is responsible for enforcing tag rules during execution.
It ensures that all memory and operations comply with
the current tag policies, integrating hardware-level security
directly into the processor’s operational framework.

2) Operating System. This layer offers services to configure
and manage different tag policies, facilitating dynamic
security policy adjustments based on application needs.

3) Compilation Infrastructure. Including both the compiler
and associated libraries, this infrastructure provides a vari-
ety of tag-based protection frameworks.

For software to leverage the protections provided by
CCTAG, most of the work should be handled by compiler
and runtime library developers. This includes adding compiler
passes to instrument code, implementing explicit tag checks
and updates in memory management and operation functions,
setting up policy configurations, and exporting necessary APIs
or macros. For instance, implementing the combined defense
mechanism discussed in Section VII required approximately
1,000 lines of code added to the LLVM compiler and 400 lines
to the musl libc. In contrast, application developers typically
only need to use the APIs provided by the library and include
specific flags when compiling their programs. However, they
retain the option to implement custom protections if their
application requires additional security measures.

C. Processor Core Support

1) Tag Extension: In the design of CCTAG, tags can be
placed in three distinct locations: as memory tags, register
tags, and tags within pointers.

Central to the CCTAG’s tagged architecture are the mem-
ory tags, which are associated with memory units’ physical
addresses. To accommodate this, each cache line in the data
cache should be extended with tag bits, and a portion of
memory should be reserved for use as the tag’s backing store.
Uniquely, CCTAG’s memory tags do not conform to a fixed
granularity or bit width. Instead, they require a fixed ratio,
allowing for a co-variation between granularity and maximum
bit width. A smaller granularity permits finer control, although
the number of tag bits is limited, necessitating simpler policies.
Conversely, a larger granularity provides more tag bits but may
result in less precise operations. The advanced functionality in
CCTAG is achieved by enabling partial operations of tags and
supporting tag operations at the highest level of granularity,
constrained by the cache line size. When memory access
requires tag operations, CCTAG determines the relevant portion
of the tag based on the configured granularity and the specific
memory address involved. The memory tag ratio in the CCTAG
design is a critical parameter. A higher ratio yields more tag
bits, facilitating support for more finely-grained policies and a
greater number of policies simultaneously. However, this also
necessitates additional hardware resources to store and manage
the tags, and a larger proportion of memory must be reserved
for tags. Register tags require an extension to the register file.
In CCTAG, register tags are primarily utilized for DIFT. In
this context, tags should be transferred between registers and
memory in parallel with the data. As a result, the tag ratio for
register tags is equivalent to that of memory tags.

Tags in pointers are embedded within unused high bits of
the pointers. CCTAG uses these tags as a type of restricted
capability, akin to the capabilities seen in the CHERI [51]
architecture. Although they lack range information due to
limited bits, these tags are capable of performing pattern
matching with memory tags. Their length can be equal to the
largest granularity of memory tag bits, though a reduced size
can still enable matching by repeat. For most applications, an
8-bit tag, which can differentiate up to 256 distinct elements,
is usually sufficient.

In addition to incorporating tag storage, CCTAG introduces
instructions to explicitly manipulate these tags. Instructions for
accessing both register tags and memory tags are mandatory.
For tags embedded within pointers, dedicated instructions
are optional but can reduce the total number of required
operations. For broader applicability, these instructions are
non-privileged and accessible to user-mode libraries. Notably,
such instructions are intended to be used sparingly within
programs, making them difficult for attackers to reuse.

2) Tag Policy: As mentioned earlier, tag policies essentially
dictate when and how to check and update tags. In CCTAG,
such checking and updating is performed to both memory
and register tags. In CCTAG, each memory access includes

6

TABLE III: Supported tag checking & updating rules.
Constant Description

MT_CHECK_NONE On load/store, do not check

MT_CHECK_EQUAL
On load/store, check if
the memory tag matches with tag in pointer

MT_CHECK_UNCOND
On load/store, check if
the memory tag is 1(or 0), subject to MT_CHECK_VAL

MT_CHECK_COND
On load/store, if the tag in pointer is 1, check if
the memory tag is 1 (or 0), subject to L_MT_CHECK_VAL

L_PROP On load, propagate the memory tag to the register tag

S_NONE On store, do not change the memory tag

S_SET On store, set the memory tag to 1

S_UNSET On store, set the memory tag to 0

S_PROP On store, propagate the register tag to the memory tag

the capability to check memory tags. If the check fails, an
exception will take place, and the instruction will not be
committed. The checking can involve validating each tag bit
against predefined values (0 or 1), or ensuring they match
the tag within the pointer. Additionally, CCTAG supports
conditional checks, activated if the corresponding bit in the
pointer’s tag is set to 1. This feature of pointer-tag-activated
conditional checking is critical because, in many tag-based
defense mechanisms, only a subset of memory operations
requires a tag check. An alternative approach could involve
introducing special instructions dedicated to tag checking, as
seen in HDFI. However, given CCTAG’s support for multiple
policies and bit-wise checking, this would necessitate the
creation of a large number of new instructions. Such an
expansion of the instruction set is impractical. Memory tag
updating can only occur during store operations, as memory
reads should not change the program’s security state. Updating
options include leaving the tag unchanged, setting it to 0 or
1, or propagating from a register’s tag.

For register tags, each policy in CCTAG allows configuration
of whether or not to propagate the memory tag to the register
on load instructions, with a default action to write zero.
In DIFT, tags should also be propagated between registers
during ALU calculations. Currently, we support two options
for tag propagation. One option is to OR the tag bits for all
arithmetic instructions, which is suitable for taint tracking. The
other option is to XOR the tag bits only for AND and SUB
instructions, designed for pointer tracking. We do not include
AND instructions because the result of ANDing a pointer and
a value in binaries is unclear—it could be an aligned pointer
or an offset. Such inaccuracies could lead to false negatives in
pointer tracking. However, since pointer alignment operations
are rare in most user programs, this issue is limited to a few
cases. In the future, we plan to add dedicated pointer arithmetic
instructions to address this issue.

The full range of supported policy configuration rules re-
lated to memory tags is enumerated in Table III. Note that
CCTAG allows distinct configuration of tag-checking processes
for load and store operations. We intentionally designed the
rules to be simple to simplify the hardware logic. All checking
rules can ultimately be converted to an optional check of the

memory tag as either 0 or 1. Similarly, all updating rules can be
simplified to write a 0 or 1 optionally. Provided that different
tag policies utilize different masks, the combined result can
be easily obtained by OR-ing the masked values. Despite their
simplicity, as we will demonstrate in Section V, these rules
can support a variety of defense applications.

D. Kernel Support

The kernel is responsible for configuring policies for each
thread and each page, as well as handling tag mismatch
exceptions. Initially, all policies are inactive and applied to no
pages to ensure compatibility. Subsequently, each thread can
modify tag policies and apply protections to pages through
system calls. If any memory access results in a tag mismatch
exception, indicating a violation of tag policy, the kernel must
address this issue, potentially by terminating the process.

E. Security of CCTAG

Since CCTAG is designed to support defense mechanisms,
its own security is a critical concern and must be carefully
examined. Attackers could potentially target CCTAG in two
ways: by exploiting its configurability to disable protection
policies, or by directly manipulating tags to circumvent tag-
checking mechanisms. However, both approaches are exceed-
ingly difficult to execute.

First, attackers cannot bypass protections by altering rules,
as configurations are defined by developers, embedded at
compile-time, and managed by the kernel during runtime.
Since CCTAG relies on a trusted kernel, attackers with non-
privileged access cannot exploit the system’s configurability.
Exploiting the trusted kernel as a confused deputy would
require the attacker to manipulate both the syscall num-
ber—typically hard-coded in the code—and its arguments,
which is a non-trivial task with the present security mecha-
nisms in place. Second, regarding tag manipulation, dedicated
instructions for such operations should be infrequently en-
countered in typical programs. For attackers to successfully
exploit these instructions would necessitate prior hijacking
of control flow—an objective that CCTAG actively seeks to
prevent. Consequently, we regard this attack vector as nearly
impossible.

Another concern is whether the potential for user miscon-
figuration of policies can lead to conflicts. However, since
policies are managed by a trusted kernel, the kernel has
complete awareness of current policies and which memory
areas use specific protections. If incompatible tag rules are
applied to the same tag bits and the same memory pages, the
kernel is responsible for detecting and reporting the error.

Such detection is feasible with a straightforward solution.
For instance, when a syscall is made to apply a new policy to
a memory area, the kernel can verify whether the tag mask of
the new policy overlaps with those of existing applied policies.
However, handling syscalls to modify an existing policy’s tag
mask is slightly more complex. The kernel must examine all
memory areas using the policy to ensure that the updated tag
mask does not overlap with any other policy’s tag mask. In

7

either case, if an overlap is detected, the kernel can reject the
change and report an error.

V. SECURITY CAPABILITIES

With CCTAG’s support to check and update tags on each
instruction, it can support a variety of protection primitives.

Fine-grained Permissions. By unconditionally checking
tags for specific values, CCTAG enables a fine-grained per-
mission system, enforcing read-only, write-only, or no-access
permissions at sub-page levels. For instance, to make certain
data in memory read-only, a policy can be configured to check
that specific tag bits are not set when a write operation is
attempted. Subsequently, tag 1 indicates a read-only status,
and any write attempt will be blocked. These tag bits must first
be cleared to modify the data, ensuring permission changes are
intentional and controlled.

Sensitive Data Flow Isolation. CCTAG supports data flow
isolation similar to HDFI but without dedicated load and store
instructions for sensitive data. Instead, it achieves a similar
effect by setting up a policy to clear tags for all storage
operations, with an additional tag set instruction to mark
sensitive data. The policy also mandates conditional checks
on data loads; before loading sensitive data, the tag bit in the
pointer is set to activate the check. Though it requires a bit
more instructions to work, it allows dataflow to be separated
into multiple domains, providing stronger security guarantees.

Memory Coloring. CCTAG supports a policy that matches
tags within pointers to memory tags, making it readily adapt-
able to any protection schemes based on ARM MTE. However,
unlike ARM MTE’s fixed 4-bit tag per 16-byte scheme,
CCTAG offers greater flexibility by allowing configurable
granularity. This adaptability means that with larger alignment
for memory chunks, CCTAG can accommodate more tag
bits, thereby enhancing its capacity to detect memory safety
violations.

Direct Information Flow Tracking. CCTAG, equipped
with memory and register tags, is well-suited for adapting to
track direct data flows. Compared to existing works, CCTAG
offers the flexibility to support both coarse-grained tracking
with a diverse array of tag types and fine-grained tracking
with a limited variety of tag types. Currently, support for
DIFT in CCTAG’s design is limited compared to existing
works specifically designed for DIFT, as it only tracks direct
information flows.

These primitives enable a variety of existing protection
mechanisms. Memory coloring supports spatial and temporal
memory safety, while fine-grained permissions and sensitive
data flow isolation provide intra-process isolation to protect
pointers and sensitive data. Direct information flow tracking
can also support taint-based security applications. However,
CCTAG prioritizes simplicity and efficiency, which means
some protection methods are excluded. For instance, explicit
bounds checking with base and size info, which offers precise
spatial memory safety, is not included due to the significant
overhead seen in In-Fat and CHERI. Additionally, classic CFI

is not supported, as code pointer integrity generally provides
a stronger defense against control flow hijacking.

VI. IMPLEMENTATION

CCTAG is compatible with any 64-bit system that supports
memory paging. For prototype, we implement it using Berke-
ley’s open-source Rocket Chip, which features a simple five-
stage, in-order execution RISC-V CPU, and make necessary
modifications to the Linux kernel, LLVM, and musl libc.

A. Rocket Processor
1) Extend Data with Tag: We expand data storage and

links to include tags in the D-cache, register file, and pipeline
registers. The CPU-D-cache data channel now carries tag bits
matching the cache line tags. We add a tag field in TileLinks
for communication between the data cache, system bus, and
memory bus, and implement a TBI (Top Bits Ignore) feature in
RISC-V to disregard bits 55-48 reserved for tags during pointer
dereferencing. Since 64-bit DDR is common, we allocate
separate memory for tag storage, requiring an extra access
for each DDR operation. To manage this, we introduce a
TileLink module called the data tagger to handle tag retrieval
and updates.

2) Tag Policy Configuration: Tag policy configuration is
supported by adding custom supervisor CSRs for each policy,
specifying tag check/update rules, granularity, and tag masks.
To apply policies at the page level, each TLB entry in the
data cache includes a 4-bit bitmap to activate specific policies
as needed. We also modified the page table walking logic to
ensure the bitmap is accurately updated.

3) Extra Instructions: We have introduced new instructions
for manipulating memory tags, register tags, and pointer tags.
For register tags, we provide rtr (read), rtw (write), rts
(set), and rtc (clear). To optimize pointer tag operations, we
added ptw, pts, and ptc. For memory tag manipulation,
we offer two instruction sets based on granularity. The first
set, mtr and mtw, enables efficient tag-setting over large
memory areas. The second set, mtrd, mtwd, mtsd, and
mtcd, operates at word granularity for detailed scenarios.
Additionally, we added ldp and sdp to support operations
like memcpy and memset, allowing load and store operations
with data regardless of memory page propagation settings.

4) Memory Tag Checking and Updating: We implement
partial tag operations using masked operations through a new
tag control logic module, which determines expected tags
and update methods. For each policy, the module calculates
expected and new tag values based on configured functions,
derives a mask from policy granularity and memory access
address, and aggregates the masked required and update tag
values. These mask, tag check, and update values are then
forwarded to the data cache. Our prototype uses a blocking
cache synchronized with the core’s instruction execution to
simplify exception handling. The data cache compares current
tags with required ones under the mask and triggers exceptions
on mismatches. If no issues are found and updates are needed,
it performs masked tag updates. Additionally, we modified the
core to handle new exceptions from tag check mismatches.

8

5) Optimizations: To reduce the increased memory traffic
from tag storage access, we implemented several optimiza-
tions. First, we add a tag valid bit and a tag dirty bit to each
D-cache line, along with an extra bit in the TileLink interface
to indicate if a request requires a tag. This allows the D-
cache to request only data for cache misses that don’t need tag
operations. Additionally, the D-cache writes back only data if
the tag is neither valid nor dirty and skips fetching tags when
all tag bits are written, reducing traffic when tags are rarely
updated or when tagging large memory ranges. Second, we
implement a tag cache for the data tagger. A small tag cache
can cover a large memory range with a high hit rate, reducing
direct DDR accesses for tag operations. Although this adds
hardware complexity and a 2-cycle delay with added buffers
for data path timing, the tag cache significantly lowers average
memory delay.

B. Linux Kernel

Per-thread policy configuration is supported by extend-
ing the thread_struct to store configurations and sav-
ing/restoring policy CSRs during context switches. We add
a system call for threads to set their policies and modified
mprotect and mmap to activate tag policies on relevant
pages. Additionally, the kernel initializes memory tags to zero
for anonymous pages.

For interrupts and system calls, CCTAG uses page-granular
policies with minimal kernel changes. This design prevents
conflicts from user-defined policies during system calls, sim-
plifying memory transfers between kernel and user space.
When the kernel accesses user memory, it follows the same
tag-checking and updating rules as user space. If a tag check
fails, the memory operation is aborted, and an error code is
returned to the user program. Handling interrupts requires
saving both register values and their associated tags. To
achieve this, we introduced new supervisor CSRs to store
register tags during transitions between user and kernel space.
The kernel maintains these CSRs within the trap frame, similar
to regular registers.

C. Ported Defense Application

We then introduce the defense applications we ported to
verify the effectiveness of CCTAG.

1) Return Address Protection: We use CCTAG ’s fine-
grained permissions to protect return addresses, implemented
as a machine function pass added to the LLVM compiler. As
demonstrated in Listing 2, this pass tags return addresses when
saving them to the stack (using mtsd at line 6) and clears the
tags before loading them (using mtcd at line 9). Our policy
makes tagged stack words inaccessible to standard load/store
instructions, ensuring return addresses remain secure and
enforcing strong backward control flow integrity. To ensure
compatibility, we modified musl’s longjmp and libunwind’s
exception handling to clear relevant tags. In longjmp, tags
between the old and new stack pointers are cleared, and in
exception handling, return address tags are cleared during
stack unwinding using dwarf information.

1 1090c: 01 11 addi sp, sp, -32
2 1090e: 06 ec sd ra, 24(sp)
3 10910: 22 e8 sd s0, 16(sp)
4 10912: 00 10 addi s0, sp, 32
5 10914: 09 45 li a0, 2
6 10916: 2b 6c a1 00 mtsd a0, 24(sp)
7 ...
8 10950: 09 45 li a0, 2
9 10952: 2b 78 a1 00 mtcd a0, 24(sp)

10 10956: e2 60 ld ra, 24(sp)
11 10958: 42 64 ld s0, 16(sp)
12 1095a: 05 61 addi sp, sp, 32
13 1095c: 82 80 ret

Listing 2: Return address protection.

1 1241c: 05 46 li a2, 1
2 1241e: 88 e1 sd a0, 0(a1)
3 12420: 2b e0 c5 00 mtsd a2, 0(a1)
4 ...
5 13a9c: 5b 65 14 01 pts a0, s0, 17
6 13aa0: 08 61 ld a0, 0(a0)
7 13aa2: 10 6d ld a2, 24(a0)

Listing 3: Vtable pointer integrity.

2) Code Pointer and Vtable Pointer Integrity: CCTAG can
enforce the pointer integrity in a similar way to HDFI. The
policy uses 1 bit for every 8 bytes, where a store operation
unsets the tag, and a conditional check can be performed
during load. To protect code and vtable pointers, we introduce
another LLVM pass, as detailed in Listing 3. In line 3,
we tag protected pointers with bit 1 after storing them. In
line 5, the pts instruction creates a modified pointer that
activates tag checking before loading. Object initialization
requires additional work. Intrinsic functions such as cmalloc
or memset may not only initialize data to 0 but also set
pointers to NULL. Currently, we assign a tag value of 1 to
objects initialized to zero by these functions, which can lead
to unnecessary tag assignments and extra time overhead. A
precise type analysis could optimize this process.

3) Heap overflow and UAF Mitigation: As CCTAG supports
pointer tag and memory tag matching, it can cover the ability
of ARM MTE. We reference glibc’s tagged memory support
and implement memory coloring in musl’s mallocng. To utilize
tag bits more efficiently, we increase the malloc alignment
to 32 bytes and make additional amendments to ensure its
functionality. The modified allocator can effectively prevent
adjacent heap overflow and mitigate nonadjacent overflow and
Use-After-Free (UAF) vulnerabilities.

4) Dangling Pointer Nullification: Minesweeper[21] holds
freed memory chunks in a quarantine pool until it reaches a
set proportion of the heap, then performs a full memory sweep
to check for pointers referencing these chunks. If no such
pointers exist, the chunks are safely released. CCTAG’s DIFT
allows tracking pointers without false positives, optimizing this
process similarly to Cornucopia [52], [23]. Before returning a
pointer, the allocator tags the register, and this tag propagates
through ALU operations and between registers and memory.
During the sweep, a memory word with a tag is guaranteed to
be a pointer targeting a heap chunk. If the pointer points to a
quarantined chunk, we can nullify it. Furthermore, if a cache

9

line’s DIFT tag is clear, it contains no heap pointers, allowing
us to skip the line and accelerate the sweeping process. After
the sweep, no pointers will be left pointing to quarantined
chunks, allowing them to be safely released.

D. Other Possible Applications

Besides the previously mentioned defenses, CCTAG can
theoretically support a wide range of other defenses and
facilitate analysis and debugging.

1) Intra-object Overflow Detection: CCTAG can detect both
inter and intra object overflows by adding a policy with a
disjoint mask and finer granularity, such as 1-bit tags per 4
bytes. By alternately assigning tags (e.g., 0 and 1) to different
fields within a struct and adjusting pointers before accessing
them, CCTAG can identify adjacent intra-object overflows.

2) Type Confusion Detection: CCTAG can detect and miti-
gate type confusion, common in dynamically-typed languages
and caused by memory safety violations, by assigning unique
tags to different types, initializing these tags at construction,
and tagging pointers before accessing object fields.

3) Memory Watch Points: Without hardware support, mem-
ory watchpoints are slow because GDB must single-step and
check memory after each instruction. On x86, GDB can
efficiently watch up to four bytes using debug registers [24],
which is often insufficient for debugging needs. CCTAG can
use its fine-grained permissions to implement memory watch
points efficiently and without limitations.

4) Taint Analysis: CCTAG’s DIFT primitive enables flexible
taint analysis. Unlike existing tagged architectures, it supports
both fine-grained taint tracking with limited types and coarse-
grained tracking with more types.

VII. EVALUATION

This section evaluates CCTAG with our prototype and ported
defense applications to answer the following questions:
• Lightweight Profile: Is it possible to implement the re-

quired features of CCTAG on hardware in a lightweight
manner?

• Performance Efficiency: How much execution time and
memory overhead does CCTAG incur to the system?

• Integration Efficiency: When multiple defense applications
are integrated, is the overhead still acceptable?

• Security Effectiveness: Does defense mechanisms ported
into CCTAG can accurately prevent attacks?

A. Experimental setup

We evaluated CCTAG by instantiating both the original
and modified RISC-V Rocket Cores using the Rocket Chip
Generator and synthesizing them on an FPGA with Vivado.
The setup includes a blocking D-cache with PLRU replace-
ment policy and an FPU, keeping other settings default. The
prototype features a maximum memory tag granularity of 64
bytes with a 16-bit tag per granule. A 4-way associative tag
cache with 64-byte lines is placed between the broadcast
hub and memory bus; we test configurations with both 8
sets and 32 sets, corresponding to tag cache sizes of 2KB

and 8KB, respectively. Each integer register has a 2-bit tag,
and pointer tags use 8 bits. Finally, the system supports
up to four distinct tag policies. We use LLVM 15.0.7 to
compile the kernel and user mode codes. The kernel is Linux
6.1.62 with default configurations. For the standard library, we
utilize LLVM’s runtime library (compiler-rt, libcxx, libcxxabi,
libunwind) along with musl 1.2.5. The FPGA development
board is the Xilinx Kintex UltraScale (XCKU060), with 4GB
of RAM on board.

B. Hardware Resource Consumption

Table IV presents CCTAG’s overhead of hardware resource
cost in FPGA with the parameter mentioned previously. It
shows a moderate increase in resource utilization, with Look-
Up Tables (LUTs) expanding by approximately 6.77% and
registers (FFs) by around 8.02%. In addition, it utilizes 10
block rams to store tags in both D-cache and the data tagger’s
cache. Importantly, this augmentation had a negligible effect
on the system’s timing. On the Kintex Ultrascale platform, the
original Rocket Core operates at a peak frequency of 125 MHz.
Our CCTAG-enhanced core achieves the same frequency.

We compare CCTAG’s hardware resource overhead with
CHERI and PUMP to highlight its lightweight profile. The
Flute microarchitecture [9] is an open-source, 5-stage in-order
RISC-V CPU from Bluespec, with a complexity similar to that
of the Rocket. Previous work has extended Flute to support
CHERI-RISC-V [12]. We synthesized both versions using
Vivado. The synthesis stage estimated results indicate that
adding CHERI support increases LUTs by 75.8% and FFs by
59.4%. PUMP, while not providing an RTL implementation,
reports an estimated area overhead exceeding 110%, even
though it employs a more complex processor with L2 caches.

These findings demonstrate that CCTAG features low-cost
and lightweight hardware implementation.

C. Performance Overhead

We evaluate the performance of CCTAG enhanced sys-
tem with SPEC CINT2006 and CINT2017 benchmarks. We
include CINT2006 benchmark for two reasons: 1) our de-
velopment board has only 4GB of RAM, which limits us
to running only parts of CINT2017’s reference workload;
2) many existing works also use CINT2006 benchmark for
evaluation, making it easier to compare our results with theirs.

In SPEC CINT2006, benchmark 400.perlbench is
excluded due to compilation issues. And in benchmark
471.omnetpp, we fix a semantic mistake that related to
union in the source code to make it run correctly under
our defense mechanisms. The rest of the benchmarks are
compiled without any source code modifications. Regarding
SPEC CINT2017, we can run only the standard reference
workloads for 620.omnetpp s, 623.xalancbmk s, 625.x264 s,
641.leela s. For 631.deepsjeng s, we disable the BIGMEM
option; otherwise, it would require about 7GB of RAM to
run regardless of the input. Benchmarks 602.gcc s, mcf s,
and 657.xz s experience out-of-memory (OOM) errors when

10

TABLE IV: Hardware resource cost of the baseline and CCTAG when synthesized on an FPGA.
RISC-V Rocket Cores Whole Systems

#LUT % #FF % #BRAM #LUT % #FF % #BRAM Worst Neg Slack (ns)

baseline 34,039 14,939 20 57,298 48,448 115 0.50
CCTAG 36,342 +6.77% 16,137 +8.02% 30 59,616 +4.05% 49,701 +2.59% 125 0.53

running the reference workloads, so we use the train workloads
for these cases instead.

In addition to the baseline experiment on an unmodified
Rocket Chip, we conduct 6 additional experiments on a
CCTAG-enhanced architecture equipped with 2KB tag cache,
under the following scenarios:
• No Protection. Unmodified software running on the
CCTAG-enhanced architecture.

• Return Address Protection. All return addresses are pro-
tected by fine-grained permission (§ VI-C1).

• Code Pointer & Vtable Pointer Protection. Code pointer
and vtable Pointer are protected by sensitive information
isolation (§ VI-C2).

• Heap Protection. Heap chunks are colored to mitigate
overflow and UAF (§ VI-C3).

• Dangling Pointer Sweeping. Use quarantine and track heap
pointers to scan and nullify dangling pointers (§ VI-C4).

• Integrated Protection. The combination of return address
protection, code pointer and vtable pointer protection, heap
protection. Dangling pointer sweeping is not included, as
heap protection through memory coloring already mitigates
dangling pointer issues.
We also tested a CCTAG-enhanced architecture with an 8KB

tag cache to evaluate the impact of tag cache size. Although
larger than the previous setup, the 8KB cache remains small
compared to the Rocket architecture’s 64KB L1 cache.

All benchmarks are compiled with the O2 optimization
and statically linked, with different protection LLVM passes
enabled and linked to the specific protection’s correspond-
ing standard library. Since Rocket is an in-order processor
without an L2 cache, the extra memory access for tags could
significantly impact performance. To mitigate this, we chose
not to enable tagging on heap chunks allocated directly from
mmap, keeping the tag’s working set relatively small. A
similar approach is used in the Scudo allocator [3], which
only tags chunks smaller than 0x10000. Before execution, all
executables and input data of benchmarks are placed on tmpfs,
an in-memory file system, to eliminate performance impacts
from disk operation. The only exception is that the input for
625.x264 s is too large and therefore not transferred to tmpfs.

All benchmarks were completed under all protection scenar-
ios, demonstrating that our processor and kernel modifications
maintain backward compatibility and that our protections have
no false positives. Figures 4 and Figures 5 illustrate the
runtime overhead for each benchmark suite under various
protection settings.

1) Individual Protections: The no-protection scenario in-
curs a runtime overhead of around 1.79% / 1.35% (SPEC
CINT2006 / CINT2017) on average, which arises primarily

from the extra memory access delay introduced by Tilelink
buffer. The return address protection, code pointer and vtable
pointer protection, and heap protection scenarios exhibit an
average runtime overhead of 4.38% / 4.29%, 5.03% / 7.72%,
and 4.72% / 5.74%, respectively. With code pointer and
vtable pointer protection, 464.h264ref exhibit unexpected per-
formance gains, which we tentatively attribute to our modifi-
cations to memory manipulation functions. The performance
gain under integrated protection should be attributed to the
same reason.

The dangling pointer sweeping scenario incurs overhead
at 6.97% / 7.12%. In addition to the extra memory traffic
for tags and the memory sweeping procedure, the overhead
also arises from the quarantine itself, specifically the delayed
memory reuse. As reported in Cornucopia [52], in the worst-
case scenario (471.omnetpp), the delay caused by quarantine
accounts for a third of the total overhead. Compared to
Cornucopia (2.0%) and Minesweeper (5.4%), our evaluation
shows a higher overhead because our single-processor proto-
type cannot perform parallel memory sweeping. However, it
achieves better CPU utilization than Minesweeper (9.6%).

Regarding memory overhead, the 16-bit tag for a 64-byte
data configuration results in 3.125% (1/32) of DRAM being al-
located for tag storage. This overhead is inherent to the tagged
architecture, independent of the software it runs. Additionally,
memory overhead for return address and code/vtable pointer
protection is minimal (under 1%). Heap protection incurs an
average overhead of 5.57% / 5.32%, primarily due to changes
in allocator alignment. Musl’s mallocng allocator uses per-
object headers, which expand significantly with increased
alignment. If an allocator without per-object headers, such
as jemalloc, were used, this memory overhead could be
reduced.

2) Integrated Protection: For integrated protection, the run-
time overhead averages around 6.68% / 10.88%. Since individ-
ual protections share the same tag cache and the overhead for
extra memory access, the overhead of integrated protection is
lower than the sum of the overheads from individual protection
mechanisms (13.98% / 17.32%).

SPEC CINT2017 generally incurs higher runtime overhead
than CINT2006, likely due to the increased complexity, which
expands the tag’s working set and leads to more L1 and tag
cache misses, as well as additional memory accesses for tags.
As Rocket is an in-order, single-issue processor, these memory
delays significantly impact performance. When increasing tag
cache size from 2KB to 8KB, the overhead dropped to 4.71%
/ 7.93%, respectively. We anticipate these overheads could
be further reduced in a more realistic setup with a larger,
multilevel cache and out-of-order execution.

11

40
1.

bz
ip

2

40
3.

gc
c

42
9.

m
cf

44
5.

go
bm

k

45
6.

hm
m

er

45
8.

sje
ng

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
3.

xa
la

nc
bm

k

ge
o

m
ea

n

5

0

5

10

15

20

25

30

Ex
ec

ut
io

n
Ti

m
e

Ov
er

he
ad

s (
%

)

No protection
Return Address Protection
Vtable Pointer & Code Pointer Integrity
Heap Memory Coloring
Dangling Pointer Sweeping
RA + VTP & CP + Heap
RA + VTP & CP + Heap (8KB tag cache)

Fig. 4: Relative runtime overhead of CCTAG on SPEC CINT2006

60
2.

gc
c_

s

60
5.

m
cf

_s

62
0.

om
ne

tp
p_

s

62
3.

xa
la

nc
bm

k_
s

62
5.

x2
64

_s

63
1.

de
ep

sje
ng

_s

64
1.

le
el

a_
s

65
7.

xz
_s

ge
o

m
ea

n

5

0

5

10

15

20

25

30

Ex
ec

ut
io

n
Ti

m
e

Ov
er

he
ad

s (
%

)

No protection
Return Address Protection
Vtable Pointer & Code Pointer Integrity
Heap Memory Coloring
Dangling Pointer Sweeping
RA + VTP & CP + Heap
RA + VTP & CP + Heap (8KB tag cache)

Fig. 5: Relative runtime overhead of CCTAG on SPEC CINT2017

TABLE V: Relative runtime overhead of CCTAG’s integrated
protection, compared to PACTight + MTE, PUMP’s composite
policy, and CHERI’s pure capability.

PACTight + MTE PUMP CHERI CCTAG

401.bzip2 1.5% 2.7% 4.7% 1.4%

403.gcc 10.6% 7.3%

429.mcf 2.3% 9.6% 1.9%

445.gobmk 2.8% 1.1% 26.6% 4.4%

456.hmmer 2.8% 2.1% 2.3% 4.0%

458.sjeng -0.5% 0.4% 19.7% 4.1%

462.libquantum 3.3% 4.7% 2.5%

464.h264ref 2.3% 0.2% 26.7% -7.6%

471.omnetpp 21.6% 54.0% 100.7% 15.3%

473.astar 5.8% 11.4% 7.0% 7.7%

483.xalancbmk 14.5% 86.5% 13.8%

geo mean 5.4% 8.8% 30.5% 4.8%

We compare the performance of CCTAG’s integrated pro-
tection on SPEC CINT2006 with the combination of ARM PA-
based CFI and MTE-based heap protection, PUMP’s compos-
ite policies [16] and CHERI’s pure capability protection [50].
The results are shown in Table V. Since ARM PA and MTE are
roughly orthogonal, we can add their overheads to approximate

the combined overhead. PACTight [30] is the state-of-the-art
solution using ARM PA to achieve control flow integrity.
For ARM MTE, we could not find any evaluation on the
SPEC CINT2006 benchmark suite. Therefore, we use our
heap protection overhead to approximate the MTE overhead.
Because our prototype adopts the same memory tag ratio as
MTE, the overhead should be similar. A test with Google’s
Pixel 8 on Geekbench 6 [48] shows an average overhead of
7.1%, which is close to ours. CCTAG’s integrated protection
incurs an average overhead of 4.71%, similar to the combined
overhead of PACTight and MTE at 5.45%. Nonetheless, our
integrated protection offers stronger security than PACTight.
First, PACTight requires a meta table to track the context
of each pointer’s signature, which can be corrupted by an
attacker. Second, ARM PA’s security relies on the QARMA
encryption algorithm [6]. If QARMA is compromised, ARM
PA’s security will be as well. Lastly, our integrated protection
can safeguard not only pointers but also other sensitive data,
such as secret keys or credentials, which ARM PA cannot
protect. PUMP’s composite policies provide similar security
to ours but with higher overhead. Additionally, PUMP’s inte-
grated protection overhead exceeds the combined overhead of
individual protections [17], making it non-scalable. CHERI’s
pure capability model offers stronger security guarantees but
incurs substantially higher overhead.

In summary, the results show that CCTAG supports com-

12

bined tag policies and multiple protection applications si-
multaneously while maintaining modest runtime and memory
overhead.

D. Security Effectiveness

In this subsection, we assess the effectiveness of defense
mechanisms powered by CCTAG with real-world CVEs and
various exploitation techniques. Test programs are compiled
with integrated protection unless otherwise noted.

1) Real World CVEs Mitigation: The CCTAG-enhanced
protection is capable of mitigating a wide range of CVEs,
rendering them either non-exploitable or significantly harder
to exploit. Table VI summarizes the real-world CVEs we test
on CCTAG.
• Spatial Memory Safety With its memory coloring mech-
anism, CCTAG can deterministically prevent linear buffer
overflows. We test this capability using three cases: a buffer
over-read (CVE-2022-40320), a buffer over-write (CVE-2018-
18557), and a buffer under-write (CVE-2018-8905). In all
three tested programs, a segmentation fault is triggered due
to a tag mismatch as soon as the memory access exceeds
the bounds. For non-linear buffer overflows, we test an out-
of-bound read (CVE-2020-28603) and an out-of-bound write
(CVE-2018-8905). Both cases allow memory access to cross
into another tagged area, resulting in segmentation faults with
a probability of 14/15.
• Temporal Memory Safety In single-threaded programs
where no new memory allocation occurs after the victim
chunk is freed, CCTAG can reliably detect UAF and double-
free vulnerabilities since the freed chunk’s tag is stripped.
We verify this capability using CVE-2021-3518 (UAF) and
CVE-2022-39170 (Double Free). If the freed chunk can be
reallocated, there remains a 14/15 probability of detecting
UAF and double-free cases. We test this scenario with CVE-
2023-45666.
• Use of Uninitialized Memory The use of uninitialized
memory is an instance of undefined behavior that can lead to
serious consequences. For example, leaking an uninitialized
pointer can bypass Address Space Layout Randomization,
while using an uninitialized pointer could result in memory
errors. CCTAG mitigates this type of vulnerability by using
tags to track memory initialization status. To enable this
feature, we introduce a new policy and modify the allocator.
The allocator assigns a tag of 1 to newly allocated memory,
marking it as uninitialized. When a write occurs, the tag is
cleared. Unfortunately, because copying partially initialized
objects is a valid operation, we cannot force all loads to
unconditionally check that the tag is 0 to ensure the memory
has been properly initialized. Therefore, the check should be
conditional on critical operations. We validate this protection
mechanism using CVE-2023-45663, which can load unini-
tialized memory into an image and potentially leak residual
data. With the policy above and a modification to buffer copy
that enables checking, a segmentation fault is triggered when
copying the uninitialized data to the image.

TABLE VI: Effectiveness against real world CVEs.
CVE No. Project Vulnerability Type Effectiveness

CVE-2022-40320 libconfuse Buffer Over Read ✓

CVE-2018-18557 libtiff Buffer Over Write ✓

CVE-2018-8905 libtiff Buffer Under Write ✓

CVE-2021-3518 libxml2 UAF ✓

CVE-2022-39170 libdwarf Double Free ✓

CVE-2020-28603 libcgal Out of Bound Read ⊕

CVE-2018-12900 libtiff Out of Bound Write ⊕

CVE-2023-45666 stb image Double Free ⊕

CVE-2023-45663 stb image Memory Disclosure ⊕

CVE-2018-12900 njs Type Confusion ⊕
✓: complete protection
⊕: probabilistic protection or conditional protection

• Type Confusion As noted previously, type confusion vul-
nerabilities can be detected and mitigated by assigning unique
tags to different data types. Since we have not implemented
this feature as an automated compiler pass, we test it using
CVE-2021-46463 with manual modification. We add code to
tag the promise struct in the constructor and tag the pointer
when it is used as a promise pointer. When other pointer types
are confused as a promise pointer, since the target object is
not tagged, the tag mismatch triggers an exception.

2) Exploitation Prevention: Even if an attacker manages
to bypass the protections against the CVEs discussed in
the previous section, CCTAG provides additional barriers to
exploitation. In this section, we disable the memory coloring
policy and apply various exploitation techniques to evaluate
CCTAG’s resilience.
• Return-Oriented Programming Since the return address
cannot be accessed until the function is about to return, Return-
Oriented Programming (ROP) becomes entirely unfeasible. We
tested these features using CVE-2021-20294, which provides
an Out-of-Bounds Write primitive. When attempting to write
to the return address, the system triggers a segmentation fault.
• Jump-oriented programming Jump-oriented programming
(JOP) attacks rely on chaining gadgets that use indirect jumps
instead of returns. Typically, it requires control of both saved
registers and a code pointer. CCTAG can isolate both code
pointers and saved registers to defend against it. We test
the effectiveness using the example in the original paper [8],
where an intra-object overflow allows an attacker to overwrite
a jmp_buf struct. Without extra modification, integrated
protection can detect the injected code pointer. CCTAG can
also protect the saved registers in a similar way to protecting
the return address. Before setjump returns, set tag bits to
prevent access to the saved registers, and clear the tag at the
start of longjmp.
• COOP and COOPLUS COOP and COOPLUS exploit
legitimate control flow transfers between objects’ virtual calls.
We test with the example provided by COOPLUS [11]. CCTAG
counters the attack by refusing to use the forged vtable pointer

13

in the counterfeit object.
• Data-Only Attacks Even without direct control flow ma-
nipulation, data-only attacks can alter program behavior by
corrupting sensitive data. Testing with the example from [29]
verified that CCTAG effectively safeguards sensitive data from
tampering to defend against such attacks. Specifically, we
protect the g_is_root variable with fine-grained permission
primitive, ensuring only intended writes can update it. Any
unintended overwrite attempt triggers an exception.

The results conclusively demonstrate that the defense mech-
anisms integrated into CCTAG can effectively and accurately
prevent a range of attacks.

VIII. CONCLUSION

Memory safety violations pose a serious threat to real-
world programs. Nonetheless, existing deployable defenses
offer limited protection and are vulnerable to advanced attacks.
To address the challenge of defense integration, we introduce
CCTAG, a configurable and combinable tagged architecture op-
timized for integrating various tag-based defense mechanisms.

We implement the CCTAG prototype based on the RISC-
V architecture and conduct extensive evaluation on an FPGA
development board. Results indicate that CCTAG is a low-cost,
lightweight solution capable of providing a broad range of
protections effectively and efficiently. It incurs approximately
8% hardware overhead, in stark contrast to CHERI’s over 50%
and PUMP’s 110%. The integrated protection demonstrates
satisfactory runtime overhead of 4.71% on SPEC CINT2006
and 7.93% on CINT2017 benchmarks. Experiments with di-
verse real-world CVEs and exploitation techniques further
confirm CCTAG ’s strong security capabilities.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
insightful comments and suggestions that greatly improved
the quality of this paper. We also thank Yangyu Chen for
his open-source repositories, which have greatly facilitated
the development of SoC systems* and hardware function
debugging†. This research was supported, in part, by the
National Natural Science Foundation of China (U24A20337),
National Key R&D Program of China (2021YFB2701000)
and the Joint Research Center for System Security, Tsinghua
University (Institute for Network Sciences and Cyberspace)
- Science City (Guangzhou) Digital Technology Group Co.,
Ltd.

REFERENCES

[1] “Queue hardening enhancements,” https://security.googleblog.com/2019/
05/queue-hardening-enhancements.html, 2019, accessed: 2024-04-25.

[2] “Trends, challenges, and shifts in software vulnerability mitigation,”
2019, accessed: 2024-04-25.

[3] “Strengthening the shield: MTE in memory allocators,” July 2023,
accessed: 2024-07-09. [Online]. Available: https://www.darknavy.org/
blog/strengthening the shield mte in memory allocators/

*https://github.com/cyyself/pblaze soc
†https://github.com/cyyself/soc-simulator

[4] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity principles, implementations, and applications,” ACM Trans.
Inf. Syst. Secur., vol. 13, no. 1, November 2009. [Online]. Available:
https://doi.org/10.1145/1609956.1609960

[5] ARM, “Memory tagging extension,” https://developer.arm.com/-/media/
Arm%20Developer%20Community/PDF/Arm Memory Tagging
Extension Whitepaper.pdf.

[6] R. Avanzi, “The QARMA block cipher family,” 2016, accessed:
2024-07-10. [Online]. Available: https://eprint.iacr.org/2016/444.pdf

[7] A. Azevedo de Amorim, N. Collins, A. DeHon, D. Demange,
C. Hriţcu, D. Pichardie, B. C. Pierce, R. Pollack, and A. Tolmach,
“A verified information-flow architecture,” in Proceedings of the 41st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 165–178. [Online]. Available:
https://doi.org/10.1145/2535838.2535839

[8] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
programming: a new class of code-reuse attack,” in Proceedings of the
6th ACM Symposium on Information, Computer and Communications
Security, ser. ASIACCS ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 30–40. [Online]. Available:
https://doi.org/10.1145/1966913.1966919

[9] Bluespec, Inc., “Flute: RISC-V CPU, simple 5-stage in-order pipeline,
for low-end applications needing MMUs and some performance,” https:
//github.com/bluespec/Flute, 2024, accessed: 2024-10-16.

[10] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R.
Gross, “Control-Flow bending: On the effectiveness of Control-
Flow integrity,” in 24th USENIX Security Symposium (USENIX
Security 15). Washington, D.C.: USENIX Association, August 2015,
pp. 161–176. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/carlini

[11] K. Chen, C. Zhang, T. Yin, X. Chen, and L. Zhao, “VScape:
Assessing and escaping virtual call protections,” in 30th USENIX
Security Symposium (USENIX Security 21). USENIX Association,
August 2021, pp. 1719–1736. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity21/presentation/chen-kaixiang

[12] CTSRD-CHERI, “Flute: A RISV-V CPU with capability enhancements
for research on security extensions,” https://github.com/CTSRD-CHERI/
Flute, 2024, accessed: 2024-10-16.

[13] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: A flexible
information flow architecture for software security,” in Proceedings of
the 34th Annual International Symposium on Computer Architecture,
ser. ISCA ’07. New York, NY, USA: Association for Computing
Machinery, 2007, p. 482–493. [Online]. Available: https://doi.org/10.
1145/1250662.1250722

[14] D. Y. Deng, D. Lo, G. Malysa, S. Schneider, and G. E. Suh, “Flexible
and efficient instruction-grained run-time monitoring using on-chip
reconfigurable fabric,” in 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, 2010, pp. 137–148.

[15] D. Y. Deng and G. E. Suh, “High-performance parallel accelerator for
flexible and efficient run-time monitoring,” in IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN 2012), 2012,
pp. 1–12.

[16] U. Dhawan, C. Hritcu, R. Rubin, N. Vasilakis, S. Chiricescu, J. M.
Smith, T. F. Knight, B. C. Pierce, and A. DeHon, “Architectural
support for software-defined metadata processing,” in Proceedings of
the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
487–502. [Online]. Available: https://doi.org/10.1145/2694344.2694383

[17] U. Dhawan, N. Vasilakis, R. Rubin, S. Chiricescu, J. M. Smith,
T. F. Knight, B. C. Pierce, and A. DeHon, “Pump: A programmable
unit for metadata processing,” in Proceedings of the Third Workshop
on Hardware and Architectural Support for Security and Privacy,
ser. HASP ’14. New York, NY, USA: Association for Computing
Machinery, 2014. [Online]. Available: https://doi.org/10.1145/2611765.
2611773

[18] R. Ding, C. Qian, C. Song, B. Harris, T. Kim, and
W. Lee, “Efficient protection of Path-Sensitive control security,”
in 26th USENIX Security Symposium (USENIX Security 17).
Vancouver, BC: USENIX Association, August 2017, pp.
131–148. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/ding

14

https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://www.darknavy.org/blog/strengthening_the_shield_mte_in_memory_allocators/
https://www.darknavy.org/blog/strengthening_the_shield_mte_in_memory_allocators/
https://github.com/cyyself/pblaze_soc
https://github.com/cyyself/soc-simulator
https://doi.org/10.1145/1609956.1609960
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://eprint.iacr.org/2016/444.pdf
https://doi.org/10.1145/2535838.2535839
https://doi.org/10.1145/1966913.1966919
https://github.com/bluespec/Flute
https://github.com/bluespec/Flute
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-kaixiang
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-kaixiang
https://github.com/CTSRD-CHERI/Flute
https://github.com/CTSRD-CHERI/Flute
https://doi.org/10.1145/1250662.1250722
https://doi.org/10.1145/1250662.1250722
https://doi.org/10.1145/2694344.2694383
https://doi.org/10.1145/2611765.2611773
https://doi.org/10.1145/2611765.2611773
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ding
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ding

[19] G. J. Duck and R. H. Yap, “Heap bounds protection with low fat
pointers,” in Proceedings of the 25th International Conference on
Compiler Construction, 2016, pp. 132–142.

[20] G. J. Duck, R. H. Yap, and L. Cavallaro, “Stack bounds protection with
low fat pointers.” in NDSS, 2017.

[21] M. Erdős, S. Ainsworth, and T. M. Jones, “Minesweeper: a “clean
sweep” for drop-in use-after-free prevention,” in Proceedings of the
27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
212–225. [Online]. Available: https://doi.org/10.1145/3503222.3507712

[22] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi,
and S. Sidiroglou-Douskos, “Control jujutsu: On the weaknesses of fine-
grained control flow integrity,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
901–913. [Online]. Available: https://doi.org/10.1145/2810103.2813646

[23] N. W. Filardo, B. F. Gutstein, J. Woodruff, J. Clarke, P. Rugg, B. Davis,
M. Johnston, R. Norton, D. Chisnall, S. W. Moore, P. G. Neumann,
and R. N. M. Watson, “Cornucopia reloaded: Load barriers for cheri
heap temporal safety,” in Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, ser. ASPLOS ’24. New York, NY, USA:
Association for Computing Machinery, 2024, p. 251–268. [Online].
Available: https://doi.org/10.1145/3620665.3640416

[24] GDB Project, “Internals watchpoints,” n.d., accessed: 2024-07-
09. [Online]. Available: https://sourceware.org/gdb/wiki/Internals%
20Watchpoints

[25] R. T. Gollapudi, G. Yuksek, D. Demicco, M. Cole, G. Kothari, R. Kulka-
rni, X. Zhang, K. Ghose, A. Prakash, and Z. Umrigar, “Control flow and
pointer integrity enforcement in a secure tagged architecture,” in 2023
IEEE Symposium on Security and Privacy (SP), 2023, pp. 2974–2989.

[26] F. Gorter, K. Koning, H. Bos, and C. Giuffrida, “Dangzero: Efficient
use-after-free detection via direct page table access,” in Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 1307–1322. [Online]. Available:
https://doi.org/10.1145/3548606.3560625

[27] F. Gorter, T. Kroes, H. Bos, and C. Giuffrida, “Sticky Tags:
Efficient and deterministic spatial memory error mitigation using
persistent memory tags,” in 2024 IEEE Symposium on Security
and Privacy (SP). Los Alamitos, CA, USA: IEEE Computer
Society, May 2024, pp. 4239–4257. [Online]. Available: https:
//doi.ieeecomputersociety.org/10.1109/SP54263.2024.00263

[28] H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W. R. Harris, T. Kim,
and W. Lee, “Enforcing unique code target property for control-flow
integrity,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 1470–1486.
[Online]. Available: https://doi.org/10.1145/3243734.3243797

[29] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-oriented programming: On the expressiveness of non-control data
attacks,” in 2016 IEEE Symposium on Security and Privacy (SP), 2016,
pp. 969–986.

[30] M. Ismail, A. Quach, C. Jelesnianski, Y. Jang, and C. Min,
“Tightly seal your sensitive pointers with PACTight,” in 31st USENIX
Security Symposium (USENIX Security 22). Boston, MA: USENIX
Association, August 2022, pp. 3717–3734. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity22/presentation/ismail

[31] M. Ismail, J. Yom, C. Jelesnianski, Y. Jang, and C. Min, “VIP: Safeguard
value invariant property for thwarting critical memory corruption
attacks,” in Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 1612–1626.
[Online]. Available: https://doi.org/10.1145/3460120.3485376

[32] S. Jero, N. Burow, B. Ward, R. Skowyra, R. Khazan, H. Shrobe,
and H. Okhravi, “TAG: Tagged architecture guide,” ACM Comput.
Surv., vol. 55, no. 6, December 2022. [Online]. Available: https:
//doi.org/10.1145/3533704

[33] H. Kannan, M. Dalton, and C. Kozyrakis, “Decoupling dynamic infor-
mation flow tracking with a dedicated coprocessor,” in 2009 IEEE/IFIP
International Conference on Dependable Systems & Networks, 2009, pp.
105–114.

[34] M. Khandaker, A. Naser, W. Liu, Z. Wang, Y. Zhou, and Y. Cheng,
“Adaptive call-site sensitive control flow integrity,” in 2019 IEEE
European Symposium on Security and Privacy (EuroS&P), 2019, pp.
95–110.

[35] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing
them: an experimental study of dram disturbance errors,” SIGARCH
Comput. Archit. News, vol. 42, no. 3, p. 361–372, June 2014. [Online].
Available: https://doi.org/10.1145/2678373.2665726

[36] LowRISC Team. (2017) Tag support in the Rocket Core. [Online].
Available: https://lowrisc.org/docs/minion-v0.4/tag core/

[37] D. P. McKee, Y. Giannaris, C. Ortega, H. E. Shrobe, M. Payer,
H. Okhravi, and N. Burow, “Preventing kernel hacks with hakcs.”
in NDSS. The Internet Society, 2022. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/ndss/ndss2022.html#McKeeGOSPOB22

[38] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Softbound:
highly compatible and complete spatial memory safety for c,” SIGPLAN
Not., vol. 44, no. 6, p. 245–258, June 2009. [Online]. Available:
https://doi.org/10.1145/1543135.1542504

[39] S. Park, S. Lee, W. Xu, H. Moon, and T. Kim, “libmpk: Software
abstraction for intel memory protection keys (intel MPK),” in 2019
USENIX Annual Technical Conference (USENIX ATC 19). Renton,
WA: USENIX Association, July 2019, pp. 241–254. [Online]. Available:
https://www.usenix.org/conference/atc19/presentation/park-soyeon

[40] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz, “Counterfeit object-oriented programming: On the difficulty
of preventing code reuse attacks in C++ applications,” in 2015 IEEE
Symposium on Security and Privacy, 2015, pp. 745–762.

[41] V. Shanbhogue, D. Gupta, and R. Sahita, “Security analysis of processor
instruction set architecture for enforcing control-flow integrity,” in
Proceedings of the 8th International Workshop on Hardware and
Architectural Support for Security and Privacy, ser. HASP ’19. New
York, NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3337167.3337175

[42] K. Sinha and S. Sethumadhavan, “Practical memory safety with rest,” in
Proceedings of the 45th Annual International Symposium on Computer
Architecture, ser. ISCA ’18. IEEE Press, 2018, p. 600–611. [Online].
Available: https://doi.org/10.1109/ISCA.2018.00056

[43] C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, and
Y. Paek, “HDFI: Hardware-assisted data-flow isolation,” in 2016 IEEE
Symposium on Security and Privacy (SP), 2016, pp. 1–17.

[44] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen, and
M. Franz, “SoK: Sanitizing for security,” 2019 IEEE Symposium on
Security and Privacy (SP), pp. 1275–1295, 2018. [Online]. Available:
https://api.semanticscholar.org/CorpusID:48364047

[45] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program
execution via dynamic information flow tracking,” SIGARCH Comput.
Archit. News, vol. 32, no. 5, p. 85–96, October 2004. [Online].
Available: https://doi.org/10.1145/1037947.1024404

[46] G. T. Sullivan, A. DeHon, S. Milburn, E. Boling, M. Ciaffi, J. Rosenberg,
and A. Sutherland, “The Dover inherently secure processor,” in 2017
IEEE International Symposium on Technologies for Homeland Security
(HST), 2017, pp. 1–5.

[47] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal war in
memory,” in Proceedings of the 2013 IEEE Symposium on Security
and Privacy, ser. SP ’13. USA: IEEE Computer Society, 2013, p.
48–62. [Online]. Available: https://doi.org/10.1109/SP.2013.13

[48] W. Tan, C. Li, Y. Chen, Y. Li, C. Zhang, and J. Wu, “
ROLoad-PMP: Securing Sensitive Operations for Kernels and Bare-
Metal Firmware ,” IEEE Transactions on Computers, vol. 73,
no. 12, pp. 2722–2733, December 2024. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/TC.2024.3449105

[49] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic, “Flexitaint:
A programmable accelerator for dynamic taint propagation,” in 2008
IEEE 14th International Symposium on High Performance Computer
Architecture, 2008, pp. 173–184.

[50] R. N. M. Watson, J. Clarke, P. Sewell, J. Woodruff, S. W.
Moore, G. Barnes, R. Grisenthwaite, K. Stacer, S. Baranga, and
A. Richardson, “Early performance results from the prototype Morello
microarchitecture,” 2023. [Online]. Available: https://ctsrd-cheri.github.
io/morello-early-performance-results/cover/index.html

[51] R. N. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson,
D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie, S. J. Murdoch,
R. Norton, M. Roe, S. Son, and M. Vadera, “CHERI: A hybrid

15

https://doi.org/10.1145/3503222.3507712
https://doi.org/10.1145/2810103.2813646
https://doi.org/10.1145/3620665.3640416
https://sourceware.org/gdb/wiki/Internals%20Watchpoints
https://sourceware.org/gdb/wiki/Internals%20Watchpoints
https://doi.org/10.1145/3548606.3560625
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00263
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00263
https://doi.org/10.1145/3243734.3243797
https://www.usenix.org/conference/usenixsecurity22/presentation/ismail
https://doi.org/10.1145/3460120.3485376
https://doi.org/10.1145/3533704
https://doi.org/10.1145/3533704
https://doi.org/10.1145/2678373.2665726
https://lowrisc.org/docs/minion-v0.4/tag_core/
http://dblp.uni-trier.de/db/conf/ndss/ndss2022.html#McKeeGOSPOB22
http://dblp.uni-trier.de/db/conf/ndss/ndss2022.html#McKeeGOSPOB22
https://doi.org/10.1145/1543135.1542504
https://www.usenix.org/conference/atc19/presentation/park-soyeon
https://doi.org/10.1145/3337167.3337175
https://doi.org/10.1109/ISCA.2018.00056
https://api.semanticscholar.org/CorpusID:48364047
https://doi.org/10.1145/1037947.1024404
https://doi.org/10.1109/SP.2013.13
https://doi.ieeecomputersociety.org/10.1109/TC.2024.3449105
https://ctsrd-cheri.github.io/morello-early-performance-results/cover/index.html
https://ctsrd-cheri.github.io/morello-early-performance-results/cover/index.html

capability-system architecture for scalable software compartmentaliza-
tion,” in 2015 IEEE Symposium on Security and Privacy, 2015, pp.
20–37.

[52] N. Wesley Filardo, B. F. Gutstein, J. Woodruff, S. Ainsworth, L. Paul-
Trifu, B. Davis, H. Xia, E. Tomasz Napierala, A. Richardson, J. Baldwin,
D. Chisnall, J. Clarke, K. Gudka, A. Joannou, A. Theodore Markettos,
A. Mazzinghi, R. M. Norton, M. Roe, P. Sewell, S. Son, T. M. Jones,
S. W. Moore, P. G. Neumann, and R. N. M. Watson, “Cornucopia:
Temporal safety for CHERI heaps,” in 2020 IEEE Symposium on
Security and Privacy (SP), 2020, pp. 608–625.

[53] B. Wickman, H. Hu, I. Yun, D. Jang, J. Lim, S. Kashyap, and T. Kim,
“Preventing Use-After-Free attacks with fast forward allocation,” in
30th USENIX Security Symposium (USENIX Security 21). USENIX
Association, August 2021, pp. 2453–2470. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity21/presentation/wickman

[54] E. Witchel, J. Rhee, and K. Asanović, “Mondrix: Memory isolation
for linux using mondriaan memory protection,” SIGOPS Oper. Syst.
Rev., vol. 39, no. 5, p. 31–44, October 2005. [Online]. Available:
https://doi.org/10.1145/1095809.1095814

[55] J. Xu, M. Xie, C. Wu, Y. Zhang, Q. Li, X. Huang, Y. Lai, Y. Kang,
W. Wang, Q. Wei, and Z. Wang, “Panic: PAN-assisted intra-process
memory isolation on ARM,” in Proceedings of the 2023 ACM SIGSAC

Conference on Computer and Communications Security, ser. CCS ’23.
New York, NY, USA: Association for Computing Machinery, 2023, p.
919–933. [Online]. Available: https://doi.org/10.1145/3576915.3623206

[56] S. Xu, W. Huang, and D. Lie, “In-fat pointer: hardware-assisted tagged-
pointer spatial memory safety defense with subobject granularity pro-
tection,” in Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2021, pp. 224–240.

[57] H. Ye, S. Liu, Z. Zhang, and H. Hu, “VIPER: Spotting Syscall-Guard
variables for Data-Only attacks,” in 32nd USENIX Security Symposium
(USENIX Security 23). Anaheim, CA: USENIX Association, August
2023, pp. 1397–1414. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity23/presentation/ye

[58] N. Zeldovich, H. Kannan, M. Dalton, and C. Kozyrakis, “Hardware
enforcement of application security policies using tagged memory,”
in Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’08. USA: USENIX Association,
2008, p. 225–240.

[59] M. T. I. Ziad, M. A. Arroyo, E. Manzhosov, R. Piersma, and S. Sethu-
madhavan, “No-FAT: Architectural support for low overhead memory
safety checks,” in ISCA-48: Proceedings of the 48th Annual Interna-
tional Symposium on Computer Architecture, Worldwide Event, 2021.

16

https://www.usenix.org/conference/usenixsecurity21/presentation/wickman
https://www.usenix.org/conference/usenixsecurity21/presentation/wickman
https://doi.org/10.1145/1095809.1095814
https://doi.org/10.1145/3576915.3623206
https://www.usenix.org/conference/usenixsecurity23/presentation/ye
https://www.usenix.org/conference/usenixsecurity23/presentation/ye

	Introduction
	Background & Related Work
	Memory Safety Vulnerabilities
	Tagged Architecture
	Memory Safety Violation Mitigation
	Spatial Memory Safety Enforcement
	Temporal Memory Safety Enforcement
	Control Flow Integrity
	Intra-Process Isolation
	Pointer Integrity
	Dynamic Information Flow Tracking

	Multipurpose Tagged Architecture Designs
	Configurable Tagged Architecture
	Programmable Tagged Architecture

	Motivation and Threat Model
	Motivation to Combine Protections
	Threat Model

	System Design
	Policy-Centric Mask
	Co-variation of Tag Bits and Tag Granularity
	Verify then Update
	Per-Page Configuration
	Design

	CCTAG Overview
	Processor Core Support
	Tag Extension
	Tag Policy

	Kernel Support
	Security of CCTAG

	Security Capabilities
	Implementation
	Rocket Processor
	Extend Data with Tag
	Tag Policy Configuration
	Extra Instructions
	Memory Tag Checking and Updating
	Optimizations

	Linux Kernel
	Ported Defense Application
	Return Address Protection
	Code Pointer and Vtable Pointer Integrity
	Heap overflow and UAF Mitigation
	Dangling Pointer Nullification

	Other Possible Applications
	Intra-object Overflow Detection
	Type Confusion Detection
	Memory Watch Points
	Taint Analysis

	Evaluation
	Experimental setup
	Hardware Resource Consumption
	Performance Overhead
	Individual Protections
	Integrated Protection

	Security Effectiveness
	Real World CVEs Mitigation
	Exploitation Prevention

	Conclusion
	References

