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Abstract—The exploitation of publicly accessible data has led
to escalating concerns regarding data privacy and intellectual
property (IP) breaches in the age of artificial intelligence. To
safeguard both data privacy and IP-related domain knowledge,
efforts have been undertaken to render shared data unlearn-
able for unauthorized models in the wild. Existing methods
apply empirically optimized perturbations to the data in the
hope of disrupting the correlation between the inputs and the
corresponding labels such that the data samples are converted
into Unlearnable Examples (UEs). Nevertheless, the absence of
mechanisms to verify the robustness of UEs against uncertainty
in unauthorized models and their training procedures engenders
several under-explored challenges. First, it is hard to quantify
the unlearnability of UEs against unauthorized adversaries from
different runs of training, leaving the soundness of the defense in
obscurity. Particularly, as a prevailing evaluation metric, empirical
test accuracy faces generalization errors and may not plausibly
represent the quality of UEs. This also leaves room for attackers, as
there is no rigid guarantee of the maximal test accuracy achievable
by attackers. Furthermore, we find that a simple recovery
attack can restore the clean-task performance of the classifiers
trained on UEs by slightly perturbing the learned weights. To
mitigate the aforementioned problems, in this paper, we propose
a mechanism for certifying the so-called (q, η)-Learnability of an
unlearnable dataset via parametric smoothing. A lower certified
(q, η)-Learnability indicates a more robust and effective protection
over the dataset. Concretely, we 1) improve the tightness of certified
(q, η)-Learnability and 2) design Provably Unlearnable Examples
(PUEs) which have reduced (q, η)-Learnability. According to
experimental results, PUEs demonstrate both decreased certified
(q, η)-Learnability and enhanced empirical robustness compared
to existing UEs. Compared to the competitors on classifiers with
uncertainty in parameters, PUEs reduce at most 18.9% of certified
(q, η)-Learnability on ImageNet and 54.4% of the empirical test
accuracy score on CIFAR-100. Our source code is available at
https://github.com/NeuralSec/certified-data-learnability.

I. INTRODUCTION

Data privacy and intellectual property (IP) breaches have
become major concerns in recent legislations and regulations
serving for building responsible Artificial Intelligence (AI),
such as GDPR [1], CCPA [2], the European Union AI Act [3],
and the recent US Executive Order on the Safe, Secure, and
Trustworthy Development and Use of AI [4]. These regulations
have emphasized that consumers have the right to limit the
use and disclosure of data collected from them. Despite the
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Fig. 1: Recovery attacks using a small portion (1%-20%) of
the CIFAR10 training set. Points on the curves trace the clean
testing accuracy of classifiers whose weights are perturbed
away from the poisoned classifier. For each fine-tuned classifier,
the ℓ2 norm of the weight perturbation is capped by η. This
special adversary reveals that current UEs are not robust against
uncertainty in classifier parameters, and their reliability cannot
be guaranteed. Therefore, a mechanism for certifying UE
performance is pivotal.

laws and regulations, technologies for enhancing data privacy
and protecting IP face increasingly severe challenges due to
rapidly evolving machine learning algorithms. Particularly, data
published by individual users on content-sharing social media
platforms is exposed to the threat of domain exploitation
by unauthorized machine learning models. For instance, a
pretrained Stable Diffusion can be fine-tuned on a small set
of paintings to generate new images mimicking the style of
the paintings [5], [6]. As another example, classifiers trained
on publicly accessible data can be used to launch membership
inference attacks exposing confidential personal information [7].
As data becomes the new oil, these threats highlight the
imminent need to implement effective measures for Data
Availability Control (DAC).

As a response, a series of attempts have been made to make
the published data unlearnable. One pragmatic and effective
way to protect image datasets against unauthorized classifiers
is to perturb the pixels before publishing the images. Existing
defenses apply anti-learning perturbations that minimize the
training loss with respect to either correct or target labels
on the input data. [8], [9]. In lieu of learning functions
mapping the input data to the corresponding labels, the defenses
encourage unauthorized models to learn a strong correlation
(i.e., a shortcut) between the perturbations and the labels. As a
consequence, despite that the trained models can achieve low
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error rates on the data with the anti-learning perturbations, they
generalize poorly to datasets from the clean data distribution.
This line of work is also referred to as Perturbative Availability
Poison (PAP) in the literature [10], [11], [8], [12].

Motivation. Existing PAP methods empirically search for
the anti-learning perturbations based on a finite amount of
training samples and models [9], [13], [11], [8], [14], [15],
[16]. Henceforth, the generated perturbations may face the
cross-model generalization problem brought by unknown illegal
classifiers in the wild. Moreover, there is no rigid guarantee
of the maximally attainable learning results for adversaries
on the UEs. The widely adopted empirical test accuracy, as a
metric, is prone to uncertainty in the data, model selection, and
training process. This indicates that empirical test accuracy is
not a sound metric for evaluating UEs. UEs resulting in lower
test accuracy scores on certain models and datasets do not
necessarily evince their superiority over others and may leave
room for attackers. Let us consider a type of recovery attack
in which an attacker can fine-tune a poisoned classifier on a
small set of clean data to restore its clean-task performance
without significantly changing the classifier parameters. This
kind of adversary may exist in federated learning systems based
on weight aggregation with Byzantine robustness [17]. For
example, an adversarial client training its unauthorized classifier
on UEs can perform a recovery attack and upload the parameters
to the server without alerting outlier detectors, rendering the
global classifier to violate corresponding DAC protocols. We
randomly collect 1%-20% of CIFAR10 training samples to
fine-tune a ResNet-18 trained on the error-minimizing PAP [9].
We use projected stochastic gradient descent (SGD) in the fine-
tuning so the ℓ2 norm of the weight differences is restricted
within a small range. Surprisingly, we find that the accuracy can
be restored from around 0.1 to near 0.8 by seemingly minuscule
modifications in the weights using 5%-10% of CIFAR10
samples (Figure 1). This result reflects that the robustness of
UEs towards weight perturbations and uncertainties in classifier
parameters is neither rigidly gauged nor carefully pondered.

The aforementioned problems hinder the assessment of UEs
and constitute additional risks to be exploited by deliberate
adaptive adversaries. Therefore, it is crucial to develop a
mechanism to ensure that a set of UEs can take effect without
being ravaged by the problems of training stochasticity, cross-
model generalization, and adaptive attackers. The mechanism
can resort to finding classifiers that can achieve the best possible
clean-task accuracy when trained on UEs and restraining this
best-case accuracy. We are thus motivated to ask the question:

Is it possible to go beyond heuristics and provide an upper
bound towards the clean-data performance of undivulged
models trained on a set of UEs?

The question is daunting to be thoroughly answered. However,
we will show in this work that, it is possible to derive a clean-
data accuracy upper bound guaranteed with a high probability,
for unauthorized classifiers under some constraints. On the other
hand, this threshold also serves as an upper bound of clean
accuracy when facing the recovery attack. It can henceforth be
a tool for gauging the effectiveness and robustness of UEs.

Our method and its broader impact. In this paper, we
propose a mechanism for certifying the best clean-task accuracy

retained by unauthorized classifiers trained on a set of UEs.
The mechanism can be applied to any empirically made UEs to
derive a certified (q, η)-Learnability. (q, η)-Learnability gauges
the effectiveness and robustness of UEs towards arbitrary
classifiers sampled from a certain parameter space. Note that
the certification pertains to the parameter space rather than the
input space, alleviating the need for knowledge of the training
strategies or learning algorithms used by the attackers. We also
proposed certifying a generalization (q, η)-Learnability, which
removes the requirement for holding private test datasets in the
evaluation of UEs. To make the certification more sound, the
paper also proposes a simple method to expand the certifiable
parameter space and reduce the gap between the certified
(q, η)-Learnability and the True Learnability (see Definition 1).
Moreover, we produce Provably Unlearnable Examples (PUEs)
which achieve lower (q, η)-Learnability scores and be more
robust than existing PAP methods.

The (q, η)-Learnability metric serves as a rigid guarantee of
data availability for machine learning models. This guarantee
can operate in parallel with other techniques, such as deep
watermarking [18] and differential privacy (DP) [19], to deter
illegal data exploitation and support responsible AI regulations
and standards (e.g., CCPA, GDPR, and Australia’s AI Safety
Standard [20]). Instead of post-event ownership auditing
through watermarks and protection of sensitive information with
DP, (q, η)-Learnability proactively controls access to domain
knowledge through data, safeguarding both data IP and privacy.
The contributions of this paper are as follows:

• We formally derive the certified (q, η)-Learnability of an
unlearnable dataset. The certified (q, η)-Learnability serves
as a guaranteed upper bound of the clean test accuracy
that can be achieved by particular classifiers trained on the
unlearnable dataset. To the best of our knowledge, this is
the first attempt towards guaranteed effectiveness of PAPs.
• As the first step towards DAC with provable guarantees,

we propose a simple method to narrow the gap between
certified (q, η)-Learnability and True Learnability. Moreover,
we design PUEs that can suppress the certified (q, η)-
Learnability.
• PUEs not only achieved lower certified (q, η)-Learnability

but also demonstrated better empirical robustness in scenarios
where unauthorized classifiers cannot be certified.
• Our source code provides a tool for measuring the provable

effectiveness of UEs and producing PUEs.

II. BACKGROUND

In this section, we briefly introduce the concepts of UEs
and smoothed classifiers.

A. Unlearnable Examples

Let a set Ds := {(xi, yi)|(xi, yi) ∈ X ×Y}Ni=1 be a source
dataset containing N labeled samples. X and Y are the I-
dimensional input space and the K-dimensional label space,
respectively. X ×Y is the Cartesian product of the two spaces.
The aim of the adversary is to train a classifier f : X ⊂ RI →
Y ⊂ RK by empirically minimizing a training loss L(·) over
Ds as follows:

min
f

1

N

N∑
i=1

L(f(xi), yi). (1)
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Suppose D is the clean distribution from which Ds is drawn.
The trained f is supposed to perform well on samples from
D. Once D is a data distribution from which other datasets
with privacy concerns or registered intellectual property are
drawn, it is crucial to make sure Ds cannot be exploited
in the unauthorized training of models which will later be
applied to infer other private datasets drawn from D. Instead of
maximizing the training error, the common goal of the defender
is to find a perturbation δ ∈ X , such that

min
f̂

E(x,y)∼Ds
min
δ
L(f̂(x+ δ), y)

s.t. ∥δ∥p ≤ ξ,
(2)

where f̂ is a surrogate model used for searching δ and ∥δ∥p is
the ℓp-norm of the perturbation bounded by ξ. The ℓ∞ norm
is commonly used in the previous literature. Such x+ δ is a
UE and δ is the PAP noise inserting a noise-label shortcut
to minimize the training loss. However, since the loss is
empirically calculated, there is no rigid guarantee on the
performance of the noise δ.

B. Smoothed Classifiers

A smoothed classifier g(x) predicts by returning the
majority vote of predictions from a K-way base classifier
fθ : RI → {1, 2, ...,K} parameterized by θ over random
noises applied to either the input x ∈ RI or the parameters
during the test time. That is,

g(x) = argmax
y∈Y

Pr
ϵ∼π(x)

[fθ(x+ ϵ) = y], or

g(x) = argmax
y∈Y

Pr
ϵ∼π(θ)

[fθ+ϵ(x) = y].
(3)

π(x) is the distribution of the noise (i.e., smoothing distribution)
centered at x (or θ) and y is a predicted label from the label
space Y . The output from the smoothed classifier can be
statistically bounded to offer certifiable robustness with respect
to changes in the smoothed variables. Cohen et al. derived
a tight ℓ2 robustness bound by smoothing classifier inputs
with noise drawn from Gaussian distributions and certifying
based on Neyman-Pearson Lemma [21]. Subsequently, the
certified robustness is extended to various smoothing noises
and certification frameworks [22], [23], [24], [25], [26], [27],
[28], [29], [30]. Such smoothed classifier g(x) can also be
extended to randomized learning functions which in addition
smooth the training dataset Ds, resulting

g(Ds, x) = argmax
y∈Y

Pr
D̂s∼π(Ds)

[fθ(D̂s, x) = y]. (4)

Once we get the background information of UEs and random-
ized classifiers, we will move to define the research problem
and the threat model of this paper in the following section.

III. PROBLEM STATEMENT

Problem definition. Inheriting from the previous definitions,
consider a to-be-published dataset Ds (e.g., portraits to be
posted on Facebook) with N data points. Additionally, there
is a private dataset D (e.g., patient records with photos in a
hospital database) sharing the same distribution D with Ds. The
defender’s goal is to render Ds unlearnable against unknown
learning algorithms and classifiers (e.g., deep neural networks)

by perturbing it into Ds ⊕ δ, where δ is the anti-learning
perturbation and ⊕ is the perturbing operator. We specifically
consider additive perturbations δ = {δi}|Ds|

i=1 applied to each
sample of Ds in this paper. Thus, ⊕ represents the element-wise
addition. “Unlearnable” here means that a classifier trained
on Ds ⊕ δ would exhibit a high classification error on D.
Furthermore, the defender wants to verify how robust Ds⊕ δ is
by having an upper bound on the accuracy that can be achieved
by unknown classifiers stochastically trained on Ds ⊕ δ. More
profoundly, the defender wants to determine the best possible
accuracy that classifiers trained on Ds ⊕ δ can achieve on D.
The defender does not desire an elevated best possible accuracy
since it implies Ds ⊕ δ is exploitable. Therefore, the research
goals are as follows.

• A certification mechanism should be developed to verify
the maximum accuracy achievable by any classifiers and
learning algorithms on D through training on Ds ⊕ δ.

• A better noise δ should be designed such that Ds ⊕ δ
can effectively decrease the verified best accuracy.

To better formulate the problem, we first formally define
the True Learnability of Ds ⊕ δ for classification tasks.

Definition 1 (True Learnability of a perturbed dataset). Given
a δ-perturbed dataset Ds ⊕ δ, let fθ̂ be a hypothesis with
parameters θ̂ ∈ Rd selected by arbitrary learning algorithm
Γ(·), such that θ̂ = Γ(Ds ⊕ δ). D and Ds come from the same
data distribution D. Suppose there are sample pairs (x, y) ∈ D.
The learnability of the perturbed training dataset Ds ⊕ δ is

L(Θ;Ds ⊕ δ) :=max
θ̂∈Θ

E(x,y)∼D1[fθ̂(x) = y], (5)

where 1[·] is the indicator function and Θ is the space of all
possible parameters that can be selected.

Herein, θ̂ can be viewed as a function of Ds⊕δ. In other words,
L(Θ;Ds ⊕ δ) is the best possible testing accuracy a classifier
from the space Θ can achieve when evaluated on D. Note that
the learnability defined here differs from PAC learnability [31].
L(·) deterministically reflects the lowest generalization error any
classifier in the space Θ can achieve. A smaller L(·) indicates
that the learned classifier is harder to be generalized to the
test-time dataset. After having the definition of learnability, we
can formulate the aim of an anti-learning perturbation δ as
follows.

min
δ

L(Θ;Ds ⊕ δ),

s.t. ∀ δi ∈ δ, ∥δi∥p ≤ ξ.
(6)

Herein, ξ is a fixed ℓp perturbation budget for noises added to
each data point. An optimal anti-learning noise is the minimizer
of the learnability.

In order to find the δ, we need to first compute L(Θ;Ds⊕δ).
Solving L(Θ;Ds ⊕ δ) in an unknown space Θ is intractable.
However, we will show that a learnability score guaranteed
with a high probability can be found if we restrict the space
of possible hypothesis by only considering Θ̂ := {θ | θ ∼
N (θ̂ + υ, σ2I), ∥υ∥ ≤ η}, where ∥ · ∥ is the ℓ2 norm, υ is a
parametric perturbation, η and σ are two constants, and θ̂ is
a set of surrogate parameters selected by the defender based
on the dataset Ds ⊕ δ to form the hypothesis fθ̂. If a set of
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Fig. 2: An overview of the certification and PUE crafting framework. A dataset Ds is perturbed into Ds ⊕ δ before being released
to the public. The (q, η)-Learnability of Ds ⊕ δ can be certified to ensure that any unauthorized classifier trained on Ds ⊕ δ has a
provable upper bound on its performance on any test set D̂ (or D) in the same domain with Ds ⊕ δ, as long as the parameters of
the unauthorized classifier are within a certified parameter set. Generalization learnability can be computed using Hoeffding’s
bound, and PAC-Bayesian theory suggests that a certification surrogate with low prediction variance under large parametric noise
can improve certified learnability. Optimized PUEs lead to lower (q, η)-Learnability.

PAP noises can reduce such a learnability score, they could
achieve theoretically more robust protection of datasets against
the uncertainty in classifiers and learning algorithms.

In essence, the problem to be addressed in this paper
is two-fold. First, we certify the learnability of a dataset
towards arbitrary classifiers trained on it as long as the trained
parameters are from Θ̂. This setting non-trivially appears in data
exploitation cases through model retraining, transfer learning,
model fine-tuning, and recovery attacks. Second, we strive to
reduce the learnability of the protected dataset by designing a
proper δ. We will present in the following part a threat model
of the paper.

Threat model. The producer of UEs (i.e., defender) has white-
box access to a surrogate classifier fθ̂ and a protectee dataset
Ds ∼ D. Additionally, either a clean test dataset D or the
domain D of Ds is revealed to the defender. Note that it is not
necessary for the defender to access D if it is privately held
by a third party. Instead, the defender can sample a dataset
D̂ from D to compute a certified generalization learnability
which serves as a generalization upper bound on the certified
learnability. The defender can alter the parameters of fθ̂ and
modify Ds at will. The defender crafts an unlearnable version
Ds ⊕ δ of Ds and releases the unlearnable dataset rather than
the unprotected one to the public. Besides, defenders can either
train surrogate classifiers on generated Ds⊕δ or simultaneously
with δ on Ds. However, the defender has zero access to any
potential unauthorized classifiers and is unaware of the training
procedure for the unauthorized classifiers.

As the adversaries in our threat model, the unauthorized
classifiers can obtain labeled Ds ⊕ δ as their training dataset.
The trained unauthorized classifiers will be used to infer the
labels of samples in D. Importantly, the exact anti-learning
perturbation δ is hidden from the adversaries. Our defense
tackles three levels of adversaries.

• General Adversary (GA): Unauthorized classifier whose
trained parameters are in Rd, where d is the parameter size.

• Certifiable Adversary (CA): Unauthorized classifier whose
trained parameters fall in a certified parameter set Θ̂.

• Special Adversary (SA): Recovery attacker which changes
the model parameters within an ℓ2 norm bound.

Among these adversaries, GA encompasses almost all attackers

in real-world scenarios. CA denotes the subset of attackers
from GA that can be provably mitigated by the defense. SA
serves as a tool to gauge the robustness of different UEs against
GAs who cannot be provably invalidated, as well as to assess
the tightness of our defense against CAs. The defender aims
to expand Θ̂ to improve the proportion of CAs within GAs.
We will introduce in Section VI a method for augmenting Θ̂.

IV. OVERVIEW

We will provide a brief overview over the crux of learnabil-
ity certification and PUE generation in this section. Our first
desideratum is measuring how well an unlearnable dataset can
sabotage those illegal but unknown classifiers by certifying a
possibly best learning outcome on this dataset. In a nutshell,
a surrogate classifier selected based on the unlearnable set
Ds ⊕ δ can be viewed as a hypothesis of the data distribution.
Intuitively, if the distribution of the unlearnable set is highly
disjoint from that of clean data, the classifier would demonstrate
a significant generalization error on the clean test dataset. In
contrast, if the unlearnable set is suboptimal, the classifier
might still be able to generalize to the clean dataset and
thus induce a lower generalization error. Herein, we convert
the certification problem to certifying a surrogate classifier
appropriately modeling the distribution of UEs.

Second, we design a simple method for selecting the
surrogate classifier used in the certification. Importantly, we
emphasize that the two entities, the UE and the surrogate
classifier, serve different objectives. On the side of UEs, their
purpose is upfront — to minimize the learnability by lowering
the clean testing accuracy of any classifiers trained on them.
Instead, the surrogate should 1) resemble the distributional
characteristics of UEs and 2) have a high chance of discovering
better clean test accuracy when its parameters are perturbed.
In lieu of directly using classifiers trained by UEs as surrogates,
we design a better way to construct surrogates meeting these
two criteria.

In the following sections, we divide our method into two
major parts. In the first part, we will introduce how to certify
the learnability of a dataset through a surrogate classifier.
Subsequently, we will show how PAP noises and a surrogate can
be constructed to make more sound learnability certification in
the UE regime. At the same time, an overview of our framework
is summarized in Figure 2.
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V. LEARNABILITY CERTIFICATION

In this section, we will first describe the learnability
certification process in detail. Certifying the learnability of
a dataset over an unknown space of classifiers is a daunting
task. However, it is possible to certify the learnability of a
dataset towards classifiers whose parameters are in a particular
set.

A. Quantile Parametric Smoothing

To effectively analyze classifiers in the space Θ, we first
introduce a Quantile Parametric Smoothing (QPS) function in
the following definition.

Definition 2 (Quantile Parametric Smoothing function). Given
a dataset D from the space X×Y , an D-parameterized function
AD : Θ → [0, 1] with an input θ ∈ Θ, and a parametric
smoothing noise ϵ ∼ N (0, σ2I) under a standard deviation of
σ, a Quantile Parametric Smoothing function hq(θ) is defined
as:

hq(θ) = inf {t | Pr
ϵ
[AD(θ + ϵ) ≤ t] ≥ q}, (7)

where q ∈ [0, 1] is a probability.

The definition connects to percentile smoothing used in certified
robustness [32], [33]. In lieu of randomizing the inputs of
classifiers, QPS takes the parameters (i.e., weights) of classifiers
as its variables and randomizes the parameters.

The QPS function has several nice properties for the task
of learnability certification. First, it returns the accuracy score
in the q-th quantile of the samples/population. By tuning the
value q, QPS can naturally suit the need for computing the
possibly highest accuracy that can be obtained by hypotheses,
such that the learnability can be approximated. Second, QPS
considers all hypotheses whose parameters are defined on the
support of the Gaussian smoothing distribution (i.e., the set
Rd of real numbers, where d is the dimensionality of θ). This
set of hypotheses covers almost all real-world classifiers with
parameters as real numbers. However, most of the Gaussian
probability mass concentrates around the mean, making it nearly
impossible in practice to sample parameters far away from θ.
We are thus motivated to consider the QPS function with varying
mean values such that parameters from a more extensive space
can be sampled.

B. Certified Learnability

To apply the QPS function to obtain a learnability certi-
fication, we explicitly define AD as a performance metric in
this section. Without loss of generality, such AD(θ̂) can be the
top-1 accuracy function of a classifier fθ̂ mapping its input x
to a label y, where (x, y) ∈ D. That is

AD(θ̂) := E(x,y)∼D1[fθ̂(x) = y]. (8)

Note that the parameters of the classifier are the variables of
AD. Subsequently, we can obtain hq(θ̂) by substituting such
AD(θ̂) into Equation 7. An empirical value of hq(θ̂) can be
approximately calculated by evaluating AD(θ̂+ϵ) multiple times
given sampled ϵ values. Suppose fθ̂ is a surrogate classifier
trained on an unlearnable dataset Ds ⊕ δ by the defender,
hq(θ̂) indicates that, with probability at least q, there exists an

Test accuracy upper bound  
in the -th quantile 

Test accuracy  
in the -th quantile Known

Test 
Accuracy

Classifier Parameter

Unkown

True Learnability

Empirical Clean Test Accuracy

Certified -Learnability

Tightness Gap

Fig. 3: An illustration of the certified (q, η)-Learnability.

accuracy upper bound for all classifiers fθ̂+ϵ whose parameters
are from the support of N (θ̂, σ2I).

We further move to the case in which the parameters are
sampled from Gaussians with varying means. Specifically, we
sample parameters from N (θ̂+υ, σ2I), where ∥υ∥ ≤ η. When
η gets larger, we become more capable of sampling classifiers
with diverse parameters. Given a sufficiently large η, if there
still exists an upper bound of the accuracy scores, then this
upper bound can be used as a certificate of the best clean
test accuracy. In other words, we want to certify an upper
bound of hq(θ̂ + υ), ∀υ : ∥υ∥ ≤ η. Such upper bound is
called the certified (q, η)-Learnability of Ds⊕δ. η is a certified
parametric radius of mean describing the parameter space in
which (q, η)-Learnability of Ds ⊕ δ can be guaranteed with
probability at least q. For simplicity, we refer to η as the certified
parametric radius in the following paper. To this point, the
task of learnability certification becomes clear.

Next, we aim to construct such certified (q, η)-Learnability
with a closed form so that it can be computed. Importantly,
the certification of (q, η)-Learnability is provided through the
following theorem:

Theorem 1 (Perturbation bound on QPS). Let Γ : X × Y →
θ̂ ∈ Θ be a learning function selecting θ̂ from the parameter
space Θ based on a dataset defined in X ×Y . Given an target
dataset D and a quantile smoothed function hq(θ̂) centered at
a Gaussian N (θ̂, σ2I), then there exists an upper bound for
hq(θ̂ + υ). Specifically,

hq(θ̂ + υ) ≤ inf {t | Pr
ϵ
[AD(θ̂ + ϵ) ≤ t] ≥ q}, ∀ ∥υ∥ ≤ η, (9)

where q := Φ(Φ−1(q) + η
σ ). Φ(·) is the standard Gaussian

CDF and Φ−1(·) is the inverse of the CDF. ∥υ∥ is the ℓ2 norm
of the parameter shift υ from θ̂.

We defer the proof of Theorem 1 to Appendix B. The theorem
states that the return of the QPS function is bounded with
respect to the perturbation υ in its input. Recall that hq(θ̂+υ) is
actually an upper bound of the clean test accuracy for classifiers
whose parameters θ ∼ N (θ̂ + υ, σ2I), with probability at
least q. Therefore, the right-hand side of Inequality 9 actually
guarantees the best possible clean test accuracy for classifiers
with parameters from the subspace Θ̂ := {θ | θ ∼ N (θ̂ +
υ, σ2I), ∥υ∥ ≤ η}. We name such Θ̂ as a certified parameter
set. Though it seems that Θ̂ covers all parameters in Rd, we
only consider those θ having a sufficiently large probability of
being sampled.
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Based on Theorem 1, we have the formal definition of
(q, η)-Learnability as follows.

Definition 3 ((q, η)-Learnability). Suppose a learning function
Γ selects θ̂ based on an unlearnable dataset Ds ⊕ δ. The
certified (q, η)-Learnability of Ds ⊕ δ is

l(q,η)(Θ̂;Ds ⊕ δ) = inf {t|Pr
ϵ
[AD(θ̂ + ϵ) ≤ t] ≥ q}, (10)

where q = Φ(Φ−1(q)+ η
σ ). For any θ∗ drawn from the certified

parameter set Θ̂ := {θ | θ ∼ N (θ̂+ υ, σ2I), ∥υ∥ ≤ η}, there
is AD(θ

∗) ≤ l(q,η)(Θ̂;Ds ⊕ δ) with probability no less than q.

It should be noted that, though Ds ⊕ δ does not explicitly
appear in the function, θ̂ is selected by a learning function
θ̂ = Γ(Ds ⊕ δ) given Ds ⊕ δ. Henceforth, θ̂ can be viewed as
a function of Ds ⊕ δ in this case. In practice, we can sample
AD(θ̂ + ϵ) using Monte Carlo and obtain the accuracy in the
empirical q-th quantile. Next, a Binomial confidence interval
upper bound of the accuracy can be adopted as l(q,η)(Θ̂;Ds⊕δ)
with a confidence level of 1− α. Detailed steps of computing
the confidence interval upper bound are in Appendix A.

Since l(q,η)(Θ̂;Ds⊕δ) is an upper bound only for accuracy
obtained within Θ̂, there may exist a gap between such
l(q,η)(Θ̂;Ds ⊕ δ) and the True Learnability. Specifically,

△l = L(Θ;Ds ⊕ δ)− l(q,η)(Θ̂;Ds ⊕ δ). (11)

The gap △l ∈ [0, 1] represents the tightness of the certified
(q, η)-Learnability. In order to make sense of using the certified
(q, η)-Learnability as a measurement for UEs, the tightness
gap should be minimized. Considering the concentration of
the Gaussian probability mass, Θ̂ with a large η can have
higher probability measures at locations far from θ̂, which
helps reduce the tightness gap. A sketch describing the certified
(q, η)-Learnability of a one-parameter classifier is illustrated in
Figure 3. We will introduce the practical certification algorithm
in the next section.

C. Certification Algorithm

We summarize the certification algorithm in this section.
We first train a surrogate classifier fθ̂ of which the parameters
θ̂ will be randomized for n times over a Gaussian distribution
to calculate the QPS function. For each randomization, the
resulting classifier with parameters θ̂ + ϵ is evaluated on the
clean test set D such that AD(θ̂ + ϵ) is obtained. Next, q
can be theoretically computed based on Theorem 1. Finally,
we compute the confidence interval of the AD(θ̂ + ϵ) in the
q-th quantile to obtain the upper bound of the interval as
l(q,η)(Θ̂;Ds ⊕ δ). The detailed certification process is depicted
in Algorithm 1 and Algorithm 2. In addition, a meticulous
description is in Appendix A.

There are a few important things to be noticed. A higher
q is recommended for obtaining a learnability upper bound
with high probability, and a larger η helps establish a more
inclusive certified parameter set. In practice, both parameters
can be optimized through grid search. Moreover, the σ of the
parametric smoothing noise should be selected with caution.
There is an intuition behind randomizing the surrogate weights
and computing the QPS function — some of the randomized

Algorithm 1: Quantile Upper Bound
func QUPPERBOUND
Input: noise draws n, α, σ, η, quantile q.
Output: Index of the value in the q-th quantile
q ← Φ(Φ−1(q) + η

σ
)

k, k ← ⌈n ∗ q⌉, n
k∗ ← 0
for k ∈ {k, k + 1, ..., k} do

if BINOMIAL(n, k, q) > 1− α then
k∗ ← k

else
Continue

if k∗ ̸= 0 then
Output: k∗

else
ABSTAIN

func BINOMIAL
Input: Sampling number n, k, q.
CONF ←

∑k
i=1

(n
k

)
(q)i(1− q)n−i

Output: CONF

Algorithm 2: (q, η)-Learnability Certification
Input: Accuracy function AD, surrogate weights θ̂, test set D, n, σ,

q, η.
Output: (q, η)-Learnability
Initialize a
for i ∈ 1, ..., n do

θ ← θ̂ + ϵ, ϵ ∼ N (0, σ2I)
Evaluate AD(θ) on D
Append AD(θ) to a

a ← Sort(a)
k ← QUPPERBOUND(n, α, σ, η, q)
t ← ak
Output: t

classifiers can outperform the surrogate classifier on the clean
test set. Notwithstanding, we find that, when an improperly large
σ is employed, the number of randomized classifiers having a
higher accuracy than that of the surrogate drops significantly.
The possible reason for this phenomenon could be that the
shortcuts added to the UEs cannot fully conceal the mapping
information between input samples and their labels. Hence,
the surrogate trained on the unlearnable dataset, though not
adequately, is somehow fit to the clean data distribution as well.
Large noises added to the parameters thus not only shift the
surrogate away from the distribution of UEs but also move it off
the clean data manifold. This assumption is further verified by
the recovery attack, which discovers classifiers with satisfactory
performance on clean data in the vicinity of the poisoned
classifier. Therefore, we will further introduce the methods for
constructing sound surrogates for tighter certification.

D. Generalization of the Certification

In this section, we generalize the certification to the case
where the defender has no access to the test dataset D and
discuss more properties of the generalization certification.

As a solution, the defender can sample a test set D̂
from the accessible domain D and certify a generalization
(q, η)-Learnability which bounds the learnability on test sets
drawn from D. By Hoeffding’s Inequality, AD(θ̂) ≤ AD̂(θ̂) +√

1
2N

log( 2
β
) exists with probability at least 1− β. The right-

hand side of the inequality can be used in the QPS func-
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tion instead of AD(θ̂). Combining with the union bound, a
certified generalization (q, η)-Learnability can be acquired as
l(q,η)(Θ̂;Ds ⊕ δ) +

√
1

2N
log( 2n

β
), where n is the number of

noise draws. However, Hoeffding’s Inequality does not account
for factors that improve generalization learnability. Therefore,
we explore alternative approaches to establish the relationship
between generalization learnability and the key components
involved in the certification process. Notably, classifiers sampled
around a surrogate relate to PAC-Bayesian predictors (e.g.,
Gibbs classifiers) whose parameters are randomly drawn
from a distribution [34]. We can thus bound the expected
generalization accuracy under random weight perturbation
through the following corollary.

Corollary 1 (Expected generalization accuracy under para-
metric smoothing noise). Let AD̂ : Θ × X × Y → [0, 1] be
an accuracy function of a hypothesis parameterized by θ̂ ∈ Θ
evaluated on a dataset D̂ ∼ D. When θ̂ is under a random
perturbation υ, with probability at least 1− α, we have:

Eϵ[AD(θ̂ + ϵ)] ≥ Eϵ[AD̂(θ̂ + ϵ)]−

√√√√ ∥θ̂∥2

σ2 + ln N
α

2(N − 1)
, (12)

where N is the size of D̂ and ϵ ∼ N (0, σ2I).

The corollary indicates that the expected generalization accuracy
over the clean data distribution is lower bounded by the
expected empirical accuracy minus a function of θ̂, σ and N .
Although the corollary bounds the expectation rather than the
q-th quantile, it connotes that a fθ̂ constantly producing correct
predictions on D̂ also has a high generalization accuracy, which
evinces the inferiority of the UEs resulting θ̂. Furthermore, if the
expectation of AD̂(θ̂ + ϵ) is robust to varying σ, the expected
generalization accuracy would grow with increasing σ. For
appropriately skewed accuracy distributions, this result implies
that an fθ̂ which endures large parametric noise can certify
(q, η)-Learnability that generalizes better to D.

Remark. We defined the QPS function of accuracy
scores obtained by a set of classifiers randomized from a
surrogate classifier fit to UEs Ds ⊕ δ. The QPS function
returns the value in the q-th quantile of all accuracy
scores. The output of the QPS function can be further
upper bounded by Theorem 1. The upper bound of the
accuracy in the q-th quantile is treated as the (q, η)-
Learnability of Ds ⊕ δ. The key message of the certified
(q, η)-Learnability is that — if an unauthorized classifier
has its trained parameters in the certified parameter set
Θ̂ := {θ | θ ∼ N (θ̂ + υ, σ2I), ∥υ∥ ≤ η}, then its clean
test accuracy will not exceed the (q, η)-Learnability, with
probability at least q. Moreover, if D is hidden from
the defender, a generalization (q, η)-Learnability can be
certified by sampling a test set from D by the defender.

VI. PROVABLY UNLEARNABLE EXAMPLES

The core tasks of this section are 1) selecting surrogate
classifiers that help certify a tighter (q, η)-Learnability and 2)
generating PUEs to suppress (q, η)-Learnability against CAs
while empirically tackling GAs.

A. Desiderata for Surrogates and PUEs

Recall that we rely on a surrogate classifier fit to the UEs
to sample the accuracy scores AD(θ̂ + ϵ). The aims of the
surrogate are to 1) produce as tight as possible certified
(q, η)-Learnability scores and 2) capture the distributional
characteristics of the UEs it is trained on. Through parametric
randomization, a plausible surrogate should discover as many
as possible neighboring classifiers that have higher clean test
accuracy. The best case of unauthorized classifiers can thus
have a higher chance of being sampled. This means the noise
added to the surrogate parameters should be large enough
such that the probability measure of these potential best cases
during sampling can be significant. Conversely, an immediate
requirement for this type of surrogate classifier is that it
should be able to tolerate large parametric noises while making
predictions. Furthermore, the second target can be fulfilled
when the surrogate has a low classification error on the set of
UEs.

As the surrogate for certification, fθ̂ should exhibit a low
classification error on Ds ⊕ δ, signifying its successful capture
of the UE distribution. Second, the recovery attack reveals that
the manifold of UEs can be close to that of clean samples.
Similar to the proof in Appendix F of the paper by Cohen et
al. [21], augmenting fθ̂ with parametric noise maximizes the
log-likelihood of correct predictions. This augmentation can
tighten the certified (q, η)-Learnability.

Suppose there is a tightly certified (q, η)-Learnability, the
task of making PUEs is straightforward — we will find better
perturbations δ such that the surrogate f̂θ trained on Ds ⊕ δ
can produce a lower l(q,η)(Θ̂;Ds ⊕ δ). At a high level, the
key intuition behind crafting PUEs that can suppress its (q, η)-
Learnability is described as follows:

A set of plausible UEs should lead to a trained classifier
having not only a low clean test accuracy by itself but
also low accuracy scores by the population of randomized
classifiers in its vicinity.

Thereafter, we will show in the next section that the design
goals of the surrogate and UEs are attainable under a unified
training framework.

B. Random Weight Perturbation

To meet the first goal, we seek certification surrogates that
can generate more correct predictions through randomizations
under the parametric noise. Motivated by the findings in
recovery attacks, such surrogates can be trained by using train-
time random parametric noise as an augmentation. There are
two possible ways to train surrogates. First, an offline surrogate
can be trained on already made Ds⊕δ. Otherwise, in an online
setting, a surrogate can be trained together with δ.

In the online settings, we can optimize the PAP noise δ
with the surrogate under random weight perturbations. It is
hard to exactly minimize l(q,η)(Θ̂;Ds ⊕ δ). However, recall
that when the ratio of small-valued AD(θ + ϵ) grows, a lower
value can be obtained in the fixed q-th quantile of accuracy
scores. Therefore, PAP noises simultaneously updated with a
surrogate over random weight perturbations may curtail the
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(q, η)-Learnability of the resulting UEs. Given a dataset Ds, we
train additive error-minimizing noises and a surrogate classifier
fθ̂ under random weight perturbations. The objective of the
optimization problem can be formulated as follows:

min
θ̂

E(x,y∼Ds) min
δ′⊆δ

Eϵ∼π(0) L(fθ̂+ϵ(x+ δ′), y),

s.t. ∀ δ′ ⊆ δ, ∥δ′∥ ≤ ξ,
(13)

where δ′ is the corresponding noise added to x and π(0) is
a train-time noise distribution with a mean of 0. In practice,
we sample a set of U random weight perturbations with a
zero-mean Gaussian distribution, to train δ and θ̂. In the offline
setting, we omit the inner minimization objective on δ and only
optimize θ̂. The training on the dataset Ds is thus to minimize
the following empirical loss:

min
θ̂

1

N

N∑
j=1

min
δj ,∥δj∥≤ξ

1

U

U∑
i=1

L[fθ̂+ϵi
(xj + δj), yj ], (14)

where (xj , yj) is sampled from Ds and ϵi ∼ N (0, σ′2I) is the
i-th noise added to θ̂. In each step of training, we gradually
increase the value of σ′ with a step size of s to update θ̂
multiple times such that the classifier can better converge. The
optimized perturbations δ are then superposed on Ds to make
it unlearnable. The detailed algorithm for making the PUEs
is depicted in Algorithm 3. More details of the optimization
process are in Appendix A.

In the next section, we will evaluate the certified (q, η)-
learnability and its tightness for PUEs, as well as other state-
of-the-art UEs. Moreover, we will compare the empirical test
accuracy and robustness of PUEs with those of competitors to
demonstrate the effectiveness of PUEs against GAs.

Remark. PUEs aim to increase the classification error of
a set of randomized classifiers. This ensures that the PUEs
are effective towards not only the surrogate but also other
classifiers who are on the support of the smoothing noise
distribution. In contrast, the surrogate classifier trained
on PUEs should stay immune to the weight perturbations
caused by parametric smoothing such that the decrease in
the certified learnability can be attributed to the effect of
PUEs rather than the weight perturbations. We solve this
two-layer problem as a task of bi-level minimization over
the data distribution and random weight perturbations.

VII. EXPERIMENTS

We present the experimental results of the certified (q, η)-
Learnability and empirical performance of PUEs against CAs
and GAs. Through the experiments, we aim to answer three
questions.

• Can random weight perturbations increase the tightness of
certified (q, η)-Learnability?

• Is PUE an effective way of producing unlearnable datasets
suppressing certified (q, η)-Learnability?

• How robust is PUE against GAs who escape from the certified
parameter set Θ̂?

Accordingly, we conduct experiments to measure both the
certified (q, η)-Learnability and the empirical performance of
PUE and its baselines.

Algorithm 3: Training of fθ̂ and δ.

Input: Surrogate classifier f̂θ with parameters θ, training dataset
Ds, smoothing distribution N (0, σ2I), Utrain, Uperturb,
noise STD cap S, step size s, training batch number N , train
step number M , stop error rate τ , validation set D′

s.
Output: PUE noise δ and surrogate parameters θ̂.
Initialize:
δ ← [0]|Ds|×d

error ← 1e9

while error ≥ τ do
for i ∈ 1, ...,M do

Load a mini-batch (xi, yi) from Ds

l ← 0
σ′ ← 0
while σ′ ≤ S do

σ′ ← σ′ + s
for j ∈ 1, ..., Utrain do

ϵj ∼ N (0, σ′2I)
l + = L[fθ+ϵj (xi + δ), yi]

θ ← TRAIN STEP(θ, l/Utrain)

for i ∈ 1, ..., N do
Load a mini-batch (xi, yi) from Ds

l ← 0
σ′ ← 0
while σ′ ≤ S do

σ′ ← σ′ + s
for j ∈ 1, ..., Uperturb do

ϵj ∼ N (0, σ′2I)
l + = L[fθ+ϵj (xi + δ), yi]

δ ← OPT STEP(xi, δ, l/Uperturb)

error ← EVAL(θ,D′
s + δ)

θ̂ ← θ
Output: δ, θ̂

Baselines. We consider both online surrogates and offline
surrogates in the certification against CAs. We compare PUE
with a tailored version of Error-Minimizing Noise (EMN) [9]
in their certified (q, η)-Learnability to show the effectiveness
of our online surrogate and the robustness of PUE. Moreover,
we train offline surrogates on off-the-shelf PUE, EMN, and
OPS [35] to compare their certified (q, η)-Learnability. When
it comes to GAs, we conduct a series of empirical comparisons
with EMN and OPS to show their robustness and clean test
accuracy scores in cases where unauthorized classifiers escape
from the certified parameter set Θ̂. Though our method does
not restrict the type of noise applied to make data unlearnable
(i.e., class-wise or sample-wise), we found that PUE surrogates
trained with class-wise noises can converge rapidly while those
trained by sample-wise noises do not converge very well.
Therefore, in this section, we focus on class-wise noise in
all experiments and comparisons.

Data and models. In our experiments, we adopt CIFAR-
10, CIFAR100, and ImageNet with 100 randomly selected
categories as the datasets in our evaluation. ResNet-18 is used as
the surrogate model to generate UEs in all experiments. During
certification experiments, we use ResNet-18 as the architecture
of surrogates. We certify against 5000 ImageNet test set
samples and the entire test datasets of CIFAR-10/CIFAR100. In
empirical evaluations, we employ ResNet-18, ResNet-50, and
DenseNet-121 as the architectures for unauthorized classifiers.
We test the empirical robustness of PUE, EMN, and OPS on
ResNet-18 using recovery attacks. The test accuracy scores
of PUE, EMN, and OPS are measured by training ResNet-18,

8



ResNet-50, and DenseNet-121 on them, respectively.

Training setups. In each iteration of PUE optimization
and online/offline surrogate training, the standard deviation
(STD) of the noises added to the parameters is gradually
increased from 0 with a step size of 0.05 until the full noise
level is reached. Furthermore, we start adding the weight
perturbations after some warm-up steps to stabilize the training.
Generally, we start perturbing weights after the classification
error on UEs decreases below 50%. When generating UEs
and fitting online surrogates, we set M = 10 on CIFAR10,
M = 20 on CIFAR100, and M = 100 on ImageNet. No
random data augmentation is used in the surrogate training
processes. In empirical experiments, we follow the previous
training routines [9], [35] and set the epoch to 60 when training
classifiers or launching recovery attacks on CIFAR10. For the
training and recovery attacks on CIFAR100 and ImageNet, the
epoch number is set to 100. The weight decay rate is 5× 10−4

on CIFAR10 and is 5 × 10−5 for CIFAR100/ImageNet. We
apply an SGD with a momentum of 0.9 and a learning rate of
0.1 in all classifier/surrogate training runs.

Certification setups. We select 0.25 as the STD of the
train-time Gaussian noise to obtain the surrogates. During
the certification process, we set q = 0.9 and σ ∈ {0.25, 0.8}
for all the surrogates. There are reasons behind this setting.
First, σ = 0.25 matches with that of the train-time noise, and
can certify the highest (q, η)-Learnability at a fixed η (see
Section VII-C). Second, σ = 0.8 is sufficient for certifying a
parametric radius η = 1.0 within which the recovery attack
can restore most of the clean accuracy (refer to Figure 5 in
Section VII-B). For each surrogate classifier, we sample 1000
classifiers around it to compute the confidence interval of
the QPS function under a confidence level of 0.99. For each
surrogate, we certify under various values of η and record
the certified learnability scores under each η. To compute
the generalization (q, η)-Learnability, one can simply adding√

1
N log( 2nβ ) to the certified learnability scores given n, N

and β. For instance, for n = 1000 and β = 0.01, sampling a
dataset with size N = 5000 from the domain D as the test set
to compute the generalization (q, η)-Learnability will attract a
universal increase of 0.05 to the certified learnability scores in
the tables. Each run of certification on CIFAR10/CIFAR100
takes around one GPU hour on Nvidia Tesla P100. Certifying
an ImageNet classifier requires 26.4 GPU hours. We apply
offsets to the certified results to mitigate the impact of accuracy
differences in the surrogates. More details of hyper-parameters
and certification settings can be found in Appendix C.

A. Learnability Certification

In this section, we study the certified (q, η)-Learnability of
UEs for CAs and gauge the tightness of the certification using
SAs (i.e., recovery attacks).

Certification results. We compare certified learnability scores
from two aspects. We first compare the certified learnability
obtained based on surrogates trained on the same datasets but
with different training strategies to show the effectiveness of
random weight perturbations. Second, we compare the certified
learnability of different PAP noises by using the same random
weight perturbing strategy to train surrogates. This comparison

TABLE I: Certified (q, η)-Learnability under Different Training
Methods (%, σ = 0.25)

Data Method η × 100

0.1 0.5 1.0 5.0 10.0 15.0 20.0 25.0 30.0

CIFAR10 PUE-B 10.62 10.67 10.71 11.07 11.86 12.50 13.20 14.67 15.75
EMN 5.69 5.70 5.74 5.91 6.24 6.43 6.96 8.61 10.27

CIFAR100 PUE-B 1.32 1.32 1.33 1.37 1.41 1.47 1.53 1.59 1.68
EMN 0.43 0.43 0.44 0.47 0.52 0.59 0.70 0.77 0.89

ImageNet PUE-B 1.46 1.46 1.48 1.54 1.63 1.79 1.85 1.97 2.13
EMN 1.34 1.34 1.37 1.41 1.45 1.49 1.54 1.58 1.67

TABLE II: Certified (q, η)-Learnability under Different Training
Methods (%, σ = 0.8)

Data Method η

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CIFAR10 PUE-B 10.68 10.86 11.18 11.37 11.52 12.00 12.71 12.87 13.72 15.17
EMN 5.86 6.11 6.28 6.52 7.00 7.27 7.36 7.87 8.38 9.02

CIFAR100 PUE-B 1.13 1.15 1.16 1.20 1.23 1.27 1.31 1.36 1.51 1.56
EMN 0.47 0.48 0.51 0.55 0.59 0.63 0.66 0.67 0.69 0.70

ImageNet PUE-B 1.19 1.24 1.26 1.28 1.32 1.37 1.45 1.50 1.61 1.80
EMN 1.12 1.14 1.16 1.20 1.25 1.29 1.40 1.40 1.48 1.48

aims to reveal the performance of PUE in reducing the certified
learnability.

To make the comparisons, we introduce a baseline surrogate,
PUE-B, which employs random weight perturbations in the
training of the surrogate parameters but does not perturb the
weights when optimizing the PAP noise. Therefore, PUE-B
differs from EMN only in the training method of the surrogate
and can be used as the baseline in the evaluation of PUEs. On
the other hand, the surrogate trained without random weight
perturbation is denoted as EMN. The comparison is made under
two different levels of smoothing noise (σ = 0.25 and σ = 0.8).
The results are presented in Table I and Table II. According
to Table I, compared to EMN, PUE-B can be certified at a
higher (0.9, η)-Learnability across all datasets. It can also be
observed that the gain in the (0.9, η)-Learnability of PUE-B
increases when the certified radius rises. On CIFAR100 and
ImageNet, the gain becomes more obvious. The observation
supports the effectiveness of the random weight perturbation
strategy in reducing the gap between the (q, η)-Learnability
and the True Learnability.

Next, we compare the certified learnability of online
surrogates trained by random weight perturbations on different
UEs. We generated two versions of PUEs (i.e., PUE-1 and PUE-
10) by setting the value of Uperturb to 1 and 10, respectively.
The certification results based on the corresponding online
surrogates are recorded in Table III and Table IV. Generally, in
all the tables, PUE-10 achieves the lowest (0.9, η)-Learnability.
When the smoothing noise level matches the noise level of
random weight perturbation, PUE-10 can diminish the (0.9, η)-
Learnability on all datasets. However, when the parametric
smoothing noise gets larger to 0.8, PUE-10 has the best results
at most of the certified radii across the three datasets but not for
some cases at large η values. This should be the consequence
of the large smoothing noise used, which will be verified by
the ablation study in Section VII-C. Saliently, all of the results
on PUEs outperform that of PUE-B, meaning that optimizing
the PAP noise over random weight perturbations can effectively
suppress the (0.9, η)-Learnability.

At last, we compare certification results based on offline
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TABLE III: Certified (q, η)-Learnability under Different PAP
Noises (%, σ = 0.25, online)

Data Method η × 100

0.1 0.5 1.0 5.0 10.0 15.0 20.0 25.0 30.0

CIFAR10
PUE-10 10.24 10.29 10.31 10.69 11.14 11.82 12.29 13.12 13.59
PUE-1 10.86 10.97 11.04 11.62 12.12 12.64 13.35 14.22 14.66
PUE-B 10.62 10.67 10.71 11.07 11.86 12.50 13.20 14.67 15.75

CIFAR100
PUE-10 1.29 1.29 1.31 1.35 1.41 1.43 1.46 1.51 1.65
PUE-1 1.35 1.36 1.36 1.42 1.48 1.53 1.57 1.69 1.87
PUE-B 1.32 1.32 1.33 1.37 1.41 1.47 1.53 1.59 1.68

ImageNet
PUE-10 1.45 1.45 1.45 1.50 1.61 1.68 1.76 1.84 1.95
PUE-1 1.58 1.58 1.58 1.67 1.73 1.81 1.95 2.00 2.19
PUE-B 1.46 1.46 1.48 1.54 1.63 1.79 1.85 1.97 2.13

TABLE IV: Certified (q, η)-Learnability under Different PAP
Noises (%, σ = 0.8, online)

Data Method η

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CIFAR10
PUE-10 10.10 10.24 10.42 10.80 11.10 11.57 11.89 12.45 12.81 13.72
PUE-1 10.60 10.73 11.07 11.21 11.38 11.67 12.04 12.71 13.00 13.59
PUE-B 10.68 10.86 11.18 11.37 11.52 12.00 12.71 12.87 13.72 15.17

CIFAR100
PUE-10 1.11 1.14 1.16 1.20 1.23 1.25 1.27 1.35 1.48 1.52
PUE-1 1.13 1.15 1.18 1.21 1.24 1.27 1.31 1.35 1.44 1.60
PUE-B 1.13 1.15 1.16 1.20 1.23 1.27 1.31 1.36 1.51 1.56

ImageNet
PUE-10 1.17 1.19 1.24 1.26 1.28 1.32 1.37 1.45 1.54 1.61
PUE-1 1.22 1.24 1.30 1.35 1.37 1.41 1.45 1.52 1.54 1.68
PUE-B 1.19 1.24 1.26 1.28 1.32 1.37 1.45 1.50 1.61 1.80

surrogates trained on CIFAR10 and CIFAR100 with PAP
noises. We find surrogates trained on CIFAR100 OPS cannot
be augmented properly within the same training epochs used
for PUE and EMN. We thus only compare with OPS on
CIFAR10. The certified learnability scores are presented in
Table V and Table VI. We have similar observations on the
certification results based on online surrogates and offline
surrogates. According to the results, PUEs certified based
on offline surrogates outperform both EMN and OPS when
σ = 0.25. When σ = 0.8, OPS performs better on CIFAR10
at small η. Similarly, EMN obtains slightly lower certified
learnability scores at η = 0.7. We suspect it is a consequence
of the large smoothing noise, which leads to a loose certification.
Additionally, the advantage of OPS can be a result of insufficient
steps of training since classifiers usually require more epochs
to converge on OPS. However, PUE still outperforms OPS
when η exceeds 0.4.

Tightness of the certification. It is important to make sense
of the gap between certified learnability and True Learnability.
Since True Learnability is impossible to calculate, we gauge it
by launching recovery attacks against surrogates used in the
certification. Specifically, we use projected SGD to finetune
the online surrogates of PUE-10 and EMN, respectively, on
clean samples and clip their weights to make the after-trained
weights stay within an ℓ2 norm of η from the original weights.
We use 20% of the CIFAR10/CIFAR100 training set in the
fine-tuning to obtain the generalized clean test accuracy and
use the CIFAR10/CIFAR100 test set to approximate the best
accuracy. The learning rate of projected SGD is set to 0.01 in all
attacks. The clean test accuracy scores recovered by the attack
under different η are plotted in Figure 4. On the CIFAR10
EMN surrogate, the generalized test accuracy can be recovered
from below 15% to near 60% within an η of 2.0 while the
best possible accuracy is over 85%. In contrast, the recovery
attack against the CIFAR10 PUE surrogate can only restore
the accuracy from 10.68% to 12.98% and, in the best case,
15.31%. The best accuracy is close to the certified learnability

TABLE V: Certified (q, η)-Learnability under Different PAP
Noises (%, σ = 0.25, offline)

Data Method η × 100

0.1 0.5 1.0 5.0 10.0 15.0 20.0 25.0 30.0

CIFAR10
PUE-10 10.57 10.58 10.58 10.83 11.10 11.39 11.68 12.22 13.20

EMN 11.20 11.26 11.28 11.48 11.76 12.23 12.55 13.01 13.43
OPS 10.59 10.61 10.64 10.96 11.37 11.73 11.98 12.54 13.38

CIFAR100 PUE-10 1.13 1.13 1.13 1.16 1.21 1.27 1.31 1.35 1.47
EMN 1.16 1.16 1.17 1.20 1.25 1.31 1.37 1.43 1.60

TABLE VI: Certified (q, η)-Learnability under Different PAP
Noises (%, σ = 0.8, offline)

Data Method η

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CIFAR10
PUE-10 10.65 10.86 11.06 11.33 11.52 11.64 11.97 12.17 12.69 13.43

EMN 11.56 11.74 11.96 12.36 12.48 12.90 13.15 13.58 14.02 14.33
OPS 10.65 10.83 10.98 11.36 11.55 11.72 12.02 12.24 13.59 13.65

CIFAR100 PUE-10 1.13 1.15 1.17 1.20 1.25 1.30 1.36 1.38 1.39 1.42
EMN 1.14 1.17 1.22 1.26 1.29 1.34 1.34 1.38 1.43 1.46

scores, meaning tighter learnability is certified using the PUE
surrogate.

Compared to CIFAR10, CIFAR100 surrogates demonstrate
lower best accuracy and recovered accuracy, which could be
imputed to two possible reasons. First, CIFAR100 is by nature
more difficult to learn than CIFAR10. Second, the CIFAR100
surrogate is trained by more iterations on the UEs and is
harder to recover. However, it can be seen that the PUE
surrogate still outperforms the EMN one on the tightness
of certification. The EMN surrogate has the best accuracy
ranging from 1.03% to 13.69% when η increases, while the
accuracy of the PUE surrogate can only be recovered to 1.40%
in the best case. The comparison shows the superiority of
the PUE surrogate in certifying tighter (q, η)-Learnability. We
also examine the impact of surrogate architecture towards the
tightness of the certified (q, η)-Learnability. Please refer to
Appendix C for details. In addition, we check the validity of
the certification under the stochasticity of different training
runs to show that classifiers trained by adversaries can still fall
inside the surrogate-certified Θ̂.

Validity of the certification. Recall that the validity of certified
(q, η)-learnability is characterized by a certified parameter
set. However, the training of classifiers faces stochasticity in
weight initialization, mini-batch loading, stochastic gradient
descent, etc. This implies that training on PUEs could lead to
dissimilar model weights across different runs, so the PUEs
that were certified by the surrogate classifier may not remain
valid in subsequent training runs conducted by adversaries.
To investigate the validity of PUEs for adversaries using
mainstream training techniques, we train 10 ResNet-18 models
on CIFAR10 PUEs with random weight initialization, batch
loading orders, and data augmentations to check how diverse
their trained weights can be. After training, we draw ten layers
(nine convolution layers and one linear layer) and visualize the
distribution of the converged weights. The visualization can be
found along with our source code at https://github.com/Provably-
Unlearnable-Examples/PUE. Furthermore, we calculate the
pairwise difference for each parameter across the 10 classifiers
and record the mean and STD of all the differences. According
to the results, the weights from the 10 runs share similarities
in their distributions, with a mean parameter difference of
−4.92 × 10−6 and an STD of 0.01. Note that the certified
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Fig. 4: The clean test accuracy scores of surrogate classifiers
gauged on clean CIFAR10 (left) and CIFAR100 (right) test set
after recovery attacks. The best accuracy scores approximate
the True Learnability of parameters inside the hypersphere
centered at θ̂ with a radius of η.
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Fig. 5: The robustness of PUE and EMN against recovery
attacks.

parameter set Θ̂ is actually an infinite Gaussian mixture. For
example, with σ = 0.25 and η = 1.0, Θ̂ has sufficiently
large probability mass within [θ̂ − 0.5, θ̂ + 0.5] for θ̂ with
a dimensionality of 11M (i.e., the rough parameter count
of ResNet-18) and beyond, which suggests that the certified
parameter set can cover classifier weights from different training
runs with stochasticity. Therefore, Θ̂ certified by a surrogate
θ̂ can effectively capture classifiers trained separately by
adversaries following certain standard training procedures.

B. Robustness of PUE against GAs

In this section, we aim to understand how robust PUEs are
when the classifier trained on them is outside of the certified
parameter set Θ̂ or evades the certified learnability scores with a
probability of 1−q. This setting aligns with real-world cases in
which unauthorized classifiers are distinct from the surrogates
used in the certification.

We particularly focus on the robustness of UEs by showing
some hardness results of recovery attacks against classifiers
trained on PUE, EMN, and OPS, following common training
routines. Furthermore, we evaluate the performance of PUE
in defending against various training approaches to verify its
practicality. Specifically, we compare the empirical clean test
accuracy of unauthorized classifiers trained on PUE, EMN and
OPS using four representative training strategies (i.e., MixUp,
CutOut, Fast Autoaugment, and Adversarial Training). The
results are deferred to Appendix D.

Hardness results of recovery attacks. Based on the same
rules of gauging the surrogates using recovery attacks, we
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Fig. 6: The robustness of PUE and OPS against recovery attacks.

measure the performance of recovery attacks on classifiers
trained on PUE, EMN, and OPS. The classifiers are trained on
CIFAR10/CIFAR100 with PAP noises. We recover the clean
accuracy using 20% of clean training data and calculate the
best possible accuracy by training the poisoned classifiers on
the clean test set. Note that adversaries possessing 20% of clean
data have a strong capability to restore the performance of the
poisoned classifier, evaluating PAP noises under this setting can
better reveal their robustness. Moreover, data augmentations
(i.e., random crop, flip, and rotation) are employed in all
recovery attacks to align with training strategies in real-world
scenarios.

The comparison between EMN and PUE is presented in
Figure 5. Compared to the results in Figure 4, the clean
test accuracy of the normally trained classifiers can be better
restored. On CIFAR10, the poisoned classifiers of PUE and
EMN have initial accuracy scores of 11.62% and 11.89%,
respectively. After the recovery, the EMN classifier has 78.55%
accuracy and the PUE one has 72.37% accuracy. On the side of
the best possible accuracy, EMN can achieve 100% and PUE
reaches 99.55%. Similarly, the EMN classifier can be restored
to 43.01% accuracy on CIFAR100, while the PUE classifier
accuracy achieves 32.19%. However, the classifier trained on
PUE demonstrates better robustness than the EMN classifier in
both the best possible case and the recovery attack case. Most
accuracy can be recovered within an η of 1.0, especially for
CIFAR10. This is also why we certify at most an η of 1.0 in
Section VII-A.

Aside from the above comparison, we notice several
intriguing phenomena of PUE and OPS in Figure 6. OPS
is a surrogate-free PAP noise. It searches for the pixel leading
to the most significant change in the input data distribution,
for each class in the dataset. Therefore, OPS is supposed to
have higher robustness since it is model-agnostic and can be
generalized to different classifiers based on experiments. It
can be observed from the figure that, though OPS has a lower
empirically recovered accuracy than PUE, its best recoverable
accuracy gets higher than that of PUE rapidly when η grows.
This implies that OPS has remarkable local robustness, possibly
due to the effective manipulation of the input data distribution,
which makes it hard to find proper clean training samples to
reduce the clean generalization error of the trained classifier.
However, when a set of plausible training samples is selected
(e.g., the Best from OPS case) for the recovery attack, OPS can
be more vulnerable than other PAPs. Specifically, PUEs reduce
at most 54.4% of the accuracy on CIFAR100. The weakness
becomes more obvious when the perturbations/uncertainty in
the weights increase beyond a certain threshold.
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Fig. 7: The (q, η)-Learnability scores under different values of q are plotted on three data distributions (i.e., CIFAR10, CIFAR100,
and ImageNet). At the same η, a greater probability q can certify a higher (q, η)-Learnability.

The comparisons suggest that training GAs on PUE can
lead to more robust poisoning results, especially against best-
case recovery attacks. We attribute this to two reasons. First,
theoretically, Θ̂ occupies a non-zero probability measure on
every infinitesimal region on Rd. Therefore, these empirically
trained classifiers have non-zero probabilities of being included
in Θ̂. In practice, a larger certified parametric radius η helps
increase the probability measure at classifiers far from the
surrogate. Second, the loss function 13 encourages PUE to
reduce the accuracy of a collection of classifiers with Gaussian-
modeled uncertainty in their parameters. Consequently, the
collective robustness of PUE towards classifiers showing
uncertainties in their parameters is enhanced.

C. Ablation Study

We conduct an ablation study on the trade-off between
the STD σ of the smoothing noise and the learnability scores
over different factors. First, we evaluate how the train-time
noise during PUE surrogate optimization affects the trade-
off. We train PUE-B surrogates on the CIFAR10/CIFAR100
datasets under different train-time noises and measure their
certified learnability under smoothing noises with various σ
values. We fix the value of q at 0.9 in all cases. The results on
CIFAR10 and CIFAR100 are in Table VII and Table VIII of
Appendix C, respectively. The certification returns ABSTAIN
when a valid binomial confidence interval cannot be found.
The abstentions are marked by “−” in the tables. The highest
certified learnability under each η is highlighted.

The numbers in Table VII provide some intriguing observa-
tions about the trade-off. First, the largest certifiable parametric
radius η positively correlates with σ. However, large σ values
result in decreases in the (q, η)-Learnability scores at small
certified radii, which indicates that the negative impact of the
smoothing noise towards the tightness gap is significant in these
cases. On the train-time noise side, generally, greater train-time
noises make the resulting surrogates more endurable to large
smoothing noises in the certification. Thus, the certification
performs better in large-σ cases and produces better average
certified learnability over different η values. Generally, when
the train-time noise matches the σ value, the highest certified
learnability scores can be found. For example, certifying using
σ = 0.25 obtained the highest (q, η)-Learnability score when
the STD of the train-time noise is 0.25. We observe similar
trends in the CIFAR100 certification. This phenomenon suggests
that the train-time noise should match the parametric smoothing
noise to reduce the tightness gap.

Next, we evaluated the (q, η)-Learnability under different
q values to see how the certified learnability can be affected.
We select 0.25 as the STD for the train time noise and the
parametric smoothing noise in this study. The learnability scores
are illustrated in Figure 7. From the figure, certifying at a higher
probability q compromises the maximal certifiable parametric
radius across all datasets. However, the learnability scores
certified at the same radius with larger q values are usually
larger than those certified with small q values, which reveals
tighter guarantees on the best cases unauthorized classifiers can
achieve. At smaller parametric radii, the certified learnability is
less distinguishable among different q values. Nevertheless, the
discrepancy becomes obvious when η grows. In this paper, to
ensure the (q, η)-Learnability can be certified at reasonable η
values and be held with a sound probability, we select q = 0.9
in the certification experiments.

VIII. DISCUSSION AND LIMITATION

In the following part, we will discuss the limitations of our
methods and explore potential avenues for improvement.

Certified parameter set. A crucial step for improving the
certificate is to increase the certified parametric radius η such
that the certificate can cover unauthorized classifiers with more
diverse parameters. Based on the theory and the experiments, we
can find a negative correlation between q and the maximum of
certifiable η. This trade-off suggests that confident certifications
can only be made at small η. While thoroughly breaking this
trade-off seems impossible, it is possible to improve η by
meticulously designing the parametric smoothing noise and
the surrogate training method. In Theorem 1, the certification
abstains if q is too large such that a valid Binomial confidence
interval cannot be found. To avoid the abstention at large
η, we should use a substantial σ since η scales with σ.
Next, to make such a substantial σ functioning, we should
have a surrogate classifier that can tolerate a significant level
of smoothing noise while not degrading the tightness of
the certification. Through experiments, we verify that larger
parametric smoothing noise indeed leads to a broader certifiable
parametric radius. Nevertheless, increasing the parametric radius
η cannot be solely resorted to enlarging the smoothing noise
since larger noise can also compromise the tightness of the
(q, η)-Learnability. Specifically, too-large noises negatively
impact the testing accuracy of the classifiers randomized from
an insufficiently trained surrogate and make them fail to obtain
plausible clean test accuracy scores. We propose a baseline
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solution in this paper to alleviate the negative effects of the
parametric noise, but we reckon further endeavors can be made
to increase η at high values of q.

Tightness gap of the certification. Given the noticeable
connection between certified learnability and certified robust-
ness, a possible way to further improve the tightness of
the certification might be using a combination of adversarial
training techniques, such as AWP [36] and SmoothAdv[37],
to find the most critical perturbation direction for the weights
while training the surrogate. In contrast, optimizing the PAP
noise against these carefully augmented surrogates may lead to
more robust UEs. Another possible pathway is to select better
parametric smoothing noise. Though this simple uni-variance
Gaussian noise used in this paper endorses a tidy form of (q, η)-
Learnability, we suspect the tightness gap can be further reduced
by introducing better smoothing noises. First, the probability
density of Gaussian might not be optimal in discovering the
best cases of classifiers. Intuitively, the optimal parametric
smoothing noise should have a large probability of drawing
parameters that can lead to the highest clean test accuracy.
Second, the weights in different layers of a classifier may
respond differently against the noise added to them, rendering
uni-variance noises less efficient in surrogate augmentation and
certification. A better option could be applying various levels
of train-time noise in different layers to cope with the layer-
wise noise sensitivities and using corresponding parametric
smoothing noise in the certification.

Real-world practicality. Certified (q, η)-Learnability is a
versatile framework that can be applied to different data
modalities and tasks, as the certification holds in the parameter
space and AD(θ̂) can represent any function that maps model
parameters to a scalar value. As a proof of concept, we certify
the unlearnable SST2 training set with Error-min-0 modifica-
tions [38] via an LSTM surrogate. A (0.9, η)-learnability of 0.61
can be certified at η = 1 while the accuracy at η = 0 is 0.52.
Furthermore, the certification framework and PUE generation
process may introduce additional computational overhead. We
benchmark this overhead across various model architectures
and datasets, as shown in Tables XIII and XIV. The overhead
is confined to the certification and PUE generation stages and
remains manageable. To reduce the cost, techniques such as
perturbing only specific layers during PUE generation can be
explored. Importantly, the application of PUE does not impact
real-time data streaming, as PAP noise for each data category
can be pre-generated and applied to corresponding streaming
data. Finally, PUE requires a high perturbation rate, which
means that a small proportion of PUEs in a clean dataset will
not hinder the training process for authorized users. Legitimate
users can also be provided with the PUE perturbations to
restore data learnability. These features suggest that PUE is
compatible with other defenses, such as model watermarking
and unlearning, as the functionality of the watermark or retained
set can be maintained.

IX. RELATED WORK

Perturbative availability poison and UEs. PAPs emerged
as a response to unauthorized models trained to infer private
datasets. There were early attempts that generate perturbations
dynamically on surrogate models, which is computationally
intensive [39], [10]. To alleviate the cost, error-minimizing

perturbations were introduced to produce unlearnable data
samples [9]. Subsequently, the training cost of the perturbation
was further reduced by using pretrained surrogate classifiers
or generalized neural tangent kernels [11], [8], [14], [15]. A
series of works also resort to surrogate-free perturbations [40],
[41], [42], [35]. In addition, enhancements were proposed to
make transferable PAP noises or robust UEs against adversarial
training [13], [43], [44]. We also notice some work making
efforts to address the uncertainty of UEs [45], [16]. Particularly,
the sharpness-aware method SAPA [16] leverages weight
perturbations to approximate the worst-case model for the
poison attack. However, the perturbation considered in SAPA
is model- and data-dependent and may not be effective with
variations in the type of loss function. Moreover, all the current
methods fall short of offering a provable guarantee on the
robustness of UEs against uncertainties in learning algorithms
and adaptive adversaries in the field.

Certified robustness via randomized smoothing. Following
previous certified robustness works using differential privacy
and Rényi divergence [46], [47], randomized smoothing was
first proposed by Cohen et al. as a tool for supplying a tight ℓ2
robustness certificate for black-box functions, based on Neyman-
Pearson Lemma (NPL) [21]. Though randomized smoothing
places no restriction on its based classifiers, a line of work
aimed at improving the base classifiers to obtain a better trade-
off between the certified accuracy and the certified radius [37],
[48], [49], [50], [51]. On the other hand, some trials have been
made to design more capable smoothing noises, smoothing
pipelines, and certification algorithms beyond NPL [22], [23],
[24], [25], [26], [27], [28], [29]. Intriguingly, a series of works
discovered that the maximum of certifiable ℓp (p > 2) radius
shrinks with the increasing input dimensionality [52], [30], [53],
[54]. Moreover, randomized smoothing has been extended to
poisoning defenses[55], [56], [57], [58], object detection [32],
and watermark verification [33]. The works in this area focus
on the certified robustness based on worst-case models rather
than examining the certified learnability of datasets through
the analysis of the best-case models trained on them.

X. CONCLUSION

In this paper, we propose a certification mechanism for
deriving the possibly best clean data utility that unauthorized
classifiers trained on UEs can achieve. The certified (q, η)-
Learnability indicates that, with probability at least q, the
unauthorized classifiers whose weights are from a specific
parameter subspace have a guaranteed upper bound on their
clean test accuracy. Moreover, we propose a way to craft
provably unlearnable examples that obtain smaller (q, η)-
Learnability scores, compared with the ones crafted by existing
methods. Our certification mechanism takes the first step
towards certifiably robust and provably effective UEs, which
can provide a rigid guarantee on the protection level of PAP
noises for data availability control. However, there exists a
tightness gap between the certified (q, η)-Learnability and True
Learnability. Such a tightness gap can be better alleviated in the
future to make the certification more tenable. Crucially, such
alleviation may also expand the space of certifiable parameters
to cover greater parameter variance resulting from training
techniques such as adversarial training. Finally, we reckon that
future attempts can be made to extend PUE to sample-wise
noises and reduce the training cost of making PUEs.
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[5] M. Heikkilä, “This artist is dominating ai-generated art,
and he’s not happy about it,” 2022. [Online]. Available:

https://www.technologyreview.com/2022/09/16/1059598/this-artist-i
s-dominating-ai-generated-art-and-hes-not-happy-about-it/

[6] R. Gal, Y. Alaluf, Y. Atzmon, O. Patashnik, A. H. Bermano, G. Chechik,
and D. Cohen-Or, “An image is worth one word: Personalizing
text-to-image generation using textual inversion,” 2022. [Online].
Available: arXivpreprintarXiv:2208.01618

[7] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in IEEE SP, 2017.

[8] L. Fowl, M. Goldblum, P.-y. Chiang, J. Geiping, W. Czaja, and
T. Goldstein, “Adversarial examples make strong poisons,” in NeurIPS,
2021.

[9] H. Huang, X. Ma, S. M. Erfani, J. Bailey, and Y. Wang, “Unlearnable
examples: Making personal data unexploitable,” in ICLR, 2021.

[10] J. Feng, Q.-Z. Cai, and Z.-H. Zhou, “Learning to confuse: Generating
training time adversarial data with auto-encoder,” in NeurIPS, 2019.

[11] L. Tao, L. Feng, J. Yi, S.-J. Huang, and S. Chen, “Better safe than sorry:
Preventing delusive adversaries with adversarial training,” in NeurIPS,
2021.

[12] Z. Liu, Z. Zhao, and M. Larson, “Image shortcut squeezing: Countering
perturbative availability poisons with compression,” in ICML, 2023.

[13] S. Fu, F. He, Y. Liu, L. Shen, and D. Tao, “Robust unlearnable examples:
Protecting data privacy against adversarial learning,” in ICLR, 2022.

[14] C.-H. Yuan and S.-H. Wu, “Neural tangent generalization attacks,” in
ICML, 2021.

[15] S. Chen, G. Yuan, X. Cheng, Y. Gong, M. Qin, Y. Wang, and X. Huang,
“Self-ensemble protection: Training checkpoints are good data protectors,”
in ICLR, 2023.

[16] P. He, H. Xu, J. Ren, Y. Cui, S. Zeng, H. Liu, C. Aggarwal, and J. Tang,
“Sharpness-aware data poisoning attack,” in ICLR, 2024.

[17] B. Zhu, L. Wang, Q. Pang, S. Wang, J. Jiao, D. Song, and M. I. Jordan,
“Byzantine-robust federated learning with optimal statistical rates,” in
AISTATS, 2023.

[18] G. Wang, Z. Ma, C. Liu, X. Yang, H. Fang, W. Zhang, and N. Yu,
“Must: Robust image watermarking for multi-source tracing,” in AAAI,
2024.

[19] Y. Hu, F. Wu, Q. Li, Y. Long, G. Garrido, C. Ge, B. Ding, D. Forsyth,
B. Li, and D. Song, “Sok: Privacy-preserving data synthesis,” in IEEE
SP, 2023.

[20] S. Australia, “As iso/iec 42001:2023,” 2023.

[21] J. Cohen, E. Rosenfeld, and Z. Kolter, “Certified adversarial robustness
via randomized smoothing,” in ICML, 2019.

[22] M. Fischer, M. Baader, and M. Vechev, “Certified defense to image
transformations via randomized smoothing,” in NeurIPS, vol. 33, 2020,
pp. 8404–8417.

[23] L. Li, M. Weber, X. Xu, L. Rimanic, B. Kailkhura, T. Xie, C. Zhang,
and B. Li, “Tss: Transformation-specific smoothing for robustness
certification,” in CCS, 2021.

[24] Z. Hao, C. Ying, Y. Dong, H. Su, J. Song, and J. Zhu, “Gsmooth:
Certified robustness against semantic transformations via generalized
randomized smoothing,” in ICML, 2022.
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APPENDIX

A. More Algorithmic Details

Computing (q, η)-Learnability. We introduce the detailed
steps of computing (q, η)-Learnability. Please refer to Algo-
rithm 1 and Algorithm 2 for the pseudocode.

First, according to Theorem 1, q = Φ(Φ−1(q) + η
σ ) can

be theoretically computed by supplying the values of q, η,
and σ. Next, we sample a finite number of AD(θ̂ + ϵ) using
Monte Carlo. For simplicity, we denote the sampled and sorted
AD(θ̂+ϵ) as a set a = {a1, a2, ..., an}, where a1 ≤ a2 · · · ≤ an.
Based on the order statistics a, the smallest accuracy at ∈ a
satisfying Prai∈a[ai ≤ at] ≥ q can be found as the accuracy
in the empirical q-th quantile (i.e., at is the empirically
calculated value of hq(θ̂)). Note the (q, η)-Learnability should
be calculated as the confidence interval upper bound of at.
Calculating a one-sided confidence interval upper bound resorts
to finding the k-th accuracy in a, such that by giving a
confidence level 1− α, there is Pr[at ≤ ak] ≥ 1− α. There is

Pr[at ≤ ak] =

k∑
i=1

Pr[ai−1 ≤ at ≤ ai]

=

k∑
i=1

(
n

i

)
(q)i(1− q)n−i.

Thereafter, we just find the smallest k letting
k∑

i=1

(
n

i

)
(q)i(1− q)n−i ≥ 1− α.

The k-th accuracy ak is returned as the certified (q, η)-
Learnability l(q,η)(Θ̂;Ds ⊕ δ).

Algorithms of surrogate training and PAP noise optimiza-
tion. We attach the details of the surrogate training step and
PAP noise optimization step in Algorithm 4 and Algorithm 5,
respectively. The surrogate is updated by using gradient descent
with a learning rate of r given l

Utrain
from Algorithm 3. During

optimizing the PAP noise δ, if using class-wise noise, the noise
of each class is independently updated by optimizing using
examples from the corresponding class. Specifically, suppose
there are K classes of data in the mini-batch, for the i-th class,
its corresponding noise δ[i] is updated as

δ[i]← Clip±ξ

(
x[i]− rp · sign(

1

Uperturb
▽δ[i] l[i])

)
− x[i],

where x[i] are input samples belonging to the i-th class
and l[i] =

∑S/s
j=1 L[fθ̂+ϵj

(x[i]), i] is the accumulated loss
calculated from samples of the i-class in the mini-batch.

Algorithm 4: Training Step of Surrogate
func TRAIN STEP
Input: θ, l/Utrain, learning rate r
θ ← θ − r

Utrain
· ▽θl

Output: θ

Algorithm 5: Optimization Step of PUE
func OPT STEP
Input: δ, x, l/Uperturb, learning rate rp

δ ← Clip±ξ

(
x− rp · sign( 1

Uperturb
▽δ l)

)
− x

Output: δ

B. Proofs

Theorem 1 (Perturbation bound on QPS). Let Γ : X × Y →
θ̂ ∈ Θ be a learning function selecting θ̂ from the parameter
space Θ based on a dataset defined in X ×Y . Given an target
dataset D and a quantile smoothed function hq(θ̂) centered at
a Gaussian N (θ̂, σ2I), then there exists an upper bound for
hq(θ̂ + υ). Specifically,

hq(θ̂ + υ) ≤ inf {t | Pr
ϵ
[AD(θ̂ + ϵ) ≤ t] ≥ q}, ∀ ∥υ∥ ≤ η, (9)

where q := Φ(Φ−1(q) + η
σ ). Φ(·) is the standard Gaussian

CDF and Φ−1(·) is the inverse of the CDF. ∥υ∥ is the ℓ2 norm
of the parameter shift υ from θ̂.

Proof: The proof is similar to that of Lemma 2 in the
paper of Chiang et al. [32]. For simplicity, notate the RHS of
the inequality by hq(θ̂). Let

λ(θ̂) = Eϵ∼N (0,σ2I)1[AD(θ̂ + ϵ) ≤ hq(θ̂)],

there is λ(θ̂) ∈ [0, 1]. It is obvious that

λ(θ̂) = Pr[AD(θ̂ + ϵ) ≤ hq(θ̂)].
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TABLE VII: Trade-off between Train-Time/Certification Noise Level and Learnability (%) on CIFAR10
Train Noise Certification Noise (σ) η × 100

0.1 0.5 1.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0

0.10

0.10 14.57 14.68 14.76 16.00 17.26 - - - - - - - - - - - - - - - - - -
0.20 10.41 10.42 10.49 11.01 11.36 12.00 12.66 13.57 - - - - - - - - - - - - - - -
0.30 10.49 10.52 10.53 10.68 11.00 11.23 11.63 11.75 12.16 12.73 - - - - - - - - - - - - -
0.40 10.51 10.52 10.52 10.72 10.92 11.14 11.50 11.70 12.04 12.23 12.77 12.88 13.49 - - - - - - - - - -
0.50 10.67 10.69 10.69 10.81 11.12 11.24 11.62 12.01 12.28 12.44 12.60 12.75 12.89 13.07 13.11 13.11 - - - - - - -
0.60 10.66 10.67 10.68 10.86 10.95 11.03 11.14 11.38 11.65 12.08 12.38 12.63 12.98 13.07 13.45 13.46 13.75 14.80 - - - - -
0.70 10.51 10.51 10.53 10.60 10.74 10.82 10.95 11.12 11.19 11.32 11.45 11.63 11.70 11.80 11.99 12.28 12.57 12.77 13.67 13.70 13.70 - -
0.80 10.49 10.49 10.50 10.54 10.62 10.69 10.75 10.90 10.99 11.06 11.24 11.34 11.41 11.47 11.66 11.76 11.88 12.00 12.43 12.54 12.95 12.95 13.18
0.90 10.50 10.50 10.53 10.56 10.62 10.70 10.78 10.91 10.98 11.06 11.18 11.29 11.35 11.56 11.77 11.94 12.06 12.29 12.33 12.58 12.58 12.81 13.01
1.00 10.49 10.49 10.50 10.54 10.61 10.67 10.74 10.82 10.93 11.03 11.12 11.28 11.43 11.71 11.80 11.96 12.12 12.15 12.17 12.22 12.36 12.50 12.60

0.15

0.10 13.75 13.85 14.04 15.17 16.59 - - - - - - - - - - - - - - - - - -
0.15 10.53 10.60 10.62 11.26 11.99 13.67 - - - - - - - - - - - - - - - - -
0.20 10.57 10.59 10.65 10.99 11.54 12.07 13.14 15.20 - - - - - - - - - - - - - - -
0.30 10.49 10.49 10.54 10.73 11.03 11.39 11.82 13.00 13.43 13.67 - - - - - - - - - - - - -
0.40 10.47 10.50 10.51 10.69 10.87 11.01 11.26 11.48 11.87 12.36 12.55 13.10 13.92 - - - - - - - - - -
0.50 10.44 10.44 10.47 10.58 10.69 10.82 11.09 11.39 11.61 12.28 12.34 12.61 12.78 13.12 13.72 13.72 - - - - - - -
0.60 10.45 10.50 10.53 10.62 10.74 10.87 11.04 11.19 11.46 11.51 11,65 11.80 12.11 12.30 12.60 12.63 13.55 14.10 - - - - -
0.70 10.40 10.40 10.42 10.49 10.57 10.66 10.78 10.96 11.05 11.20 11.32 11.43 11.63 11.78 12.04 12.39 12.58 12.72 13.03 13.47 13.47 - -
0.80 10.38 10.38 10.38 10.42 10.53 10.62 10.68 10.79 10.92 11.03 11.20 11.36 11.52 11.74 12.28 12.33 12.48 12.49 12.70 13.16 13.16 13.16 13.74
0.90 10.42 10.42 10.43 10.51 10.56 10.62 10.71 10.78 10.92 10.97 11.03 11.16 11.19 11.25 11.39 11.67 11.81 12.06 12.12 12.17 12.20 12.38 12.78
1.00 10.35 10.35 10.35 10.42 10.50 10.64 10.73 10.76 10.87 10.97 11.04 11.17 11.24 11.28 11.38 11.48 11.53 11.63 11.75 12.14 12.38 12.74 12.80

0.20

0.10 10.58 10.60 10.63 10.96 13.70 - - - - - - - - - - - - - - - - - -
0.20 11.70 11.89 11.98 12.58 13.38 14.21 15.02 15.29 - - - - - - - - - - - - - - -
0.30 10.57 10.57 10.61 10.84 11.15 11.61 11.81 12.24 12.77 12.95 - - - - - - - - - - - - -
0.40 10.42 10.42 10.44 10.65 10.90 11.10 11.22 11.31 11.81 11.96 12.18 13.07 13.18 - - - - - - - - - -
0.50 10.46 10.46 10.46 10.57 10.71 10.86 11.07 11.27 11.31 11.40 11.51 11.73 12.42 12.59 14.54 14.54 - - - - - - -
0.60 10.42 10.44 10.46 10.55 10.64 10.77 10.89 10.96 11.09 11.18 11.34 11.46 11.68 12.02 12.33 12.38 12.96 13.11 - - - - -
0.70 10.34 10.36 10.37 10.46 10.57 10.61 10.68 10.80 10.96 11.13 11.28 11.50 11.61 11.70 11.87 12.06 12.36 12.70 13.00 14.18 14.18 - -
0.80 10.40 10.40 10.44 10.47 10.61 10.73 10.76 10.91 10.97 11.08 11.22 11.30 11.47 11.61 12.04 12.17 12.20 12.57 12.74 13.08 13.19 13.19 13.23
0.90 10.45 10.45 10.46 10.55 10.58 10.62 10.72 10.80 10.90 11.00 11.05 11.18 11.31 11.40 11.64 11.72 11.99 12.08 12.19 12.49 12.73 13.30 13.48
1.00 10.43 10.43 10.44 10.49 10.54 10.61 10.67 10.78 10.92 10.99 11.04 11.08 11.23 11.34 11.36 11.44 11.54 11.73 11.81 11.99 12.44 12.61 12.76

0.25

0.10 9.96 9.96 9.96 10.00 10.98 - - - - - - - - - - - - - - - - - -
0.20 10.02 10.24 10.27 10.58 10.98 11.85 12.69 14.49 - - - - - - - - - - - - - - -
0.25 10.62 10.67 10.71 11.07 11.86 12.05 13.20 14.67 15.75 - - - - - - - - - - - - - -
0.30 10.35 10.35 10.40 10.69 10.98 11.32 11.98 12.57 12.95 13.02 - - - - - - - - - - - - -
0.40 10.41 10.43 10.44 10.63 10.86 11.15 11.28 11.57 12.58 12.82 13.03 13.18 14.21 - - - - - - - - - -
0.50 10.40 10.41 10.42 10.53 10.73 10.88 11.17 11.45 11.60 11.76 11.92 12.22 12.73 12.76 14.00 14.00 - - - - - - -
0.60 10.40 10.40 10.41 10.50 10.61 10.73 10.83 10.98 11.15 11.41 11.51 11.76 11.93 11.99 12.49 12.76 13.08 15.25 - - - - -
0.70 10.47 10.50 10.52 10.57 10.72 10.83 10.96 11.02 11.14 11.19 11.31 11.55 11.77 11.90 12.13 12.19 12.38 12.55 12.95 15.70 15.70 - -
0.80 10.53 10.53 10.53 10.59 10.68 10.77 10.86 10.95 11.18 11.28 11.37 11.49 11.52 11.83 12.00 12.12 12.71 12.72 12.87 12.91 13.72 13.72 15.17
0.90 10.52 10.52 10.53 10.59 10.66 10.77 10.88 10.96 11.09 11.27 11.40 11.47 11.51 11.52 11.85 12.21 12.23 12.51 12.90 13.10 13.36 13.62 13.96
1.00 10.50 10.50 10.51 10.56 10.66 10.75 10.78 10.82 10.96 11.07 11.17 11.26 11.51 11.57 11.62 11.71 11.82 12.12 12.24 12.42 12.67 13.10 13.18

The following function

Λ(θ̂) = σΦ−1(λ(θ̂))

= σΦ−1(Pr[AD(θ̂ + ϵ) ≤ hq(θ̂)])

is 1-Lipschiz due to Lemma 2 of Salman et al. [37]. Therefore,

Φ−1(Pr[AD(θ̂ + υ + ϵ) ≤ hq(θ̂)])

≥Φ−1(Pr[AD(θ̂ + ϵ) ≤ hq(θ̂)])−
∥υ∥
σ

.
(15)

If and only if when ∥υ∥ ≤ η, there is

Φ−1(Pr[AD(θ̂ + ϵ) ≤ hq(θ̂)])−
∥υ∥
σ

≥Φ−1(Pr[AD(θ̂ + ϵ) ≤ hq(θ̂)])−
η

σ

=Φ−1(q)− η

σ
=Φ−1(q).

(16)

Since the inverse CDF is monotonically increasing, combining
Inequality 15 and Inequality 16 yields

Pr[AD(θ̂ + υ + ϵ) ≤ hq(θ̂)] ≥ q.

Note that, by definition,

hq(θ̂ + υ) = inf {t | Pr[AD(θ̂ + υ + ϵ) ≤ t] ≥ q},

Then

hq(θ̂ + υ) ≤ hq(θ̂)

⇐⇒ hq(θ̂ + υ) ≤ inf {t | Pr[AD(θ̂ + ϵ) ≤ t] ≥ q}.

The proof is concluded.

Corollary 1 (Expected generalization accuracy under para-
metric smoothing noise). Let AD̂ : Θ × X × Y → [0, 1] be
an accuracy function of a hypothesis parameterized by θ̂ ∈ Θ

evaluated on a dataset D̂ ∼ D. When θ̂ is under a random
perturbation υ, with probability at least 1− α, we have:

Eϵ[AD(θ̂ + ϵ)] ≥ Eϵ[AD̂(θ̂ + ϵ)]−

√√√√ ∥θ̂∥2

σ2 + ln N
α

2(N − 1)
, (12)

where N is the size of D̂ and ϵ ∼ N (0, σ2I).

Proof: Given the input space X := {x ∈ Rd |
∑d

i=1 x
2
i ≤

τ}, a classifier fθ̂ : Rd → Rk, an accuracy AD(·) over data
distribution D, and an empirical accuracy AD̂(·) calculated
from a test dataset D̂ of size N . Notice that the generalization
error of fθ̂ is

errD(θ̂) = E(x,y)∼D1[f
(y)

θ̂
(x) ≤ max

i:i ̸=y
f
(i)

θ̂
(x)], (17)

where f
(i)

θ̂
(x) is the i-th classification score of fθ̂(x). Similarly,

the empirical error on D̂ is

errD̂(θ̂) =
1

N

N∑
j=1

1[f
(yj)

θ̂
(xj) ≤ max

i:i ̸=yj

f
(i)

θ̂
(xj)]. (18)

When the classifier’s weights are randomly perturbed by
ϵ ∼ π(0), according to Langford & Shawe-Taylor, and
McAllester [34], for any α > 0:

Pr

Eϵ[errD(θ̂ + ϵ)] ≤ Eϵ[errD̂(θ̂ + ϵ)] +

√
DKL(π(θ̂ + ϵ)||P ) + log N

α

2(N − 1)


≥ 1− α,

(19)
where P is a prior distribution independent from training data,
π(θ̂ + υ) is the distribution of θ̂ + υ, and DKL measures the
Kullback–Leibler (KL) Divergence. Therefore, with probability
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TABLE VIII: Trade-off between Train-Time/Certification Noise Level and Learnability (%) on CIFAR100
Train Noise Certification Noise (σ) η × 100

0.1 0.5 1.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0

0.10

0.10 1.81 1.82 1.84 1.97 2.27 - - - - - - - - - - - - - - - - - -
0.20 1.17 1.17 1.17 1.21 1.32 1.40 1.49 1.60 - - - - - - - - - - - - - - -
0.30 1.13 1.13 1.13 1.17 1.22 1.25 1.33 1.40 1.44 1.49 - - - - - - - - - - - - -
0.40 1.13 1.13 1.13 1.15 1.17 1.19 1.23 1.28 1.35 1.41 1.50 1.52 1.60 - - - - - - - - - -
0.50 1.12 1.13 1.13 1.14 1.16 1.18 1.20 1.23 1.25 1.33 1.34 1.35 1.37 1.37 1.57 1.57 - - - - - - -
0.60 1.12 1.12 1.12 1.14 1.16 1.19 1.21 1.24 1.26 1.30 1.32 1.38 1.40 1.46 1.48 1.61 1.70 1.74 - - - - -
0.70 1.12 1.12 1.12 1.13 1.15 1.16 1.18 1.19 1.21 1.24 1.25 1.28 1.30 1.32 1.34 1.35 1.42 1.43 1.58 1.66 1.66 - -
0.80 1.12 1.12 1.12 1.13 1.16 1.16 1.18 1.19 1.20 1.22 1.25 1.27 1.28 1.33 1.34 1.35 1.38 1.38 1.42 1.42 1.48 1.48 1.60
0.90 1.11 1.11 1.11 1.12 1.12 1.13 1.14 1.15 1.17 1.17 1.19 1.20 1.21 1.22 1.22 1.25 1.25 1.30 1.33 1.39 1.41 1.44 1.56
1.00 1.11 1.11 1.11 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.17 1.19 1.19 1.21 1.23 1.23 1.26 1.28 1.31 1.32 1.34 1.36 1.36

0.15

0.10 1.85 1.86 1.88 2.01 2.33 - - - - - - - - - - - - - - - - - -
0.15 1.61 1.18 1.19 1.27 1.39 1.51 - - - - - - - - - - - - - - - - -
0.20 1.13 1.13 1.14 1.19 1.25 1.37 1.45 1.66 - - - - - - - - - - - - - - -
0.30 1.12 1.13 1.13 1.15 1.21 1.25 1.33 1.40 1.48 1.50 - - - - - - - - - - - - -
0.40 1.13 1.13 1.13 1.16 1.19 1.24 1.30 1.32 1.40 1.43 1.46 1.49 1.52 - - - - - - - - - -
0.50 1.13 1.13 1.13 1.14 1.16 1.18 1.19 1.21 1.24 1.26 1.28 1.30 1.37 1.42 1.59 1.59 - - - - - - -
0.60 1.12 1.12 1.12 1.14 1.15 1.15 1.19 1.20 1.22 1.25 1.27 1.30 1.33 1.35 1.38 1.43 1.44 1.52 - - - - -
0.70 1.12 1.12 1.12 1.13 1.14 1.15 1.17 1.18 1.21 1.25 1.26 1.28 1.35 1.40 1.41 1.43 1.45 1.49 1.54 1.74 1.74 - -
0.80 1.12 1.12 1.12 1.13 1.14 1.15 1.16 1.17 1.19 1.20 1.22 1.25 1.26 1.27 1.30 1.31 1.31 1.32 1.35 1.39 1.41 1.41 1.48
0.90 1.11 1.11 1.11 1.11 1.12 1.13 1.15 1.16 1.18 1.19 1.21 1.22 1.24 1.25 1.27 1.31 1.32 1.34 1.34 1.37 1.39 1.39 1.46
1.00 1.11 1.11 1.11 1.11 1.12 1.13 1.14 1.14 1.15 1.16 1.18 1.20 1.21 1.22 1.24 1.26 1.28 1.32 1.32 1.33 1.34 1.35 1.41

0.20

0.10 1.24 1.24 1.25 1.33 1.41 - - - - - - - - - - - - - - - - - -
0.20 1.51 1.52 1.53 1.59 1.70 1.75 1.81 1.86 - - - - - - - - - - - - - - -
0.30 1.14 1.14 1.15 1.18 1.21 1.24 1.28 1.38 1.45 1.51 - - - - - - - - - - - - -
0.40 1.14 1.14 1.15 1.18 1.19 1.23 1.25 1.30 1.37 1.43 1.49 1.54 1.68 - - - - - - - - - -
0.50 1.12 1.12 1.13 1.14 1.16 1.20 1.23 1.27 1.28 1.31 1.32 1.39 1.44 1.50 1.70 1.70 - - - - - - -
0.60 1.12 1.12 1.12 1.14 1.16 1.17 1.19 1.21 1.24 1.25 1.30 1.30 1.31 1.36 1.39 1.47 1.55 1.56 - - - - -
0.70 1.11 1.11 1.11 1.12 1.14 1.16 1.17 1.18 1.20 1.23 1.24 1.26 1.28 1.32 1.37 1.38 1.40 1.43 1.46 1.49 1.49 - -
0.80 1.12 1.12 1.12 1.12 1.14 1.16 1.18 1.20 1.21 1.23 1.24 1.27 1.30 1.31 1.33 1.33 1.34 1.36 1.38 1.39 1.39 1.39 1.47
0.90 1.13 1.13 1.13 1.13 1.15 1.16 1.17 1.18 1.19 1.19 1.20 1.21 1.22 1.25 1.25 1.28 1.28 1.32 1.32 1.35 1.40 1.43 1.44
1.00 1.12 1.12 1.12 1.13 1.14 1.16 1.16 1.17 1.17 1.18 1.19 1.20 1.22 1.23 1.25 1.26 1.28 1.30 1.31 1.35 1.37 1.40 1.40

0.25

0.10 1.12 1.12 1.13 1.19 1.31 - - - - - - - - - - - - - - - - - -
0.20 1.27 1.27 1.28 1.31 1.39 1.47 1.60 1.69 - - - - - - - - - - - - - - -
0.25 1.32 1.32 1.33 1.37 1.42 1.47 1.53 1.59 1.68 - - - - - - - - - - - - - -
0.30 1.18 1.18 1.19 1.23 1.28 1.32 1.35 1.52 1.56 1.61 - - - - - - - - - - - - -
0.40 1.12 1.12 1.12 1.14 1.16 1.19 1.22 1.30 1.34 1.40 1.44 1.47 1.58 - - - - - - - - - -
0.50 1.12 1.12 1.12 1.15 1.17 1.19 1.21 1.23 1.24 1.25 1.28 1.35 1.41 1.42 1.56 1.56 - - - - - - -
0.60 1.10 1.10 1.10 1.11 1.13 1.16 1.18 1.21 1.22 1.23 1.27 1.33 1.36 1.38 1.44 1.49 1.51 1.52 - - - - -
0.70 1.10 1.11 1.11 1.11 1.13 1.15 1.17 1.19 1.20 1.21 1.23 1.25 1.27 1.28 1.31 1.31 1.38 1.40 1.50 1.52 1.52 - -
0.80 1.10 1.10 1.10 1.12 1.13 1.13 1.15 1.15 1.16 1.18 1.20 1.22 1.23 1.25 1.27 1.28 1.31 1.34 1.36 1.38 1.51 1.51 1.56
0.90 1.10 1.10 1.10 1.11 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.21 1.23 1.24 1.25 1.26 1.28 1.30 1.30 1.34 1.34
1.00 1.10 1.10 1.11 1.11 1.13 1.13 1.14 1.16 1.19 1.20 1.21 1.22 1.23 1.25 1.26 1.27 1.30 1.31 1.33 1.33 1.34 1.37 1.38

TABLE IX: Certification Offset

Data Accuracy (Online) C (Online) Accuracy (Offline) C (Offline)

PUE-B PUE-10 PUE-1 EMN PUE-10 EMN OPS

CIFAR10 9.96 -0.68 -0.12 -4.72 10.32 +0.94 -0.28
CIFAR100 1.00 -0.02 -0.10 -0.68 0.97 +0.01 N/A
ImageNet 1.24 +0.15 +0.15 +0.15 N/A N/A N/A

TABLE X: Certified (q, η)-Learnability based on Different
Surrogate Architectures (%, σ = 0.25)

Architecture η × 100

0.1 0.5 1.0 5.0 10.0 15.0 20.0 25.0 30.0

ResNet-18 10.57 10.58 10.58 10.83 11.10 11.39 11.68 12.22 13.20
ResNet-50 7.86 7.87 7.87 8.00 8.15 8.48 8.91 9.95 10.97

at least 1− α,

Eϵ[errD(θ̂ + ϵ)]

≤Eϵ[errD̂(θ̂ + ϵ)] +

√
DKL(π(θ̂ + ϵ)||P ) + log N

α

2(N − 1)
.

(20)

Let P be N (0, σ2I), and by knowing π(θ̂ + ϵ) = N (θ̂, σ2I),
the KL Divergence can be computed as

DKL(π(θ̂ + ϵ)||P ) =
∥θ̂∥2

2σ2
+
|θ̂|
2

[
σ2

σ2
+ log(

σ2

σ2
)− 1

]
=
∥θ̂∥2

2σ2
,

(21)

where |θ̂| is the size of θ̂. Plugging Equation 21 and

AD(θ̂ + ϵ) = 1− errD(θ̂ + ϵ)

AD̂(θ̂ + ϵ) = 1− errD̂(θ̂ + ϵ)

into Inequality 20 concludes the proof.

C. More Experimental Settings and Results

Additional details of hyper-parameters. For all experiments,
we set the value ξ = 8/255 for CIFAR10 and CIFAR100. On
ImageNet, we set ξ = 16/255. The training batch size is 128
for all classifiers except DenseNet121, where it is set to 96.
The step size of gradient descent during optimizing the noise
δ is set to ξ/10. We set Utrain = 100 for all training with
random weight perturbations. In all experiments of crafting
PUE/PUE-B/EMN, the value of M is set to 10 for CIFAR10,
20 for CIFAR100, and 100 for ImageNet. The stop criteria for
the PUE/PUE-B/EMN optimization is that the validation error
drops below 10%. We use 20% of the training set to optimize
the PAP noise and validate the error of the online surrogate.
The online surrogate is trained on the full training set with a
poisoning rate of 1.0. In offline surrogate training, we use the
fully poisoned training datasets for training and validation. The
offline surrogate training is stopped when the training error is
less than 10% and the surrogate has gone through at least one
epoch of training with random weight perturbations.

Comparison of (q, η)-Learnability. Given a surrogate with
parameters θ̂ and a corresponding Θ̂, we are interested in
the accuracy gain l(q,η)(Θ̂;Ds ⊕ δ) − AD(θ̂) resulting from
perturbing θ̂. When comparing two surrogates trained by
different methods, the one inducing a higher accuracy gain
through certification can locate a certified parameter set on
which a tighter certification can be made. Regarding surrogates
trained on different PAP noises using the same training methods,
their accuracy gains reflect the robustness of the noises towards
recovery attacks or uncertainties in parameters. Therefore, we
adjust the learnability scores in the comparisons to better demon-
strate the differences in accuracy gains. In the online setting,
let the accuracy of the PUE-B surrogate be AD(θPUE−B), we
offset the certified learnability of X ∈ {PUE-10, PUE-1, EMN}
by adding a constant C = AD(θPUE−B) − AD(θX). In the
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TABLE XI: Empirical Top-1 Clean Testing Accuracy (%) of
Classifiers Trained on UEs

Data Model PUE EMN OPS Clean

CIFAR10
ResNet-18 10.62 11.89 12.95 94.90
ResNet-50 10.00 12.37 10.96 94.17

DenseNet-121 10.31 11.86 13.80 95.16

CIFAR100
ResNet-18 2.62 2.49 1.57 70.78
ResNet-50 2.03 1.61 1.78 70.89

DenseNet-121 3.01 2.56 2.32 95.16

ImageNet
ResNet-18 4.56 4.84 22.32 79.86
ResNet-50 3.34 4.00 26.62 82.36

DenseNet-121 4.60 6.23 22.60 84.04

offline setting, we use PUE-10 as the baseline and accordingly
offset certification results from EMN and OPS. The offsets are
listed in Table IX.

Ablation study of certification. The ablation study on
CIFAR10 and CIFAR100 is presented in Table VII and
Table VIII, respectively. We can observe similar trends in
the results on the two datasets. Generally, when the train-time
noise matches the parametric smoothing noise, higher (q, η)-
Learnability can be certified. A train-time noise level of 0.25
can obtain higher (q, η)-Learnability certified at farther η.

Cross-architecture certification. We train offline surrogates
based on ResNet-18 and ResNet-50 architectures on the PUE
version of CIFAR10, respectively. The CIFAR10 PUEs are
crafted based on ResNet-18. Therefore, the ResNet-50 surrogate
examines a cross-architecture certification performance. We
compare the certification results from these two architectures
in Table X. We set σ = 0.25 in the certification. Similar to the
previous comparisons, we use ResNet-18 as the baseline and
apply offsets (-2.26) to the (q, η)-Learnability scores certified
by ResNet-50.

The results show that ResNet-18 certifies tighter (q, η)-
Learnability scores. The results suggest that the surrogate used
in certification should match the surrogate used for generating
UEs. Note that ResNet-50 has more parameters, therefore the
certifications are carried out on parameter spaces with different
dimensionality. On top of that, we also notice that ResNet-50
is less capable of finding better classifiers through parametric
randomization. Better surrogate training methods could be
proposed in the future to efficiently augment surrogates with
more parameters.

TABLE XII: Impact of Training Strategies

Strategy Data

PUE EMN OPS Clean

MixUp 24.66 17.79 32.99 95.21
CutOut 12.05 14.42 57.69 95.18

Fast Autoaugment 35.33 22.71 65.61 95.14
ℓ∞ AT 85.03 85.06 10.45 84.97

Computational overhead. We also tested the effective noise
level for training the surrogate and PUEs. We found that the
surrogate and PUEs could converge rapidly on a Gaussian noise
whose σ′ ≤ 0.25. However, when the noise further increases to
σ′ ≥ 0.3, the training fails to converge in a limited time. We
record the GPU hours of training PUEs and surrogates under
different noise levels, on Nvidia Tesla P100 GPUs (Table XIII
and Table XIV). The training cost increases with the scale of
the train-time noise. Each training run of PUEs and an online
surrogate takes around 40 GPU hours when selecting 0.25 as

TABLE XIII: Training Cost (GPU hour) for PUEs and Online
Surrogates

Dataset Noise Level

0.05 0.10 0.15 0.20 0.25

CIFAR10 0.24 1.20 1.20 19.68 39.60
CIFAR100 0.24 2.16 2.16 12.96 38.88
ImageNet 0.40 3.84 5.04 23.28 45.90

TABLE XIV: Training Cost (GPU hour) for Offline Surrogates

Dataset PAP Noise

PUE EMN OPS

CIFAR10 2.16 2.16 3.60
CIFAR100 2.16 2.16 N/A

the scale of the train-time noise. Training an offline surrogate
with a noise scale of 0.25 takes around 2.16 GPU hours. The
training cost is within an acceptable range.

D. Empirical Evaluations

In this section, we investigate the empirical utility of UEs.
We conduct empirical evaluations of the PUEs by comparing
the clean test accuracy of classifiers trained on PUE, EMN [9],
and OPS [35]. We also employ train-time strategies in our
experiments to show the robustness of PUE against such
strategies. However, as discussed in this paper, we want to
emphasize that empirical results could be less instructive due
to the uncertainty brought by the randomness in training.

Vanilla training. In this part, we measure the empirical Top-
1 accuracy of classifiers trained on PUE-10, EMN, and OPS,
respectively. There is no particular training strategy incorporated
at this stage and we stick to the training details mentioned at
the beginning of the Experiments section. We use the default
settings from the corresponding papers of EMN and OPS in
the comparison, except for ImageNet OPS. We use Random
Resized Crop instead of Center Crop to process ImageNet
data to 224× 224 for PUE, EMN, and OPS. The results are
presented in Table XI. PUE outperforms all competitors on
CIFAR10 and ImageNet, and it is on par with EMN and OPS on
CIFAR100. We observe that OPS performs poorly on ImageNet.
The possible reason is that Random Resized Crop diversifies
the pixel distribution in each class, rendering the task of finding
the most impactful pixel arduous for OPS.

Training with strategies. Training techniques such as data
augmentation and adversarial training are prevalently placed
into model training in real-world cases. Though the certified
learnability considers only the parameters of the trained model
and ignores the training techniques, it is also of interest to
test how PUEs react to these strategies when the trained
classifier is out of the certifiable parameter set. In this part,
we apply different techniques in the training and compare the
robustness of PUE, EMN and OPS towards these techniques.
Specifically, we tested PUEs along with its competitors on
adversarial training (AT) [59], Mixup [60], Cutout [61], and
Fast Autoaugment [62]. We use an ℓ∞ norm of 8/255 for PGD
in the adversarial training. The results are in Table XII. PUE
outperforms both EMN and OPS when training using CutOut,
and better survives from MixUp and Fast Autoaugment than
OPS. In contrast, OPS is barely affected by adversarial training
while PUE and EMN can be invalidated.
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