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Abstract—Model pruning is a technique for compressing deep
learning models, and using an iterative way to prune the model
can achieve better compression effects with lower utility loss.
However, our analysis reveals that iterative pruning significantly
increases model memorization, making the pruned models more
vulnerable to membership inference attacks (MIAs). Unfortu-
nately, the vast majority of existing defenses against MIAs are
designed for original and unpruned models. In this paper, we
propose a new framework WEMEM to weaken memorization in
the iterative pruning process. Specifically, our analysis identifies
two important factors that increase memorization in iterative
pruning, namely data reuse and inherent memorability. We
consider the individual and combined impacts of both factors,
forming three scenarios that lead to increased memorization in
iteratively pruned models. We design three defense primitives
based on these factors’ characteristics. By combining these
primitives, we propose methods tailored to each scenario to
weaken memorization effectively. Comprehensive experiments
under ten adaptive MIAs demonstrate the effectiveness of the
proposed defenses. Moreover, our defenses outperform five ex-
isting defenses in terms of privacy-utility tradeoff and efficiency.
Additionally, we enhance the proposed defenses to automatically
adjust settings for optimal defense, improving their practicability.

I. INTRODUCTION

Deep neural networks (DNNs) involve millions or even
billions of parameters [1]-[4], necessitating significant storage
and computing resources. This poses challenges for deploying
them on resource-constrained devices [5]-[7]. Model pruning
as a compression technique can reduce the model size with
little impact on the accuracy by removing redundant model pa-
rameters [4], [8]-[10]. Traditional one-shot model pruning [4],
[7] consists of training, pruning, and fine-tuning operations.
Recent research [8] has shown that an iterative process of
repeated pruning and fine-tuning can achieve a better trade-
off between model utility and sparsity.
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Membership inference attacks (MIAs) pose a significant
privacy threat to DNNs. Adversaries can exploit these attacks
to deduce whether a particular data sample was used in training
a model by analyzing the model’s output. Such attacks are par-
ticularly concerning in sensitive domains like healthcare and
finance, where they compromise individual privacy [11], [12].
The underlying issue is the tendency of DNNs to memorize
training data details excessively [13], [14], thereby making it
simpler for these models to differentiate between member and
non-member samples. Furthermore, recent research indicates
that one-shot pruned models exhibit a higher vulnerability to
MIAs, showing increased attack accuracy compared to the
original models [15]. While it is suspected that the increased
memorization in DNNSs is due to the repetitive use of training
data during model fine-tuning, this phenomenon has not yet
been quantified.

In this paper, we first quantitatively assess how reusing
training data increases memorization in DNNs. We also ex-
plore whether iteratively pruned models, which involve mul-
tiple reuses of training data, pose a higher privacy risk than
one-shot pruned models. As a result, we empirically establish
a positive correlation between the occurrences of data reuse
and increased memorization. Additionally, we demonstrate that
MIA accuracy is notably higher in iteratively pruned models
compared to one-shot pruned models. These findings suggest
that the repeated data reuse in iterative pruning substantially
boosts a model’s tendency to memorize training samples,
thereby increasing vulnerability to MIAs.

Furthermore, recent work by Feldman et al. [16], [17]
argues that certain data are inherently easier to memorize,
suggesting that the intrinsic memorability of some data could
be a significant factor contributing to increased memorization
in iteratively pruned models. We empirically demonstrate that
inherently easy-to-memorize training data is more vulnerable
to serious privacy threats. The situation worsens during iter-
ative pruning, as data reuse leads to a significant increase in
the model’s memorization of such data.

Consequently, we present a new framework, namely WE-
MEM, to defend against MIAs in iterative pruning by
weakening memorization. We consider three scenarios in it-
erative fine-tuning that may increase model memorization: (1)
the impact of data reuse; (2) the impact of easy-to-memorize




characteristics of some data; (3) the combined impacts of
the aforementioned two factors. We develop three defense
primitives based on the characteristics of the two factors. Then,
we combine these primitives in different ways to propose
defense solutions for the above scenarios, aiming to mitigate
memorization and effectively defend against MIAs.

The existing MIA defense mechanisms can be classified
into two types. One aims to provide a provable privacy
guarantee through differential privacy mechanisms [18]-[20].
While this method offers strict membership privacy guaran-
tees, it often significantly degrades model accuracy. The other
aims to provide empirical membership privacy, which can
offer higher model accuracy to a certain extent [12], [15],
[21]-[23]. However, existing solutions seldom consider how
the use and characteristics of training samples contribute to
defense. Although our methods also fall into the category
of empirical defenses, they dynamically adjust the focus on
training samples based on the memorization degree of different
models to various data, better meeting the privacy needs of
training samples across different models. Additionally, one of
our methods achieves effective defense by merely adjusting
the use of training samples without modifying the training
algorithm. Experimental results show that our defense methods
offer a superior privacy-utility tradeoff and defense efficiency
compared to existing defenses. The main contributions of this
paper are as follows:

e We find that data reuse and inherent memorability in-
crease model memorization during iterative pruning,
heightening membership privacy risks for training data.
To address this, we propose the WEMEM defense frame-
work, which contains three methods to weaken the
memorization of the iteratively pruned models and thus
effectively defend against MIAs.

e The first proposed method reduces memorization by lim-
iting training data reuse without modifying the training
algorithm. The second imposes stricter constraints on
learning easy-to-memorize data. The third combines both
approaches for a stronger reduction in memorization.

e We conduct extensive experiments on ten adaptive MIAs,
demonstrating that our methods provide effective defense
in iterative model pruning. Our defenses offer a better
privacy-utility tradeoff and are more time-efficient than
the five existing methods. Based on the results, we further
enhance the practicality of our defenses by enabling
automatic adjustment of settings.

Our code is available at https://github.com/CactiLab/

WeMeM.

II. BACKGROUND KNOWLEDGE AND THREAT MODEL

In this section, we introduce the workflow of iterative model
pruning, the concept of memorization, and our threat model.
A. Workflow of Iterative Model Pruning

The workflow of iterative model pruning [1], [5] includes
the following steps:

e Step I: An original and unpruned model fg, is trained,
where 0 represents the model weights.

e Step 2: To achieve a final pruning rate of v, (1— (1 —v)+)
of the less important weights are removed using a binary
mask M to obtain the sparse weight parameters after each
iteration, denoted as 6; ® M, where r is the number of
iterations, and ® is the Hadamard product.

e Step 3: To recover the model accuracy, fine-tuning is
performed on the pruned model fg,oas With ¢ epochs and
obtain the pruned model fo,_,.

e Step 4: Repeat Steps 2 and 3 for r iterations to obtain the
final pruned model fp, with a pruning rate of v.

B. Memorization

In classification datasets, rare and atypical data samples in
the “long tail” are difficult to learn accurately [16]. However,
if the model memorizes these data and their labels, it can
improve prediction accuracy for these classes, making mem-
orization essential for achieving generalization. Feldman et
al. [17] introduced the memorization score (mem-score) as a
metric to quantify memorization. For the training set D and
an arbitrary sample (x,y) € D, given the learning algorithm
A, the memorization score of this sample is defined as

mem(A, D, (z,y))

= fef;(D)[fe(w) =y -

Pr )=y D
o AlD\ @y 1) =Y
where fg + A(D) denotes the model f parameterized with
weights 6 is learned by running the algorithm .4 on D, and
D\(z,y) denotes the sample (x,y) is removed from D.

C. Likelihood Ratio Attack (LiRA)

LiRA [24] is a recent MIA that uses a hypothesis test to
determine whether the target model fg was trained on a dataset
containing a specific sample (x,y). Its attack performance is
positively correlated with the model’s memorization scores on
individual samples [25], and it achieves high true-positive rates
(TPR) even at low false-positive rates (FPR). For a sample
(z,y), LiRA considers two Gaussian distributions on the target
model, namely Q;,, and Q,.¢, which represents the confidence
distribution on the logit scale when the model is trained or not
on the sample, respectively:

Qin = {Qs(fzn(m)y) | (.’B,y) € D} ~ N(,uinvo'z?n)
Qout = {¢(fout($)u) ‘ (2117y) ¢ D} ~ N(:U’Outa Ugut)

where ¢(m) = log(--) and f;;, /out (), denotes model con-
fidence. Given a sample (x,y), LiRA performs a likelihood-
ratio test to determine which distribution the sample more
likely belongs to. The likelihood ratio A is defined as

_ p(@fe(x)y) | N(pin,07,))
p((b(f@(w)y) | N(,U/Outao-?)ut))

To estimate Q;y,/ou¢» LiRA trains several shadow models,
with half trained on the target sample (x, y) and the other half
not. Then, LiRA fits two Gaussians to the confidences of these
shadow models on (z,y). Finally, the confidence of the target
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model fg is queried on the sample (x, y). If the likelihood ratio
A for this sample exceeds a specified threshold, the sample is
determined as a member of the training dataset.

D. Threat Model and Design Goals

In this paper, we consider MIAs using the shadow training
technique [11]. We assume adversaries know the statistics of
the target pruned model’s training dataset and can synthesize
or collect data with a similar distribution, dividing it into
shadow training and test datasets. Adversaries are also as-
sumed to know the training algorithm and basic architecture of
the pruned model, with black-box query access to the model’s
output but without access to model weights or intermediate
calculations. They cannot query the original, unpruned model.

For the attack, adversaries are assumed to know the pruning
methods, rate v, and iterations r. They train multiple shadow
models on shadow training data, prune them to mimic the
target pruned model, and use the outputs of these shadow mod-
els to launch the attack. Furthermore, we assume adversaries
are aware of the defense mechanisms and perform adaptive
attacks by applying defenses during the generation of shadow-
pruned models. In summary, our attack assumptions align with
existing works [15], [22], [23].

Our design goals for defending against MIAs on iteratively
pruned models are as follows: First, the defense mechanisms
should maintain an acceptable privacy-utility tradeoff, ensur-
ing that model performance is not significantly compromised.
Second, the defenses should not introduce additional storage or
computational costs when deploying and using pruned models.
Lastly, the defenses should not increase the time required for
the iterative pruning process.

III. OUR SOLUTION

In this section, we first discuss our design rationale, fol-
lowed by the design overview and approach details.

A. Motivation and Design Rationale

It has been shown that one-shot pruned models exhibit
higher privacy risks compared to the original models [15],
likely due to the fine-tuning process, which reuses training
data and increases memorization of training samples. In light
of this, we empirically investigate the relationship between
data reuse and increased model memorization. Specifically,
we use LiRA’s results to show increased memorization, where
a higher attack TPR reflects greater memorization.

Fig. la demonstrates that additional training epochs (i.e.,
increased data reuse) lead to a higher LiRA TPR, confirming
that data reuse amplifies model memorization. Additionally,
iterative pruning with multiple rounds of fine-tuning results
in increased data reuse, significantly enhancing memorization
and presenting greater privacy risks compared to one-shot
pruned models. Fig. 1b illustrates that MIA accuracy is higher
in iteratively pruned models than in one-shot pruned models.

Furthermore, models memorize training samples to varying
degrees [17], with higher memorization score data being
more prone to memorization. Multiple rounds of fine-tuning
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Fig. 1: (a) The attack accuracy of eight black-box MIAs on
iteratively pruned models with five iterations is higher than on
one-shot pruned models. (b) As the training epochs increase,
the TPR of LiRA on the same data rises, indicating that more
data reuses leads to increased memorization.

during iterative pruning further increase the use of these easily
memorized samples, intensifying the model’s memorization of
these data.

The core idea of our defense is to reduce model memo-
rization by addressing two key factors: the reuse of training
samples and the inherently easy-to-memorize characteristics
of certain data. These factors typically work together during
fine-tuning in iterative pruning, but to effectively weaken
memorization, we address them separately in three scenarios:
(1) impact of data reuse: using the entire training set in each
epoch increases model memorization; (2) impact of easy-to-
memorize data: the model retains stronger memory of easy-
to-memorize samples; (3) combined impact of data reuse
and easy-to-memorize data: reusing the entire dataset while
retaining a deeper memory of easy-to-memorize data amplifies
overall memorization and privacy risks.

B. Overview of the WEMEM Framework

Fig. 2 illustrates the workflow of the WEMEM framework,
which consists of two stages. The first stage involves training
an original model and generating memorization scores. The
second stage, namely memorization-weakened pruning, itera-
tively prunes and fine-tunes the model while simultaneously
weakening its memorization.

Our fine-tuning process employs three memorization-
weakening primitives, which combine to form three defense
methods. The first primitive, memorization-score-based data
ranking, ranks data within each class based on memorization
scores and is essential for weakening memorization across all
scenarios. The second, sliding-window-based data sampling,
limits data reuse by sampling data for each epoch. The final
primitive, adaptive regularization, applies varying L2 regular-
ization intensities based on the data’s privacy risk, specifically
targeting high memorization-score data.

The three defense methods are (1) Ranking-based Sliding
Window (RSW), which combines data ranking with a sliding
window to reduce data reuse, weakening memorization in
the first scenario; (2) Risky Memory Regularization (RMR),
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Fig. 2: The WEMEM workflow and methods
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which merges data ranking with adaptive regularization to
limit training on high memorization-score data, addressing
the second scenario; and (3) Sliding Window and Memory
Regularization (SWMR), which integrates both RSW and
RMR to mitigate memorization in the final scenario.

C. Efficient Memorization Score Calculation

A typical approach to calculate the memorization score for
samples in the training dataset is to apply Eq. | on each
data [17], which is computationally expensive and becomes
impractical for large datasets. Van den Burg et al. [26]
extended the memorization score calculation for supervised
learning in [17] to the unsupervised density estimation prob-
lem and adapted it to be more computationally efficient. They
applied Bayesian inference [27] to compute the memorization
score of probabilistic generative models on data samples. We
reintroduce the Bayesian inference approach to the classifica-
tion problem while preserving computational efficiency.

Specifically, we first divide the dataset D into K disjoint
subsets, ensuring each subset’s distribution matches D. A
subset is denoted as D;,i € {1,..., K}. Then, we train the
corresponding sub-model fg: on each subset D;. For a sample
(z,y) € D;, we approximate  Pr [fe(x) = y] with the

Jo—A(D)

prediction probability of fg: on x and its ground truth y,

denoted as Pr  [fei(x) = y|. Additionally, let D' =
Foi —A(D:)
D\(z,y) and use Bayesian inference, Pr [fo(x) =

fo—A(D\(2,y))
y] can be written as

Pralf(z) = y|D']

/ D(fo(x) = y| D', 0)p(6)d6

%

1 = _
-1 > Pfei(@) =y|D',67)
=L
)

where p(0) is the prior distribution of 6 with uncertainty,
and P(fo(x) = y|D’, 0) represents the conditional probability
that model fg outputs y for input x. And, the probability
Pra[f(z) = y|D’] can be obtained by calculating the expecta-

tion of p(fe(x) = y|D’, 0). We use the Monte Carlo sampling
method' [27], [28], taking the average of the prediction
probabilities of the remaining K — 1 sub-models that have
not used sample (x,y) as the approximate integration result.
Our calculation method only needs to perform K times model
training (far less than the total amount of data), which can
greatly improve the computational efficiency.

D. Defense Primitives

1) Memorization-score-based Data Ranking: As high
mem-score data samples pose greater privacy risks, they are
the primary target of WEMEM’s defenses. As shown in Fig. 3a,
WEMEM ranks data samples within each class based on their
mem-scores, a fundamental primitive used across all defense
methods in the WEMEM framework.

2) Sliding-window-based Data Sampling: During fine-
tuning, WEMEM uses a sliding window to control the amount
of training data in each epoch. As shown in Fig. 3b, the
window height (h) corresponds to the number of data classes.
Let n be the total amount of training data. On average, the
amount of data for each class is [ = n/h. The window width
(w) can be set to a value no larger than [. Each sampling by a
window with size h x w provides data for one training epoch,
and the window slides forward with a step size (s). The sliding
window ensures that each sampling covers all classes of data
equally in most cases.

3) Adaptive Regularization: In model training, the L2 pa-
rameter regularization method is usually used to limit the
model’s learning capacity to prevent the model from overfitting
the training data [28]. This method adjusts the limit intensity
by setting regularization coefficients. Existing MIA defenses
also adopt this method [11], [21], [29], but they only use one
regularization coefficient to constrain the model’s training on
the entire dataset with a uniform intensity. WEMEM adopts the
L2 parameter regularization method to impose regularization
constraints with different intensities on the fine-tuning process
of the model on high- and low-risk data. The approach is
adaptive to the privacy risk of the training data, therefore
achieving effective MIA defense in iterative pruning.

E. Defense Methods

1) Ranking-based Sliding Window (RSW): The RSW
method adjusts how training data is utilized without modifying
the training algorithm or altering the objective function. A
sliding window provides only a subset of training data per
epoch during fine-tuning, which reduces data reuse and weak-
ens memorization. Additionally, by ranking data with mem-
scores, the sliding window includes high mem-score samples
in fewer epochs, thereby reducing the model’s memorization
of these samples.

2) Risky Memory Regularization (RMR): The core of the
RMR method is to identify data samples with risky mem-
ory (i.e., high memorization score) by setting a mem-score
threshold 7 and using L2 parameter regularization to tightly

I'The rationality for using the Monte Carlo approximation method is shown
in Appendix A-F.
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Fig. 3: Diagram of (a) two data ranking orders and (b) sliding
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constrain the model’s learning capacity on these samples. The
loss function for this defense is defined as follows:

S 61, mem() > -
Lrvr = L(fo(x),y) + ®)

1
SAll0l3, mem(a) <7

where for a sample (x,y), Lrmr contains a regular training
loss £ and an L2-norm regularization on @ that is adaptive
for the sample’s mem-score. A\, is a large coefficient applied
to learn high mem-score data, and A, is a general small
coefficient used for learning the remaining data. The L2
regularization based on A\, weakens the model’s memorization
of high mem-score data, while the general coefficient A,
for the remaining ensures that model utility is balanced,
guaranteeing an effective defense without greatly affecting
prediction accuracy.

3) Sliding Window and Memory Regularization (SWMR):
This method combines the RSW and RMR methods to weaken
memorization further. Specifically, during fine-tuning, each
time the sliding window provides training data for an epoch, a
threshold 7 identifies high mem-score data within the window.
L2 regularization is then applied to impose strict constraints
on training with these high-risk data. Algorithm 1 details the
SWMR method.

IV. EVALUATION

In this section, we report the experiment results to evaluate
the effectiveness of WEMEM.

A. Evaluation Setup

1) Datasets and Models: We considered six datasets in the
experiments:

e CIFARI10 and CIFAR100 [30]: Color image classification
datasets, including 10 and 100 categories. Each contains
60,000 images. We used the default 50,000 training data
and 10,000 test data for experiments.

e CINIC [31]: This dataset contains ten categories and has
the same image size as CIFARI1O0. It has 270,000 images,
and the training, test, and validation datasets contain 90,000
images, respectively. We used the default training and test
samples for experiments.

e Texas [11]: This tabular dataset is used to predict the main
type of surgery for patients based on features. It contains 100

Algorithm 1: Sliding window and memory regulariza-
tion (SWMR) method

1 Input: Original model fp,, pruning rate v, number of
iteration r, training epochs ¢, mem-score
calculation method mem(-) from Eq. 1,
mem-score threshold 7, regularization
coefficients A\, and Ay, learning rate 7, a set of
sub-datasets D, sampled by a sliding window

2 Output: Iteratively pruned model fg,

3fori=0tor—1do > Iterative pruning

j<0

fo,on < Prune fg, with pruning rate 1 — (1 — v)%

while j < ¢ do > Fine-tuning

for x in D;[j] do
if mem(x) > 7 then
| £ = L(foseont (@), y)+ 5711050 M]3

10 else

e ® N X U A

11 | L= L(fo,onr(),y)+32[0:0M]||3
12 0,0oM <~ 60,5 M —nVeoemLl
13 | J<J+1

14 L f911+1 — f(-)i@M

15 return fg,

categories, 67,330 data samples, and 6,169 binary features.
We randomly selected 80% of them as training data and the
remaining 20% as test data.

e Location [32], [33]: This tabular dataset is used to predict
the social locations visited by users according to geograph-
ical history. It contains 30 categories, 5,010 data samples,
and 446 binary features. We randomly selected 80% of them
as training data and the remaining 20% as test data.

e Purchase [11]: This tabular dataset is used to predict which
shoppers are repeated buyers according to purchase history.
It contains 197,324 data samples, 600 features, and 100
classes. We randomly selected 80% of them as training data
and the remaining 20% as test data.

In the experiments, we first calculated the mem-score for the
training data (as described in Section IV-B). We then randomly
split the training data into two parts: one for the target model
and the other for the shadow models. From each partition,
10% of the data are added to the default test set, ensuring the
test data for the target and shadow models are different. Based
on this, we further split the incorporated data into an actual
testing set (66%) and a validation set (34%).

For CIFAR10, CIFAR100, and CINIC, we used three
DNNs: ResNetl18 [34], DenseNet121 [35], and VGG16 [36].
For the Texas, Location, and Purchase datasets, we used a two-
layer fully connected network (FC) with 256 and 128 neurons,
respectively, with ReLU activation applied to all layers except
the last one.

2) Existing MIAs and Defenses Used for Evaluation: We
considered ten adaptive MIAs, with four being metric-based



attacks (i.e., Conf [37], Entr [38], Mentr [23], Hconf [38])
and the remaining six being classifier-based attacks (i.e.,
SAMIA [15], NN [11], Top3-NN [38], CI-NN [21], LiRA [24],
TRAJECTORY [39]). A metric-based MIA is denoted as M(+),
and 1{-} is the indicator function:

e MIA based on prediction confidence (Conf). Yeom et
al. [37] pointed out that if a sample’s prediction confi-
dence on the ground-truth label exceeds a certain threshold,
the adversary infers it as a member. This is defined as
Mecong(fo, (x,9)) = 1{fo(x), = 7,}, where fo(x), is
prediction confidence for ground-truth label y, and 7, is the
confidence threshold produced by shadow training.

e MIA based on prediction entropy (Entr). Salem et al. [38]
proposed using prediction entropy for membership infer-
ence. If a sample’s prediction entropy is below a threshold,
the adversary infers it as a member. This is defined as
Menir(fo, (x,y)) = 1{=>_,; fo(x)ilog(fe(x)i) < 7y},
where fg(x); is prediction confidence for any label, and
7y is the entropy threshold for label y.

e MIA based on modified prediction entropy (Mentr).
Song et al. [23] used modified prediction entropy per-
formed membership inference. They integrated the infor-
mation of ground-truth label into entropy computations,
which is defined as Msenir(fo, (x,y)) = L{—(1 —
fo(@),)log(fa(@)y) — Xz, fo(@)ilog(1 - fa(x):) < 7},
where 7, is generated in the same way as Entr.

e MIA based on highest prediction confidence (Hconf).
Salem et al. [38] pointed out that whether a sample
is a member can be found by comparing the high-
est prediction confidence with a threshold. It is defined
as Muycons(fo, (x,y)) = 1{fo(®)maz > 77;}’ where
fo(2)maz is the highest prediction confidence of an input
sample, and 7, is the threshold.

e MIA based on prediction confidence (NN). Shokri et
al. [11] invented a shadow training technique to train a
binary classifier-based attack model to distinguish whether
an input is member data.

e MIA based on top-3 confidence (Top3-NN). Salem et
al. [38] proposed that the top three prediction confidences
can be used to train an attack classifier for membership
inference.

e MIA based on prediction confidence and ground truth
label (CI-NN). Nasr et al. [21] encoded the ground-truth
labels as one-hot vectors and combined them with the
prediction confidence as features to train an attack classifier.

e MIA based on self-attention mechanism (SAMIA). Yuan
et al. [15] used “prediction sensitivity” to measure changes
in prediction behavior from slight input variations and
employed a self-attention network to automatically extract
attack thresholds and produce attack results.

e MIA based on loss trajectory (TRAJECTORY). Liu et
al. [39] employed knowledge distillation to represent mem-
bership information through the losses evaluated on a series
of intermediate models at various distillation epochs, in
addition to the loss from the target model.

We compared five existing defenses in our evaluation:

o Early Stopping and Regularization (Base). Early stopping
and L2 regularization are classical and effective methods to
defend against MIAs [11], [21], [23]. Early stopping reduces
training epochs to balance model utility and privacy, while
L2 regularization penalizes over-training, trading slight ac-
curacy loss for lower privacy risk.

e Pair-based Posterior Balancing (PPB). Yuan et al. [15]
aligned prediction behaviors on prediction confidence and
sensitivity by making the distributions of ranked posterior
predictions from two input examples as similar as possible.
The similarity is adjusted by a hyper-parameter )\, effec-
tively reducing the differences in prediction confidence and
sensitivity between members and non-members.

e Adversarial Regularization (ADV). Nasr et al. [21] mod-
eled a min-max privacy game between the defense mecha-
nism and MIAs. The defense first maximizes the surrogate
attack classifier’s membership inference gain and then min-
imizes both the target classifier’s prediction loss and the
surrogate attack classifier’s membership inference gain. The
« controls the model privacy-utility tradeoff.

o Differential Privacy (DP). We applied differentially pri-
vate SGD (DPSGD) as used in prior studies [18]-[20],
[40]. DPSGD involves clipping the gradient and adding
noise from a Gaussian distribution N'(0,0?). The Gaus-
sian mechanism achieves (¢,d)-DP with o determined by
Q(g\/Tlog(1/d)/e€), where ¢ is the sampling ratio, T is
the total number of iterations, and e is the privacy parameter
[41]-[44]. A larger § provides stronger privacy but poten-
tially reduces accuracy.

e Training Based on Relaxed Loss (RelaxLoss). Chen et
al. [22] mitigated MIAs by blurring the distinction between
member and non-member loss distribution. In their defense,
if the current loss exceeds the target mean, run normal
gradient descent; otherwise, apply gradient ascent or flatten
the target posterior scores for non-ground-truth classes.

We used the Base method in all experiments to enhance
defense performance and expedite experiment progress. All
defenses are applied during the iterative fine-tuning process.

3) Attack and Defense Settings: The detailed settings for
model training, pruning, attacks, and defenses are as follows.
Training and Attack Settings. We used the Adam optimizer
to train both the target and attack models for 100 epochs,
with a learning rate of 0.001 and a batch size of 128.
For model pruning, we used the same optimizer and batch
size, with each fine-tuning lasting 21 epochs. The default L2
regularization coefficient is 0.0005. We applied early stopping,
ending training, or fine-tuning if the validation loss didn’t
improve for five consecutive epochs.

Model Pruning Settings. We used the L1 unstructured pruning
method as our primary pruning strategy because it is suitable
for any model architecture. We also evaluated the effects of
using L1 and L2 structured pruning strategies. In evaluation,
we followed the pruning workflow described in Section II-A
and performed five iterations for pruning. We used three



TABLE I: Sliding windows and mem-score threshold settings.

Data Height (k) Width (w) Step Size (s) Model Threshold
CIFAR10 10 {1500, 1000, 500} {50, 100} All three DNNs 7 =0.5
CIFAR100 100 {150, 100, 50} {5, 10} All three DNNs 7 = 0.6

ResNetl8, VGG16 7 =0.7

CINIC 10 {2700, 1800, 900} {100, 200} DenseNet121 =065

Texas 100 {160, 110, 55} {5, 10} FC 7=06
Location 30 {40, 30, 15} {1, 3} FC 7=0.6
Purchase 100 {474,316, 158} {25, 35} FC =075

pruning rates: 50%, 60%, and 70%, representing the proportion
of weights removed.

Defense Settings. (1) Data Ranking Settings: To evaluate the
impact of high mem-score data appearing in the front or back
of the dataset on the defense effect, we ranked the data in
descending and ascending order of mem-scores.

(2) General Settings for Sliding Windows: We empirically
divided the data for each class into ten segments. So according
to Section III-D2, the window width can be set between
[/10 to I. The step size is determined by the number of
epochs (¢) during fine-tuning, with an upper limit of [1/t]”.
It should be noted that a width that is too small results in too
little training data, thereby significantly reducing the model
utility, while a larger width maintains utility but weakens the
sliding window’s defense effect. Therefore, we set multiple
hyperparameters within the above settings, depending on the
size of the different datasets and the number of training epochs
(for each dataset, we set three w between 2/ and 21, two s
close to 1[1/t| and [I/t]), to observe the evaluation results.
Our hyperparameter settings are detailed in Table .

(3) RMR Settings: We used common hyperparameters from
L2 regularization techniques. Specifically, we set A; = 0.0005
and A\, € {0.01,0.1,1}. Given that the SWMR also utilizes
these two coefficients, we selected those that optimize the
privacy-utility tradeoff based on RMR’s results.

(4) Memorization Score Thresholds Settings: To make the
mem-scores interpretable, we normalized them to a value
between 0 and 1 according to the range of score values in [17].
We found that when the mem-score is 0.5 or higher, the data
privacy risk increased significantly (as shown in Fig. 4), and
the corresponding amount of training data decreased substan-
tially. Therefore, if the threshold is too high, the amount of
high-risk data identified will be insufficient, weakening the
defense effectiveness. Conversely, if the threshold is too low,
excessive data will be treated as high-risk, reducing model
utility. We recommend that the threshold be no less than 0.5
and that a value be selected based on mem-scores and the
corresponding data amount. The last two columns of Table |
show our settings, where high mem-score data didn’t exceed
30% of the total training data in each dataset.

B. Effectiveness of Mem-score

We used LiRA to evaluate the effectiveness of mem-scores.
In theory, there is a positive correlation between the TPR of

2Generally, [ > ¢, if | < t, the step size is set to 1.
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Fig. 4: Privacy risk of data with different memorization scores.

LiRA and the mem-score [25]. We obtained each training sam-
ple’s mem-score using the method described in Section [1I-C.
Notably, instead of the individual sample’s precise mem-score
value, our defenses focus more on the model’s memorization
trend of all training data and the privacy risk for data with
varying memorization degrees. Therefore, as long as the mem-
score we calculated correctly reflects the privacy risk of the
data, our calculation method is effective.

The available computing resources determine the upper limit
of the K value described in Eq. 4 (i.e., the number of sub-
models). Additionally, we found that when K is set to a
larger value (with a maximum of 10 in our experiments), the
training data available to each sub-model becomes limited. The
limitation reduces each sub-model’s prediction capability on
the data samples. Since the mem-score relies on each sub-
model’s performance on the samples, a larger K makes it
more difficult to ensure the mem-score’s effectiveness. Thus,
in our evaluation, we empirically divided CIFAR100 into four
subsets and the rest of the datasets into five subsets. For
LiRA, we trained a target model and corresponding 16 shadow
models for experiments. Fig. 4 illustrates that the TPR of LiRA
increases with the rise of samples’ mem-scores, proving that
the data with higher mem-scores face higher privacy risk and
are easier to classify as a member correctly. Our method can
effectively calculate the mem-scores.

C. Effectiveness of WEMEM

We evaluated the impact of our defenses on model predic-
tion (i.e., test) accuracy and their effectiveness under different
settings. We conducted adaptive MIAs where adversaries knew
all defense and pruning methods and replicated the process to
obtain shadow-pruned models. Thus, we trained five shadow
models, pruned them, and used their predictions on shadow
training and test data to train the attack models.



2767 s =

> > -~

3 3 -~

g g

3 =1

4 " I I I

< <

c c

o o

© 72 — Base --- Average T 65} — Base --- Average

° 50 (H-L) 50 (L=H) b 50 (H-L) 50 (L~H)

£ W 100 (H-L) = 100 (L-H) & == 100 (H-L) = 100 (L-H)
1500 1000 500 1500 1000 500

Window Width
(a) CIFAR10 Res18 (RSW)

Window Width
(b) CIFARI10 Res18 (SWMR)

55 55
R e S
<50} =S 250
3 3
3 a5} 345
< <
S 40f S 40
€ — Base --- Average i — Base --- Average
B35} = 5 (Hol) 5 (LoH) 35 5 (H-L) 5 (LH)
& B 10 (H-L) Bl 10 (L-H) x 10 (H-L) B 10 (L-H)
30 150 100 50 30 150 100 50
Window Width Window Width

(c) CIFAR100 Densel21 (RSW) (d) CIFAR100 Densel21 (SWMR)

o
(e

o

N

o
o

Prediction Accuracy (%)
o
Sy

Prediction Accuracy (%)
(= o o
o N w

1
1
[}
i
i
|
1
_:
;
/
/
-/
/
/
/
/
|

62l — Base --- Average 57F— Base --- Average
100 (H-L) 100 (L-H) 100 (H-L) 100 (L-H)
w200 (H-L) Bl 200 (L-H) 55| . 200 (H-L) Bl 200 (L-H)
60 [p—— [~ - - - R
2700 1800 900 2700 1800 900
Window Width Window Width

(e) CINIC VGG16 (RSW) (f) CINIC VGG16 (SWMR)

Fig. 5: The prediction accuracy of the pruned models using
two data rankings (H—L/L—H) and two step sizes (e.g., s €
{50,100}) under three window widths in RSW and SWMR.
The black line presents the result of the Base method. The
Average indicates the change in average prediction accuracy
under different window widths.

1) Prediction Accuracy (acc): As shown in Fig. 5, for the
RSW and SWMR methods using sliding windows, there is no
significant decrease in model prediction accuracy compared to
the Base method. Generally, as window width decreases (e.g.,
the dotted line in Fig. 5a), model prediction accuracy declines
due to the limited training data available for fine-tuning.

Intuitively, a small step size allows the model to reuse more
data from the previous epoch, enhancing memorization and
improving prediction capability. However, experimental results
show that, in many cases, a larger step size corresponds to
higher prediction accuracy than a smaller one (e.g., dark bars
are higher than light bars in Fig. 5a), which occurs more
frequently when the window width is smaller. We speculate
this is because, unlike reusing the entire training set, the
specified window width in our defense limits the amount of
training data available in each epoch. As a result, reusing
a small amount of data each epoch is less effective than
extracting features from more “new data™ for improving
generalization performance.

3Refers to the training data that have never participated in the fine-tuning.

TABLE II: Under RMR defense with A, = 0.0005 and A, €
{0.01,0.1, 1}, the test and attack accuracy on different pruned
models. The best result of the privacy-utility tradeoff is bold
in the column of regularization coefficient, test accuracy, and
eight adaptive MIAs’ attack accuracy.

Data&Mo del‘ A ‘Test Acc‘ Adaptive Attack Accuracy (%)

| | (%) |Conf Entr Mentr Hconf SAMIA NN Top3-NN CI-NN

Base| 80.01 [63.91 62.05 63.96 6433 78.10 75.85 7608 78.44

CIFARI0 |0.01| 78.96 |60.69 5843 60.67 60.78 76.19 7350 73.41 76.22
DenseNetl21 | 0.1 | 77.81 |54.60 53.06 54.78 54.84 73.07 7289 73.17 73.13
I | 69.83 |52.14 5097 51.99 5193 7279 7327 7204 73.03

Base| 4244 [91.9191.02 92.10 92.09 9439 9398 9484 9436

CIFARI00 |0.01| 41.03 [90.03 88.68 90.18 90.24 93.17 9278 93.02 93.58
ResNetl8 | 0.1 | 37.46 |60.12 54.69 60.07 59.93 7330 7329 7245 7291
I | 1013 |50.88 50.07 50.88 5121 71.32 7205 71.67 7237

Base| 6621 [68.11 62.55 68.15 67.78 74.67 6843 6846 74.52

CINIC [0.01| 6431 |53.8553.52 5673 5655 6325 63.02 63.02 63.86
VGG16 | 0.1 | 10.181 [50.17 50.00 50.17 50.00 63.31 63.02 63.22 63.02
1 | 963 |50.0850.18 50.08 5121 6232 63.05 63.22 63.02

TABLE III: The results of defense against LiRA and

TRAJECTORY. The lowest attack TPR obtained by three de-
fenses is in bold.

Prediction Acc | TPR at 1% FPR|TPR at 0.5% FPR
Data & Model Defense (%) (LiRA) (TRAJECTORY)

Base 90.45 14.0% 5.9%
RSW (H—L) 87.84 7.1% 3.9%
CIFARI10 RSW (L—H) 85.76 2.3% 1.8%
ResNet18 RMR 79.25 2.0% 1.3%
SWMR (H—L) 80.40 1.2% 1.3%
SWMR (L—H) 83.37 1.8% 1.7%
Base 63.85 51.4% 28.9%
RSW (H—L) 55.96 22.6% 13.3%
CIFAR100 RSW (L—H) 59.11 16.0% 8.3%
DenseNetl121 RMR 50.12 2.6% 5.7%
SWMR (H—L) 53.07 2.7% 8.2%
SWMR (L—H) 54.48 8.7% 9.1%
Base 65.07 48.3% 17.7%
RSW (H—L) 62.87 26.7% 12.4%
Location RSW (L—H) 64.27 20.0% 10.6%
FC RMR 63.07 18.0% 9.2%
SWMR (H—L) 62.37 6.9% 10.2%
SWMR (L—H) 60.27 19.1% 11.6%

Additionally, we observe that prediction accuracy under
SWMR is often lower than under RSW with identical settings
(e.g., Fig. 5e¢ vs. Fig. 5f) due to the additional effect of
memory regularization in the SWMR defense besides the
sliding window. For the RMR defense, as shown in Table II,
the prediction accuracy decreases as the value of A, increases
in most cases.

2) Defense Effectiveness: As shown in Table II, the RMR
method assigns higher coefficients to high mem-score data,
reducing the memorization of high-risk data and effectively
defending against adaptive MIAs. The highlight rows that
achieve the best privacy-utility tradeoff are mostly when A\, =
0.1. In these cases, attack accuracy significantly decreases
compared to the Base method, while prediction accuracy is
less affected. Although the attack accuracy drops further for
higher values like A\, = 1, model utility becomes unacceptable
in many cases.
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Fig. 6: The defense effectiveness of the pruned models using two data rankings (H—L/L—H) and two step sizes (e.g.,
s € {50,100}) under three window widths (e.g., w € {1500,1000,500}) in RSW and SWMR. The results for CIFAR10-
ResNet18 are presented in figures (a)-(d), and the results for CIFAR100-DenseNet121 are presented in figures (e)-(h).

Fig. 6 shows the effectiveness of RSW and SWMR defense
methods. Generally, a sliding window with a small width and
small step size significantly weakens memorization, achiev-
ing the best defense in our settings. Additionally, due to
the combined effects of sliding windows and risky memory
regularization, SWMR provides better defense compared to
RSW under identical settings (e.g., Fig. 6a vs. Fig. 6¢c).

For RSW, ranking data from high to low by mem-score
is generally less effective than ranking from low to high
(e.g., Fig. 6e vs. Fig. 6f). When prioritizing high-risk data
early in training, the model captures key features from these
high-risk samples in the initial epochs to recover prediction
accuracy quickly. These data are more beneficial to the model’s
performance than low-risk data appearing in later epochs,
but they also pose higher privacy risks. While for SWMR,
ranking data from high to low by mem-score (e.g., Fig. 6¢c
and Fig. 6g) maximizes the effectiveness of risky memory
regularization, further weakening memorization of high-risk
data and improving defense.

Table 111 shows the results of the proposed defense methods
on LiRA and TRAJECTORY with optimal defense parameters
(e.g., minimum window width and step size, A, = 0.1),
indicating that our defenses are also effective against the more
advanced adaptive MIAs and can achieve defense without
significantly reducing the utility of the pruned model.

D. Performance Comparison with Existing Defenses

We used identical adaptive attack settings for other defenses
in the evaluation. We set the hyperparameters as follows:
A€ {1,2,4,8,16} for PPB, 6 € {1,2,4,8} for ADV, o €
{0.01,0.1,1} for DP noise vectors, and o = 1 for RelaxLoss.
For the proposed defenses, we select the results with the
best defense effect for comparison, while for other defense

TABLE IV: LiRA’s TPR at 1% FPR on high-risk and low-
risk data before and after using our defense methods. The
difference compared to the Base is shown in brackets.

CIFAR10 ResNet18 | CIFAR100 DenseNet121
T =0.5|Base RSW RMR SWMR|r = 0.6 |Base RSW RMR SWMR
29 08 20 107 25 28

Low-risk Low-risk

0,05) | % (35 (5.6) (44 | [0,06) | P (46) (-128) (12.5)
Highrisk| o~ 27 12 LI |[Highrisk| oo 121 28 42
05,1 | 77 (-1L6) (-13.1) (-13.2) | [0.6,1] |77 (-17.4) (-26.7) (-25.3)

methods, we report experimental results that are comparable to
our defenses in terms of prediction accuracy. Fig. 7 shows the
prediction accuracy and adaptive attack accuracy of different
defenses under two representative MIAs. In most cases, our
defenses can achieve high prediction accuracy while reducing
attack accuracy more than other defense methods. In addition
to our defenses, RelaxLoss (abbreviated as ReLos in Fig. 7)
also achieves a good privacy-utility tradeoff in many cases and
is similar to our methods in terms of defense effects.

E. Data Privacy Risks Before and After Our Defenses

We compared the attack performance on training data with
high and low mem-scores before and after using our defenses
in iterative pruning. Specifically, we used LiRA, closely linked
to memorization for evaluation, used the mem-score threshold
T to divide the high- and low-risk data, and calculated the av-
erage attack TPR under Base and proposed defenses. Table [V
shows that high-risk data usually present higher attack TPR
before using our defenses (i.e., results with the Base method).
After our defenses, data privacy risks are effectively reduced,
and our defense effects on high-risk data are more significant
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(the TPR is reduced more compared with the defense on low-
risk data, as shown in bold). Additionally, the defense effects
of RMR and SWMR methods are better than those of RSW.

F. Performance Comparison with One-Shot Pruning

We applied the proposed defenses in the one-shot pruning,
and the best defense effects under the small window width
are shown in Fig. 8. Although using our defenses in one-shot
pruning can also reduce the attack accuracy, the reduction is
less pronounced than the results in iterative pruning. This is
mainly because the relatively small memorization increase dur-
ing one-shot pruning limits the effectiveness of our defenses.

G. Defense Efficiency Comparison

We compared the time cost of our defenses and others
in iterative pruning with five iterations. All experiments are
conducted on a single NVIDIA GeForce RTX 4090 GPU.
For our three defenses, we present the time cost for the best
defense effects; for other defenses, we show the time costs
closest to our best defense effects. As shown in Table V,
RSW performs better in most cases. For example, the RSW
defense time cost for CINIC-DenseNetl21 (463s) is nearly
1/4 of the Base method (1616s). This is mainly because the
sliding window sampling reduces the amount of training data
in each epoch, speeding up the iterative fine-tuning process. In
addition to RSW, ADV defense efficiency is also good, while
DP has the least ideal time cost.

H. Other Pruning Strategies

To assess the robustness of our defenses across different
pruning strategies, we applied them in iterative pruning using

10

TABLE V: The comparison of time cost in iterative pruning.

Data&Model Base RSW RMR SWMR PPB ADV RelaxLoss DP
CIFAR10
VGG16 630s  269s  468s 332s 571s  275s 434s 7h
CIFAR100
ResNet18 458s 174s  6lls 259s 643s  226s 532s %h
CINIC 1616s 463s 2404s  1498s  1759s 495s 1696s 50h
DenseNet121
L";aé“’" 93s 685 98s 955  99s  195s 88s  23ls

L1 and L2 structured pruning. The best results are shown in
Fig. 9. The results show that our defenses effectively reduce
attack accuracy, even with structured pruning. For example,
on CIFAR10-ResNet18, they reduce the Conf attack accuracy
by an average of 10.40% and 10.44% across both pruning
strategies. Moreover, the defenses have a smaller impact on
model utility with L2 structured pruning compared to LI.
On CIFAR100-VGG16, the average prediction accuracy after
L2 structured pruning decreased by 2.48% compared with
Base, while the average prediction accuracy after L1 structured
pruning decreased by 4.47%.

V. ABLATION STUDY AND FURTHER IMPROVEMENT

In this section, we conduct an ablation study and improve
the proposed defense methods.

A. Ablation Study

Our ablation study focuses on data ranking, a critical
primitive for effective defense. We denote experiments using
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Fig. 9: Performance of our defenses when iterative pruning
using L1 and L2 structured pruning strategies. Bars represent
prediction accuracy after defenses, and points on the line
indicate attack accuracy under different defense methods.

TABLE VI: The results of the ablation study for data ranking.
The SW represents only using sliding window without data
ranking, and the R1, R2 are two variants of the RMR method
with two different settings of coefficients.

Adaptive Attack Accuracy (%)

Data & Model } Defense ‘ Test Acc ‘

| (%) | Conf Mentr SAMIA CI-NN

Base 35.97 81.52 81.42 87.95 87.71

RSW 34.04 64.73  64.69 73.22 72.29

CIFAR100 SW 33.09 67.29 6731 75.61 73.81
VGG16 RMR 30.36 5740 57.25 73.33 73.25
R1 0.98 50.78  50.78 73.17 73.17

R2 0.98 50.67 50.68 72.69 72.35

Base 64.11 86.57 87.09 90.68 85.91

RSW 63.98 68.13  68.35 75.62 71.54

Location SW 62.85 7247 7292 77.55 75.20
FC RMR 64.23 84.02  83.95 88.56 85.02
R1 18.89 53.04 53.11 69.42 68.36

R2 16.89 52.63 52.68 69.42 67.99

only the sliding window as SW and the two variants of RMR
as R1 (swapping the values of A\, and )\;) and R2 (making
Ar equal to Ag). The results are shown in Table VI, where we
highlight the experimental results with the worse performance
of SW, R1, and R2 in red. Compared to the Base method, the
SW without data ranking is less effective than RSW (L—H).
For the SAMIA attack on CIFAR100-VGG16, RSW reduces
attack accuracy by 14.73%, while SW reduces it by 12.34%
at most, and SW’s prediction accuracy is lower than RSW.
For R1 and R2, the prediction accuracy is unacceptable in
both cases; for example, in CIFAR100 results, the prediction
accuracy is only 0.98%.

B. Adaptive Defense Improvements

In Section IV, we demonstrated the effectiveness of our
defenses against MIA in iteratively pruned models. However,
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Fig. 10: Example of adaptive window adjustment.

RSW and SWMR require manual tuning of window width and
step size, which complicates their use across different datasets
and settings. To enhance their practicality, we aim to automate
the adjustment of defense parameters based on model accuracy
for adaptive defense during pruning.

Results from Section ['V-C show that smaller window widths
improve defense, while step size helps balance accuracy. A
smaller step usually limits model utility, while a larger one
improves it. Based on these findings, we set initial window
widths and step sizes to smaller values and prioritize step size
adjustments to balance model accuracy during window sliding.
Specifically, we set the window width and step size within the
recommended range in Section [V-A3: 1—20l for a small width
(W), 15! for alarge width (W), §|1/t] for a small step (Ss),
and [l/t] for the largest step (Sr). The constant C, used for
gradually changing the step size, is defined as

llg Ss] < [lg St
llg Ss] = [lg St

where |lgSs] and |lg Sy | denote the orders of magnitude of
Ss and Sy.

Fig. 10 illustrates the automatic adjustment process. Assum-
ing a fine-tuning contains 20 epochs, we initialized the window
width and step size to Wg and Sg, respectively (epoch 0).
We tracked increases in prediction accuracy with flag and
decreases with count, adjusting the window settings for the
next epoch based on these conditions:

(1) If accuracy rises three times in a row with a small window,
reduce step size (epoch 3, 16);

(2) If accuracy decreases and 0 < count < 4, increase step
size of the next epoch (epoch 6-8, 17, 19);

(3) If accuracy decreases four or more times in a row, switch
to a large window (epoch 9, 10);

(4) If accuracy rises with a large window, reduce step size
before the next epoch (epoch 11, 12);

(5) If accuracy rises three times in a row with a large window,
switch to a small window and increase step size (epoch 13).

We used the same training settings from Section IV-A and
sliding window sampling based on the above conditions to
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Fig. 11: The results of the pruned models under RSW
and SWMR with optimal fixed window settings, improved
adaptive RSW and SWMR (i.e., RSW-Auto and SWMR-
Auto), and other defenses with the best performance. We
use CIFAR10-ResNet18, CIFAR100-DenseNet121, CINIC-
VGG16, and Location-FC.

evaluate the proposed adaptive methods. Notably, due to the
early-stopping setting with a threshold of five (described in
Section IV-A3), the critical value for the number of accuracy
decreases (i.e., count) should be under five. Thus, we set the
critical value of count to four. When the critical value of flag
is three, the balance between the defense effect and model
utility is better. Experimental results in Fig. 11 show that the
improved defense methods automatically adjusting the window
attributes are effective, achieving the same defense effect as the
optimal fixed window settings (e.g., RSW-Auto and SWMR-
Auto in Fig. 11a almost overlap with RSW and SWMR).

VI. DISCUSSION
A. Computational Complexity

The additional computational cost of WEMEM primarily
arises from ranking the data by memorization scores, which is
conducted once during iterative fine-tuning, resulting in a com-
plexity of O(nlogn). Compared to the total computational
cost for a typical training process, which scales as tn Zle m;
(t: number of training epochs; n: the size of training dataset;
m;: computational cost of the ¢-th layer, depends on the
type of layer, e.g., convolutional layer, fully connected layer;
d: number of layers), the additional cost of data ranking is
negligible, especially in training large-scale models.

B. Necessity of Pruning

Applying the proposed methods to the unpruned model is
inconsistent with the defense goal of WEMEM. We conducted
defense evaluation and relevant experimental analysis on the
pruned model rather than the unpruned model, as WEMEM
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aims to weaken the memorization that significantly increases
during iterative model pruning. Therefore, we establish base-
lines on the pruned model for subsequent evaluations and
analyses.

C. Robustness beyond MIAs

In addition to MIAs, model inversion attacks have also
emerged as a significant privacy risk, capable of reconstructing
training data from a public model and posing a direct threat to
privacy. To assess whether our proposed methods are vulner-
able to this type of attack, we evaluated it using recent white-
box inversion attacks by Chen et al. [45] (KED-MI) and Yuan
et al. [46] (PLG-MI). Chen’s KED-MI leveraged a generative
adversarial network (GAN) to extract knowledge from public
data to attack private models, while Yuan’s PLG-MI improved
attack success rates via conditional GANs. We used 25,000
training samples (labels 0-4), trained a ResNet18 target model
(and iteratively pruned it), evaluated it on VGG16, and finally
reconstructed 100 images per class. Note that we assessed
the performance of the proposed RSW and SWMR under
the optimal settings. While KED-MI and PLG-MI achieve
49.22% and 73.87% attack accuracy on the undefended pruned
models, the RSW defense drops it to 44.75% and 69.31%, and
SWMR further reduces the accuracy to 29.77% and 60.21%.
These results demonstrate that WEMEM does not make the
pruned model vulnerable to more severe privacy threats and
even mitigates model inversion attacks.

D. Limitation and Future Works

First off, WEMEM performed less stably on tabular datasets
than on image datasets, likely due to the less pronounced
memorization properties in simpler models. As shown in
Fig. 4, the gap in LiRA’s TPR between low and high mem-
score data is smaller for tabular datasets, suggesting a weaker
link between memorization and privacy risk. Nonetheless,
WEMEM is still effective for tabular datasets.

Second, while WEMEM’s defenses empirically achieved
a good privacy-utility tradeoff, they lack a strict theoretical
guarantee. This is a common limitation of empirical defense
methods (e.g., [15], [21], [22]), and we plan to address this in
future work.

Finally, in RSW and SWMR defenses, we filtered and used
high-risk data within a window via data ranking and mem-
score thresholds, which are coarse-grained approaches. More
fine-grained methods can be considered, such as sampling
data by different probabilities based on mem-scores. However,
since this involves balancing multiple factors like sampling
probability and the final data distribution’s impact on the
privacy-utility tradeoff, we leave this as future work to explore
fine-grained memorization weakening techniques.

VII. RELATED WORK

We provide a brief introduction to model pruning, review
existing MIAs and defenses, and present related work on
memorization and privacy.



A. Model Pruning

Model pruning is a technique for model compression,
performed either in one-shot or iterative ways. One-shot
pruning involves training, pruning, and fine-tuning the model.
However, learning the correct connections is an iterative
process [1]. In iterative pruning, the pruning and fine-tuning
are repeated multiple times, yielding better performance com-
pared to one-shot pruning [5]. Regarding pruning strategies,
Han et al. [1] proposed unstructured pruning, which removes
unimportant connections with weights below a threshold. He
et al. [47], Luo et al. [48], and Liu et al. [49] introduced
structured pruning methods that remove filters or channels with
less contribution. Recently, neural architecture search [50]-
[52] has further advanced model pruning techniques.

B. MIAs and Defenses

MIA aims to infer whether the data is used to train the
target model. Shokri et al. [11] proposed the first classifier-
based MIA. The adversary creates multiple shadow models to
simulate the target model, generate data to train the attack
model, and indicate whether the input data is a member.
Salem et al. [38] used only one shadow model to achieve the
same attack effect. Liu et al. [39] used the training losses of
different training epochs to form a loss trajectory, which could
represent membership information. Carlini et al. [24] recently
proposed an advanced MIA that shows more confident results
at low false-positive rates. Yuan et al. [15] recently studied the
privacy risks of model pruning and proposed a self-attention
MIA by exploring the impact of one-shot model pruning on
prediction divergence. The metric-based methods calculate the
metrics of the prediction vector, such as prediction loss [37],
prediction confidence [38], and prediction entropy [23], and
then the metrics are compared with the preset thresholds to
determine the membership state of the data point.

There have been some defense mechanisms against MIAs.
Differential privacy mechanism provides provable privacy
guarantee [18]-[20], [41], [44] but can hardly achieve better
privacy-utility tradeoff. A series of regularization defenses
reduce the generalization gap between the member and non-
member samples, including L1 and L2 regularization [11],
[21], dropout [13], [53], adversarial regularization [21], [54]
and early stopping [23], etc. Chen et al. [22] reduced the distin-
guishability between the training and testing loss distributions.
Recently, Yuan et al. [15] proposed a defense to reduce the
divergence of prediction confidence and sensitivity between
members and non-members in model pruning.

C. Memorization and Privacy

In general, the machine learning (ML) models are always
overconfident in the training data [55], and it is the main
reason for the success of MIAs [11], [37], [53], [56]. ML
models can learn helpful features in big data, but it also causes
them to memorize some sensitive information [14], [16],
[57]. In ML, the concept of memorization is an alternative
perspective of the training data influence [58]. Pruthi et al. [59]
proposed self-influence of training samples and showed that
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high self-influence is more likely to have an indicative effect
on memorization. This view coincides with the definition of
memorization by Feldman et al. [16], [17], that is, before and
after removing a data sample, the greater the difference in
prediction of the sample, the easier it is to memorize. In this
paper, we use this definition to measure the memorization for
classification models.

VIII. CONCLUSION

In this paper, we proposed a new defense framework
WEMEM to defend MIAs in iterative pruning by weakening
memorization. We found that data reuse and the easy-to-
memorize characteristics of some data are important factors
that increase memorization during iterative pruning, leading to
greater privacy risks. We considered these factors’ separate and
combined impacts, forming three scenarios that make pruned
models more vulnerable to MIAs. To address these scenar-
ios, we designed three defense primitives. Combining these
primitives, we proposed methods tailored to each scenario that
effectively weaken memorization.

Comprehensive evaluations of ten adaptive MIAs show that
the three proposed methods successfully weaken memorization
and provide effective defenses. The proposed methods out-
perform five existing defenses in privacy-utility tradeoff and
defense time cost and effectively mitigate the privacy risks of
high memorization-score data. Additionally, we improved the
proposed methods from a practical perspective to make them
automatically adjust hyperparameter configurations. Further-
more, the experimental results indicate that reusing easy-to-
memorize data is a key factor contributing to the significant
increase in memorization during iterative pruning.
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APPENDIX A
SUPPLEMENTARY CONTENT

In this section, we present contents and experimental results
at a 60% pruning rate that are not included in the main text.

A. Prediction Accuracy

TABLE VII: Under RMR defense with A\, = 0.0005 and A, €
{0.01,0.1, 1}, the test and attack accuracy on different pruned
models. The best result of the privacy-utility tradeoff is bold
in the column of regularization coefficient, test accuracy, and
eight adaptive MIAs attack accuracy.

Data&Model ‘ N ‘Test Acc‘ Adaptive Attack Accuracy (%)

| | (%) |Conf Entr Mentr Heonf SAMIA NN Top3-NN CI-NN

Base| 75.11 |6695 65.13 6693 67.17 80.19 77.58 77.67  80.30

CIFARIO |0.01| 7435 |64.06 61.08 64.10 6406 77.62 7412 7404 77.54
ResNetl8 | 0.1 | 7344 |57.77 54.67 57.87 5792 7371 7317 7317 7329
1| 6483 |51.99 5071 5175 5192 7317 7317 7317 7317

Base| 79.84 |62.85 60.62 6292 63.08 77.93 7530 7541 77.94

CIFARIO |001| 7979 |6125 59.13 6135 61.60 7721 7441 7446 7727
VGGI6 | 0.1 | 7921 |58.71 5578 5857 5850 7524 73.19 7317  74.03
1 | 7597 [5355 5195 5370 5357 73.09 7317 7322 7307

Base| 3597 |81.52 72.55 8142 81.34 8795 7958 79.85 87.71

CIFAR100 |0.01| 3523 |77.61 6749 77.61 7747 8469 7572 7577 84.15
VGGI6 | 0.1 | 3036 |57.40 5334 57.25 5747 7333 7317 7313 7325
1 | 888 [5061 50.16 50.69 5070 72.86 7314 7217  72.59

Base| 51.53 |85.64 83.80 85.69 85.56 89.68 87.97 9036  89.76

CIFARI00 |0.01| 49.10 |7438 69.06 7431 7457 8297 77.09 7730 82.84
DenseNetI21 | 0.1 | 50.14 |63.21 57.15 6335 6298 7535 7317 7413 7373
1 | 4140 |5321 5107 5322 5335 7297 7317 7317 7279

Base| 60.99 |71.87 66.86 7198 7206 7746 7151 7156 7740

CINIC |001| 6176 [6522 6034 6524 64.87 7074 6471 6455 7045
ResNetl8 | 0.1 | 57.92 |52.59 5128 5255 5241 63.02 63.02 6322 63.14
1 | 3589 |5048 50.17 50.18 5020 6248 6288 6302  62.96

Base| 67.77 |66.04 6124 66.09 66.12 7276 67.09 67.09 7276

CINIC |001| 6754 [5838 5525 5847 5839 6517 63.02 6302 64.96
DenseNet121 | 0.1 | 62.88 |51.68 50.62 51.53 51.72 6312 63.02 6341 63.06
1 | 3517 [5021 5002 5020 5025 6236 6205 63.02 6211

Base| 64.11 |86.57 84.62 87.09 86.58 90.68 8594 90.06 8591

Location |0.01| 64.61 |86.60 8538 8698 8621 90.10 8590 89.68  85.82
FC 0.1 | 6423 |84.02 8196 8395 8423 88.56 84.67 87.52 85.02

1 | 6225 |83.15 81.08 8344 8342 87.37 8433 8698 84.17

Base| 90.17 |57.22 5647 5725 5743 6949 7044 7054 7173

Purchase | 0.01 | 88.13 |5335 52.58 5331 5336 69.53 69.64 6958  69.54
FC 0.1 | 8296 |51.52 5096 5157 5151 6944 6929 6944  69.44

1| 7969 |5122 5085 5143 5148 69.12 6944 6934  69.20

Base| 61.19 |74.77 6775 7468 7285 8258 77.55 7612  82.85

Texas | 001 | 6077 |66.04 5894 6625 6408 7449 69.77 6944 7456
FC 0.1 | 6221 |5679 5331 5656 5510 69.42 69.44 68.94 68.71

1 | 6145 |5547 5324 5557 5400 6937 6824 69.64  70.04
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Fig. 13: The defense effectiveness of the pruned models
in RSW and SWMR. The results for CINIC-VGGI16 are
presented in figures (a)-(d), the results for Location-FC are
presented in figures (e)-(h), and the results for Texas-FC are

presented in figures (i)-(1).

Membership Inference Attacks

(1) SWMR (L—H)

16

C. Defense Performance Comparison
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Fig. 14: Comparison of defense performance for pruned mod-
els against Conf and SAMIA under different defense methods.

D. Data Privacy Risks Before and After Our Defenses

TABLE VIII: LiRA’s TPR @ 1% FPR on high-risk and low-
risk data before and after using our defense methods. The
difference compared to the Base is shown in brackets.

CINIC VGG16

Location FC

7 = 0.7 |Base RSW RMR SWMR| 7 = 0.6 |Base RSW RMR SWMR

Low-risk| ) o 201 13 L1 [Lowrisk|, o 253 244 62
0,0.7) | 7 (-07) -15) (L.7) | [0,0.6) |°°7 (-5.0) (-5.9) (-24.1)
High-isk| |, 53 1.3 12 [Highrisk| , , 191 40.1 87
[0.7,1] |2 (:9.9) (-13.9) (-14.0)| [0.6,1] |77 (:27.1) (-6.1) (-37.5)




E. Adaptive Defense Improvement
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Fig. 15: The results of the pruned models under RSW

and SWMR with optimal fixed window settings, improved
adaptive RSW and SWMR (i.e., RSW-Auto and SWMR-
Auto), and other defenses with the best performance. We
use CIFAR10-ResNetl18, CIFAR100-DenseNet121, CINIC-
VGG16, and Location-FC.

F. Rationality of Adopting Monte Carlo Method

In the process of calculating the memorization score, for
Eq. 1, we let D’ = D\(«,y) and use Bayesian inference to

write Pr x) = y| in the form of integral:
focAtty@ay 8@ =4 s

Pralf(x) = y|D'] = / D(fo(x) = 4| D', 0)p(6)d6
o [P(fo(x) = 4D’ 6)]

where the integral actually calculates the expectation of the
probability that the model’s prediction of the input x is y,
given uncertain parameters. We can approximate the expecta-
tion by a corresponding average [28], which is in line with the
idea of Monte Carlo sampling. In Section I1I-C, we divide the
dataset into K disjoint subsets to ensure that each data sample
has only been used in one sub-model fgi, i € {1,...,K}.
For a data sample, there are &' — 1 models that have not
used it, so we can use the aforementioned sampling method

to approximate Pr x with the average
PP fgeA(D\(m,y))[fe( ) =y g

y) by K — 1 models. We denote

(7

prediction probability of (z,
this average as Pr:
K

Z pfg:

J=17]¢1

=y|D', 6) (8)
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This approximation is justified, since the estimator Pr is
unbiased:

K
E[Pr] = - D E[P(for(x) =y|D',67)]
J:LJ#
K 9
x) = y|D']

=1,
:PMU():MD]

Therefore, our method conforms to the definition of memo-
rization score in Eq. 1, and the adopted Monte Carlo sampling
method can ensure the overall effectiveness of the memoriza-
tion score calculation of all samples in the training set.



APPENDIX B
ARTIFACT APPENDIX

A. Description & Requirements

1) How to access: The artifact can be accessed at https://
github.com/CactiLab/WeMeM. The artifact is also available on
Zenodo with DOI: https://doi.org/10.5281/zenodo.14189484.

2) Hardware dependencies: Commodity GPUs (e.g., we
used NVIDIA GeForce RTX 4090 GPU in our evaluation).

3) Software dependencies: PyTorch, torchvision, torchau-
dio, pandas, sklearn, numpy, matplotlib, tensorboard, pynvml,
and nni.

4) Benchmarks: (1) Datasets: CIFAR10, CIFAR100,
CINIC, Location, Texas, and Purchase; (2) Model architec-
tures: For CIFAR10, CIFAR100, and CINIC, we use three
DNNs: ResNetl18, DenseNet121, and VGG16. For Texas,
Location, and Purchase, we employ a fully connected net-
work (FC) with two layers, containing 256 and 128 neurons,
respectively. All FC layers, except the last one, utilize ReL.U
activation functions.

The details on how to obtain the datasets can be found in
the artifact’s README file.

B. Artifact Installation & Configuration

Please refer to the Getting Started section of the README
file in the artifact to: (1) Configure the running environment
and install the software dependencies; (2) Prepare the datasets.

C. Experiment Workflow

Please see the Evaluation section.

D. Major Claims

e (Cl): The Ranking-based Sliding Window (RSW), Risky
memory regularization (RMR), and the Sliding Window
and Memory Regularization (SWMR) achieve effective
defense against MIA in iteratively pruned models. Among
them, the RSW effectively reduces the time cost of
defense. The three methods can effectively defend against
adaptive MIAs with limited model accuracy reduction.
They are proven by the experiment (E1), the results of
which are reported in Table V and Fig. 7.

E. Evaluation

Reference to the results in Fig. 7: Compared with the Base
defense method, the three defense methods (i.e., RSW, RMR,
and SWMR) can reduce the adaptive attack accuracy by 6%-
20% at most when the model prediction accuracy is reduced
by no more than 5%.

NOTE. We provide a detailed evaluation of the Base de-
fense method and the three proposed methods, demonstrating
that the latter achieves a better privacy-utility trade-off. We
have also provided the description (in the README file)
for evaluating other existing defense methods for anyone
interested in performing the comprehensive evaluation.
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1) Experiment (EI): The experimental steps required for
the evaluation are consolidated into a single script, which
can be run to reproduce the key results on two representative
datasets, one from image data (i.e., CIFAR10) and one from
tabular data (i.e., Location). For a detailed description, please
refer to Examples for Evaluation section in the README file.

Execution. Please run
first to make sure the script is executable. Then, run
bash ./run_shell.sh. This script contains evaluation
examples for two datasets and is expected to take
approximately 16 hours to complete. Each example contains
several steps, and the results on CIFAR10-ResNetl8 are as
follows:

e Step 1: Train one victim model and five shadow models
(used for attack).

Results. Generate pre-trained original models and save them
in the ./result path.

Step 2: Prune with the pruning rate of 0.6 and fine-
tune (shadow) models with Base defense method, and perform
adaptive MIA attacks.

Results. The output

./log/cifarl0_resnetl8

chmod +x run_shell.sh

in the
the file
iter pruning 0.6_.txt , which shows the iteratively
pruned model’s prediction accuracy (e.g., Fig. 10), privacy
risk (e.g., Fig. 17), and the time required for iterative pruning
(e.g., Fig. 18) under Base defense method. The privacy risk*
is evaluated by using metric-based attacks (i.e., Conf, Entr,
Mentr, Hconf) and a classifier-based attack® (i.e., SAMIA).

Victim pruned model test accuracy:75.224

Fig. 16: Example output showing the prediction accuracy on
the iteratively pruned model with Base defense.

file is saved
directory. Read

SAMIA attack accuracy 79.434
Conf attack accuracy: 66.813

Entr attack accuracy: 64.528

Mentr attack accuracy: 66.912

Hconf attack accuracy: 66.204
Fig. 17: Example output showing the privacy risk on the
iteratively pruned model with Base defense.

Total Base defend time: 358.0509204864502s

Fig. 18: Example output showing the time required for the
iterative pruning under Base defense.

e Step 3: Prune with the pruning rate of 0.6 and fine-
tune (shadow) models with RSW defense method, and perform
adaptive MIA attacks.

Results. Read the output file
iter_pruning_0.6_slide_re.txt , which shows
the iteratively pruned model’s prediction accuracy, privacy
risk, and the time required for iterative pruning under RSW
defense method.

4All the attacks we used in the evaluation examples are the same, and the
specific attacks we used will not be repeated in the following descriptions.

5Since classifier-based attacks take a long time to evaluate, we select the
representative SAMIA attack for evaluation.


https://github.com/CactiLab/WeMeM
https://github.com/CactiLab/WeMeM
https://github.com/CactiLab/WeMeM
https://github.com/CactiLab/WeMeM
https://doi.org/10.5281/zenodo.14189484
https://doi.org/10.5281/zenodo.14189484

e Step 4: Prune with the pruning rate of 0.6 and fine-tune
(shadow) models with RMR defense method, and perform
adaptive MIA attacks.

Results. Read the output file

iter_pruning_0.6_ml2.txt , which shows the iteratively
pruned model’s prediction accuracy, privacy risk, and the time
required for iterative pruning under RMR defense method.

e Step 5: Prune with the pruning rate of 0.6 and fine-tune
(shadow) models with SWMR defense method, and perform
adaptive MIA attacks.

Results. Read the output file

iter_pruning 0.6_slide_ml2.txt , which shows

the iteratively pruned model’s prediction accuracy, privacy
risk, and the time required for iterative pruning under SWMR
defense method.

2) Interpreting the results: The prediction accuracy, attack
accuracy, and time required under the proposed three defense
methods can be obtained from the corresponding output files of
Steps 3 to 5. The evaluation conclusion is drawn by comparing
the results obtained in these three steps with the Base results
in Step 2, respectively. The conclusion can be compared with
those in Fig. 7 and Table V.

For example, The output results of the RSW defense method
obtained in Step 3 compared with the Base method show that
the prediction accuracy of the pruned model is reduced by
no more than 5% (e.g., Fig. 16 vs Fig. 19), while the attack
accuracy is reduced by 10.762% at most (e.g., Mentr attack
accuracy in Fig. 17 and Fig. 20). In addition, the time required
for iterative pruning under the RSW method is better than that
under RMR and SWMR, which is less than that under the
Base method (e.g., Fig. 18 vs Fig. 21), which accords with
the conclusion of Table V.

Victim pruned model test accuracy:72.109

Fig. 19: Example output showing the prediction accuracy on
the iteratively pruned model with RSW defense.

SAMIA attack accuracy 73.097
Conf attack accuracy: 56.193
Entr attack accuracy: 55.075
56.150©
56.173

Mentr attack accuracy:
Hcont attack accuracy:

Fig. 20: Example output showing the privacy risk on the
iteratively pruned model with RSW defense.

NOTE. Since model training is a statistical learning process,
the model training and fine-tuning (i.e., retraining) required
for evaluation may cause the final results to differ from those
reported in the paper (regarding specific values) but will not
affect the final conclusions.

F. Customization

The provided additional running script run_custom.sh
is used for evaluating other defense methods. Please run the
script directly bash ./run_custom.sh to conduct experi-
ments. In this script, Step 1 is a pretraining process. If the
run_shell.sh described in Appendix B-El has already
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Total slide re defend time: 179.20386385917664s

Total ml2 defend time: 409.81705808639526s
Total slide_ml2 defend time: 663.9455626010895s

Fig. 21: Example output showing the time required for the
iterative pruning under RSW, RMR, and SWMR defenses.

been executed, Step 1 in this script can be skipped. Steps
2-5 in this script are the experimental processes of the ppb,
adv, relaxloss, and dp defense methods used in this paper. The
hyperparameters for these defense methods can be adjusted
based on item 9 of the NOTE section in the README file.
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