Eclipse Attacks on Monero’s Peer-to-Peer Network

Ruisheng Shi*9, Zhiyuan Peng*, Lina Lan*9, Yulian Ge*, Peng Liu, Qin Wang?, Juan Wang?
* Beijing University of Posts and Telecommunications, Beijing, China
t Pennsylvania State University, Pennsylvania, US
Y CSIRO Data61, Sydney, Australia
§ Wuhan University, Wuhan, China

T Corresponding authors: shiruisheng@bupt.edu.cn, lanlina@bupt.edu.cn

Abstract—Eclipse attack is a major threat to the blockchain
network layer, wherein an attacker isolates a target node by
monopolizing all its connections, cutting it off from the rest
of the network. Despite the attack’s demonstrated effectiveness
in Bitcoin (Usenix’15, SP’20, Usenix’21, CCS’21, SP’23) and
partially in Ethereum (NDSS’23, SP’23), its applicability to a
wider range of blockchain systems remains uncertain.

In this paper, we investigate eclipse attacks against Monero, a
blockchain system known for its strong anonymity and pioneering
the use of Dandelion++ (the state-of-the-art blockchain network
layer protocol for transaction privacy protection). Our analysis
of Monero’s connection management mechanism reveals that ex-
isting eclipse attacks are surprisingly ineffective against Monero.
We accordingly introduce the first practical eclipse attack against
Monero by proposing a connection reset approach, which forces
the target node to drop all benign connections and reconnect
with malicious nodes. Specifically, we outline two methods for
executing such an attack. The first one exploits the private
transaction mechanisms, while the second method leverages
the differences in propagation between stem transactions and
fluff transactions under Dandelion++. Our attack is not only
applicable to Monero but to all blockchain systems utilizing
Dandelion++ and similar connection management strategies.

We conduct experiments on the Monero mainnet. Evaluation
results confirm the feasibility of our attack. Unlike existing
eclipse attacks, our connection reset-based approach does not
require restarting the target node, significantly accelerating the
attack process and making it more controllable. We also provide
countermeasures to mitigate the proposed eclipse attack while
minimizing the impact on Monero. In addition, we have ethically
reported our investigation to Monero official team.

I. INTRODUCTION

The peer-to-peer (P2P) network forms the foundation of
the entire cryptocurrency/blockchain system. It serves as the
medium for transmitting information (e.g., protocol messages,
transaction data, and block data) between nodes, and ensures
the state consistency. The line of research covers a wide range
of topics, including but not limited to network-level attacks
(e.g., eclipse attacks, network partition) [1][20[3][4][SN[6][7],
network topology measurement [8][O][LO]{L1]{12][L3][141],
and network layer deanonymization [15][16][17][18][19].

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA

ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.240095
www.ndss-symposium.org

Eclipse attack [1] is a method of compromising a node’s
connections. Through the attack, an attacker can control all the
network connections of a target node, gaining complete control
over all its incoming and outgoing information. Building upon
eclipse attacks, an attacker can engage in more malicious ac-
tivities, such as identifying the origin of transactions from the
target node [[LS][16][L7][18[19][20], disrupting its consensus
state [7l], and conducting selfish mining [21][22][23].

Previous research on eclipse attacks can be summarized into
two categories: outgoing connection occupation methods based
on peerlist attacks and incoming connection occupation meth-
ods based on connection eviction mechanisms. The basic idea
behind occupying outgoing connections is to execute a peerlist
populating attack and wait for the target node to restart. This
causes the target node to actively establish connections with
the malicious peers in the peerlist. Although researchers [1][2]]
have proposed various peerlist populating attack methods,
these approaches share common drawbacks: high attack time
costs (ranging from hours to weeks) and uncontrollable attack
processes (which can only be triggered by restarting the node).
The occupation of incoming connections primarily relies on
the node’s connection eviction mechanism. For instance, the
default maximum number of incoming connections in Bitcoin
for each node is 114 [24]. When a node reaches this limit
and receives a new incoming connection request, it decides
whether to evict an existing connection and accept the new
one based on Bitcoin’s connection eviction strategy. Using this
mechanism, an attacker can gradually occupy the incoming
connections of the target node by continuously attempting to
establish new incoming connections with it [25]][26].

However, many blockchain systems (e.g., Ethereum, Mon-
ero) lack a connection eviction mechanism similar to Bit-
coin’s, rendering the previous methods of incoming connection
occupation ineffective. In Ethereum, the default maximum
number of incoming connections for a node is 34 [7]]. Once
this limit is reached, all new incoming connection requests
are rejected. Thus, the attacker’s connection request cannot
disrupt the benign connections already established by the node.
The attacker has to wait for the original benign connections
to disconnect, then occupies the vacant connection slots to
gradually occupy all incoming connections [S[][7]. In Monero,
incoming connections are set to unlimited by default — a
deliberate strategy to counter eclipse attacks. Consequently,
such nodes unconditionally accept new incoming connection

requests, and the attacker’s connection attempts do not impact
the existing benign connections. For blockchain systems with-
out a connection eviction mechanism and without constraints
on the number of incoming connections, devising an effective
eclipse attack remains an unresolved issue.

In this paper, we propose the concept of connection reset at-
tack, a new attacking vector overlooked before. Based on this,
we present the first practical eclipse attack against Monero.
The connection reset attack not only achieves the occupation
of incoming connections, but also significantly improves the
speed of occupying outgoing connections (shortened to several
minutes) and the controllability of the attack process.

The essence of our connection reset attack is to drop the
current connections between the target node and all its benign
peers, then force the target node to restart the selection process
for outgoing connections. We provide two constructions.

The first construction for such an attack (see Sec[II-CI)
is to create a specific type of incident that triggers Monero’s
connection dropping mechanism and to control these incidents
occurring at the target node, resulting in its disconnection.
The method involves three essential elements: (i) drop the
connection, (ii) design triggering incidents, and (iii) control
the location where these incidents occur. We use double-
spending transaction conflicts as the triggering incidents for
the connection dropping. While it is relatively straightforward
for an attacker to generate these incidents, they are still
ineffective if incidents do not occur at the target node. The
challenge thus lies in how to ensure the incidents occur at
a target node. Our paper represents the investigation into
controlling the location of the triggering incident.

In the Bitcoin P2P network, the occurrence of a double-
spending incident is unpredictable because Bitcoin nodes
propagate the transaction to all of their connected neighbors.
Double-spending transactions cannot consistently reach the
nodes at the times or in the conditions where conflicts are
anticipate However, the adoption of state-of-the-art pro-
tocols (e.g., Dandelion++ [27]][28]]) and new features (e.g.,
private transactiongy”) in Monero network enables attackers to
control the location where double-spending conflicts occur.
For instance, private transactions can precisely control the
occurrence of double-spending conflicts on the target node’s
connection because private transactions are only received
by the specified target node. By utilizing double-spending
conflicts based on private transactions, attackers can achieve
a connection reset attack on the target node.

However, a limitation arises from the fact that not all nodes
are willing to open the RPC port to offer private transaction
services. It is necessary to find more universal solutions.

Fortunately, we observe that every Monero node is obligated
to comply with the Dandelion++ protocol. We accordingly

IThe InvBlock attack proposed in the TxProbe (FC ’19) paper{10] can
achieve similar effects to private transaction, i.e. only one node in the Bitcoin
network stores transaction details. However, this vulnerability has been fixed
in February 2019 (https://github.com/bitcoin/bitcoin/pull/14897)

2Enabling the transaction initiator to restrict the transaction to a single node,
thereby preventing the node from forwarding the transaction.

devise a second construction (cf. Sec[[lI-C2) by utilizing the
transaction propagation characteristics of the Dandelion++
protocol to enable the attack to target any node. The
working principle is that stem transactions only propagate
to one outgoing connection and stem transactions propagate
much slower than fluff transactions (deferred to Sec[lI-E). The
competitive relationship between a pair of double-spending
transactions allows the fast-propagating fluff transaction to
confine the dissemination of the slow-propagating stem trans-
action within the range of the target node and a few other
nodes. This facilitates the occurrence of double-spending
transaction conflicts between the target node and a majority
of its neighboring nodes, resulting in a disconnection from
these neighboring nodes. Therefore, attackers can control the
occurrence of double-spending transaction conflicts at specific
locations with a very high probability.

We note that the connection dropping mechanism and trans-
action privacy protection mechanism are essential components
of security mechanisms in all cryptocurrencies. However, these
mechanisms are a double-edged sword that can be exploited
by attackers to carry out our connection reset attacks.

We summarise our contributions as follows:

o We present the first eclipse attack against Monero. Our
attack comprises three major components (Sec[lI): the
graylist attack, the whitelist attack, and the connection
reset attack. The connection reset introduces a new attack
vector, for which we provide two practical strategies (i.e.,
separately via private transactions and Dandelion++):

> The connection reset attack based on private transactions.
We reveal that public service nodes providing RPC ser-
vices to wallets are vulnerable to eclipse attacks. Since
these nodes are responsible for serving a considerable
number of wallet users, being subjected to eclipse attacks
could pose a significant risk to the transaction security
and privacy of a substantial user base.

> The connection reset attack based on Dandelion++.
We have identified a security threat in the form of an
eclipse attack that has existed in Monero network since
2020, coinciding with the adoption of the Dandelion++
protocol. None of the nodes within the Monero network
is immune to this type of attack.

+ We implement and evaluate our eclipse attack on Monero
mainnet. Experimental results prove its effectiveness.

« We provide countermeasures that can mitigate our eclipse
attack and examine their potential negative effects.

Responsible disclosure: For ethical reasons, we have
reported our detected vulnerabilities to Monero official
team via Hackerone with the report #2590695| and
have received confirmation of the vulnerabilities from
Monero official team (pull request #9218)).

II. MONERO P2P NETWORK

We discuss the network layer behavior of Monero nodes.
Our investigation is based on Monero source code, version

https://github.com/bitcoin/bitcoin/pull/14897
https://hackerone.com/monero?view_policy=true
https://hackerone.com/reports/2590695
https://github.com/monero-project/monero/pull/9218

v0.18.3.1 [29] (released on October 11, 2023).

A. Monero Node

A Monero node is uniquely identified by its (IP: Port)
combination. It establishes TCP connections with other peers
using their (IP: Port) for communication. By default, a Monero
node can initiate outgoing connections with up to 12 different
peers. Nodes with a public IP address can receive an unlimited
number of incoming connectiony’] Nodes behind NAT are
unable to receive incoming connections.

Monero nodes also support Tor and I2P networks. However,
as we focus on Monero public network, Tor and I2P are
excluded from this analysis.

B. Monero Peer-to-Peer Messages

We introduce several types of messages [30] used in Mon-
ero’s P2P protocol that are closely relevant to our work.

1) Handshake Message: The handshake message is used
to establish connections between peers. When a node at-
tempts to establish an outgoing connection with a remote
peer, it first sets up a TCP connection with the remote peer
using its (IP: Port) record and then sends a handshake request.
Upon receiving this request, the remote peer responds with a
handshake response message, which includes a peerlist field
containing up to 250 peer records randomly selected from the
remote peer’s whitelist. Once the node receives this response,
the connection between the node and the remote peer is
successfully established (see peerlist creation in Appendix [A).

2) PING&PONG Message: The PING message is used to
detect whether the remote peer is able to accept incoming
connection, while the PONG message is the response. When
a node receives a handshake request from a remote peer, it
will asynchronously send a PING message to the (IP: Port)
provided by the remote peer in its request. The process of
sending a PING message is similar to sending a handshake
request. It is worth noting that the node will establish a
new TCP connection with the (IP: Port) specified by the
remote peer and send the PING request through this new TCP
channel. When the remote peer receives the PING message,
it will respond with a PONG message, confirming that it can
receive incoming connections and indicating that the (IP: Port)
provided in its handshake request is able to communicate.

3) Timed Sync Message: The timed sync message is used
for timed sync process between the node and its neighbors.
The timed sync process is similar to the handshake process.
The response to a timed sync request also includes a peerlist
field, making it another important method for Monero nodes
to obtain new node records.

A node sends timed sync requests to all its neighbors every
60 seconds. The timeout for a timed sync response is set to 120
seconds. If peers do not respond within this timeout period,
the node will actively drop the connections with them.

3This can be restricted by setting the in_peers parameter.

C. Peerlist Management

Peerlisis an important structure for a Monero node to store
other peers’ (IP: Port) records. Each Monero node maintains
three types of peerlists: anchorlist, whitelist and graylist.

1) Anchorlist: Anchorlist is an important part of the node’s
peerlist that is primarily used during the startup phase. We
exclude the detail here as it does not significantly affect our
attack (while more descriptions can still refer to Appendix

2) Whitelist: The peer record in the whitelist consists of the
peer’s (IP: Port) and a field named last_seen, which represents
the timestamp of the node’s last communication with that peer.
Peer records are typically sorted in descending order by their
last_seen value. The last_seen value reflects the frequency of
communication between the node and the peer. Outgoing peers
consistently maintain a high ranking in the node’s whitelist.

Add records to whitelist. Whitelist records peers that the node
has successfully established connections with. When the node
successfully establishes an incoming or outgoing connection
with a peer and there is no record of the peer in the node’s
whitelist, the peer’s record will be added to whitelist, with
the last_seen field set to the time when the connection was
established. The handshake process is an important way to
add new peer records to whitelist.

It should be noted that peers that cannot send PONG
messages cannot be added to the node’s whitelist. In addition,
multiple peer records with the same IP address are not allowed
in the whitelist simultaneously. Any subsequent records will
replace the previous ones in the whitelist.

A Monero node executes the gray_peerlist_housekeeping()
function every 60 seconds. The function randomly removes a
peer record from the node’s graylist and tests its connectability.
If the peer is connectable, the peer record is added to the
node’s whitelist with last_seen set to the current time.

Update records in whitelist. For peers that already exist in
whitelist, if the node establishes outgoing connections with
them, the last_seen value for these peers will be set to the
latest. The timed sync process can also update out-peers’E]
last_seen value. The node updates the last_seen value every
minute for outgoing connections that successfully respond to
its timed sync requests. Because of this mechanism, peer
records with the latest last_seen values in whitelist always
correspond to the node’s current outgoing connections.

Monero nodes do not update the records of in-peers in
whitelist. Allowing in-peers to update their last_seen field
would enable malicious peers to continuously refresh this
value by repeatedly establishing connections with the node,
keeping the malicious peers’ records at the top of the node’s
whitelist. Since Monero nodes are more likely to choose peers
at the head of their whitelist to establish outgoing connections,
this ability would increase the probability of malicious peers
being selected by nodes as outgoing connections.

“#Peerlist in this context is different from the peerlist used in node commu-
nications during the handshake or timed synchronization processes.

5The term “in-peer” refers to a peer associated with incoming connections,
while “out-peer” refers to a peer associated with outgoing connections.

Remove records from whitelist. The whitelist can store up to
1,000 peer records by default. When reaching the capacity, the
peer record with the smallest last_seen value will be removed.

3) Graylist: The field of peer record in graylist is similar
to that of whitelist, which consists of peer’s (IP: Port) and
last_seen field. Unlike whitelist, the last_seen field of peer
records in graylist are always set to 0. The records in graylist
are sorted according to the order in which they are added to
graylist. graylist is like a queue structure; the earliest peer
record is at the tail of the queue.

Add records to graylist. graylist stores peer records in the
peerlist shared by other peers. When a node receives the
peerlist carried in the handshake response or timed sync
response from other peers, it sequentially checks whether the
peer records in the peerlist already exist in graylist or whitelist.
Existing records will be ignored, and non-existing records will
be added to the head of graylist. Nodes do not check whether
the peer records are connectable during the process. When a
peer record is added to graylist, the corresponding last_seen
is set to 0 to prevent attackers from populating the graylist by
setting the last_seen value of the peer records in the peerlist.

Remove records from graylist. graylist can store up to 5,000
node records by default. When graylist exceeds the maximum
capacity, the earliest node records added will be deleted. Nodes
also randomly delete peer records in graylist through periodic
gray_peerlist_housekeeping() calls.

D. Connections Management

We summarize the connection management from two as-
pects: connection establishment and connection dropping.

1) Incoming connections establishment: By default, the
Monero node with a public IP is able to receive an unlimited
number of incoming connections, but the node can limit the
maximum number by setting its in_peers parameter. Since
the establishment of incoming connections is passive, the
node checks every handshake request from remote peers. If
the number of incoming connections reaches the upper limit,
new handshake requests will be rejected. Additionally, the
node only accepts one incoming connection from a single IP
address. Subsequent incoming connection requests from the
same TP will be rejected}

2) Outgoing connections establishment: A Monero node is
able to establish up to 12 outgoing connections by default.
The process of establishing outgoing connections depends on
the current number of outgoing connections and the status
of the node’s peerlist. We briefly describe the entire outgoing
connection establishment process starting from the startup of a
new node. We ignore the situations where a node is configured
with the parameters priority_node and exclusive_node.

When a node starts, it will first try to establish connections
with peers in anchorlist. When establishing a connection fails
or there are no available peers in anchorlist, the node will
instead select out-peers in whitlist and graylist. Generally,

bsee handle_handshake(), line 2512 in [31] for details on accepting incom-
ing connection requests

whitelist has higher priority when selecting out-peers. Only
when the number of outgoing connections of the node reaches
a certain upper limitﬂ or the node fails to establish a connec-
tion with peers in whitelist, the node will select out-peers in
graylist. When selecting out-peers in whitelist, the node will
give priority to the top 20 node records that do not belong
to the same /16 IP address domailﬂ as the current peers and
have a larger last_seen value (see Appendix [C| for the details
of establishing outgoing connections).

3) Connections dropping: Various factors may lead to con-
nections dropping. Physical factors, such as network problems
of peers, can cause the connection to be interrupted. Generally,
connections drop due to inactive behaviors between peers, such
as sending blocks or transactions that cannot pass verification
(e.g., double-spending transactions).

Additionally, the function update_sync_search() periodi-
cally drops outgoing connections. Every 101 seconds, the
function checks the block synchronization status of the node’s
outgoing peers. If the node’s current number of out-peers
reaches the maximum value and the number of out-peers in
the synchronization state is less than 2, the node will randomly
disconnect one of its non-anchor’| out-peers.

E. Transaction Propagation

Since version v16.0.0 (released on May 29, 2020) Monero
has adopted the Dandelion++ protocol [27][32] to obscure the
origin of transactions [16[][27][28[32][33]. In Dandelion++,
the transaction propagation process can be divided into two
stages: the stem stage and the fluff stage.

In the stem stage, transactions are propagated along a secret
path in the network. This means transactions in stem stage can
only be forwarded to at most one node at a time. This feature
limits the propagation range of transactions in the network
during stem stage and hides the propagation path of transac-
tions. In the fluff stage, each node forwards the transaction to
all its neighbors after receiving the transaction. This is similar
to Bitcoin’s diffusion mechanism. Since transactions in stem
stage need to go through several hops before they can turn into
fluff stage, their propagation speed in the network is slower
than transactions that were initially in the fluff stage.

Similar to how transactions are forwarded, how a node
operates depends on which phase the node is in. Each node is
governed by two phases: the stem phase and the fluff phase.
Each phase of the node lasts for one epoch (about 10 minutes).
When an epoch ends, the node will enter a new epoch and be
in the stem phase and the fluff phase with a probability of 80%
and 20%, respectively. When the node is in the fluff phase, it
will unconditionally convert any received transaction into the
fluff stage and forward it. When the node is in the stem phase,
it will forward stem transactions in stem mode and forward
fluff transactions in fluff mode. Notably, no matter what phase

TThe upper limit is equal to expected_white_connections, which is associ-
ated with the node’s block pruning. See Appendix for more details.

8If the first 16 digits of two IP addresses are the same, they are said to
share the same /16 IP address domain.

° Anchor peers refer to the out-peers established from the anchorlist.

the node is currently in, the node will forward its own original
transaction in stem mode.

At each epoch onset, nodes randomly select two out-peers
as proxy nodes to relay transactions during the stem phase.
Specifically, nodes map each source node to a proxy node,
directing all stem phase transactions from a given source to
its assigned proxy.

Nodes in the block synchronization stage will not forward
the transactions they have received, which affects the transac-
tion spread to a certain extent.

III. OUR ECLIPSE ATTACK

We introduce our eclipse attack. We describe the three
sub-attacks (Sec[llT-A] [[II-B} [lTI-C)), and explain the complete
process of the eclipse attack (Sec[lII-D] Fig[T). We also present
a method to detect whether the attack is completed (Sec[[II-E).

Threat model. The attack goal of our eclipse attack is to
occupy all outgoing connections and drop all benign incoming
connections of the target node. The target node is a Monero
full node with a public IP and accepts incoming connections
from other Monero nodes. The attack resources required by
the attacker are 1020 public IPs, of which 1000 are used for
whitelist attack and occupation of outgoing connections, and
the remaining 20 are used for the graylist attack.

A. Sub-Attack-®: The Graylist Attack

The graylist attack aims to populate a large number of
trash peer records into the target node’s graylist. According to
Monero’s P2P protocol, the graylist content comes from the
peer records contained in the peerlist of handshake/timed sync
responses. Therefore, responding to their handshake/timed
sync requests is the only and most effective way to populate
the target node’s graylist.

We populate the target node’s graylist by carrying trash node
records in the peerlist of the timed sync response. A peer list
contains at most 250 peer records, and the default maximum
capacity of the graylist is 5,000. If an attacker establishes
20 incoming connections to the target node simultaneously,
a single timed sync process is sufficient to send 5,000 trash
node records to the target node, effectively filling the graylist.

Given that the graylist operates on a FIFO (first-in, first-
out) management mechanism, the attacker must carefully time
their responses to the target node’s timed sync requests. To
maximize the compression of space for benign node records in
the target’s graylist, the peerlist carrying trash records should
be processed after the benign peerlist whenever possible. Thus,
we set a delay when responding to timed sync requests.

B. Sub-Attack-@: The Whitelist Attack

The whitelist attack aims to populate the target node’s
whitelist with malicious node records controlled by the at-
tacker. This attack not only requires ensuring that the malicious
node records are added to the target node’s whitelist, but also
necessitates the ability to update the last_seen value of these
records to increase the likelihood of the malicious nodes being
selected for outgoing connections.

To achieve this, we populate the target node’s whitelist by
establishing incoming connections using malicious nodes. This
method is the only controllable way for the attacker to inject
malicious node records into the target node’s whitelist. For
an incoming connection record to be inserted into the target’s
whitelist and have its last_seen timestamp updated to the latest,
the corresponding IP address must not exist in the target’s
whitelist before the connection is established.

If the attacker possesses a sufficient number of controllable
malicious nodes with different public IPs, they can orches-
trate these nodes to establish incoming connections with the
target node in a fixed sequence. If the initial malicious node
records are removed from the target’s whitelist as subsequent
malicious node records are added, these initial records can
be re-added to the whitelist, with their last_seen value reset
to the latest timestamp. When the number of malicious nodes
exceed the maximum capacity of the whitelist, the attacker can
update all malicious node records in the target node’s whitelist,
thereby gaining control over its content.

C. Sub-Attack-®: The Connection Reset Attack

The connection reset attack exploits Monero’s anti-DOS
mechanism and privacy protection to trigger connection drop-
ping with double spending transaction conflicts, which forces
the target node to establish connections with the malicious
nodes injected by the attacker in the whitelist and evict the
target node’s existing benign incoming connections. According
to Monero’s outgoing connection selection strategy, a benign
node is unlikely to re-establish a connection with the same
node after disconnection. Consequently, the attacker can oc-
cupy all connections of the target node. We propose two
connection reset attack methods. Both attack methods are
based on the property that double-spending transactions will
cause the connection drops (recall from Sec[[I-D3)

1) Based on the Private Transaction: In Monero network,
nodes with open RPC services (closed by default) mainly
refer to those with the —public-node parameter set at startup.
These nodes provide remote services to Monero wallets,
allowing users to create transactions in real-time through
RPC interfaces without needing to synchronize the complete
blockchain locally. The RPC service also provides developers
with an interface to interact with Monero nodes, facilitating
data queries and node control [34]][35]].

The RPC service node provides a method call called
send_raw_transaction(), which allows users to send the raw
transaction generated by the wallet to the node’s transaction
pool. This method accepts a parameter called do_not_relay.
When its value is true, the transaction sent to the target node
through this call will remain in the target node’s transaction
pool without being forwarded until the transaction is packaged
and chained by the target node. The parameter is a privacy
safeguard offered by Monero, initially designed to allow users
to add transactions to the blockchain without broadcasting
them across the network.

In summary, the connection reset attack based on private
transactions operates in four steps:

Whitelist Attack:
Occupy target’s whitelist

Graylist Attack:

. Step-3
Occupy target’s graylist

Step-1 Step-2

Timed sync graylist Handshake & IS
g&) response Peer: invalid ‘zg _ pingpong Peer: malicious
WSS . W N 1P
‘ \ Peer: invalid w \ Peer: malicious
p
‘Other nodes in A= Other nodes in A .2
* g
SubAttack-1 SubAttack-2

Connection Reset Attack:
Drop target’s benign peers

Tx1 to the target;
Tx2 to the target’s neighbors

in the networl

QT T
—
™1
2 xﬂ‘“
\f Other nodes ;§’P TxCheck

SubAttack-3 T

Detect Eclipse Attack State:
Check whether the attack '
is successful

Check if we can receive TxCheck Else Complete
from the target. Eclipse Attacks
ey ¢ M
¢ TxCheck | TxCheck
Other nodes in &1
e

NN
the network 4\0@\

Step-4

If NOT all connections
are occupied

Fig. 1: Our Eclipse Attack against Monero

¢ Create two offline transactions #x/ and #x2 using the same
unspent output (i.e., UTXO).

o Call the public RPC method send_raw_transaction()
to send #x/ to the target node with the parameter
do_not_relay=True.

o Broadcast 7x2 to the Monero network.

o Wait for #x2 to be forwarded to the target node by its
neighbors, dropping the target node’s benign connections.

Since the target node cannot forward tx/, the transaction
tx2 can propagate smoothly throughout the network. After
receiving £x2, the neighbors of the target node will naturally
forward #x2 to the target node, causing double-spending con-
flicts between the target and its neighbors.

2) Based on the Dandelion++ protocol: The connection
reset attack based on private transaction requires the target
node to expose its RPC service, making it not applicable to all
nodes. Based on the characteristics of transaction propagation
under Dandelion++, we designed another connection reset
attack that can be applied to all nodes in Monero network.

Monero uses the Dandelion++ protocol to protect the pri-
vacy of transactions during network propagation. In the Dan-
delion++ protocol, transactions in the stem stage are usually
confined to a small area in the network and only a few nodes
can receive them. When the transaction turns to the fluff stage,
it can be quickly propagated to the entire networ

Our attack exploits the difference in propagation speed
between stem transactions and fluff transactions. To make the
presentation more clear, we first present a basic version of the
connection reset attack based on Dandelion++:

e Our proxy node simultaneously sends stem zx/ to the
target node and broadcasts fluff #x2 to the network.

o The target node first receives tx/ and then forwards it
to one of its outgoing connections, where zxI continues
to propagate throughout the network according to the
Dandelion++ protocol.

« Subsequently, some neighbors of the target node receive
tx2 and forward it to the target node, causing the target
node to disconnect from these neighbors.

The basic version of connection reset attack works due to
the following reason: A node only relays either #x/ or x2,
whichever arrives first, and is considered faken over by that
transaction. Among its neighbors, the target node will drop

10Stem transactions are forwarded to only one of the 12 outgoing connec-
tions, while fluff transactions are forwarded to all neighbor nodes (Sec@.

connections with those taken over by 7x2 while maintaining
connections with those taken over by #x/.
We use the success_rate to measure the effectiveness of the
connection reset attack:
benign_neighbors_after_attack

success_rate = 1— 1
- benign_neighbors_be fore_attack M

where the parameters, benign_neighbors_before_attack and
benign_neighbors_after_attack, represent the numbers of be-
nign neighbors connected to the target node before and after
the execution of the connection reset attack, respectively.

Improve the success rate of the basic version. We propose
three ways to enhance the success rate.

@ Check whether the target node is in the fluff phase.
If a node is in the fluff phase, any #x/ we send to it will
immediately propagate to its neighbors. These neighbors will
then prioritize tx/ and refuse to accept #x2, causing the attack
to fail. Detecting whether the target node is in the fluff phase
allows the attacker to decide when to initiate a connection reset
attack. If the target node is in the fluff phase, the attacker must
wait for the next epoch, when the node switches back to the
stem phase, before attempting the attack.

An attacker can utilize two proxy nodes, A and B, both
of which are directly connected to the target node. Node A
sends a stem transaction fx to the target node and then checks
whether node B immediately receives the fluff transaction fx
from the target node. If node B receives the transaction right
away, it indicates that the target node is currently in the fluff
phase, as a node in the fluff phase will immediately broadcast
any received stem transaction in fluff mode.

@ Slightly delay sending the stem transaction #x1. The goal
is to allow the fluff transaction #x2 to propagate to as many
neighbors of the target node as possible, while ensuring that
tx] reaches the target node before £x2.

To determine the appropriate delay, the attacker follows
a specific strategy. Nodes broadcast fluff transactions to all
neighboring nodes immediately upon receipt. The attacker can
take advantage of this behavior by establishing an incoming
connection with the target node. This allows the attacker to
measure the propagation time of fluff transactions from the
entry node to the target node. By analyzing the collected data,
the attacker can accurately calculate the optimal delay time.

@ Intercept the stem txI through malicious nodes con-
trolled by the attacker to suppress its propagation. When
the attacker’s malicious nodes receive the stem #x/, they

deliberately refrain from forwarding it. This tactic disrupts
the dissemination of 7x/ and increases the effectiveness of the
connection reset attack.

The interception becomes even more impactful after com-
pleting the first round of the connection reset attack. By then,
the attacker has already gained control of some of the target
node’s outbound connections. During a second round of the
attack, if the stem transaction #x/ is intercepted through these
controlled outbound connections (which is highly probable),
the success rate is significantly enhanced. If the whitelist
takeover rate reaches 100%, the second round will take over
all outbound connections.

The final attack we evaluate in the mainnet is the version
that implements ALL the above three improvements.

D. Put it All Together: The Complete Eclipse Attack

The first two sub-attacks can commence simultaneously,
with each getting re-executed every minute throughout the
entire eclipse attack process, triggered by receiving timed
synchronization messages. The connection reset attack must
wait for the completion of the first execution of the other two
sub-attacks, which lasts less than 60 seconds.

We start with an example to describe our eclipse attack and
show how the interplay between anti-DoS defense and privacy
protection enables our eclipse attack.

An example attack scenario. Victim Alice operates node A
and initiates her Monero transactions through this node. Given
Monero’s strong anonymity, Alice assumes that it is impossible
for anyone to identify which transactions she has initiated.

Mallory, an attacker, has two objectives: (i) to determine
which transactions were initiated by Alice using the eclipse
attack, and (ii) to intercept and block Alice’s transactions from
being confirmed on the blockchain. Mallory has control over
1,020 nodes, consisting of 1,000 nodes with public IPs that
can accept incoming connections and 20 nodes that do not
require incoming connections. To achieve her goals, Mallory
executes the following actions:

Step-® Mallory uses graylist attack and whitelist attack to
occupy node A’s graylist and whitelist, respectively. Graylist
attack and whitelist attack ensure that Mallory occupies the
majority of the target node’s peerlist. These two attacks will
get re-executed every minute to maintain Mallory’s occupation
of the node A’s peerlist.

After occupying the node A’s peerlist, the next step in
executing a successful eclipse attack is to trigger node A to
drop the connections with its neighbors.

Step-@ Mallory exploits Monero’s anti-DOS mechanism to
trigger connection dropping with double spending trans-
action conflicts. Monero relies on an anti-DOS mechanism:
Monero disconnects from nodes that send potentially mali-
cious invalid transactions. This serves as a protective measure
against the partitioning attack [7] on target nodes.

However, this anti-DOS mechanism can be manipulated by
an attacker using double-spending transaction conflicts as a
means to trigger connection drops. Although it is relatively

easy to generate double-spending transaction conflicts within
the Monero network, the challenge lies in precisely controlling
where these conflicts occur. Mallory’s objective is to force
node A to drop its connections with existing neighbors, making
the primary challenge the ability to control the location of the
double-spending transaction conflicts accurately.

Step-® Mallory exploits Monero’s transaction privacy
protection mechanism to control where double spending
transaction conflicts occur. If Mallory can ensure that only
Node A has transaction tx/, while the rest of the network
holds transaction #x2, the double-spending conflict can be
isolated to Node A alone. This requires Node A to have its
RPC services enabled and support private transactions. In this
scenario, Mallory can employ a connection reset attack using
private transactions to achieve this isolation.

If Node A does not have an accessible RPC interface,
Mallory can alternatively use a connection reset attack based
on the Dandelion++ protocol to control where the double-
spending conflict occurs (see technical details in Sec|III-C).

Step-@ Mallory takes over all of node A’s connections. If a
single round of connection reset attack fails to take over all of
node A’s connections, Mallory can launch additional rounds
of connection reset attack until they take over all of node
A’s connections. Since the malicious nodes do not forward
transaction #x2 to node A after receiving it, the connections
taken over by the attacker will not be disrupted during the
additional rounds of connection reset attacks.

E. Detect the Completion of the Eclipse Attack

To detect whether the eclipse attack is completed, a fluff
transaction can be sent to the network. If the target node does
not send this transaction to the malicious node connected to
it, it means that the connection of the target node has been
completely occupied and the eclipse attack is completed.

IV. EVALUATION OF SUB-ATTACKS

In this section, we focus on evaluating the three sub-
attacks (evaluation of the complete end-to-end eclipse attack
is deferred to Sec[V). We conducted all our experiments on
the Monero mainnet.

Experiment settings. Conducting our attack in a real-world
environment requires substantial IP resources (at least 1,000
unique IP addresses). To simulate a large number of nodes
while working with limited IP resources, we modified the
source code of the target node to relax certain restrictions re-
lated to connection establishment and whitelist managemen

o we lifted the restriction on selecting outgoing connec-
tions, allowing the target node to establish outgoing con-
nections with multiple nodes with the same IP address.

o we lifted the restriction on establishing incoming con-
nections, permitting the target node to accept multiple
connections from the same IP address.

"We have conducted a series of preliminary tests on unmodified nodes and
obtained experimental results consistent with those on our modified node.

o we lifted the restriction that nodes with the same IP
address cannot coexist in the whitelist, allowing different
node records with the same IP address to exist simulta-
neously in the target node’s whitelist.

We ran the modified node on a server with a public IP and
simultaneously ran 1,000 nodes on another server, also with a
public IP. Each node used the same IP but different P2P ports.
From the perspective of the modified target node, these 1,000
nodes are indistinguishable from peers in Monero network,
with each belonging to a different /16 IP address domain. Due
to resource constraints, instead of running 1,000 real Monero
nodes, we ran 1,000 simulated nodes built on top of the open-
source project py-levin [36]. Our simulated nodes implement
the Monero network protocol and can seamlessly interact with
real Monero nodes. Compared to real Monero nodes, simulated
nodes consume fewer resources and are manageable.

Configurations. We set up two server nodes with public
network IPs, referred to as Server A and Server B, respectively.
Both servers have the same physical configuration, which in-
cludes an Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50GHz
4CAT, 8GB of memory, a network bandwidth of 12Mbps, and
running Ubuntu Server 20.04 LTS 64-bit. We ran our modified
Monero node on Server A as the target node and ran 1,000
simulated Monero nodes on Server B as the malicious node
resources for the eclipse attack. Additionally, we deployed 20
simulated Monero nodes to launch the graylist attack.

A. Evaluating the Graylist Attack

We set up 20 graylist attack nodes. These nodes established
incoming connections with the target node and populated the
target’s graylist by responding to the target node’s timed sync
requests with a delay of 4s. The state of the target node before
the graylist attack was illustrated as Table [l Column-I.

TABLE I: The status of the target node

‘ before graylist attack before whitelist attack

Out-peers 12/ 12 12/ 12
In-peers 22 17
Whitelist 1000 / 1000 1000 / 1000
Graylist 5000 / 5000 5000 / 5000
Column-1 Column-I1

We conducted a 128-minute attack on the target node and
record the contents of the graylist during the attack. The
experiment result of the experiment is illustrated as Fig[2a]

As graylist attack began, the number of trash node records in
graylist of the target node increased rapidly, while the number
of benign node records was squeezed by the trash records and
decreased rapidly. Throughout the attack, the number of trash
records always remains at a high level. According to statistics,
during the attack, the average proportion of the number of trash
records in target node’s graylist was approximately 80.0%,
and the highest proportion was 99.6%, which means almost a
complete occupation of the slots in the target’s graylsit.

The proportion of trash records in target’s graylist reflects
the filling effect of graylist attack, but the ultimate goal of

graylist attack is to prevent the target node from obtain-
ing available benign node records from graylist. In order
to evaluate the actual impact caused by graylist attack, we
analyzed the target node’s behaviors of selecting outgoing
connections from graylist and the results of nodes executing
gray_peerlist_housekeeping() during the graylist attack.

Selecting out-peers from graylist. During the attack, the
target node made a total of 184 outgoing connection selec-
tions from its graylist. Among them, target node selected
trash records 155 times (84.2%), while selected benign node
records 29 times (15.8%). It can be seen that graylist attack
significantly prevented the target node from obtaining avaliable
out-peers from graylist.

Results on gray_peerlist_housekeeping(). The target node
executed a total of 102 gray_peerlist_housekeeping() calls,
28 (27.5%) calls of them selected benign node records in
graylist, while the remaining 74 (72.5%) calls selected trash
records. Graylist attack also makes it more difficult for
nodes to obtain available node records from graylist through
gray_peerlist_housekeeping() mechanism.

Factors affecting the graylist attack. The number of trash
records and benign node records in the target node’s graylist
fluctuated within a certain range. This variation occurred
because, besides the malicious nodes, the target node’s benign
neighbors also sent peerlists containing benign peer records,
which occupied space in graylist and pushed out trash records.

Our observations revealed that most benign neighbors re-
sponded promptly to the target node’s periodic sync requests.
This rapid response was often accompanied by an influx of
benign node records, leading to a significant decrease in the
number of trash records in the target node’s graylist. However,
a few nodes responded slowly to the sync requests, causing
their peerlists to reach the target node after the attacker’s
malicious peerlists. This delay partially mitigated the impact
of the graylist attack, as the malicious peerlists had already
taken effect by the time the slower benign responses arrived.

B. Evaluating the Whitelist Attack

We use another 1,000 malicious nodes to perform the
whitelist attack. The state of the target node before the
whitelist attack is shown in Table [l Column-11.

We performed an 85-minute attack on the target node and
recorded the content of the target node’s whitelist during the
attack. The results are presented in Fig[2b&2c|

Similar to the evaluation method used for the graylist attack,
the effectiveness of the whitelist attack is directly assessed by
counting the number of malicious node records in the target
node’s whitelist. As in Fig[2b] the number of malicious node
records in the target node’s whitelist increases rapidly. The
attacker quickly completes the occupation of all the slots of
the target node’s whitelist. However, a slight decrease in the
number of malicious records was observed during the attack.
This reduction occurred because the target node completed a
timed sync process with its outbound peers, leading to the re-
insertion of outbound peer records into the target’s whitelist.

204

50001 1000 v s,
40001 3001 15
o
" - =
3 3000 3 600 3 i
S ---- benign peers 3 ---- benign peers S0l |77 benign top20th peers
2 —— malicious peers 4 —— malicious peers g —— malicious top20th peers
ﬂ;}_ZOOO J) i ' ?g"_ 400+ L
i 5 i
1000+ 200 1
0 04 e e N i " 01
0 2000 4000 6000 8000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

timestamp (s)

(a) Progression of the graylist attack

timestamp (s)

(b) Progression of the whitelist attack

timestamp (s)

(c) Status change of whitelist top-20 slots

Fig. 2: Progression of the graylist/whitelist attack over time

The results presented in Fig[2c] support our conclusion. The
number of benign node records in the first 20 slots of the
whitelist exhibited periodic fluctuations. An increase in the
count of benign nodes indicates the completion of the target
node’s timed sync process, which in turn leads to a reduction
in the number of malicious node records. It can be seen that
the timed sync process of the target node is an important factor
affecting the effect of whitelist attack.

Another factor impacting the attack’s success is the estab-
lishment of new incoming connections by benign peers. These
benign node records, like those of the malicious nodes, do not
initially appear in the target node’s whitelist. Consequently,
they are added to the whitelist in the same way as malicious
node records. Analyzing the target node’s logs revealed that a
total of 238 new incoming connections were established during
the whitelist attack. This influx had a slight impact on the
overall success of the whitelist filling process.

C. Evaluating the Connection Reset Attack

We evaluate the connection reset attack from two aspects:

e The success rate of connection reset attack;

o The completion time of the attack.
Success rate. It is calculated as the ratio of successfully reset
connections to the total number of attempted connections (see
Equation [T). During our experiments, we observed that some
nodes were inactive, unable to relay transactions or blocks due
to insufficient block height or being in a synchronization state.
These inactive nodes were excluded from our analysis since
they did not affect the effectiveness of our attack.

Completion time. The completion time of a connection reset
attack is a key metric for assessing its effectiveness. We
define this as the duration from the moment the first benign
connection of the target node is reset to the moment the last
benign connection is reset. A shorter completion time suggests
that the connection reset attack is more timely and efficient.

1) Attack based on private transactions: The number of
nodes in Monero mainnet with open RPC services (Table |[I)
determines the scope for employing the connection reset attack
using private transactions. We utilized a node probing program
to identify Monero mainnet nodes with open RPC ports. This
probing was conducted from March 12, 2024, to March 25,

TABLE II: RPC Status in Monero mainnet

The number of nodes with opened RPC ports
1184 / 100%

Offline
\ 239 (20.2%)

RPC service unavailable

210 (17.7%)

RPC service publicly available
735 (62.1%) ‘

2024. Over the course of these two weeks, we detected a
total of 1,184 nodes with open RPC ports. On March 25,
2024, we assessed the availability of the RPC services for
these nodes. Out of the 1,184 nodes, 735 (62.1%) were found
to offer publicly accessible RPC services. Of the remaining
449 nodes, 210 were online but their RPC services were not
publicly accessible. The RPC services of the final 239 nodes
could not be verified, as they were offline during our testing.

Success rate (Fig[3a). We conducted 40 times of connection
reset attack based on private transaction on the target node.
Among the 40 connection reset attacks, 35 (87.5%) attacks
completed the reset of all connections of the target. The aver-
age connection reset rate reaches 99.55%. More importantly,
even if an attack does not reset all connections, the connections
that are not reset will be reset in subsequent attacks.

Completion time (Fig[3b). We calculated the time span on
each attack. Due to the randomness of transactions propagating
in the network, there is uncertainty in the time when the
double-spending #x2 reaches the target node through its benign
peers. Therefore, the completion time of the connection reset
attack fluctuates within a certain range. From the result, the
average completion time of connection reset attacks based on
private transaction is 39.94s, and 38 (95%) of attacks have a
completion time of less than 2 minutes. This means the attack
can quickly reset the target node’s connections in most cases.

TABLE III: Distribution of fluff tx propagation time span

[1,2)
Percentage | 0% 2%

[2,3)
449

[3.4)
28%

[4.5) 5<
14% 12%

Time span (s) | [0,1)

2) Attack based on Dandelion++: Connection reset attack
Based on Dandelion++ cannot limit the target’s propagation
of the double-spending transaction #x/. We need to measure

EEE unreset peers
Il reset peers

w B [S)] [e)}
o o o o

N
o

number of connections

=
o

o

10 20

The (x)th attack

30 40

(a) The number of reset connections

Fig. 3: Evaluation results for the connection

timespan of attack(s)

400 —— timespan of attack

—— average timespan
300
200
100

avg=39.94s A
ol NAYYAVYVEA2YAvSA .
0 10 20 30 40

The (x)th attack

(b) The duration of each attack

reset attack based on private transaction

—— time span of tx propagation 100
R fp— average time span
71 r"Q:’ 801
o s}
~ 6, Q
& S 601
* 51 S
aEJ G
S 4 g 401
[T E
31 E’ 201
2
0 10 20 30 40 50 0 10

(x)th transaction

(a) Transaction propagation time

(b) The number of reset connections

EEE unreset peers 150 —— timespan of attack
N reset peers 1251 —— average timespan
w
3
© 100
©
G 751
C
g 50 avg=28.55s
E \ A \
IRUVISUAVAAVARA
04
0 10 20 30

40

20
The (x)th attack

30 40

The (x)th attack

(c) The duration of each attack

Fig. 4: Evaluation results for the connection reset attack based on Dandelion++

the time span it takes for fluff transactions to propagate from
the attacker’s proxy node to the target node to determine the
timing of sending these two double-spending transactions.

We set up two proxy nodes named S and F, respectively.
Node F is used to send stem stage transaction tx/ to target
node. Node F is used to propagate transaction #x2 to the entire
Monero network in fluff manner.

Time span for fluff transaction propagation (Figla &
Table [I). We used node F to propagate fx2 to Monero
network in a fluff manner and recorded the timestamp when
a transaction was sent. We also recorded the timestamp when
the transaction first arrived at the target node in its log. The
difference between these two timestamps indicates the time
span it took for this transaction to propagate from the proxy
node F through the neighbor node to the target node.

We measured the propagation time spans of 50 fluff trans-
actions from the attacker node F to the target node. Over
70% of fluff transactions had a time span between 2 and 4
seconds, and 82% had a time span exceeding 2.4 seconds. The
average propagation time was approximately 3.65 seconds.
The success rate of connection reset attacks is influenced by
the selected delay time. To maximize the success rate, we set
the delay time to 2.4 seconds. According to our data, this delay
allows 82% of connection reset attacks to successfully reset
some of the target node’s neighbors.

Success rate (Figlb). Same as Sec[[V-CI} we performed 40

10

successful connection reset attacks on the target node. The
sending interval of #x2 and #x/ was set to 2.4s. Among the 40
attacks, 15 (37.5%) attacks achieved a complete reset of the
benign connections of the target node, and 33 (82.5%) attacks
reset more than 90% of benign peers. The average connection
reset rate reaches 86.60%. Compared with the attack based on
private transaction, this attack is inferior in terms of number
and stability of connection resets. However, it can be used on
almost all Monero nodes.

Completion time (Figlic). We calculated the completion time
of such an attack. Similar to the connection reset attack based
on private transaction, this attack can also be completed in
a short period of time, averaging 28.55 seconds. However,
due to network issues or the target node’s internal reasons,
some neighbors did not forward the double-spending #x2 to
the target node in a timely manner, resulting in a longer attack
completion time. The occurrence of this situation is relatively
low and does not significantly impact the stability of the attack.

Difficulty in resetting all connections. The challenge in
resetting all connections of the target node with this method
stems from the inherent randomness in the propagation of fluff
transactions within the network. When #x/ is sent to the target
node after a specified delay (2.4 seconds in this case), there is a
chance that 7x2 has not yet reached some of the target node’s
neighbors. If zx/ arrives at these neighbors before x2, the
connections between the target node and these neighbors will

Ist 5th 10th
35 - connection reset attack
] complete eclipse period
2 301 malicious inc
§ 251 —— benign out
5 —— benign inc
v] 20 R .
2 malicious out
© 151
[
Q
€ 104
2
5,
0,

100 150 200

timestamp (s)

50

Fig. 5: How the numbers of each type of connections change
over time during the complete eclipse attack

remain intact, as these neighbors will reject the later arrival of
tx2 and instead propagate 7x/ back to the target node.

The case of resetting all connections. In this case, the
attacker successfully sends #x/ to the target node. When the
target node sends transaction #x/ to the next neighbor in stem
mode, the neighbor it selected has already received transaction
tx2 in advance. The neighbor refuses to receive tx/, which
makes 7x/ only retained in the target node. Subsequently, all
neighbors of the target node receive 7x2 and forward it to the
target node, resulting in the reset of all the target’s connections.

Failure cases. Out of 40 attacks, 3 of them failed to reset
any connections. The primary reason for this outcome is that
tx2 reached the target node before tx/, causing the target
node to reject tx/. Reducing the delay between #x/ and x2
could decrease the likelihood of this issue; however, doing so
might prevent #x2 from fully propagating to the target node’s
neighbors, potentially diminishing the overall effectiveness of
the connection reset attack.

3) Cost of the connection reset attack: The cost of a con-
nection reset attack arises solely from the transaction fee
required for the double-spending transactions created by the
attacker, with only one of the two transactions being added
to the blockchain. Consequently, the cost of a connection
reset attack is equivalent to the transaction fee for creating a
single transaction. In the current Monero mainnet environment,
the fee for initiating a transaction is generally around $0.01,
making the connection reset attack low-cost.

V. EVALUATION OF THE COMPLETE ECLIPSE ATTACK

We conducted complete eclipse attack experiments on our
controllable target node in the Monero mainnet. Besides
assessing whether the eclipse attack can successfully take
over all connections of the target node, we also evaluated the
effectiveness of each individual sub-attack.

Experiment settings. We use 20 simulated malicious nodes to
perform graylist attack and another 1000 simulated malicious
nodes to perform whitelist attack. Graylist attack and whitelist
attack are carried out continuously throughout the eclipse at-
tack. After the graylist attack and whitelist attack are launched,
the connection reset attack is continuously executed to occupy
the outgoing connections of the target node and continuously

11

evict the incoming connections. We use the connection attack
method based on the Dandelion++ protocol. We also use the
connection reset attack method based on private transactions
to perform eclipse attacks, and the results are in Appendix [E]

A. Evaluation Metrics

We evaluate the practicality of the eclipse attack from the
following aspects:

1) [Time to complete eclipse attack] is defined as the
time it takes from the first connection reset attack to
occupying all connections of the target node.

[Time to occupy outgoing connections] is defined as
the time it takes from the first connection reset attack to
occupying all outgoing connections.
[Graylist/Whitelist occupation rate] is defined as
the average occupation rate of malicious records in
graylist/whitelist during the attack.

[Graylist/Whitelist attack blocking rate] is defined
as the ratio of the number of malicious nodes selected
from graylist/whitelist to the total number of outgoing
connections selected from graylist/whitelist.

2)

3)

4)

B. Results Overview

We performed 10 complete eclipse attack experiments on
the target node. Before each attack, the node’s peerlist did not
contain any malicious node records.

Experimental results are shown in Table Out-peers and
In-peers represent the number of benign connections of the
target node before the eclipse attack begins.

TABLE IV: Summary of eclipse attack results

No. Out

peers
11
11
12
12
12
10
12
11
12
12

In
peers

22
37
17
19
20
38
32
28
22
21

Whitelist / Graylist
occupaction rate
94.83% / 65.12%
97.64% / 70.58%
98.49% / 86.88%
83.16% / 77.05%
95.76% | 69.93%
96.70% / 84.97%
92.84% / 89.52%
99.22% / 83.17%
96.79% / 86.35%
94.90% / 60.28%

Whitelist / Graylist
attack blocking rate

94.87% 1 91.67%
100% / 95.45%
97.62% / 89.29%
93.94% [85.48%
100% / 95.19%
100% / 93.07%
100% / 100%
100% / 88.66%
100% / 96.83%
100% / 95.38%

Time to complete
eclipse attack
182.29s
148.73s
98.72s

Time to occupy
out conn

st

2nd
3rd
4th

5th

6th

Tth

8th

9th
10th

66.75s
59.26s
76.87s
35.94s
29.31s
63.94s
7.97s
29.98s
115.43s
167.12s

75.64s
45.08s
239.68s
329.18s
96.34s
123.58s
220.48s

We observed that the completion time of the eclipse attack
varies significantly. In the fastest instance (5th attack), the
attacker completed the eclipse attack in just 45.08 seconds,
whereas the slowest instance (7th attack) required 329.18
seconds. This variability also applies to the occupation of
outgoing connections; the fastest and slowest times were
7.97 seconds (7th attack) and 167.12 seconds (10th attack),
respectively. Across all 10 attacks, the average times to fully
occupy the outgoing connections and complete the eclipse
attack were 65.26 seconds and 155.97 seconds, respectively.
Detailed attack progression curves for the fastest and slowest
cases can be found in Appendix [F}

C. Detailed Discussion

To provide a clearer understanding of the eclipse attack
process, we detail the second eclipse attack. This specific
attack was selected for analysis because the times required

to occupy outgoing connections and to complete the eclipse
attack are close to the average values. Our graylist/whitelist
attack lasted a total of 4 minutes, during which we conducted
10 connection reset attacks. By the end of the process,
we successfully occupied all of the target node’s outgoing
connections and eliminated all benign incoming connections.
During this attack, how the numbers of each kind of
connections change over time is illustrated in Fig[5]

1) Effect of the graylist/whitelist attack: Throughout the
attack, the average occupancy rate of the graylist reached
70.58%. The Top-20 whitelist slots were occupied at a rate of
99.67%, with an overall whitelist occupation rate of 97.64%.

The graylist/whitelist attack greatly reduced the possibility
of the target node obtaining available benign nodes from the
graylist/whitelist. During the entire attack, the target node
tried to select 22 outgoing connections from the graylist,
of which 21 selected invalid node records injected by the
attacker, accounting for 95.45%; the target node tried to select
16 outgoing connections from the whitelist, all of which
point to the malicious node records. From the actual effect,
the graylist/whitelist attack greatly increased the probability
of malicious nodes being selected as outgoing connections,
which played an important role in occupying the outgoing
connections of the target node.

2) Effect of the connection reset attack: During the 4-
minute attack, a total of 10 connection reset attacks were
performed. The first 5 attacks achieved the occupation of
outgoing connections, which took 59.26s. The total time to
complete the eclipse attack was 148.73s.

Occupation of outgoing connections. During the 1st attack,
the majority of the target node’s benign outgoing connections
were reset, causing a rapid drop from 11 to 2 benign outgoing
connections. By the 5th connection reset attack, the remaining
2 outgoing connections were also eliminated.

As the number of outgoing connections decreased, the target
node initiated the process of selecting new outgoing connec-
tions. Due to the graylist/whitelist attack, the target node’s
graylist and whitelist were filled with trash and malicious node
records, respectively. With a scarcity of connectable benign
nodes in the graylist, the target node was forced to establish
connections with the malicious nodes listed in the whitelist.
Finally, the attacker successfully occupied all 12 of the target
node’s outgoing connections. From the initiation of the Ist
connection reset attack, the entire process took 59.26 seconds.

Expulsion of incoming connections. The 1st connection reset
attack also reset most of the benign incoming connections
(from 37 to 6). In the subsequent attacks, the number of benign
connections remained at a low level (no more than 10). This
indicates that most of the benign incoming connections did not
try to reconnect to the target node after being disconnected.
Therefore, through continuous connection reset attacks, the
original benign neighbors gradually stopped establishing out-
going connections with the target node.

After completing the occupation of the outgoing connec-
tions, the attacker performed 5 more connection reset attacks,

12

and finally achieved the complete expulsion of the benign
incoming connections. From the 1st connection reset attack, it
takes 148.73s to complete the eclipse attack.

VI. FURTHER DISCUSSION
A. Resource Requirements for The Whitelist Attack

The capacity of the whitelist is 1,000 entries, and node
records with the same IP address cannot be stored simultane-
ously. Therefore, to fully populate the whitelist, 1,000 distinct
public IP addresses are essential (based on our estimates, the
cost of acquiring 1,000 IP resources is approximately $400 per
month). The primary objective of populating the whitelist is
to occupy the outgoing connections of the target node. Given
the mechanism by which the target node selects outgoing
connections from the whitelist, the distribution of these 1,000
IP addresses is also critical.

1) An ideal case: The target node is more likely to select
nodes that are in different /16 IP address domains compared
to its current peers. Based on this criterion, we define the ideal
scenario as one in which each of the 1,000 IP addresses owned
by the attacker belongs to a distinct /16 IP address domain. Our
attack simulates this scenario. For the modified target node,
all of the attacker’s malicious nodes are perceived to originate
from different /16 IP address domains, thereby increasing the
likelihood of these malicious nodes being selected by the target
node for outgoing connections.

2) The worst case: In contrast to the ideal scenario, we
define the worst-case scenario as one where all the IP resources
owned by the attacker originate from the same /16 IP address
domain. When the target node selects outgoing connections,
it prioritizes peers that belong to different /16 IP address
domains than its current peers, rather than prioritizing the
value of the peers’ last_seen field.

If an attacker uses 1,000 IP addresses belonging to the
same /16 IP address domain to populate the whitelist of the
target node, the attacker can only occupy all the target’s
outgoing connections by maintaining a complete populating
of the target’s whitelist. Once there are benign nodes in the
target’s whitelist that do not belong to the same /16 IP address
domain as the malicious out-peers, the target will prioritize
establishing connections with these nodes, regardless of their
last_seen value. Therefore, any interference with the whitelist
attack will result in the attacker not having full control over
all outgoing connections of the target node.

3) A trade-off case: Although the effectiveness of the at-
tack under the ideal scenario is superior, it requires the
attacker’s IPs to be distributed in different /16 IP address
domains. The worst-case attack has lower requirements on IP
resources, but has poor anti-interference ability.

We consider a trade-off: the attacker has at least 1,000 IP
addresses distributed across n different /16 IP address domains,
where n is greater than or equal to the maximum number of
outgoing connections of the target node. When the target node
selects outgoing connections from its whitelist, there must be
a malicious node from a different /16 IP address domain than

the current malicious out-peers for the target node to select,
ensuring that malicious nodes are prioritized for outgoing
connections. The larger the value of n, the closer the attacker’s
IP resources are to the ideal scenario, making the attacker
resemble a botnet attacker. Conversely, the smaller the value
of n, the closer the attacker’s IP resources are to the worst-
case scenario, making the attacker resemble an infrastructure
attacker.

B. Why The Connection Reset Attack is Indispensable?

The primary reason is to expedite the occupation of both
outgoing and incoming connections.

1) For outgoing connections: Existing eclipse attacks rely
on node restarts to trigger the occupation of outgoing con-
nections, which is beyond the control of attackers. Another
issue with relying on node restarts is the instability of the at-
tack’s effectiveness. If the attacker cannot occupy all outgoing
connections of the node through a single restart, they have to
wait for the next restart. Restart-based methods incur high time
costs and uncertainties. OQur connection reset attack, however,
places the trigger of the attack in the hands of the attacker,
making the attack process controllable and repeatable. This
greatly reduces the time cost of the eclipse attack and increases
its practicality. The attacker can repeat the attack process until
all outgoing connections are completely occupied.

2) For incoming connections: The success of eclipse at-
tacks in occupying incoming connections largely depends on
connection eviction strategies (e.g., Bitcoin) and the attacker’s
persistent attempts to establish connections (e.g., Ethereum),
both of which typically entail high time costs. More critically,
for Monero nodes with default settings, these methods are
ineffective. Connection reset attacks can evict incoming con-
nections, making it feasible to execute eclipse attacks even
on nodes with an unlimited number of incoming connections.
Without the connection reset attack, the attacker cannot effec-
tively counteract the existing and future benign connections of
the target node.

VII. COUNTERMEASURES

We propose several potential attack mitigation measures and
examine their potential side effects.

A. Against The Graylist Attack (i.e., Sub-Attack-®)

Modify the way of handling timed sync responses. To
mitigate the risk of graylist attacks from potentially mali-
cious incoming connections, it is recommended to limit timed
sync requests to outgoing connections only, excluding in-
coming connections. Alternatively, when handling timed sync
responses from incoming connections, ignoring the peerlist
within the message can prevent the injection of malicious
records. However, these adjustments may have unintended
effects on other functions within the timed sync process.

Limit the number of node records shared by a connection.
The Monero network protocol only limits the maximum num-
ber of node records that a single peerlist can carry, but does
not limit the maximum number of node records that a node can

13

share within a given period of time. By imposing a limit on the
maximum number of node records that can be shared within a
specific time frame, the difficulty of executing a graylist attack
can be effectively increased. This would require the attacker
to use more resources to achieve the same effect as before.

B. Against The Whitelist Attack (i.e., Sub-Attack-®)

Forbid to add in-peer’s record to whitelist. This counter-
measure can directly invalidate the whitelist attack, but it will
slow down the propagation speed of new node record in the
network, causing the new node to take a long time to be known
by other nodes in the network.

Add the capacity of whitelist. Increasing the default capac-
ity of the whitelist can significantly increase the time and
resources required to populate the whitelist and increase the
difficulty of the whitelist attack. The capacity of the whitelist
can be modified in Monero source code.

C. Against The Connection Reset Attack (i.e., Sub-Attack-®)

Do not drop the connections when encountering double-
spending conflicts. Instead of dropping connections, nodes
should simply discard double-spending transactions. This ap-
proach prevents connection reset attacks and improves the
anti-DoS mechanism by avoiding unnecessary disconnections.
Unlike other invalid transactions, double-spending can prop-
agate through the network, and the nodes relaying them are
often just intermediaries, not the originators. Therefore, simply
ignoring these transactions is sufficient. Monero team adopted
it in release v0.18.3.2 (corresponding pull request [#9218).
However, this countermeasure is not perfect. It introduces
new risks related to network topology leaks. Double-spending
transactions are a known method for measuring Bitcoin’s
network topology, but the technique fails with Monero be-
cause the double-spend broadcasting would alter the network
topology. This countermeasure enables the attacker to learn
topology information by sending double-spending transac-
tions,which can potentially make transaction anonymity anal-
ysis [16] possible. Fortunately, no publicly available rapid
network measurement method based on double-spending trans-
actions exists so far, yet the privacy subgraph of the Monero
network is rapidly changing at every moment. Therefore,
the network topology information leakage caused by this
mitigation does not pose a substantial security threat []ZI

VIII. RELATED WORK

Eclipse and network attacks. Heilman et al. [1] proposed
an eclipse attack against Bitcoin nodes. By occupying the
node list of the target Bitcoin node and waiting for its restart,
the attack occupied the outgoing connection of the target
node. Tran er al. [2] proposed a more subtle eclipse attack
called “Erebus” against the Bitcoin network. It takes advantage
of an AS-level attacker to intercept and replace the TCP
connection between the target Bitcoin node and its neighbors,
thereby achieving complete occupation of the target node’s

2Meanwhile, the Monero team is planning the long-term mitigation against
spamming double spends.

https://github.com/monero-project/monero/pull/9218

connections. Later, Tran er al. [3] proposed an integrated
defense framework to mitigate the impact of the Erebus attack.

Waust et al. [4] proposed an eclipse attack against Ethereum.
They exploited the vulnerability of Ethereum nodes and sep-
arated the target node from the network without occupying
connections. Marcus et al. [5] took advantage of the fact that
Ethereum nodes do not distinguish between connection types
(incoming or outgoing), forced the node to restart through
program vulnerabilities, and established a large number of in-
coming connections, occupying the target node’s connections.
Heo et al. [[7] proposed a partition attack called Gethlighting
against Ethereum nodes. By controlling about half of the TCP
connections of the target node, and sending low-rate DoS
attacks to the target node, an attacker can interfere the target
node’s process of synchronizing new blocks, preventing the
target node’s block height from growing and separating the
target node from the Ethereum network.

More network-level attacks refer to [37][38[][39][40].

TABLE V: Network-level attacks

.~ £ &
= = 9
£ £ £ ¢
o g = s £
T ¢ & £ £ =
2 ¥ g8 % § %
) g g g § & ¢
Attack Targets Used time & o S VU w @
Eclipse [L] single Bitcoin node several hours + URT* 4 v 4 X - v
Erebus [2 single Bitcoin node 5-6 weeks + URT* v v v X v v
Sync Att. [25 Bitcoin network - X - X X X X
Waust’s [4. single Ethereum node ~ 18 minutes X X X v v X
Marcus’s [5 single Ethereum node several minutes + URT* 4 X v X v v
Heo’s |7 Ethereum network one day X v X X X X
This work single Monero node several minutes | X X v vV

v Holding such a property (attack resistance), while X vice versa.
* Unpredictable restart time: Node restart time is unpredictable.

Network topology measurements in blockchains. Biryukov
et al. [15] and Miller et al. [8] used the timestamp of peer
records in the ADDR messages to infer the connections
between nodes. Cao et al. [11] also inferred the topology of
Monero nodes based on peer record’s last_seen value. With
the improvement of the node topology protection mechanism,
these methods are no longer effective. Grundmann et al. [9]]
proposed a network topology measurement method based on
double-spending transactions, which realizes the inference of
target connections through the mutual restrictions of double-
spending transactions propagating in the network. Sergi et
al. [10] measured the topology of the Bitcoin network using
orphan transactions. However, due to differences in transaction
propagation, it cannot be adapted to Monero’s network. Saad et
al. [6] measured the node distribution of Bitcoin and Ethereum
in autonomous systems and found that the node distribution is
highly centralized. They provided the partition risks with coun-
termeasures. Many related studies also made contributions to
similar measurements [13]][14][41][42][43][44].

Monero and more. Monero is renowned for anonymity by
using ring signatures [45] (distinguishing it from concurrent
techniques [46] like ZKP [47][48]], commitment [49][S0], or
TEE [51]). Most related studies focus on its non-functional
properties, including accountability [52], traceability [S3[][541],
unforkability [S5]], construction efficiency [56] and linkabil-
ity [57)]. However, none of them examine its essential com-

14

ponents (i.e., network layer) or its fundamental resilience to
attacks. In contrast, we focus on the underlying security.

IX. CONCLUSION

In this paper, we presented the first eclipse attack against
Monero nodes with public IPs, demonstrating the ability to
occupy all of their connections. We proposed two novel con-
nection reset attack methods, which significantly accelerate the
attack process. We conducted experiments on mainnet Monero
nodes. Our evaluation shows that an attacker with 1,020+ IP
addresses can fully occupy all connections of the target node
within just few minutes. We ethically reported our findings to
the Monero official team and provided countermeasures.

Acknowledgment We are deeply grateful to the anonymous
reviewers for their insightful comments and suggestions. This
work was supported by the Beijing Natural Science Foundation
under Grant M21037, National Key Research and Develop-
ment Program of China (2022YFB2702405).

REFERENCES

—_
[
—

Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg.
Eclipse attacks on Bitcoin’s peer-to-peer network. In USENIX security
symposium (USENIX Security), pages 129-144, 2015.

Muoi Tran, Inho Choi, Gi Jun Moon, Anh V Vu, and Min Suk Kang.
A stealthier partitioning attack against Bitcoin peer-to-peer network. In
IEEE Symposium on Security and Privacy (SP), pages 894-909, 2020.
Muoi Tran, Akshaye Shenoi, and Min Suk Kang. On the Routing-Aware
peering against Network-Eclipse attacks in Bitcoin. In USENIX Security
Symposium (USENIX Security), pages 1253-1270, 2021.

Karl Wiist and Arthur Gervais. Ethereum Eclipse attacks. Technical
report, ETH Zurich, 2016.

Yuval Marcus, Ethan Heilman, and Sharon Goldberg. Low-resource
Eclipse attacks on Ethereum’s peer-to-peer network. Cryptology ePrint
Archive, 2018.

Muhammad Saad and David Mohaisen. Three birds with one stone:
Efficient partitioning attacks on interdependent cryptocurrency networks.
In IEEE Symposium on Security and Privacy (SP), pages 111-125.
IEEE, 2023.

Hwanjo Heo, Seungwon Woo, Taeung Yoon, Min Suk Kang, and
Seungwon Shin. Partitioning Ethereum without Eclipsing it. In Network
and Distributed System Security Symposium (NDSS), 2023.

Andrew Miller, James Litton, Andrew Pachulski, Neal Gupta, Dave
Levin, Neil Spring, Bobby Bhattacharjee, et al. Discovering Bitcoin’s
public topology and influential nodes. Accessible https://allquantor.at/
blockchainbib/pdf/miller2015topology.pdf, 2015.

Matthias Grundmann, Till Neudecker, and Hannes Hartenstein. Exploit-
ing transaction accumulation and double spends for topology inference
in Bitcoin. In International Conference on Financial Cryptography and
Data Security (FC) Workshops, pages 113—-126. Springer, 2019.

Sergi Delgado-Segura, Surya Bakshi, Cristina Pérez-Sola, James Litton,
Andrew Pachulski, Andrew Miller, and Bobby Bhattacharjee. Txprobe:
Discovering Bitcoin’s network topology using orphan transactions. In
International Conference on Financial Cryptography and Data Security
(FC), pages 550-566. Springer, 2019.

Tong Cao, Jiangshan Yu, Jérémie Decouchant, Xiapu Luo, and Paulo
Verissimo. Exploring the Monero peer-to-peer network. In International
Conference on Financial Cryptography and Data Security (FC), pages
578-594. Springer, 2020.

Matthias Grundmann, Hedwig Amberg, Max Baumstark, and Hannes
Hartenstein. Short paper: What peer announcements tell us about the size
of the Bitcoin P2P network. In International Conference on Financial
Cryptography and Data Security (FC), pages 694-704. Springer, 2022.
Kai Li, Yuzhe Tang, Jiagi Chen, Yibo Wang, and Xianghong Liu.
TopoShot: uncovering Ethereum’s network topology leveraging replace-
ment transactions. In Proceedings of the ACM Internet Measurement
Conference (IMC), pages 302-319, 2021.

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

https://allquantor.at/blockchainbib/pdf/miller2015topology.pdf
https://allquantor.at/blockchainbib/pdf/miller2015topology.pdf

[14

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]
[31]

(32]

(33]

[34]
[35]

[36]

Chonghe Zhao, Yipeng Zhou, Shengli Zhang, Taotao Wang, Quan Z.
Sheng, and Song Guo. Dethna: Accurate Ethereum network topology
discovery with marked transactions. In IEEE Conference on Computer
Communications (INFOCOM), pages 1711-1720, 2024.

Alex Biryukov, Dmitry Khovratovich, and Ivan Pustogarov. Deanonymi-
sation of clients in Bitcoin P2P network. In ACM SIGSAC Conference
on Computer and Communications Security (CCS), pages 15-29, 2014.
Piyush Kumar Sharma, Devashish Gosain, and Claudia Diaz. On
the anonymity of peer-to-peer network anonymity schemes used by
cryptocurrencies. In The Network and Distributed System Security
Symposium (NDSS). Internet Society, 2023.

Giulia Fanti and Pramod Viswanath. Deanonymization in the Bitcoin
P2P network. Neural Information Processing Systems, 30, 2017.
Maria Apostolaki, Cedric Maire, and Laurent Vanbever. Perimeter:
A network-layer attack on the anonymity of cryptocurrencies. In
International Conference on Financial Cryptography and Data Security
(FC), pages 147-166. Springer, 2021.

Alex Biryukov and Sergei Tikhomirov. Deanonymization and linkability
of cryptocurrency transactions based on network analysis. In [EEE
European Symposium on Security and Privacy (EuroSP), pages 172—
184. IEEE, 2019.

Sebastian Henningsen, Daniel Teunis, Martin Florian, and Bjorn
Scheuermann. Eclipsing Ethereum peers with false friends. arXiv
preprint arXiv:1908.10141, 2019.

Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stubborn
mining: Generalizing selfish mining and combining with an eclipse
attack. In IEEE European Symposium on Security and Privacy (EuroSP),
pages 305-320. IEEE, 2016.

Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal
selfish mining strategies in Bitcoin. In International Conference on
Financial Cryptography and Data Security (FC), pages 515-532, 2017.
Muhammad Saad, Laurent Njilla, Charles Kamhoua, and Aziz Mo-
haisen. Countering selfish mining in blockchains. In International
Conference on Computing, Networking and Communications (ICNC),
pages 360-364. IEEE, 2019.

Bitcoin Git repository. https://github.com/bitcoin/bitcoin/blob/master/
doc/reduce-traffic.md, 2024.

Muhammad Saad, Songqing Chen, and David Mohaisen. Syncattack:
Double-spending in Bitcoin without mining power. In Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security
(AsiaCCS), pages 1668-1685, 2021.

Jaehyun Ha, Seungjin Baek, Muoi Tran, and Min Suk Kang. On the
sustainability of Bitcoin partitioning attacks. In International Conference
on Financial Cryptography and Data Security (FC), pages 166-181.
Springer, 2023.

Giulia Fanti, Shaileshh Bojja Venkatakrishnan, Surya Bakshi, Bradley
Denby, Shruti Bhargava, Andrew Miller, and Pramod Viswanath. Dan-
delion++ lightweight cryptocurrency networking with formal anonymity
guarantees. Proceedings of the ACM on Measurement and Analysis of
Computing Systems (POMACS), 2(2):1-35, 2018.

Shaileshh Bojja Venkatakrishnan, Giulia Fanti, and Pramod Viswanath.
Dandelion: Redesigning the Bitcoin network for anonymity. Proceedings
of the ACM on Measurement and Analysis of Computing Systems
(POMACS), 1(1):1-34, 2017.

Monero source code, Git repository. Retrieved by July 2024. https:
// github.com/monero-project/monero/tree/v0.18.3.1, 2023.

Angrywasp. Levin protocol. Retrieved by July 2024. |https:// github.com/
nerva-project/nerva/blob/master/docs/ LEVIN_PROTOCOL.md, 2019.
Monero P2P, Git repository. Retrieved by July 2024. https:// github.com/
monero-project/monero/blob/v0.18.3.1/src/p2p/net_node.inl, 2023.
ErCiccione. Another privacy-enhancing technology added to Monero:
Dandelion++. Retrieved by July 2024. https://www.getmonero.org/2020/
04/18/dandelion-implemented.html, April 2020.

Vtnerd. Adding Dandelion++ support to public networks. Re-
trieved by July 2024. hitps://github.com/monero-project/monero/
commit/02d887c2e58bd8e66¢ef8823e59669439d448bfec, 2020.
Gingeropolous. Daemon RPC documentation. July 2024. https://github.
com/monero-project/monero/wiki/ Daemon- RPC-documentation,, 2019.
Gingeropolous. Wallet RPC documentation. July 2024. https://github.
com/monero-project/monero/wiki/ Wallet- RPC- Documentation), 2016.
py-levin, Git repository. Retrieved by July 2024. https://github.com/’
sanderfoobar/py-levin/tree/master, 2023.

15

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

Maya Dotan, Yvonne-Anne Pignolet, Stefan Schmid, Saar Tochner, and
Aviv Zohar. Survey on blockchain networking: Context, state-of-the-art,
challenges. ACM Computing Surveys (CSUR), 54(5):1-34, 2021.
Muhammad Saad, Jeffrey Spaulding, Laurent Njilla, Charles Kamhoua,
Sachin Shetty, DaecHun Nyang, and David Mohaisen. Exploring the
attack surface of blockchain: A comprehensive survey. I[EEE Commu-
nications Surveys & Tutorials, 22(3):1977-2008, 2020.

Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. Hijacking Bitcoin:
Routing attacks on cryptocurrencies. In IEEE symposium on security and
privacy (SP), pages 375-392, 2017.

Maria Apostolaki, Gian Marti, Jan Miiller, and Laurent Vanbever.
SABRE: Protecting Bitcoin against routing attacks. In Proceedings of
the Annual Network and Distributed System Security Symposium (NDSS,
page 02A1. Internet Society, 2019.

Seoung Kyun Kim, Zane Ma, Siddharth Murali, Joshua Mason, Andrew
Miller, and Michael Bailey. Measuring Ethereum network peers. In
Proceedings of the Internet Measurement Conference (IMC), pages 91—
104, 2018.

Adem Efe Gencer, Soumya Basu, Ittay Eyal, Robbert Van Renesse, and
Emin Giin Sirer. Decentralization in Bitcoin and Ethereum networks. In
International Conference on Financial Cryptography and Data Security
(FC), pages 439-457. Springer, 2018.

Lucianna Kiffer, Asad Salman, Dave Levin, Alan Mislove, and Cristina
Nita-Rotaru. Under the hood of the Ethereum gossip protocol. In
International Conference on Financial Cryptography and Data Security
(FC), pages 437-456. Springer, 2021.

Xi Tong Lee, Arijit Khan, Sourav Sen Gupta, Yu Hann Ong, and Xuan
Liu. Measurements, analyses, and insights on the entire Ethereum
blockchain network. In Proceedings of The Web Conference (WWW),
pages 155-166, 2020.

Shi-Feng Sun, Man Ho Au, Joseph K Liu, and Tsz Hon Yuen. RingCT
2.0: A compact accumulator-based (linkable ring signature) protocol
for blockchain cryptocurrency Monero. In European Symposium on
Research in Computer Security (ESORICS), pages 456-474, 2017.
Ghada Almashagbeh and Ravital Solomon. SoK: Privacy-preserving
computing in the blockchain era. In IEEE European Symposium on
Security and Privacy (EuroSP), pages 124-139. IEEE, 2022.

George Kappos, Haaroon Yousaf, Mary Maller, and Sarah Meiklejohn.
An empirical analysis of anonymity in Zcash. In USENIX Security
Symposium (USENIX Security), pages 463-477, 2018.

Tan Miers, Christina Garman, Matthew Green, and Aviel D Rubin. Zero-
coin: Anonymous distributed e-cash from Bitcoin. In IEEE Symposium
on Security and Privacy (SP), pages 397-411. IEEE, 2013.

Rui Zhang, Rui Xue, and Ling Liu. Security and privacy on blockchain.
ACM Computing Surveys (CSUR), 52(3):1-34, 2019.

Qin Wang, Bo Qin, Jiankun Hu, and Fu Xiao. Preserving transaction
privacy in Bitcoin. Future Generation Computer Systems (FGCS),
107:793-804, 2020.

Rujia Li et al. SoK: TEE-assisted confidential smart contract. Proceed-
ings on Privacy Enhancing Technologies (PETs), 3:711-731, 2022.
Yannan Li, Guomin Yang, Willy Susilo, Yong Yu, Man Ho Au, and
Dongxi Liu. Traceable Monero: Anonymous cryptocurrency with
enhanced accountability. /EEE Transactions on Dependable and Secure
Computing (TDSC), 18(2):679-691, 2019.

Malte Moser, Kyle Soska, Ethan Heilman, Kevin Lee, Henry Heffan,
Shashvat Srivastava, Kyle Hogan, Jason Hennessey, Andrew Miller,
Arvind Narayanan, et al. An empirical analysis of traceability in the
Monero blockchain. arXiv preprint arXiv:1704.04299, 2017.

Amrit Kumar, Clément Fischer, Shruti Tople, and Prateek Saxena. A
traceability analysis of Monero’s blockchain. In European Symposium
on Research in Computer Security (ESORICS), pages 153-173, 2017.
Dimaz Ankaa Wijaya, Joseph K Liu, Ron Steinfeld, Dongxi Liu, and
Jiangshan Yu. On the unforkability of Monero. ACM Asia Conference
on Computer and Communications Security (AsiaCCS), 2019.

Tsz Hon Yuen, Shi-feng Sun, Joseph K Liu, Man Ho Au, Muhammed F
Esgin, Qingzhao Zhang, and Dawu Gu. RingCT 3.0 for blockchain con-
fidential transaction: Shorter size and stronger security. In International
Conference on Financial Cryptography and Data Security (FC), pages
464-483. Springer, 2020.

Andrew Miller, Malte Moser, Kevin Lee, and Arvind Narayanan. An
empirical analysis of linkability in the Monero blockchain. arXiv
preprint arXiv:1704.04299, 2017.

https://github.com/bitcoin/bitcoin/blob/master/doc/reduce-traffic.md
https://github.com/bitcoin/bitcoin/blob/master/doc/reduce-traffic.md
https://github.com/monero-project/monero/tree/v0.18.3.1
https://github.com/monero-project/monero/tree/v0.18.3.1
https://github.com/nerva-project/nerva/blob/master/docs/LEVIN_PROTOCOL.md
https://github.com/nerva-project/nerva/blob/master/docs/LEVIN_PROTOCOL.md
https://github.com/monero-project/monero/blob/v0.18.3.1/src/p2p/net_node.inl
https://github.com/monero-project/monero/blob/v0.18.3.1/src/p2p/net_node.inl
https://www.getmonero.org/2020/04/18/dandelion-implemented.html
https://www.getmonero.org/2020/04/18/dandelion-implemented.html
https://github.com/monero-project/monero/commit/02d887c2e58bd8e66ef8823e59669439d448bfec
https://github.com/monero-project/monero/commit/02d887c2e58bd8e66ef8823e59669439d448bfec
https://github.com/monero-project/monero/wiki/Daemon-RPC-documentation
https://github.com/monero-project/monero/wiki/Daemon-RPC-documentation
https://github.com/monero-project/monero/wiki/Wallet-RPC-Documentation
https://github.com/monero-project/monero/wiki/Wallet-RPC-Documentation
https://github.com/sanderfoobar/py-levin/tree/master
https://github.com/sanderfoobar/py-levin/tree/master

[58] Moneromooo-monero. P2P: Do not send last_seen timestamp to
peers. Retrieved by July 2024. hitps://github.com/monero-project/
monero/commit/28a7d31565cb722ela388743e2cbc492bb6ad3bed, 2019.

APPENDIX
A. (Tech) Peerlist Creation

When a Monero node sends a handshake request or timed
sync request to a remote peer, the payload of remote peer’s
response always contains a list called peerlist, under which up
to 250 peer records randomly selected by the remote peer from
its own whitelist are stored. Generally, when the remote peer
adds a selected peer record to the peerlist, the last_seen value
of it will be set to O[S8]. This prevents mailicious attackers
from inferring remote peer’s outgoing connections through
timestamp information in the peerlist[11].

Monero node maintains a sent_addresses list for each
connection. When the node randomly selects 250 peer
records from whitelist, it will remove the records existing
in sent_addresses, the remaining records will be added to
peerlist. Under this mechanism, for a benign neighbor of the
target node, longer the connection lasts, fewer records the
neighbor will carry in the peerlist of the timed sync response.
This can reduce the impact of benign peers on graylist attack.

B. (Tech) Anchorlist in Monero Nodes

In addition to (IP: Port), each node record in the anchorlist
includes a crucial field named first_seen, which marks the
timestamp of the node’s initial outgoing connection with the
corresponding peer. The records within the anchorlist are or-
ganized in ascending order based on the first_seen timestamp.

The anchorlist primarily functions during the startup phase
of a node. Upon startup, the node connects to the peer in the
anchorlist with the earliest first_seen timestamp that is cur-
rently available for connection. Subsequently, the anchorlist is
cleared by the node, a process further detailed in Appendix

While the node operates, each time it forms an outgoing
connection with a new peer, that peer’s record is added to the
anchorlist, setting the first_seen field to the time of connection
establishment. This first_seen timestamp remains immutable
unless the record is removed. Should the outgoing connection
terminate, the corresponding peer’s record is also expunged
from the anchorlist. Consequently, the anchorlist consistently
reflects the current state of the node’s outgoing connections.

When the node stops running, what is saved in anchorlist
are peer records corresponding to the outgoing connections
before the node goes offline. The value of the first_seen field
reflects the time span that outgoing connection to the peer was
maintained before the node went offline. To a certain extent,
it also reflects the connection stability of the peer and the
node’s trust in it. Therefore, when the node restarts to establish
outgoing connections, it will give priority to the peer node with
the smallest first_seen field in anchorlist.

1) The role of anchorlist in the process of connection reset
attacks: Combined with the management mechanism of the
anchorlist, it can be seen that during the connection reset
attack, dropping the outgoing connection will lead to the

16

deletion of the corresponding peer record in node’s anchorlist.
When the number of outgoing connections for a node is O,
anchorlist also becomes empty. Anchorlist does not provide
the target node with any benign peer choice of outgoing
connections during the connection reset attack, nor does it
provide any help for the node to resist eclipse attacks.

C. (Tech) Selecting Outgoing Connections

Starting from seed nodes. When a node starts, it first checks
the number of peer records in its whitelist: if the number
of nodes in whitelist is O, the node is a brand new node in
the network and has not currently established a connection
with other peers. At this time, the node will first establish a
connection with the seed nodes hard-coded in Monero node
progranﬂ and obtain the initial peers in the peerlists from
these nodes. Remote peer records will be added to graylist.
The new node obtains its first set of information about other
peers in the network by connecting to the seed nodes.

Selecting peers from anchorlist. If the node’s whitelist is
not empty, it will first select a peer from its anchorlist in
ascending order of records’ first_seen to establish outgoing
connection, and this process will be accompanied by the clear-
ing of anchorlist. Once the outgoing connection is successfully
established, subsequent peer records will be discarded. The
peer that successfully establishes outgoing connection will
be re-added to the anchorlist. Now the node has 1 outgoing
connection, and the number of peers in the anchorlist is 1.

According to the logic of Monero source code, when the
number of outgoing connections for the node is less than 2,
the node will continue to try to establish outgoing connections
with peers in the anchorlist until the number of connections
reaches 2 or there is no available peer in the anchorlist. So
after successfully establishing an outgoing connection with the
first peer, the node will repeat the previous process: Get all
peer records from anchorlist and try to select peers from the
fetched records to establish a new outgoing connection. But
the only peer record in anchorlist at this time corresponds
to the outgoing connection that has been established, there
is no more available peer record in anchorlist. Therefore,
the node proceeds to the next stage of outgoing connection
selection: selecting from the whitelist. At this time, the number
of outgoing connections of the node is 1, and the number of
peer records in anchorlist is 0. This is the only case where the
peer records in anchorlist does not correspond to the node’s
outgoing connections. We are unclear whether it is a logic
error or intentional for this part of code.

Selecting peers from whitelist. If the node fails to establish
outgoing connections with peers listed in anchorlist, or the
number of outgoing connections is greater than 2 but less than
expected_white_connection it then selects outgoing peers
from the whitelist.

3https://github.com/monero- project/monero/blob/v0.18.3.1/src/p2p/net_
node.inl, line 854.

14The value of expected_white_connections is associated with the node’s
pruning operation, https://github.com/monero-project/monero/blob/v0.18.3.1/
src/cryptonote_protocol/cryptonote_protocol_handler.inl, line 2824.

https://github.com/monero-project/monero/commit/28a7d31565cb722e1a388743e2cbc492b6ad3bed
https://github.com/monero-project/monero/commit/28a7d31565cb722e1a388743e2cbc492b6ad3bed
https://github.com/monero-project/monero/blob/v0.18.3.1/src/p2p/net_node.inl
https://github.com/monero-project/monero/blob/v0.18.3.1/src/p2p/net_node.inl
https://github.com/monero-project/monero/blob/v0.18.3.1/src/cryptonote_protocol/cryptonote_protocol_handler.inl
https://github.com/monero-project/monero/blob/v0.18.3.1/src/cryptonote_protocol/cryptonote_protocol_handler.inl

When Monero node selects peer record from whitelist, it
tends to establish connections with peers that are in different
/16 IP address domains from the current peers. However, if the
node has no other choice, it will consider peers that share the
same /16 IP address range as the current peers. Monero node
will never establish more than one outgoing connection with
the same IP. Monero node prefers to choose the top 20 peers
that meet the above conditions and have the largest last_seen
value as these peers tend to have closer relationship with the
node. Such a strategy increases the difficulty and required IP
resources of eclipse attacks.

Selecting peers from graylist. If a node fails to estab-
lish outgoing connection with peers in the whitelist, or the
number of outgoing connections of the node is less than
the upper limit of outgoing connections, but not less than
expected_white_connections, the node will select out-peers
from the graylist. The strategy for selecting out-peers in
graylist is almost the same as that in whitelist. The biggest
difference is that peers are randomly selected from the set of
peers that meet the IP requirements, instead of selecting the
top peers in graylist. More details about outgoing connections
establishment can be found in the connections_maker() func-
tion>| of Monero source code.

D. Pseudo Code for Our Eclipse Attack

We provide implementation details of our attack (cf. Algo-
rithm [I), covering the main logic and several key functions.

Our attack starts with two attack threads. The first attack
thread starts 20 malicious nodes to perform graylist attack. The
second attack thread starts 1000 malicious nodes to handshake
with the target node in a fixed order to perform whitelist
attack. This initial phase is crucial for preparing the target
node’s environment and creating conditions favorable for the
subsequent steps.

Then, we enter the attack loop of connection reset attack. In
this loop, the number of currently occupied outgoing connec-
tions (tracked by var. OccupiedOutConnections) is compared
against the maximum allowable outgoing connections (var.
MaxOutConnectionsOfTheTargetNode, which is set to 12 by
default). If the number of occupied outgoing connections is
less than the maximum, the attacker proceeds to execute a
round of connection reset attacks.

This process is repeated until all the target node’s outgoing
connection slots are occupied by the attacker’s nodes. Once
complete control over the outgoing connections is achieved,
the algorithm continuously monitors the status of the target
node to detect whether incoming connections are completely
evicted. When the incoming connections are completely ex-
pelled, the eclipse attack is complete.

E. Experiment Results of the Eclipse Attack using connection
reset attack based on Private Transaction

The results are detailed in Table Across all 10 attacks,
the fastest and slowest times to occupy outgoing connections

IShttps://github.com/monero-project/monero/blob/v0.18.3.1/src/p2p/net_
node.inl, line 1811.

Algorithm 1: Our Eclipse Attack against Monero

Input: TargetNode = (target_ip, target_port)

Data: OccupiedOutConnections = 0,
MaxOutConnectionsOfTheTargetNode = 12,
WhitelistAttackNodeSet = 1000 nodes for whitelist attack,
GraylistAttackNodeSet = 20 nodes for graylist attack

foreach node in GraylistAttackNodeSet do
| StartThread(graylist_attack(node, target_node))

StartThread(whitelist_attack(WhitelistAttackNodeSet, target_node)
while OccupiedOutConnections <
MaxOutConnectionsOfTheTargetNode do

B -

5 connection_reset_attack(target_node)
6 L OccupiedOutConnections = get_occupied_out_count()
7 while is_completely_occupied() == false do
8 L connection_reset_attack(target_node)
9 return ok
10
11 Subroutines
12 graylist_attack(attack_node, target_node)
Data: paraml: attack_node, param?2: target_node;
13 attack_node.connect(target_node)
14 while rrue do
15 attack_node.wait_timedsync_request(target_node)
16 attack_node.send_timedsync_response(target_node)
17 whitelist_attack(attack_node_set, target_node)
Data: paraml: attack_node_set, param2: target_node;
18 foreach node in attack_node_set do
19 attack_node.connect(target_node)
20 attack_node.send_pong_msg(target_node)
21 attack_node.disconnect(target_node)
22 connection_reset_attack(target_node)
Data: paraml: farget_node;
23 txl = create_tx()
24 tx2 = create_tx()
25 txI and tx2 are double-spending
26 send_tx(target_node, tx1I)
27 broadcast_tx(zx2)
28 is_completely_occupied(target_node)
Data: paraml: rarget_node;
29 MaliciousConnections
30 tx = create_tx()
31 broadcast_tx(x)
32 if MaliciousConnections.recv_tx_from(target_node) then
33 | return false
34 return true

were 7.03 seconds (the 3rd attack) and 116.62 seconds (the
2nd attack), respectively. The shortest and longest times to
complete an eclipse attack were 28.75 seconds (the 3rd attack)
and 242.91 seconds (the 1st attack).

On average, it took 36.0 seconds to occupy outgoing
connections and 134.8 seconds to complete the eclipse at-
tack. Compared to the Dandelion++-based attack, the Private
Transaction-based eclipse attack demonstrated faster perfor-
mance, particularly in occupying outgoing connections. This
improvement can be attributed to the stability of the connection
reset attack mechanism when using Private Transactions.

Despite these differences in performance, there is no funda-
mental distinction between the two types of connection reset
attacks. Both effectively achieve complete occupation of all
the target node’s connections.

17

https://github.com/monero-project/monero/blob/v0.18.3.1/src/p2p/net_node.inl
https://github.com/monero-project/monero/blob/v0.18.3.1/src/p2p/net_node.inl

21 2749]
321 connection reset attack
181 241 281 T complete eclipse period
2 221 2 malicious inc
215 2 £ 24 beni
5 o 181 5 —— benign out
“é 121 é 15] g 201 —_ ben?gln inc
S S S 161 —— malicious out
5 9] 5 121 s
= S gl =124
3 61 A 3
IS € 61 £ 84
=1 3 =)
= 34 = c
0, —’_ 07

40 60 80 50

timestamp (s)

0 20

(a) fastest eclipse attack

100
timestamp (s)

(b) slowest occupation on out-connections

200 300 400

timestamp (s)

150 200 250 100

(c) slowest eclipse attack&fastest occupation

Fig. 6: Extreme cases and attack boundaries

TABLE VI: Results for performing the eclipse attack using g Large-Scale Eclipse Attack

connection reset attack based on Private Transaction

Out
peers

11
12
11
12
10

In
peers

25
37
32
23
26
40
34
26
20
49

Whitelist / Graylist
occupaction rate

97.44% | 83.08%
98.06% / 60.23%
96.34% / 88.80%
94.85% | 61.59%
92.33% / 82.03%
97.96% / 81.27%
93.04% / 91.32%
92.92% 1 79.80%
93.02% / 77.57%
95.21% / 65.63%

Whitelist / Graylist
attack blocking rate

99.15% 1 94.82%
93.10% / 100%
100% / 93.62%
100% / 94.12%
100% / 98.02%

100% / 100%
100% / 100%
100% / 87.50%
100% / 96.92%
100% / 81.48%

Time to occupy
out conn

77.04s
116.62s
7.03s
17.61s
12.82s
20.08s
9.96s
67.44s
16.69s
14.70s

Time to complete
eclipse attack

24291s
124.95s
28.75s
98.07s.
90.81s
146.39s
78.80s
186.73s
112.40s
238.16s

No.

st
2nd
3rd

Sth
6th

8th
9th
10th

F. Extreme Cases for the Complete Eclipse
connection reset attack based on Dandelion++

Attack using

The fastest case to complete the eclipse attack corresponds
to the 5th attack in Table [Vl The time used is 45.08s. The
connection change during the attack is shown in Figl6al

The slowest case to occupy outgoing connections corre-
sponds to the 10th attack in Table[[V] The time to complete the
occupation of outgoing connections is 167.12s. The connection
change during the attack is shown in Fig[6b]

The slowest case to complete the eclipse attack & the fastest
case to occupy outgoing connections both occurred in the 7th
attack. This attack took only 7.97s to complete the occupation
of the outgoing connection, but it took 329.18s to complete
the eclipse attack. Experimental result indicate that a rapid
occupation of outgoing connections does not necessarily lead
to a swift completion of the eclipse attack. The connection
change during the attack is shown in Fig[6d

G. How to Maintain the State of Eclipse Attacks?

As an eclipse attack seeks to control all connections to
the target node, the maintenance of any benign connections
compromises the attack. To detect the eclipse attack, a fluff
transaction can be sent to the network. If the target node
forwards the transaction to the attacker’s malicious node, it
indicates that the target node has established other benign
connections, thereby compromising the eclipse attack state.
The attacker can then use this information to initiate a new
connection reset attack to reestablish the eclipse attack state.

18

Experiments demonstrate the effectiveness of our eclipse at-
tack against a single node. Beyond that, our approach is further
applicable to large-scale attacks against Monero network.

An attacker, by modifying the maximum outgoing connec-
tions limit, can use a group of malicious nodes to perform
graylist attacks simultaneously on multiple nodes in the net-
work.This is feasible because these malicious nodes only need
to respond to the timed sync requests of the target nodes. The
capacity to handle a high volume of such requests hinges on
the performance capabilities of the malicious nodes.

Similarly, the attacker can set up another group of malicious
nodes to perform whitelist attacks. Each node in this group of
nodes exchange handshake messages with the nodes in the
target nodes set in a fixed order. In the process of attacking a
single node, the node that completes the whitelist attack will
wait for the node that has not yet completed the attack until
the round of attack is over. In the scenario of attacking a set of
nodes, this process can be organized into a pipeline to achieve
simultaneous attacks on multiple targets.

Connection reset attacks can also be performed on multiple
targets at the same time. For public RPC service nodes, the
attacker only needs to propagate the double-spend transaction
tx] to the transaction pool of these nodes through the RPC
method and then propagate the double-spend transaction £x2
to the network to complete the connection reset of these nodes
at the same time. As for other nodes in the network, the
attacker can send the stem phase transaction £x/ to them at the
same time, then propagate the fluff phase transaction #x2 in the
network, thereby using a pair of double-spending transactions
to perform connection reset attack on multiple nodes at the
same time. However, the more nodes that directly receive x1/,
the faster #x/ propagates to the entire network. This leads to
a decrease in the success rate of the connection reset attack.

The detection method for the eclipse attack state is also
applicable to large-scale attacks. By sending a transaction #x
to the network, the attacker continuously detects whether the
node in the target nodes set has sent the transaction fx to
the malicious nodes controlled by the attacker within a short
period of time. The node that sent #x is considered to have its
eclipse attack state destroyed.

	Introduction
	Monero P2P Network
	Monero Node
	Monero Peer-to-Peer Messages
	Handshake Message
	PING&PONG Message
	Timed Sync Message

	Peerlist Management
	Anchorlist
	Whitelist
	Graylist

	Connections Management
	Incoming connections establishment
	Outgoing connections establishment
	Connections dropping

	Transaction Propagation

	Our Eclipse Attack
	Sub-Attack-①: The Graylist Attack
	Sub-Attack-②: The Whitelist Attack
	Sub-Attack-③: The Connection Reset Attack
	Based on the Private Transaction
	Based on the Dandelion++ protocol

	Put it All Together: The Complete Eclipse Attack
	Detect the Completion of the Eclipse Attack

	Evaluation of Sub-Attacks
	Evaluating the Graylist Attack
	Evaluating the Whitelist Attack
	Evaluating the Connection Reset Attack
	Attack based on private transactions
	Attack based on Dandelion++
	Cost of the connection reset attack

	Evaluation of the Complete Eclipse Attack
	Evaluation Metrics
	Results Overview
	Detailed Discussion
	Effect of the graylist/whitelist attack
	Effect of the connection reset attack

	Further Discussion
	Resource Requirements for The Whitelist Attack
	An ideal case
	The worst case
	A trade-off case

	Why The Connection Reset Attack is Indispensable?
	For outgoing connections
	For incoming connections

	Countermeasures
	Against The Graylist Attack (i.e., Sub-Attack-①)
	Against The Whitelist Attack (i.e., Sub-Attack-②)
	Against The Connection Reset Attack (i.e., Sub-Attack-③)

	Related Work
	Conclusion
	References
	Appendix
	(Tech) Peerlist Creation
	(Tech) Anchorlist in Monero Nodes
	The role of anchorlist in the process of connection reset attacks

	(Tech) Selecting Outgoing Connections
	Pseudo Code for Our Eclipse Attack
	Experiment Results of the Eclipse Attack using connection reset attack based on Private Transaction
	Extreme Cases for the Complete Eclipse Attack using connection reset attack based on Dandelion++
	How to Maintain the State of Eclipse Attacks?
	Large-Scale Eclipse Attack

