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Abstract—In this paper, we conduct an empirical study on
remote DoS attacks targeting NAT networks (ReDAN, short for
Remote DoS Attacks targeting NAT). We show that Internet
attackers operating outside local NAT networks possess the
capability to remotely identify a NAT device and subsequently
terminate TCP connections initiated from the identified NAT
device to external servers. Our attack involves two steps. First, we
identify NAT devices on the Internet by exploiting inadequacies
in the Path MTU Discovery (PMTUD) mechanism within NAT
specifications. This deficiency creates a fundamental side channel
that allows Internet attackers to distinguish if a public IPv4
address serves a NAT device or a separate IP host, aiding in
the identification of target NAT devices. Second, we launch a
remote DoS attack to terminate TCP connections on the identified
NAT devices. While recent NAT implementations may include
protective measures, such as packet legitimacy validation to
prevent malicious manipulations on NAT mappings, we discover
that these safeguards are not widely adopted in real world.
Consequently, attackers can send crafted packets to deceive
NAT devices into erroneously removing innocent TCP connection
mappings, thereby disrupting the NATed clients to access remote
TCP servers. Our experimental results reveal widespread security
vulnerabilities in existing NAT devices. After testing 8 types
of router firmware and 30 commercial NAT devices from 14
vendors, we identify vulnerabilities in 6 firmware types and 29
NAT devices that allow off-path removal of TCP connection
mappings. Moreover, our measurements reveal a stark reality:
166 out of 180 (over 92%) tested real-world NAT networks,
comprising 90 4G LTE/5G networks, 60 public Wi-Fi networks,
and 30 cloud VPS networks, are susceptible to exploitation. We
responsibly disclosed the vulnerabilities to affected vendors and
received a significant number of acknowledgments. Finally, we
propose our countermeasures against the identified DoS attack.

I. INTRODUCTION

Network Address Translation (NAT) is a popular technique
to map IP addresses between a private realm and the public
realm, thus enabling hosts within a private network to trans-
parently access hosts in the external network [46], [45]. Due
to space exhaustion of IPv4 addresses, NAT is widely used in
various network scenarios, e.g., 4G LTE/5G networks, cloud

VPS networks, public Wi-Fi networks, and IoT networks,
to condense multiple local private addresses into a public
one. According to CAIDA’s investigations, more than 23%
Autonomous Systems (ASes) use NAT to conserve public IPv4
addresses and the proportion keeps increasing [24]. Moreover,
it is widely believed that NAT offers enhanced security [42],
[33], [35], [2], since NAT serves as an added security measure
for private networks by concealing the actual IP addresses of
internal hosts. This prevents direct exposure of the internal
hosts to Internet attackers.

In this paper, we undertake a comprehensive empirical study
to demonstrate that real-world NAT implementations may
exhibit vulnerabilities, which can be exploited by off-path at-
tackers on the Internet to pose a substantial threat to end-to-end
communication connectivity. Particularly, by exploiting these
vulnerabilities in various NAT devices (e.g., NAT gateways
in public Wi-Fi networks or PDN gateways/UPF devices in
4G LTE/5G networks), we demonstrate that off-path attackers
operating outside local NAT networks can launch remote DoS
attacks against the NAT network (i.e., the network segment
linked to the Internet through the NAT device) to cut off
TCP connections initiated by the NATed clients to an external
server. This identified DoS attack can occur even when the
internal NATed clients have a robust TCP/IP implementation
and are free from DoS vulnerabilities. Our attack consists of
two main steps, namely, i) identifying NAT devices on the
Internet and ii) remotely severing TCP connections on the NAT
devices.

We reveal that NAT specifications [45], [6] inadequately
address the Path MTU Discovery (PMTUD) mechanism [29],
[27], thus creating a side channel exploitable by off-path
attackers on the Internet. This side channel allows the attackers
to distinguish whether a public IPv4 address belongs to a
NAT device with multiple clients or a separate IP host, i.e.,
pinpointing NAT devices on the Internet. As per PMTUD spec-
ifications, the path MTU value is maintained at the IP layer of
the originator, limiting packet sizes (e.g., TCP, ICMP, UDP)
sent to the destination. However, in NAT networks, ICMP
packets generated by NAT devices may not align with the path
MTU value maintained by Internal clients, despite originating
from the same source (i.e., sharing the same public source
IP address). This misalignment results in desynchronization
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and information leakage. By observing disparities in the sizes
of the received TCP and ICMP packets, a remote server can
discern whether the client is a private host within a NAT
network or a separated IP host. Consequently, the server can
pinpoint NAT devices with public IP addresses matching the
source IP addresses of the received packets.

Upon identifying NAT devices on the Internet, we proceed
to initiate our remote DoS attack, thereby terminating TCP
connections originating from the NATed clients behind these
devices. We discover that, despite the incorporation of specific
protective measures into recent NAT implementations, such
as validating the legitimacy of received RST packets and
preventing malicious removal of NAT mappings for corre-
sponding TCP connections (e.g., in the NAT implementation
of Netfilter within Linux 5.1 and beyond [49]), these security
measures have not been widely adopted in various real-world
downstream NAT devices, including NAT gateways in public
Wi-Fi networks, 4G LTE/5G networks, and cloud networks.
As a result, off-path attackers on the Internet may send
crafted RST packets without an exact sequence number to the
identified NAT device, tricking it into erroneously removing
the maintained mappings for TCP connections. This, in turn,
effectively disrupts the NATed clients’ access to external
servers and facilitates a remote DoS attack.

We conduct extensive evaluations on our attack. We first
conduct end-to-end evaluations to assess the identified vul-
nerabilities. The side channel for identifying NAT devices,
stemming from inadequate PMTUD considerations in NAT
specifications, affects all NAT implementations in our tests,
including those within 6 types of native OSes, 8 types of router
firmware, and 30 commercial NAT routers. By comparing with
prior works [47], [48] in 21 different network configurations,
we demonstrate that our identification method excels. Regard-
ing the vulnerability of removing NAT mappings via crafted
RST packets, we investigate NAT implementation disparities
among native OSes, various router firmware, and commercial
routers. We show that some NAT implementations within
native OSes (e.g., Netfilter in Linux 5.1 and beyond) may
have defenses, whereas others (e.g., FreeBSD), particularly
the majority of the router firmware types we tested (6 out
of 8) and commercial NAT routers (29 out of 30) remain
vulnerable. Moreover, we demonstrate that, using a bandwidth
of 5.72MBps, an off-path attacker can block all internal clients
behind the vulnerable NAT device from connecting to a remote
SSH server or downloading files from an FTP server.

In addition to end-to-end evaluations, we conduct real-
world assessments to demonstrate that our attack could cause
significant damage on the Internet. Over an 11-month period,
we identify more than 7,600 public IPv4 addresses used by
NAT devices on the Internet by leveraging the identified
side channel in PMTUD. These identified NAT devices are
distributed across 1,289 Autonomous Systems (AS) in 124
countries around the world. Besides, we conduct evaluations
on 180 actual NAT networks, including various NAT scenarios
such as public Wi-Fi networks, 4G LTE/5G networks, and
cloud networks. The experimental results show that out of the

180 NAT networks, 166 are vulnerable to our attacks, causing
a vulnerable proportion of more than 92%.

Finally, we present potential countermeasures. We propose
enhancing NAT specifications to fix the side channel issue.
This involves requiring NAT devices to both translate path
MTU update messages to internal clients and synchronize
their own path MTU values based on these messages. This
measure ensures the consistency of the path MTU value from
the same source IP address, effectively preventing information
leakage and thwarting attackers’ attempts to identify NAT
devices on the Internet. Furthermore, we recommend that NAT
devices implement stricter legitimacy checks on received TCP
packets. Particularly, verifying the sequence number of the
received RST packets is one possible countermeasure to foil
the attacker’s removal on the preserved session mappings for
TCP connections, thus throttling the identified DoS attack. Our
prototype based on OpenWrt 22.03 confirms the effectiveness
of the countermeasure.
Contributions. Our main contributions are as follows:

• We unveil a fundamental side channel in NAT specifications
that can be exploited to identify NAT devices on the Internet,
causing information leakage of NAT networks.

• We investigate NAT implementation disparities among na-
tive OSes, various router firmware, and commercial routers.
Our study shows that NAT implementations within down-
stream router firmware and commercial routers are prone to
manipulation of TCP connection mappings, resulting in a
DoS attack.

• Our empirical study reveals that over 92% (166 out of
180) of real-world NAT networks, including public Wi-Fi
networks, 4G LTE/5G networks, and cloud networks, are
vulnerable to the identified DoS attack.

• We analyze the root cause and propose countermeasures to
throttle the attack. The experiments confirm the effectiveness
of our countermeasures.

Ethical Considerations. In this paper, we perform two types
of experiments on the Internet to validate the feasibility and
significance of our attacks in the real world. Specifically,
we focus on identifying NAT devices on the Internet and
discovering real-world NAT networks vulnerable to our DoS
attack (see §VII for more details about the two types of exper-
iments). Ethical considerations are given top priority during
the experimentation process. First, during identifying NAT
devices on the Internet, we deploy 7 vantage points (HTTP
servers) around the world. Whenever one of our vantage points
receives an HTTP request, we use our method (see §IV) to
determine whether the request is from a separate IP host or a
NATed host. First of all, we obtained the requester’s approval
before conducting the identification. We state the purpose
and the details of our experiment clearly in the HTTP page.
The experiment will only proceed after the requester agrees.
Specifically, our identification will not pose any security risks
to the requester. We only analyze the requester’s packet size
and record the requester’s source IP address. These data are
handled with the utmost care. The only side effect of our
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experiment is that we will modify the path MTU value of
the requester—this adjustment does not impact the network
segment where the requester resides, as the ICMP message
used to modify the path MTU value is only received by the
requester. Moreover, after the experiment, we mitigate this
side effect by sending another ICMP message to restore the
requester’s path MTU value preserved for our vantage point.

Second, while discovering vulnerable NAT networks in the
real world, we only test TCP connections under our control.
After the approval of accessing the target NAT network, we set
our machine as the TCP client and rent a VPS of ALICLOUD
to act as the remote TCP server. We check whether our TCP
connection will be terminated due to the attack proposed in
§V. If the connection is affected, we infer that the NAT device
is vulnerable and thus the NATed network would be impacted.
The experiments only impact our own TCP connection and
do not affect normal users. We also reported the experimental
results to the network administrators. Additionally, we respon-
sibly disclosed the identified vulnerabilities to the affected
vendors and Internet Service Providers (ISPs). Our efforts have
been met with a great deal of acknowledgments (see §VIII-C
for more details).
Availability. The Proof of Concept (PoC) code for iden-
tifying NAT scenarios and verifying whether a NAT de-
vice is vulnerable to our DoS attack is available at

https://github.com/Internet-Architecture-and-Security/Remo
te-DoS-Attacks-against-NAT-Networks. This repository in-
cludes detailed instructions to reproduce our attack.

II. BACKGROUND

In this section, we first briefly review the NAT technique.
Then, we introduce the Path Maximum Transmission Unit
Discovery (PMTUD) mechanism, which will be exploited in
our attack to identify NAT devices on the Internet.

A. Network Address Translation

Network Address Translation (NAT) is a popular technique
allowing hosts (or mobile devices) with private IP addresses to
communicate with hosts outside their local network. Through
the use of a single publicly routable IPv4 address (e.g.,
6.6.6.6), a local network segment behind a NAT gateway
(routing devices performing NAT) can enable multiple clients
(e.g., client2, client3, and client4) to access Internet servers,
thereby conserving the limited availability of public IPv4
addresses. In essence, NAT works by translating the source
IP address of packets leaving the local network to the public
IP address of the NAT device that connects the local network
to the Internet [46], [45], [6]. When the server on the Internet
responds, the response packet will be first routed to the
public IP address of the NAT device. The NAT device then
translates the destination IP address of the response packet
to the private IP address of the internal clients that originally
sent the request packet, and finally forwards the packet to
that client. NAT offers multiple significant benefits, e.g., IP
address conservation, improved security by hiding the internal

network from the outside world, flexibility in network design
and administration.

The key to NAT’s normal operation is that the NAT device
maintains a session mapping table. When an internal client
initiates a session to a remote server, the NAT device will
create a session mapping in its cache table to keep track of
the session. This mapping typically includes information such
as the source IP address and port of the local client, the desti-
nation IP address and port of the remote server at the external
realm, and the protocol being used for the session (e.g., TCP,
UDP). As packets flow between the internal client and the
remote server, the NAT device updates the session mapping
in its cache table to keep track of the state of the session.
In particular, the session mapping for a TCP connection will
change as the state of the TCP connection changes. At the
beginning, when the internal client issues a TCP SYN packet
to initiate a connection with the remote server, the NAT device
creates a session mapping for that connection and marks the
state of the mapping as SYN_SENT. As different TCP packets
(e.g., the resulting inbound SYN/ACK packet, the subsequent
outbound ACK packet, the TCP RST packet, and the TCP FIN
packet) are received, the state of the mapping will be altered
accordingly to translate and forward the packets [6]. In this
paper, we show that real-world NAT devices often omit the
validation of the received TCP RST packets, enabling attackers
to manipulate the device’s mapping state and construct a
remote DoS attack.

RouterHost 

TCP

ICMP Next-Hop MTU

Legitimacy check

Len=MTU of Host’s Next-HopIP
DF=1

Len>Router’s Next-Hop MTU?

Fragmentation needed and DF set

Discarding the TCP segment

Path MTU updating according to “Next-Hop MTU”

Resizing TCP MSS

TCP Len=Updated Path MTUIP
DF=1

TCPIP
DF=1

IP fragmentation 
avoided

Time line Time line

Internet

Fig. 1. Workflow of PMTUD to avoid IP fragmentation.

B. Path MTU Discovery

The PMTUD mechanism is a key element of the TCP/IP
protocol stack [29], [27], [26]. PMTUD enables the efficient
transmission of data over IP networks by determining the
maximum packet size that can be transmitted without IP
fragmentation over a particular network path, thus reducing
network overhead to improve the performance. As shown in
Fig. 1, PMTUD works by having the original host send packets
with the Don’t Fragment (DF) bit set in the IP header. Length
of the packets is equal to the default MTU of the host’s next-
hop (e.g., 1500 octets in Ethernet). If a router along the path
encounters the packet that exceeds the router’s next-hop MTU,
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it discards the packet and issues an ICMP “Fragmentation
Needed and DF Set” message (i.e., ICMP error message with
Type=3 and Code=4) back to the host, stating that the packet
is too large to be transmitted. The ICMP message carries the
MTU of the router’s outgoing interface (i.e., next-hop MTU).

Upon receiving the ICMP error message, the host first
checks the legitimacy of the message to determine whether
the message is truly a reflection of the prior packet sent by
itself. For example, if the message carries a TCP packet, the
host will check whether the sequence number of the TCP
packet is within its own sending window [15]. After that, the
host updates its path MTU value preserved for the destination
according to the received ICMP error message. Meanwhile, the
host reduces the size of the packets for the destination based
on the updated path MTU value, e.g., reducing the Maximum
Segment Size (MSS) of TCP packets to fit the new path MTU
value and thus avoiding IP fragmentation.

According to PMTUD specifications, the path MTU value is
maintained at the IP layer of the originator and thus governs all
packets sent to the destination. However, in NAT networks, we
discover that PMTUD’s semantic consistency breaks, leading
to desynchronization between internal NATed clients and the
NAT device regarding path MTU values. TCP packets from
internal clients adhere to the path MTU constraint, but ICMP
packets from the NAT device may not, despite originating from
the same source IP address. This divergence can be exploited
by attackers on the Internet, potentially causing NAT network
information leakage.

III. ATTACK OVERVIEW

In this section, we present an overview of our DoS attack.
First, we define the threat model of our attack. Then, we
describe the steps to construct it.

A. Threat Model

Fig. 2 shows the threat model of our off-path DoS attack.
The threat model consists of 5 types of hosts.

Internet

Vantage point

Victim TCP 
server

Vulnerable NAT 
device

Off-path

Victim clients

……

Client1

Clientn

Attacker

Fig. 2. Threat model of remote DoS attack against NAT networks.

1. A victim TCP server is on the Internet providing various
online services (e.g., popular Web services, online banking,
and instant messaging) for Internet users.
2. A vulnerable NAT device links a private network segment
to the Internet. It translates the source IP address of packets
leaving the private network to a publicly routable IP address,
enabling access to servers in the external realm. In the context

of our attack, the NAT-enabled device may be a gateway in
public Wi-Fi networks, a PDN gateway or UPF in 4G LTE/5G
networks, or a CPE gateway in IoT networks.
3. Several victim clients are located within the NATed network
segment behind the vulnerable NAT device, and they access
online services from the victim server.
4. An attacker resides in the external realm, i.e., on the
Internet. The attacker is capable of sending IP packets with
spoofed source IP address. This capability assumption is
practical, since prior studies show that about a quarter of
ASes on the Internet do not filter packets with spoofed source
addresses leaving their networks [25], [14]. The attacker aims
to indiscriminately cut off TCP connections from the victim
clients to the specified victim server, thereby performing a
DoS attack. This attack does not target one specific client or
a few select ones; instead, it affects all clients attached to the
vulnerable NAT device.
5. A vantage point is an HTTP server deployed by the
attacker on the Internet. Upon deception (e.g., via a URL-
based advertisement), the victim client connects to the vantage
point. The attacker can then identify whether the client is in a
NAT network, potentially pinpointing a target NAT device1. It
is worth noting that in practice, the vantage point can overlap
with the attacker, i.e., using the same host.

B. Attack Steps

Our DoS attack consists of 2 steps:
Step 1. Identifying NAT Devices. Clients behind NAT devices,
tricked by URL-based ads on social platforms or forums, may
connect to our vantage point. Leveraging the side channel
within the PMTUD mechanism of NAT specifications, our
vantage point identifies the client within NAT networks, not
as a separate IP host. This leads to the identification of a
target NAT device for subsequent attacks, characterized by the
client’s public source IP address.
Step 2. Conducting DoS Attacks. By crafting RST packets
without exact sequence numbers and issuing them to the
identified NAT device, the attacker deceives the device into
mistakenly removing the maintained mappings for TCP con-
nections between the victim clients and the victim server.
Subsequently, the attacker injects manipulated TCP packets
into the targeted connection, creating an inconsistency between
the victim clients and the victim server, effectively executing
a DoS attack to terminate the connections. As TCP is a
fundamental protocol of the Internet, higher-layer applications
built upon it will be affected by our DoS attack, such as SSH,
Web, and FTP.

It is worth noting that in the context of the off-path threat
model, the victim TCP server and destination port are typically
publicly known [8], [9], [12], [13] (e.g., popular HTTP servers
on port 80). By crafting TCP RST packets, the attacker
can remove the identified NAT device’s session mappings
(or disturb the establishment of session mappings) to such

1Our identification bypasses client-side configurations, as explained in
§VI-B, without requiring JavaScript installation to access local information,
which may be restricted by browser sandboxing mechanisms [47].
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Fig. 3. Identifying NAT devices by leveraging a side channel presenting in the mechanism of path MTU discovery.

a server. Consequently, the attacker can prevent the NATed
clients from accessing the specified victim server. Besides,
the attacker is not required to exactly detect a target TCP
connection on the NAT device. In other words, the attacker
does not rely on side channels [12], [8] to accurately infer
the exact source port number (i.e., the random ephemeral
port) of a target TCP connection (see §V for the details of
our attack). In practice, the source port number of a TCP
connection is always within a narrow range, e.g., from 32768
to 61000 in Linux systems and from 49152 to 65535 in
Windows systems [12]. As a result, with just the knowledge
of the public IP address of the NAT device, the attacker can
utilize our attack in parallel to simultaneously cut off multiple
existing TCP connections issued from these source ports or
prevent the establishment of TCP connections to the specified
victim server, thus constructing the DoS attack to disrupt
communications between the NAT network and the victim
server (refer to §VI-D for detailed insights into the impacts
and costs associated with our DoS attack case studies). In the
next two sections, we elaborate the two attack steps one by
one.

IV. IDENTIFYING NAT DEVICES

According to the NAT specifications [46], [45], [6], servers
on the Internet are unable to distinguish whether an access
request was issued from a NATed client or a separate IP
host. If this were the case, there would be an information
leakage of the NAT network, whereby the server would
recognize that the source IP address of the received request
is a publicly routable IP address of the NAT device, instead
of a separate IP host. However, we discover a side channel
in the PMTUD mechanism which is inadequately addressed
in NAT specifications. This side channel enables the server
(e.g., an attacker’s vantage point) to stealthily identify NAT
devices on the Internet. Fig. 3 shows our method of how to
identify a NAT device on the Internet. In a nutshell, our method
consists of two stages. First, the attacker’s vantage point (i.e.,
an HTTP server) tricks the connected client into changing its

path MTU value preserved for the vantage point. Second, the
vantage point sends ICMP requests (i.e., ICMP ping packets)
to the client and then observes the size of the replies to identify
whether the client is a NATed client or not. Next, we elaborate
these two stages.

A. Changing Client’s Path MTU

At the beginning, the vantage point acquires the following
information from the received TCP packet issued from the
client: the client’s IP address (e.g., 6.6.6.6), the client’s source
port number (e.g., 4444), the TCP sequence number of the
client (i.e., seq), and the packet size (e.g., 1500 octets). Then,
the vantage point impersonates an intermediate router and
issues a crafted ICMP “Fragmentation Needed and DF Set”
message to the client (as shown in Fig. 4), indicating that the
prior TCP packet size exceeds the router’s next-hop MTU and
was discarded by the router. The crafted ICMP message carries
the first 28 octets of the prior TCP packet, i.e., IP header of the
packet, the source port number of 4444, the destination port
number of 80 (i.e., the HTTP server in our example), and the
sequence number of seq. Besides, the vantage point specifies
the Next-Hop MTU value in the crafted ICMP message to
mtu x, which is smaller than 1500. Note that according to
the ICMP specifications, ICMP “Fragmentation Needed and
DF Set” messages may be returned by any router on the path
from the client to the vantage point. Therefore, it is difficult to
verify the legitimacy of the source of this type of ICMP error
messages, which means the source IP address of the message
can be arbitrarily specified by the vantage point.

If the client is a separate IP host (as shown in Fig. 3(a)),
it will first perform a legitimacy check on the received ICMP
“Fragmentation Needed and DF Set” message. The message
carries information derived from the prior TCP packet, so
it will pass the client’s check and the client will respond
to the message according to the PMTUD mechanism as
mentioned prior in §II-B. The client will adjust the length of
its subsequent TCP packets for the vantage point to mtu x. In
contrast, if the client is a NATed client (as shown in Fig. 3(b)),
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the NAT device will receive the ICMP message first and then
translate the message to the internal client. After receiving
the ICMP message, the client will respond to the message
according to the PMTUD specifications (i.e., updating its path
MTU to the attacker’s vantage point), and finally adjust the
length of the TCP packets to mtu x. As a result, when the
client sends subsequent TCP packets to the vantage point
again, the vantage point will observe a significant change in the
packet length, i.e., decreasing from the previous 1500 octets
to mtu x. The vantage point can successfully infer that the
client’s path MTU value has been deceitfully updated.

Protocol = ICMP
Source Address = Intermediate Router (crafted)

Destination Address = 6.6.6.6
Type = 3 Code = 4

Next-hop MTU = mtu_x
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Fig. 4. The crafted ICMP fragmentation needed message.

B. Observing Response Sizes

After changing the client’s path MTU, the vantage point
initiates an ICMP ping request packet (i.e., ICMP packet
with Type=8 and Code=0) to the client’s public routable IP
address (i.e., 6.6.6.6). The length of the ping request packet
is padded to the previously observed 1500 octets from the
regular TCP packets. Distinctively, the generation of the ICMP
reply packet (i.e., ICMP packet with Type=0 and Code=0)
significantly differs between the two scenarios of a separate
host and a NAT client.

If the remote client is a separate host (as shown in Fig. 3(a)),
the ping request packet sent by the vantage point will be
received directly by the host. Affected by the previously up-
dated path MTU value (i.e., decreased to mtu x), the returned
1500-octet ICMP reply packet will be fragmented into several
IP fragments by the host, each with a length of mtu x. On
the contrary, if the client is a NAT client, the ping request
packet sent by the vantage point will arrive at the NAT device
instead of being received by the client (as shown in Fig. 3(b)).
As a result, the length of the returned ICMP reply packet
issued by the NAT device will be the default 1500 octets
without being fragmented2. This is because the previous ICMP
“Fragmentation Needed and DF Set” message sent by the
vantage point updated the path MTU value of the internal
NAT client, while the path MTU value preserved in the NAT
device for the vantage point was not affected. Consequently,
the path MTU value from the same IP address (i.e., 6.6.6.6 in
our example) to the vantage point has been desynchronized,

2IP fragmentation at intermediate routers will not affect our identification
on NAT devices. See §VI-B for our detailed evaluations on this issue.

i.e., the length of the TCP packet is mtu x while the length of
the ICMP reply packet is 1500 octets, forming a side channel.

In summary, by tricking the client into altering its path MTU
value, the attacker can differentiate between separate IP hosts
and NAT clients by analyzing the ICMP reply packet lengths,
enabling subtle identification of NAT devices on the Internet. If
the received ICMP reply packet is not fragmented (as shown
in Fig. 3(b)), the client is a NATed host, and the public IP
address of the observed NATed client corresponds to that
of the NAT device, all achieved without requiring additional
assistance. Note that while the attacker can detect the presence
of NATed clients and thus conduct a DoS attack against the
identified NAT device, it cannot determine the exact number
of clients or distinguish between individual ones. Additionally,
in cascaded NAT networks (i.e., chained NAT contexts), our
method can identify the NATed client accessing the vantage
point and enable DoS attacks targeting the outermost NAT
device hosting the public IP address. However, it cannot
differentiate between the contexts of chained NATs.

V. CONDUCTING DOS ATTACKS

After identifying NAT devices on the Internet, we proceed
to conduct our remote DoS attack against these identified NAT
devices to disrupt their TCP connections to a specified victim
server. According to the NAT specifications [6], [45], NAT
behavior for handling TCP RST packets is left unspecified. In
practice, NAT implementations in native OSes (e.g., Netfilter
in Linux 5.1 and beyond) may validate the legitimacy of
received TCP RST packets before altering the state of the
mappings preserved for associated TCP connections [49].
However, this validation may not be enforced in various real-
world downstream router-oriented NAT devices, such as NAT
gateways in public Wi-Fi networks, 4G LTE/5G networks, and
cloud networks. By exploiting this vulnerability, an off-path
attacker can craft TCP RST packets to remove the mappings
maintained in the NAT device. This disruption will result in a
DoS attack against the NAT network. Our DoS attack consists
of three stages, i.e., removing NAT mappings, manipulating
TCP states, and terminating TCP connections.

A. Removing NAT Mappings

As shown in Fig. 5, at the beginning, the NAT device
maintains two session mappings (using the source port x2 and
x3) for TCP connections issued from two internal clients to the
remote victim server. The server preserves two sockets, i.e.,
s1 and s2, for the two TCP connections. The parameters of
the TCP connections (e.g., source port numbers and sequence
numbers) cannot be observed by the off-path attacker on
the Internet. The attacker impersonates the victim server to
craft multiple TCP RST (or TCP RST/ACK) packets3 to the

3In practice, some NAT devices, e.g., the carrier-grade NAT (CGNAT)
devices within the China Unicom Beijing province network, may also examine
the ACK flag (not the sequence number) in the received RST packet prior
to removing TCP connection mappings. Consequently, in our empirical
measurement study, we consistently set the ACK flag of the crafted RST
packets to true as well (i.e., a crafted TCP RST/ACK packet), ensuring the
success of our attack in different NAT networks.
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identified public IP address of the NAT device. The source
IP address s_IP of the crafted RST packets is specified
as the victim server’s IP address. The destination port num-
ber d_port (i.e., the source port of the client-issued TCP
connections) is typically located within a small range, e.g.,
from 32768 to 61000 in Linux systems and from 49152 to
65535 in Windows systems [12]. The source port number
(i.e., the destination port of the TCP connections) is usually
known, e.g., 80 in HTTP. The sequence number seq of the
crafted RST packets is arbitrary (i.e., specified by the attacker
arbitrarily). The acknowledgment number is not required. The
crafted TCP RST packets with incorrect d_port will be
discarded by the NAT device directly. By contrast, the packets
with correct d_port (i.e., x2 and x3) will be translated into
the internal clients by the NAT device. Because the sequence
number in the packets are incorrect, the internal clients with
a robust TCP/IP protocol suite implementation will eventually
discard them. However, the NAT device may be tricked into
removing the session mappings for the two TCP connections
without verifying the legitimacy of the RST packets, primarily
for performance considerations.
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Fig. 5. Design of our remote DoS attack against NAT networks.

B. Manipulating TCP States

After removing the session mappings, the attacker then
impersonates the NAT device (i.e., using the identified public
IP address of the device) to craft multiple TCP PUSH/ACK
packets (i.e., with the PUSH and ACK flags in TCP header
enabled) to the server. The source port number s_port of
the crafted PUSH/ACK packets is specified within the range
that TCP usually selects, and the destination port number
is specified as the known number in the server (e.g., 80
in HTTP). The sequence number and the acknowledgment

number are arbitrary. The crafted PUSH/ACK packets will
trigger the server to respond differently. As shown in Fig. 5, for
PUSH/ACK packets with source port equal to the previously
established TCP connections’ source port (i.e., the source port
of x2 and x3 in our example), the server will issue a duplicate
acknowledgment packet to the public IP address of the NAT
device according to the fast retransmit mechanism defined
in RFC 5681 [1]. Particularly, the duplicate acknowledgment
packet carries the client’s exact sequence number of rcv.nxt,
i.e., the lower boundary of the server’s receive window4. By
contrast, for PUSH/ACK packets carrying a wrong source port,
the server will reflect a TCP RST packet to the NAT device,
since no TCP sockets with those source ports are preserved
on the server for the public IP address of the NAT device. The
NAT device will discard the received RST packets silently.

Once the duplicate acknowledgment packets reach the NAT
device, the NAT device may generate an RST packet to the
server for each received duplicate acknowledgment packet.
This occurs because the mappings for the TCP connections
were previously removed due to the attacker’s crafted TCP
RST packets, leading the NAT device to believe that the
corresponding TCP sockets have been terminated. According
to the TCP specifications [36], [11], a TCP RST packet will
be sent whenever a non-RST packet arrives at a closed socket.
Moreover, the sequence number (i.e., seq) of the RST packets
issued from the NAT device will be specified as the clients’
exact sequence number (i.e., rcv.nxt of the server), copied from
the previously received duplicate acknowledgment packets.
In accordance with TCP specifications, the RST packets that
carry the exact sequence number of the clients will deceive the
server into tearing down the corresponding TCP sockets. In
practice, the attacker can optimize the attack by interleaving
stage 1 (issuing crafted RST packets) and stage 2 (issuing
crafted PUSH/ACK packets), thereby mitigating potential lim-
itations in the victim client’s TCP packet transmission between
these stages, which could affect the attack’s success (refer to
§VI-D for experimental details in our case studies).

C. Terminating TCP Connections

Finally, once the clients have subsequent TCP packets to
send to the server through the previously established TCP
connections, the NAT device will first create new mappings.
Once the TCP packets arriving at the server, the server will di-
rectly discard the packets. Moreover, the server will issue RST
packets to the clients according to TCP specifications. These
RST packets carry the exact sequence number (copied from
the Acknowledgment Number field of the prior received
TCP packets issued by the clients) of the connections, and
eventually force the clients to tear down the TCP connections,
i.e., leading to a DoS attack.

4We observe that servers running Linux, Windows, FreeBSD, and ma-
cOS consistently adhere to the fast retransmit mechanism defined in RFC
5681. They generate duplicate acknowledgment packets upon receiving the
PUSH/ACK packets. In contrast, OpenBSD systems deviate from this behav-
ior, as they do not produce the expected duplicate ACK packets. Consequently,
servers equipped with OpenBSD will not be affected.
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VI. EVALUATIONS

In this section, we conduct a comprehensive end-to-end
evaluation of our attacks. We begin with the experimental
setup, followed by the evaluation results. This includes iden-
tifying NAT devices via the PMTUD side channel, testing
whether NAT mappings in various implementations can be
maliciously removed by attackers, and assessing the attack’s
costs through case studies on DoS attacks over SSH and FTP.

Victim server
(Linux 6.2.0/

OpenSSH 9.7/
Pure-FTPd 1.0.50)

NAT device

NATed clients

Attacker
(Linux 5.19.0/

Scapy)
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(Linux 6.2.0/

Apache 2.4.55)
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Firefox
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Windows
Linux

Internet

Separate host

Intermediate 
router

Fig. 6. Experimental setup for end-to-end evaluations.

A. Experimental Setup

Fig. 6 shows the experimental setup for conducting end-
to-end evaluations of our attacks. The NAT device setup
includes forwarding-enabled hosts with 6 native OSes and
8 types of router firmware implementing NAT, as well as
30 commercial routers with NAT enabled (see Table III for
NAT setup details). Connected NATed clients have varied
configurations, using different OS and browsers. This diversity
facilitates the comparison of our NAT device identification
method with malicious JavaScript-based methods [47]. The
separate host shares an identical configuration with the NATed
clients, the sole difference being its possession of a public IP
address, allowing direct access to the vantage point. This setup
is designed to evaluate the effectiveness of our NAT device
identification method, specifically in its ability to distinguish
between a NATed client and a separate host at the vantage
point. An intermediate router equipped with OpenBSD 7.4
is utilized to check whether IP fragmentation at intermediate
routers affects our identification method. The victim server
offers SSH connectivity and FTP file download services to the
NATed clients. Our evaluation involves three tests: First, the
attacker identifies NAT devices via the identified PMTUD side
channel. Second, the attacker examines if NAT mappings in the
devices can be manipulated for our DoS attack. Third, we carry
out case studies on DoS attacks targeting SSH connections and
FTP downloads from the NATed clients to the victim server,
assessing the impacts and cost implications of our attack.

B. NAT Devices Identification

Initially, the NATed clients and the separate host separately
click on a URL to access the vantage point. Following the pro-
cedure in Fig. 3, the vantage point can effectively distinguish
requests from the separate host and the NATed clients. In other
words, all NAT setups listed in Table III are affected by the

side channel in the PMTUD mechanism. The differentiation
is based on the alignment between the TCP packet size of
the separate host and its ICMP ping reply packet size, both
adjusted to a 600-octet path MTU value (i.e., mtu x) specified
by the vantage point. In contrast, the NATed clients display a
different behavior, with their TCP packet size adhering to the
600-octet path MTU, while the ICMP ping reply packet size
(originating from the NAT device) defaults to 1500 octets.

We also conduct experiments to evaluate the potential
impact of IP fragmentation at intermediate routers on our
identification method. We modify the next-hop MTU value of
the intermediate router to different sizes (i.e., 1492 octets used
by IEEE 802.3 and 576 octets used by X.25 networks [29]),
other than the default 1500 octets, as illustrated in Table I. This
allows us to evaluate that even when the reflected ICMP ping
reply packets are routed through a path where some interme-
diate routers may perform IP fragmentation, our identification
method remains unaffected, since the ICMP reply packet sizes
observed from the separate host and the NATed client are
always distinguishable. Another potential disruption to our
identification method, arising from intermediate routers, is the
possibility of the fragmented ICMP reply packet from the sep-
arate host being reassembled by certain routers, thus restoring
the IP fragments to the original 1500-octet size. This has the
potential to mislead the vantage point, leading to an erroneous
identification of the separate host as a NAT client. However,
in practice, only the destination host reassembles fragments,
and intermediate routers do not enforce fragment reassembly,
as fragments do not always take the same routes from source
to destination [5], [22]. Therefore, our identification method
effectively mitigates the risk of such misidentification.

TABLE I
AFFECTS FROM INTERMEDIATE IP FRAGMENTATION.

mtu x Next-hop MTU
of the router

ICMP reply size
observed

from separate host

ICMP reply size
observed

from NATed client

Disting-
uishable

600
1500 (by default) 2*600+300 1500 ✔
1492 (greater than 600) 2*600+300 1492+8 ✔
576 (lower than 600) 2*(576+24)+300 2*576+348 ✔

Moreover, we compare our NAT identification method with
the JavaScript-based method [47], [48], which requires NATed
clients to install a malicious JavaScript to call APIs like We-
bRTC, enabling access to the local IP address and comparing it
with the public IP address. This method has significant limita-
tions due to security policies in modern browsers, which may
restrict the exposure of the local IP address to JavaScript [47].
In contrast, our method is configuration-independent, leverag-
ing a fundamental side channel vulnerability, thereby impact-
ing all client configurations in Fig. 6. Table II summarizes
our experimental results, showing that our method consistently
identifies the NAT scenario and the corresponding public IP
address across 21 client configurations5, while the JavaScript-
based method succeeds in only two configurations.

5In our tests, we use browsers on various OSes, all of which are recent
stable versions, e.g., Chrome 117.0.5938.60, Edge 117.0.2045.33, Safari 16.6,
and Firefox 117.3.
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TABLE II
NAT IDENTIFICATION WITH DIFFERENT CONFIGURATIONS.

Chrome Edge Safari Firefox
Android 12 ✔—✔ ✔—✔ N/A ✘—✔
iOS 16.3 ✘—✔ ✘—✔ ✘—✔ ✘—✔
iPadOS 16.61 ✘—✔ ✘—✔ ✘—✔ ✘—✔
MacOS 13.0 ✘—✔ ✘—✔ ✘—✔ ✘—✔
Windows 10 ✘—✔ ✘—✔ N/A ✘—✔
Linux 6.2.0 ✘—✔ ✘—✔ N/A ✘—✔

✔means the JavaScript-based method works.
✘means the JavaScript-based method fails.
✔means our side channel-based method works.

Note that the JavaScript installed on the client may also
exploit a timing side channel to identify whether NAT is
enforced or not. However, this method also heavily relies
on specific network configurations. The JavaScript may con-
nect to common private gateway addresses (such as 10.0.0.1,
192.168.1.1, 192.168.0.1, etc.) through a hidden img HTML
tag. Upon successful connection, a JavaScript event is trig-
gered, providing information that the client is a NAT client.
In contrast, separate hosts will not achieve success and will
raise an error after a timeout. We evaluate this method in
two common NAT scenarios: public Wi-Fi networks and 5G
cellular networks, using the same experimental setup where a
client with malicious JavaScript attempts to connect to the
common gateway addresses. In 50 experiments conducted
on our campus NAT-enabled Wi-Fi network, the JavaScript
successfully connects to one of the 30 common private gate-
way addresses we listed, with an average time cost of 44
milliseconds (as shown in Fig. 7), effectively identifying the
NAT scenario. However, in the 5 tested 5G NAT networks
accessible on our campus, all experiments fail due to non-
deterministic assignment of gateway addresses in 5G networks,
which remains undisclosed to users.
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Fig. 7. Time cost of identifying NAT in Wi-Fi networks through connection
to common private gateway addresses.

C. NAT Mappings Manipulation

Table III presents the findings of our experiments on off-
path removal of NAT mappings in various NAT setups. These
setups encompass 6 native OSes, with 2 found to be vulner-
able, 8 types of router firmware, 6 of which exhibit vulner-
abilities, and 30 commercial routers from 14 vendors, 29 of

TABLE III
TCP SESSION MAPPINGS REMOVAL VIA CRAFTED RST.

NAT Setup OS/Firmware
/Router

Version
/Vendor

Release
Date∗ Vulnerable

Native OS

FreeBSD 13.2 and earlier 04/2023 ✔
Linux 5.0 and earlier 05/2019 ✔
Linux 5.1 and beyond 05/2019 ✘
OpenBSD 5.0 and beyond 11/2011 ✘
macOS 13.2.1 02/2023 ✘

Windows 10
11

07/2015
10/2021 ✘

Router
Firmware

OpenWrt 22.03 and earlier 05/2023 ✔
AsusWrt 3.0.0.4.386 and earlier 10/2022 ✔
pfSense 2.7.0 and earlier 06/2023 ✔
OPNsense 23.7 and earlier 07/2023 ✔
iKuai 3.7.6 and earlier 09/2023 ✔
VxWorks 5.5.1 09/2002 ✔
VyOS 1.4 and beyond 11/2020 ✘
RouterOS 6.49 and beyond 08/2021 ✘

Commercial
Router

RAX20 Netgear 10/2020 ✔
RAX50 Netgear 02/2020 ✔
E5600 Linksys 03/2020 ✔
E9450 Linksys 05/2022 ✔
RT-AX57 ASUS 02/2023 ✔
RT-AX89X ASUS 10/2020 ✔
AR6140E-9G-2AC Huawei 05/2023 ✔
AX3 Pro Huawei 09/2020 ✔
WS5200 Huawei — ✔
TC7102 Huawei 04/2020 ✔
TL-R473GP-AC TP-Link 04/2021 ✔
TL-R4239GP TP-Link 06/2022 ✔
TL-XDR6020 TP-Link 01/2022 ✔
TL-AC1200 TP-Link 12/2020 ✔
TL-WDR7620 TP-Link — ✔
Magic R100 H3C 01/2020 ✔
Magic R365 H3C 09/2022 ✔
EG105G-V2 Ruijie 05/2023 ✔
EG210G-P Ruijie 01/2023 ✔
X32 Pro Ruijie 08/2022 ✔
Redmi RA81 Xiaomi 01/2022 ✔
CR6609 Xiaomi — ✔
NBR1009GPE Netcore — ✔
MG1200AC Netcore — ✔
Wimaster Wimaster — ✔
Wimaster-mini Wimaster — ✔
Google Wi-Fi Google 10/2016 ✔
SK-WR6640X Skyworth — ✔
RAX1800Z China Mobile 11/2021 ✔
Cisco Meraki MX64 Cisco Meraki 02/2015 ✘

✔means the NAT implementation is vulnerable.
✘means the NAT implementation is invulnerable.
∗ the release date information for the commercial routers is sourced
from the Internet.

which display vulnerabilities. The malicious removal against
NAT mappings is achieved using crafted TCP RST packets
with arbitrary sequence numbers. Our experimental results
demonstrate the disparities in NAT implementations among
native OSes, various router firmware versions, and commercial
routers. Particularly noteworthy is the vulnerability exhibited
by the majority of downstream real-world NAT devices6.

D. Case Study

i) DoS over SSH Connections. As shown in Fig. 6, 4
NATed clients behind the NAT device have established SSH
connections with the victim server (our VPS deployed in

6After we reported the vulnerability, the FreeBSD and OpenWrt communi-
ties promptly acknowledged it. Specifically, TCP sequence number validation
on inbound packets is now enabled by default in pf(4) starting from FreeBSD
14.0 and in netfilter starting from OpenWrt 23.05, respectively.
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TABLE IV
EXPERIMENTAL RESULTS OF IDENTIFYING NAT DEVICES ON THE INTERNET.

Frankfurt Virginia California Jakarta Bangkok Beijing São Paulo Total
Request 14,487 14,428 15,690 9,102 13,114 10,328 14,312 91,461
Denial 7,936 8,235 9,617 4,808 8,001 5,832 7,370 51,799

Approval 6,551 6,193 6,073 4,294 5,113 4,496 6,942 39,662
Clients 5,616 5,045 3,458 3,536 3,883 3,184 5,432 30,154

486A 386A 275A 316A 334A 275A 491A 1,289ANAT 1,416
84C

1,158
87C

804
68C

927
66C

994
75C

863
68C

1,443
84C

7,605
124C

25.22%

Separate IP 2,449 2,408 1,650 1,636 1,819 1,361 2,425 13,748 45.59%
Unknown 1,751 1,479 1,004 973 1,070 960 1,564 8,801 29.19%

“A” means ASes where the identified NAT devices reside, and “C” means countries that the identified NAT devices belong to.

Tencent Cloud and ALICLOUD, respectively). These clients
periodically send messages to the server. Additionally, other
NATed clients accessing the NAT network may intend to
establish new SSH connections with the server. The attacker
on the Internet utilizes the method illustrated in Fig. 5 to
launch a DoS attack, aiming to terminate SSH connections
already established by the 4 NATed clients and disrupt the
establishment of new SSH connections, thereby blocking the
NAT network from connecting to the SSH server. The attacker
continuously alternates between sending multiple crafted TCP
RST packets (up to 65,535) to the NAT device, aiming to clear
the session mappings, and sending crafted PUSH/ACK packets
to the server to disrupt the SSH connections. This orchestrated
sequence of actions constitutes a DoS attack.
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Fig. 8. Attack traffic bandwidth of DoS over SSH and FTP.

Fig. 8 presents the empirical cumulative distribution func-
tion (CDF) of the attack traffic bandwidth. We conduct 50
experiments, and our experimental results reveal that using
an average bandwidth of 5.72MBps, the off-path attacker can
block all NATed clients behind the vulnerable NAT device
from connecting to the SSH server (including hindering the
establishment of new SSH connections). The crafted TCP RST
packets and PUSH/ACK packets sent to the NAT device and
the server, respectively, do not trigger alerts on either the NAT
device or the server. Notably, out-of-order PUSH/ACK packet
transmission is common in practice. We observe that the tested
server (running Linux, as well as Windows, FreeBSD, and
macOS), secured by Tencent Cloud or ALICLOUD firewalls,
does not block the crafted PUSH/ACK packets.
ii) DoS over FTP Downloads. Similarly, using our attack
method, the attacker can terminate established TCP connec-

tions between the NATed clients and the FTP server in clouds
or prevent the establishment of new connections. This obstruc-
tion hinders communication between the NAT network and
the FTP server, leading to disruptions in FTP file downloads.
We conduct 50 experiments and the average attack traffic
bandwidth is about 5.06MBps, as shown in Fig. 8.

VII. REAL-WORLD ATTACKS

In addition to end-to-end evaluations, we also conduct a
comprehensive study to evaluate the impacts of our attacks
in the real world. The results of our ethical experiments on
the Internet show that our attacks could significantly damage
the real world. Firstly, over an 11-month period, we identify
more than 7,600 NAT devices that are distributed across
1,289 ASes in 124 countries around the world. Moreover,
we conduct evaluations on 180 real-world NAT networks,
including various scenarios such as public Wi-Fi networks,
4G LTE/5G networks, and cloud networks. The experimental
results demonstrate that more than 92% of the tested NAT
networks are vulnerable to our DoS attack. Note that even
though our experiments involve human interactions, we fully
addressed the ethical issues. We provided detailed explanations
of the experiment’s purpose and methodology and obtained
participants’ approval before conducting the experiments. Ad-
ditionally, our experiments do not cause harm to the partic-
ipants, and we provide them with reports on the experiment
results (see Ethical Considerations in §I for more details).

A. Identifying NAT Devices on the Internet

Experimental Setup. We deploy 7 vantage points in 5 ASes,
i.e., HTTP servers equipped with Apache 2.4.55/Linux 6.2.0,
located globally in Frankfurt, Virginia, California, Jakarta,
Bangkok, Beijing, and São Paulo. We use the method in
Fig. 3 to determine whether the client requesting for our
vantage point is a NATed client or a separate IP host. We
share the URLs for accessing our vantage points in social
media platforms (e.g., TikTok and WeChat) and community
forums (e.g., Dev community) for seeking voluntary users to
participate in our NAT identification. On our vantage points,
we open TCP port 80 to listen for incoming requests. When
an HTTP request arrives, we first obtain the user’s approval
before conducting the identification (see §I for our ethical
considerations and Fig. 11 in Appendix for the snapshots of
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accessing our vantage points7). Then, we change the path
MTU between the user’s machine and our vantage point. After
that, we send probing packets and observe the size of the
response packets to determine whether the user’s machine is a
separate IP host or a NATed client. If the user’s machine is a
NATed client, the source IP address of the request corresponds
to a public IP address employed by the NAT device.
Experimental Results. Table IV shows the results of our
identification for NAT devices from the 7 vantage points. At
different vantage points, the experimental results may vary.
For instance, at the vantage point in Frankfurt (the second
column of Table IV), we receive a total of 14,487 HTTP
requests over a 11-month period, i.e., from May 13, 2023,
to April 13, 2024. Out of the 14,487 requests, 7,936 deny
our identification, while the remaining 6,551 approve. After
eliminating duplicates within the 6,551 approved requests,
5,616 unique clients with different IP address access our HTTP
server deployed at this vantage. Among these 5,616 clients,
our method reveals that 1,416 are located behind a NAT
device, indicating the identification of 1,416 publicly routable
IP addresses used by NAT devices. These NAT devices are
spread across 486 ASes (i.e., 486A) in 84 countries (i.e., 84C).
2,449 out of the 5,616 clients are operating as separate hosts
with unique IP address. The remaining 1,751 clients fall under
the “Unknown” category due to undetectable results. This
implies that the reflected ICMP reply packets, responding to
the vantage point’s probing, are either blocked at the client or
by middleboxes on the Internet [37]. As a result, it is difficult
for the vantage point to determine whether these clients are
within NAT networks or functioning as separate IP hosts.

We also encounter scenarios where clients might access our
HTTP vantage points via a VPN proxy, making it challenging
for the vantage points to distinguish whether the client is
behind a NAT device or a separate IP host. This challenge
stems from the fact that when the vantage point sends an ICMP
“Fragmentation Needed and DF Set” message to the client (in
practice, this message is directed to the VPN proxy rather
than the real source client) to adjust the client’s path MTU (as
shown in Fig. 3), our observations indicate that the VPN proxy
typically discards the ICMP message instead of forwarding
it to the actual source client, unlike a typical NAT device8.
Consequently, the ICMP “Fragmentation Needed and DF Set”
message fails to reduce the client’s path MTU value and thus
affects the subsequent observations. Under this circumstance,
the vantage point cannot distinguish whether the client is
a separate IP host or a NATed client, and we classify this
circumstance as “Unknown”.

By aggregating the results from all 7 vantage points (as
shown in the last column of Table IV), we determine that

7In practice, the identification can be carried out without the awareness of
the clients.

8In our end-to-end experimental setup, we further confirm that a VPN proxy
does not forward ICMP “Fragmentation Needed and DF Set” messages, as
exemplified by the well-known OpenVPN with version 2.5.9. Note that our
setup confirms that VPN proxies obstruct the NAT identification. However,
we cannot pinpoint VPN proxies specifically using this method, as other
middleboxes might also drop ICMP messages.

over a 11-month period, we receive a total of 91,461 HTTP
requests9. Out of the 30,154 clients, 7,605 (25.22%) are
identified as residing behind a NAT device. The identified
NAT devices with public IP addresses are distributed across
1,289 ASes in 124 countries worldwide. Out of the remaining
clients, 13,748 (45.59%) are separate IP hosts, and the status
of the remaining 8,801 (29.19%) clients is unknown. Table V
provides the details about 21 public IPv4 addresses used by
identified NAT devices. For instance, as illustrated in the first
row, we identify a NAT device with a public IP address of
“*.145.177.*” within a /24 CIDR range from the vantage point
in Frankfurt. This NAT device is located in Jakarta, Indonesia.
Fig. 9 shows the geographical distribution of all the identified
NAT devices.

TABLE V
DETAILS OF 21 PUBLIC IPV4 ADDRESSES USED BY NAT.

Public IP CIDR Location Vantage Point

*.145.177.* /24 Jakarta, Indonesia
Frankfurt*.74.192.* /20 London, UK

*.52.158.* /24 Multan, Pakistan
*.147.62.* /24 Kathmandu, Nepal

Virginia*.190.220.* /19 Donetsk, Russia
*.97.49.* /20 Lima, Peru
*.64.76.* /24 Kalemie, Congo

California*.104.148.* /19 Frankfurt, Germany
*.40.66.* /21 Xi’an, China
*.117.5.* /19 Rasht, Iran

Jakarta*.0.15.* /16 Toledo, Spain
*.190.50.* /20 Ramučiai, Lithuania
*.116.1.* /18 Bistagno, Italy

Bangkok*.64.125.* /16 Banff, Canada
*.17.60.* /24 Paris, France
*.113.106.* /24 Palwal, India

Beijing*.116.152.* /12 Shenzhen, China
*.235.251.* /24 Nova Prata, Brazil
*.171.124.* /14 Lomas, Argentina

São Paulo*.101.186.* /24 Zalesye, Ukraine
*.199.82.* /16 Grodzisk, Poland

B. Identifying Vulnerable NAT Networks

Experimental Setup. Our attack involves four types of de-
vices: 1) A victim client, residing within the tested NAT
networks, is under our control for ethical reasons. The victim
client can be either a Xiaomi 12 cellphone or a VM rented
from the tested clouds, equipped with a robust TCP/IP protocol
suite implementation. Note that our attack does not impact
regular users of the tested NAT networks. 2) A NAT device
responsible for translating and mapping internal clients’ pri-
vate IP addresses to public ones. This NAT device could be
the gateway for public Wi-Fi networks, a PDN Gateway/UPF
device in 4G LTE/5G networks, or the gateway for VMs in
cloud networks. 3) An SSH server located externally to the
tested NAT networks. The server is deployed in California
and is equipped with Linux 6.2.0 and OpenSSH 9.3. 4) An
attack machine equipped with Linux 5.19.0 and Scapy, with
the capability of IP spoofing. During our experiments, the

9If the same source IP address requests our different vantage points, its
HTTP requests will be recorded and handled only by the first vantage point
requested, to avoid duplication.
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victim client initially connects to the target NAT networks. It
then establishes a TCP connection to the remote SSH server.
The NAT device maintains a session mapping for the TCP
connection between the victim client and the remote server.
The off-path attacker will disrupt the SSH session between the
victim client and the SSH server by exploiting the proposed
DoS attack shown in Fig. 5.

Fig. 9. Distribution of the identified NAT devices.

Experimental Results. Given the widespread use of NAT
in the real world, we randomly select 180 NAT networks
from three popular network scenarios for a comprehensive
evaluation. These networks include 90 4G LTE/5G networks,
60 Wi-Fi networks, and 30 cloud networks, all located in dif-
ferent regions. The overall experimental results are illustrated
in Fig. 10. Out of the 90 4G LTE/5G networks, all 52 4G
LTE NAT networks and the remaining 38 5G NAT networks
are vulnerable. The attacker can successfully terminate TCP
connections initiated from cellphones connected to these net-
works. In regard to the 60 Wi-Fi networks, our attack impacts
16 Wi-Fi 4 NAT networks, as well as 19 Wi-Fi 5 networks and
13 Wi-Fi 6 networks. As a result, the proportion of vulnerable
NAT networks for Wi-Fi 4, Wi-Fi 5, and Wi-Fi 6 in our tests
are 80%, 76%, and 87%, respectively.
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Fig. 10. Evaluations on 180 real-world NAT networks.

Moreover, we conduct tests on the NAT networks from 4
popular cloud providers, i.e., 6 ALICLOUD NAT networks,
9 Aceville NAT networks, 10 HUAWEI CLOUDS NAT net-
works, and 5 Tencent Cloud NAT networks. Out of these tested
NAT networks, all 6 ALICLOUD NAT networks are vulnera-
ble. Besides, our attack affects 8 Aceville NAT networks (i.e.,

89% of the tested networks). Similarly, 9 HUAWEI CLOUDS
NAT networks experience the impact of our attack (i.e., with a
proportion of 90%). Lastly, all 5 Tencent Cloud NAT networks
are affected by the attack. In total, out of the 180 real-world
NAT networks, 166 are vulnerable to our attack, indicating
that the proportion of vulnerable NAT networks are more than
92%. Table VI shows the details of 30 vulnerable real-world
NAT networks in our evaluations. For example, as shown in
the first row, we find that a 4G LTE NAT network (with a
public IP address of “*.216.177.*” and CIDR of /20) located in
Virginia, United States is affected by our attacks. This network
belongs to Verizon Business. In our testing, out of 10 attacks
against this NAT network, 9 of them are successful. The one
unsuccessful attempt is due to packet loss of the forged RST
packet caused by network conditions. It is worth noting that
although our attack targets vulnerable NAT implementations
and is independent of layer-2 protocols like Wi-Fi and LTE, the
comprehensive evaluations show that a wide range of network
access scenarios utilizing NAT are susceptible to our attacks.
Reasons for Failures. The failure of our attacks on 14 tested
NAT networks can be attributed to two situations. Firstly, the
crafted TCP RST packets fail to manipulate the preserved
mappings in the NAT device of the target NAT networks.
During our investigations on 60 public Wi-Fi networks, we
identify 12 instances where failures occur due to this reason.
In these instances, when the NAT device receives the crafted
TCP RST packets, it refrains from responding by removing
the corresponding mappings. Instead, it directly forwards the
RST packets to the internal clients (which are eventually
discarded by the clients due to the specified incorrect sequence
number). We can recognize this situation by noting that the
internal client receives the crafted RST packets issued by
the attacker, but the attack fails. This indicates that the NAT
device forwarded the RST packets directly and did not remove
the preserved mappings. Besides, our attack may also be
foiled by specific network configurations, such as middle
boxes or firewalls. For instance, during our investigations on
cloud networks, we encounter 2 cloud NAT networks where
our attack fails. In these cases, the crafted RST packets are
blocked before they could remove the session mappings. We
can identify this situation by observing that the internal client
does not receive the crafted RST packets issued by the attacker,
as well as the failure of our attack.

VIII. DISCUSSION AND COUNTERMEASURE

In this section, we discuss the impact of our attack on dif-
ferent NAT types and IPv6. We also propose countermeasures.

A. Impacts on Different NAT Types

NAT technology, including various types like CGNAT
(Carrier-Grade NAT), SNAT (Source NAT), DNAT (Destina-
tion NAT),and NAT-enabled IoT CPE routers, is widely used
in real world. Essentially, NAT relies on preserving session
state to accurately route traffic between internal and external
hosts. These NAT variants maintain a session mapping table
to track active sessions, including TCP connections, and log

12



TABLE VI
EXPERIMENTAL RESULTS OF OUR DOS ATTACK OVER 30 REAL-WORLD VULNERABLE NAT NETWORKS.

No. Public IP address CIDR NAT
Scenario Region Organization Success

Rate

1 *.216.177.* /20 4G LTE Virginia, United States Verizon Business 9/10
2 *.60.40.* /16 4G LTE Canarias, Spain VODAFONE ESPANA S.A.U. 10/10
3 *.30.41.* /24 4G LTE Dhaka, Bangladesh Grameenphone Limited 10/10
4 *.139.100.* /19 4G LTE Guizhou, China China Telecom 9/10
5 *.144.207.* /21 4G LTE Xinjiang, China China Mobile 10/10
6 *.254.3.* /24 5G Beijing, China China Unicom Beijing 10/10
7 *.108.164.* /13 5G Chongqing, China China Telecom 9/10
8 *.139.124.* /15 5G Shannxi, China China Unicom Shannxi 10/10
9 *.104.41.* /22 5G Guangdong, China China Mobile 10/10
10 *.144.139.* /23 5G Sichuan, China China Mobile 9/10
11 *.88.63.* /18 VM in cloud California, United States ALICLOUD 10/10
12 *.74.95.* /19 VM in cloud New South Wales, Australia ALICLOUD 9/10
13 *.51.98.* /22 VM in cloud Ontario, Canada Aceville 10/10
14 *.130.146.* /19 VM in cloud Virginia, United States Aceville 10/10
15 *.135.216.* /19 VM in cloud São Paulo, Brazil Aceville 10/10
16 *.163.199.* /19 VM in cloud Tokyo, Japan Aceville 10/10
17 *.138.165.* /20 VM in cloud Johannesburg, South Africa HUAWEI CLOUDS 9/10
18 *.44.39.* /20 VM in cloud Istanbul, Turkey HUAWEI CLOUDS 10/10
19 *.46.221.* /17 VM in cloud Beijing, China HUAWEI CLOUDS 10/10
20 *.195.177.* /18 VM in cloud Shandong, China Tencent Cloud 10/10
21 *.36.245.* /16 Wi-Fi Virginia, United States Verizon Business 10/10
22 *.66.18.* /16 Wi-Fi Virginia, United States Verizon Business 10/10
23 *.198.141.* /22 Wi-Fi Washington, United States Cox Communications Inc. 10/10
24 *.223.36.* /15 Wi-Fi California, United States Comcast Cable Communications, LLC 9/10
25 *.58.21.* /16 Wi-Fi Burnaby, Canada Simon Fraser University 9/10
26 *.138.139.* /10 Wi-Fi Hesse, Germany Deutsche Telekom AG 8/10
27 *.92.167.* /20 Wi-Fi Kerala, India Bharat Sanchar Nigam LTD 10/10
28 *.129.63.* /18 Wi-Fi Beijing, China China Unicom Beijing 10/10
29 *.47.33.* /24 Wi-Fi Dhaka, Bangladesh Link3 Technologies Limited 10/10
30 *.114.95.* /14 Wi-Fi Yunnan, China China Telecom 10/10

communication between internal and external hosts. While the
differences among various NAT types stem from their use
cases, they all fundamentally center on managing the session
mappings for routing network traffic. Our attack leverages
the TCP session mappings, enabling Internet attackers to
craft TCP packets for manipulation. Consequently, the success
of our attack hinges on the target NAT device maintaining
stateful TCP connection mappings without enforcing legiti-
macy checks on the received TCP packets. This vulnerability
may exist in NAT devices implementing various NAT types,
including SNAT, DNAT, CGNAT, and others.

Through our empirical evaluations, we identify that SNAT
and CGNAT devices, widely deployed in the real-world, ex-
hibit this vulnerability significantly. A large number of SNAT
routers (as shown in Table III) and CGNAT devices from
ISPs (as shown in Table VI) are affected by our attack10.
Regarding DNAT, we establish an experimental environment
using the OpenWrt 22.03 router firmware as a NAT device
to enable the DNAT functionality. Our experimental results
reveal that the DNAT implementation in OpenWrt 22.03 is

10In our tests, certain CGNAT devices, e.g., China Unicom’s CGNAT
devices in Beijing (Table VI rows 6 and 28), maintain stateful TCP connec-
tion mappings without performing legitimacy checks, leaving the mappings
vulnerable to malicious removals. Interestingly, these devices do not adhere
to the TCP specifications for generating subsequent RST packets to tear
down the victim server’s sockets. Nonetheless, even in this scenario, the DoS
attack remains effective because the removal of the NAT device’s mappings
disrupts synchronization between the server and the NATed clients, resulting
in dropped data and exceptions.

vulnerable. Consequently, it is highly likely that many NAT
devices with the DNAT feature in the real world are also
susceptible. This is particularly concerning because OpenWrt
serves as the foundational firmware for over 20 derivative
projects11. Additionally, NAT-enabled IoT CPE routers may
be at risk, as the vulnerability persists in many underlying
router firmware. For instance, our testing shows that the ZTE
4G CPE 2 PRO router is vulnerable.

B. Impacts on IPv6

NAT is also widely used in IPv6 networks, including
NAT64, NAT66, and NAT46. Therefore, we discuss the impact
of our attack on these IPv6 NAT technologies. Using the
widely adopted OpenWrt 22.03 firmware as a NAT device,
we construct IPv6 networks for NAT64, NAT66, and NAT46,
and test whether the two vulnerabilities revealed in this paper
(i.e., the side channel in the PMTUD mechanism for NAT
identification and the removal of NAT session mappings via
crafted TCP RST packets) are still effective in these net-
works. For the side channel vulnerability, we identify that this
fundamental vulnerability consistently exists in three IPv6-
related NAT scenarios. First, in our NAT64 network setup, an
IPv6-enabled client accesses our server, deployed in Tencent
Cloud, through the OpenWrt 22.03-equipped NAT64 device
holding a public IPv4 address. The NAT64 device translates
the address information from IPv6 space to IPv4 space and

11OpenWrt followed by more than 20 derivative projects provides firmware
for over 2,000 types of NAT devices ( https://openwrt.org/toh/start).
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also translates the server’s response back to IPv6 space.
According to our method in Fig. 3, after the server issues the
ICMPv4 “Fragmentation Needed and DF Set” message, the
NAT64 device translates this message to an ICMPv6 “Packet
Too Big” message (ICMPv6 error message with Type=2 and
Code=0) and then forwards this ICMPv6 message to the
client. Consequently, the client updates its path MTU value to
the server. From the server’s perspective, the size of returned
TCP packets is then reduced accordingly, while the ping reply
packets from the same source remain unaffected. By contrast,
path MTU desynchronization does not occur if the requester
to the server is a separate IPv4 or IPv6 host. Similarly, in our
NAT46 and NAT66 network setups, the ICMPv6 “Packet Too
Big” message issued by the server also triggers path MTU
desynchronization, regardless of whether the NAT46 device
forwards the translated ICMPv4 “Fragmentation Needed and
DF Set” message to the IPv4 client or the NAT66 device
directly forwards the ICMPv6 message to the IPv6 client.

With regard to the vulnerability of NAT session mapping
removal, we also test three IPv6 NAT networks (i.e., networks
linked by NAT64, NAT46, and NAT66 devices respectively,
with the NAT devices equipped with the popular OpenWrt
22.03 firmware) to determine whether an off-path attacker
impersonating the server and forging a TCP RST packet with
an arbitrary sequence number can deceive the NAT device
into removing the corresponding TCP session mappings with
the server. The experimental results show that all three NAT
setups in our tests are vulnerable because the session mapping
maintenance module within the NAT implementation does not
enforce TCP sequence number checking. This vulnerability
is independent of the specific IP protocol (i.e., regardless of
whether it is IPv4 or IPv6).

C. Countermeasures

Responsible Disclosure. We reported the side channel that can
be exploited to identify NAT devices to IETF. Currently, we
are discussing this issue with the IETF security area directors,
and we are told that the issue has been added as an item for an
upcoming IETF Security Area meeting. Besides, we reported
our attack to the affected OS communities and identified ISPs.
Following our disclosure, FreeBSD, China Telecom, China
Unicom, China Mobile, ALICLOUD, HUAWEI CLOUDS,
and Tencent Cloud confirmed the occurrence of our DoS
attack stemming from their NAT implementations. These en-
tities also recognized our efforts in enhancing the security
of their services. Furthermore, two prominent NAT firmware
platforms, OpenWrt and Asuswrt, verified our DoS attack.
The underlying vulnerability within the core NAT firmware
extends its impact to a significant number of downstream
NAT vendors, including NETGEAR, Linksys, Huawei, TP-
Link, H3C, RuiJie, and Xiaomi, among others. We responsibly
disclosed this vulnerability to the affected vendors and re-
ceived acknowledgments from Linksys, Huawei, TP-Link, and
Xiaomi. We obtained 5 CVE/CNVD identifiers (CVE-2023-
6534, CVE-2023-31635, CNVD-2023-60783, CNVD-2023-
30194, CNVD-2023-30193) for the disclosed vulnerabilities.

In addition, we recommend our countermeasures to prevent
the identified DoS attack.
Fixing the Side Channel in PMTUD. The root cause of
the side channel, which allows attackers on the Internet to
remotely identify NAT devices, is a design flaw in NAT’s
PMTUD mechanism. Specifically, this flaw arises from in-
sufficient consideration of the PMTUD mechanism in NAT
specifications, leading to information leakage. This lack of
synchronization in the path MTU values from the same
source IP address results in exploitable information leakage,
enabling the identification of NAT devices. NAT technology
is extensively employed in diverse network scenarios, such
as 4G LTE/5G, Wi-Fi, IoT, ICS, and others. Consequently,
it is crucial to address this information leakage effectively
and prevent any further attacks. We propose enhancing the
design of PMTUD for NAT networks by mandating that NAT
devices not only translate ICMP “Fragmentation Needed and
DF Set” messages to internal clients but also synchronize
and update their own path MTU values for the server. This
approach ensures the consistency of path MTU values from
the same source IP address, effectively mitigating potential
security risks arising from information leakage. Note that NAT
devices may face a challenge in verifying the legitimacy of
the received ICMP error messages before updating their own
path MTU values. Addressing this requires NAT devices to
maintain more information, e.g., the window range of TCP
connections, enabling the validation for the received ICMP
error message’s legitimacy. We have reported this issue to the
IETF.
Enforcing More Strict Checks on TCP. The vulnerability
of NAT mapping removal arises from the absence of essential
checks for TCP RST packets in NAT implementations across
various scenarios. Although some recent OSes and router
firmware have implemented security mechanisms to verify the
legitimacy of received TCP RST packets, the majority of real-
world NAT devices—such as commercial NAT routers—often
do not perform these security checks. This oversight can
potentially lead to DoS attacks. A straightforward solution is to
mandate the NAT devices implement more strict checks on the
received TCP packets, particularly TCP control packets like
RST, by verifying if the carried sequence number falls within
the acceptable range of the corresponding TCP connection.
Note that more strict validations may potentially introduce
vulnerabilities, making the NAT device susceptible to attacks.
Due to limited resources in NAT devices, attackers could
exploit this by flooding the device with a high volume of
forged RST packets, compelling it to conduct additional checks
and depleting excessive resources. Nonetheless, we advocate
for the implementation of more strict checks on the received
TCP packets by NAT devices to mitigate potential attacks,
especially considering the crucial role that NAT plays in the
existing Internet infrastructure. A prototype based on OpenWrt
22.03 confirms the effectiveness of our countermeasure by
enabling TCP window checks, effectively thwarting remote
attackers’ manipulation of HTTP sessions issued from NATed
clients. We modify the kernel of our NAT device (running

14



OpenWrt 22.03) to check the sequence number of received
TCP packets before responding to them. This prevents off-path
attackers from removing TCP session mappings by sending
crafted out-of-band TCP RST packets with incorrect sequence
numbers, thereby thwarting the DoS attack. As a result, HTTP
access from our NATed clients to the remote HTTP server
remains unaffected in our tests.

IX. RELATED WORK

In this section, we review previous related works from two
aspects: NAT issues and DoS attacks.
NAT Issues. NAT plays a crucial role in network connectivity,
making it a prominent focus for academic studies. Prior works
show that malicious insiders of NAT networks may consume
limited resources of the NAT device to construct a DoS
attack [6], [32], [50]. For example, a malicious NAT client may
establish multiple (as many as 65,535) TCP connections with a
target server, thus preventing other clients from being assigned
available ephemeral ports to initiate TCP connections to the
server. Distinctively, in our attack, the attacker is not limited
by network topology, residing remotely on the Internet rather
than within the local NAT network. By rewriting NAT session
mappings and then intercepting the victim client’s TCP packets
in Wi-Fi Networks, Yang et al. exploited sequence number
leakage to hijack TCP connections [51]. They also discussed
constructing remote TCP DoS attacks. However, a significant
challenge for their DoS attack is the precise identification of a
remote NAT-enabled Wi-Fi router. We uncover a fundamental
side channel in the PMTUD mechanism of NAT specifications
that can be exploited to remotely identify NAT devices on
the Internet. Furthermore, we explore NAT implementation
disparities across native OSes, various router firmware, and
commercial routers, revealing our DoS attack’s fundamental
impact on a wide range of real-world NAT networks, i.e.,
beyond Wi-Fi to 4G LTE/5G cellular networks, Cloud VPS
networks, and more.

Bellovin proposed a method to identify a NAT network
and the associated hosts by examining the distributions of
IP IDs originating from a particular IP address [3]. However,
this approach may encounter difficulties when dealing with
packets that have zero or random IP IDs, leading to potential
complications. Other OS features such as the Don’t Fragment
(DF) flag, the Time-To-Live (TTL) field, the TCP window
size, the TCP source port, the initial sequence number (ISN),
and the SYN packet size were also utilized to identify NAT
networks and determine the number of hosts behind the net-
work [4], [34], [28], [18], [17], [45]. Essentially, the concept
behind these methods is that if an IP address is associated with
multiple hosts, it could suggest the presence of a NAT device
with distinct OS features behind it. However, it is easy to see
that these methods may generate substantial false alarms in
situations where a computer has multiple OSes installed or
when traffic obfuscation techniques are employed.

By exploiting middle-box protocols (e.g., UPnP), an attacker
could connect devices behind NAT gateways to identify NAT
networks. However, this technique requires the deployment

of application-layer middle-box protocols or the enabling of
malicious scripts on devices behind NAT gateways [38]. Gok-
cen et al. employed the Naive Bayes learning technique as a
classifier to identify NAT devices based on given traffic traces.
However, this approach heavily depends on the quality of the
collected datasets [16]. NAT was also exploited to execute
DNS hijacking. For example, Herzberg et al. demonstrated
techniques for bypassing source port randomization in NAT
networks and hijacked a local DNS resolver [20].
DoS Attacks. DoS attacks and network traffic manipulations
have been extensively studied in recent years [10], [39], [31],
[44]. Feng et al. discovered a side channel in the new mixed
IP ID assignment policy that can be exploited by off-path
attackers to terminate an SSH session [12], [13]. Cao et al. ,
leveraging a side channel in the challenge ACK mechanism,
uncovered a TCP hijacking attack capable of poisoning or
resetting victim TCP connections [9], [8]. Fortunately, most
of these previous attacks have been addressed by the se-
curity community [12], [13], [8], [9]. Additionally, recent
research has explored low-rate TCP-targeted DoS attacks [23],
[21], [40], [19] and congestion-based attacks on intermediate
links [41], [30]. In contrast to these studies, our research
focuses on a covert DoS attack specifically targeting NAT
networks. Previous works [43], [7] demonstrated that TCP
connections can be terminated by crafting RST packets, but
they require the attacker to be physically present on the host
to eavesdrop on the correct sequence number for crafting an
acceptable RST packet. In contrast, our attack can be executed
remotely by off-path attackers on the Internet.

X. CONCLUSION

In this paper, we conduct an empirical study on remote DoS
attacks against NAT networks. We uncover a side channel
stemming from insufficient considerations of the PMTUD
mechanism in the NAT specifications. This side channel leads
to the remote identification of NAT devices on the Internet.
Furthermore, we demonstrate that Internet attackers may ma-
nipulate TCP connection mappings in various NAT devices
using carefully crafted TCP RST packets. This manipulation
opens the door to remote DoS attacks targeting NAT networks.
Through extensively empirical studies conducted on various
NAT implementations and real-world NAT networks, we high-
light the significance of our DoS attack. Finally, we develop
countermeasures against the attack.
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APPENDIX

A. Snapshots of NAT Identification on the Internet

(a) Requiring the requester’s approval to proceed with our experiment.

(b) The identification result is sent back to the separate host.

(c) The identification result is sent back to the NATed client.

(d) The identification result is unknown.

Fig. 11. Snapshots of NAT identification results, observed by the NATed
client and the separate host in their web browsers, respectively, after clicking
the URL to proceed with our experiment.
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