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Abstract—With its disaggregated and virtualized design, the

Open Radio Access Network (ORAN) architecture offers signifi-

cant flexibility for 5G and emerging 6G networks, but introduces

critical security challenges in multi-tenant environments. When

hosted on shared hardware, virtualized components such as the

O-DU, O-CU, and RIC are vulnerable to side-channel attacks,

where malicious actors can exploit timing and resource-based

patterns to infer sensitive information across tenant boundaries.

This paper proposes a model that enhances isolation and resource

management within ORAN deployments by integrating deep

reinforcement learning (DRL) with container orchestration tech-

nologies. We present a workflow of the system that utilizes DRL

to dynamically manage resources and enforce strong tenant sepa-

ration within Kubernetes-managed environments. Our approach

mitigates cross-tenant interference and minimizes exposure to

side-channel attacks, supporting the integrity and resilience

of ORAN’s multi-tenant infrastructure. The proposed solution

provides a scalable framework for secure ORAN deployments,

setting a foundation for robust 6G network services while suggest-

ing future enhancements such as advanced adaptive monitoring

and timing obfuscation to fortify against timing-based exploits.

Index Terms—ORAN, Virtualization, Orchestration, Side-

Channel Attack, Deep Reinforcement Learning

I. INTRODUCTION

Context. The Open Radio Access Network architecture
is designed to offer flexibility, scalability, and vendor inter-
operability in 5G and upcoming 6G networks by disaggre-
gating traditional monolithic Radio Access Network (RAN)
functions [1]. In ORAN, critical RAN functions such as the
Distributed Unit (O-DU), Centralized Unit (O-CU), and the
RAN Intelligent Controller (RIC) are virtualized and often
deployed on shared hardware infrastructures. This virtualized,
multi-tenant environment allows operators to scale and adapt
their networks efficiently, deploying specialized applications
(xApps) and services tailored for diverse use cases, from
high-bandwidth applications to latency-sensitive services [2].
However, this shared infrastructure introduces new security
concerns, particularly side-channel attacks exploiting shared
resources.

Problems. As ORAN components share underlying phys-
ical resources like CPU, memory, and cache, they become
susceptible to side-channel attacks [3]. These attacks leverage
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Fig. 1: Leveraging Isolation and Resource Management for
securing ORAN components.

subtle patterns in resource usage, such as cache timing or
memory access, to infer sensitive information across tenants
or virtualized functions. For instance, an attacker may use
cache timing techniques to monitor usage patterns in a shared
environment, gaining insights into the behavior of critical
RAN functions or even extracting confidential data. This threat
is especially relevant in a multi-tenant ORAN setup, where
strong isolation is essential to prevent cross-tenant interference
and protect against information leakage. The risk posed by
these side-channel vulnerabilities underscores the need for
adaptive and intelligent resource isolation and management
mechanisms.

Proposed Solution. This paper proposes a novel model
solution that enhances isolation and resource management
within ORAN deployments by integrating deep reinforcement
learning (DRL) with container orchestration technologies. By
leveraging Kubernetes’ advanced features, such as names-
paces for logical separation, network policies to control inter-
component communication, and resource quotas to limit CPU
and memory usage, we enhance the isolation between ORAN
components as shown in Fig. 1. The integration of DRL
enables dynamic and intelligent resource allocation, allow-
ing the system to detect and mitigate side-channel threats
proactively. We present a system workflow that utilizes DRL
to manage resources adaptively and enforce strong tenant
separation within Kubernetes-managed environments.

II. SOLUSION DESIGN

In this section, we present the new solution that enhances
the security of multi-tenant ORAN environments by inte-
grating Kubernetes-based isolation and resource management



with DRL. This design aims to mitigate side-channel attacks
by enforcing strong tenant isolation, dynamically managing
resources, and proactively detecting potential threats.

A. Kubernetes-Based Isolation and Resource Management

Kubernetes serves as the foundational platform for orches-
trating containerized ORAN components. Using its features,
we achieve robust isolation and efficient resource manage-
ment, including:i) Feature 1: Kubernetes namespaces provide
a scope for names within the cluster, allowing for logical
separation of ORAN components and tenants. Each tenant and
ORAN function (e.g., O-DU, O-CU, RIC) operates within its
own namespace, ensuring that resources and workloads are
isolated at the cluster level; ii) Feature 2: Network policies
in Kubernetes define how pods communicate with each other
and with external services. By configuring strict network
policies, we limit the communication paths between com-
ponents, preventing unauthorized access and potential lateral
movement by malicious actors; iii) Feature 3: We implement
resource quotas and limits to prevent resource exhaustion and
reduce the risk of timing-based side-channel attacks. Quotas

at the namespace level and limits at the pod level control the
maximum CPU, memory, and storage resources that can be
consumed, ensuring fair resource distribution among tenants.

B. Integration of Deep Reinforcement Learning

We integrate DRL into the Kubernetes-managed ORAN
environment to enhance security and optimize resource uti-
lization dynamically: i) DRL agents are trained to monitor
resource usage patterns and adjust real-time allocations. By
learning from the environment, these agents can allocate
resources efficiently while introducing variability that obscures
usage patterns exploitable by side-channel attacks; ii) The
DRL system continuously evaluates the state of the cluster to
enforce network policies and resource limits adaptively. This
proactive approach allows the system to respond to anomalous
behaviors or changing workload demands promptly.

The workflow of the integrated system is described in Fig. 2
below:

• Step 1: Collect real-time metrics (CPU, memory, traffic
patterns) from ORAN components (O-DU, O-CU, Near-
RT RIC, Non-RT RIC) via O1, A1, E2 interfaces 1 .

• Step 2: Preprocess the data (cleaning, normalization,
feature extraction) to make it ready for training and
inference 2 .

• Step 3: Train DRL agents using algorithms like Prox-
imal Policy Optimization (PPO) to develop policies for
resource management, tenant isolation, and security 3 .

• Step 4: Publish the trained policies through the DRL

Agent Management module 4 . Deploy the agents to
the DRL Inference module for real-time decision-making.
The agents are integrated with Kubernetes APIs to man-
age system resources.

• Step 5: The DRL inference system processes real-time
inputs to evaluate the network state and produce ac-
tionable insights. These insights are translated into: i )
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Fig. 2: End-to-End Deep Reinforcement Learning workflow in
ORAN

configuration Updates (O1) for resource management, ii)
control Actions (E2) to optimize scheduling or traffic
flow, iii) policy Updates (A1/E2) for tenant-specific and
operational policies 5 .

• Step 6: Execute these actions dynamically on ORAN
components to optimize performance, isolation, and se-
curity 6 .

• Step 7: Monitor performance and collect feedback met-
rics (resource utilization, latency, interference) 7 .

• Step 8: Refine DRL policies based on feedback and
updated observations from O1, A1, and E2 8 .

• Step 9: Iterate continuously, retraining policies to adapt
to network conditions and emerging threats 9 , 10 .

III. CONCLUSION

This paper presents a robust integration of Deep Reinforce-
ment Learning (DRL) and Kubernetes to address resource
management and security challenges in multi-tenant ORAN
environments. The proposed framework effectively mitigates
side-channel attacks and optimizes network performance by
leveraging DRL agents for dynamic resource allocation and
adaptive policy enforcement, combined with Kubernetes’ iso-
lation features. This scalable solution lays the groundwork
for secure, efficient, and adaptive ORAN deployments, paving
the way for future 6G networks. As a next step, we plan to
implement a prototype of the proposed approach to evaluate
its performance in real-world scenarios. This will involve in-
vestigating its effectiveness in meeting the intended objectives,
such as enhanced security, improved resource utilization, and
scalability in dynamic ORAN environments. These efforts will
further validate the feasibility of this framework and inform
future advancements in 6G virtualization.
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significant flexibility for 5G and emerging 6G networks,

but introduces critical security challenges in multi-tenant

environments. When hosted on shared hardware, virtu-

alized components such as the O-DU, O-CU, and RIC are

vulnerable to side-channel attacks, where malicious ac-

tors can exploit timing and resource-based patterns to in-

fer sensitive information across tenant boundaries. This

paper proposes a model that enhances isolation and re-

source management within ORAN deployments by inte-

grating deep reinforcement learning (DRL) with container

orchestration technologies.

We present a workflow of the system that utilizes DRL

to dynamically manage resources and enforce strong ten-

ant separation within Kubernetes-managed environments.

Our approach mitigates cross-tenant interference and min-

imizes exposure to side-channel attacks, supporting the in-

tegrity and resilience of ORAN’s multi-tenant infrastruc-

ture.

Proposed Solution
1.Enhanced Isolation and Resource Management: The pro-

posed model integrates deep reinforcement learning (DRL)

with:

- Kubernetes container orchestration technologies

- leveraging features like namespaces, network policies,

- resource quotas

2.Dynamic and Adaptive Resource Allocation: DRL enables

intelligent resource management, allowing the system to

proactively detect and mitigate security threats while en-

forcing strong tenant separation in Kubernetes-managed en-

vironments.
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Figure 1: Leveraging Isolation and Resource Management for securing ORAN com-
ponents.

Integration of Deep Reinforcement Learning
The workflow of the integrated system is described below:
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Figure 2: End-to-End Deep Reinforcement Learning workflow in ORAN

1.Data Collection and Preprocessing: Gather real-time met-

rics from ORAN components via O1, A1, E2 interfaces and

preprocess for training and inference.

2.DRL Training and Deployment: Train DRL agents (e.g.,

PPO) for resource management and deploy policies via Ku-

bernetes APIs for real-time decision-making.

3.Action Execution: Apply insights to manage resources, op-

timize traffic, and enforce tenant policies dynamically on

ORAN components.

4.Monitoring and Refinement: Continuously monitor perfor-

mance, collect feedback, and refine DRL policies to adapt to

changing network conditions and threats.

Figure 3: Kubernetes Dashboard

Conclusion and Future Plan

1.Prototype Implementation: Develop and test a prototype of

the proposed framework in real-world ORAN scenarios.

2.Performance Evaluation: Assess the framework’s effective-

ness in enhancing security, improving resource utilization,

and achieving scalability.

3.Framework Validation: Validate the feasibility of the ap-

proach and refine it based on real-world observations.
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