
Poster: Evaluation of Radio Jamming
Countermeasures in IoT Thread Networks

Poonam Yadav
Computer Science Department

University of York, UK
poonam.yadav@york.ac.uk

Anthony Moulds
Computer Science Department

University of York, UK
anthony.moulds@york.ac.uk

Peter Gillingham
Computer Science Department

University of York, UK
peter.gillingham@york.ac.uk

Abstract—The Thread mesh networking protocol, designed for
IoT communication, ensures network layer interoperability but
remains vulnerable to security threats. A major risk is denial-of-
service (DoS) attacks, which can overwhelm networks, causing
congestion and device failures. While Thread’s self-healing mesh
mitigates some risks, devices must be robust against resource
exhaustion attacks. This paper examines DoS attacks via radio
jamming, implementing a jamming system on a bespoke Thread
Testbed. A countermeasure using standard channel hopping is
proposed and tested, demonstrating its effectiveness.

I. INTRODUCTION

IoT devices use various communication protocols like Wi-
Fi [1], Bluetooth [2], Zigbee [3], [4], and Thread [5], [6],
each with unique advantages and limitations. However, these
networks are susceptible to radio jamming attacks [7], [8], [6],
where adversaries interfere with legitimate communication by
emitting disruptive radio signal or by replying the packets.
In this work we investigate Thread network susceptibility to
Denial-of-Service attacks via radio/packet jamming, setting
up a testbed, constructing a jamming system, and developing
countermeasures.

II. CHANNEL JAMMING AND COUNTERMEASURE
EXPERIMENT AND RESULTS

A. Thread Testbed Setup

A bespoke Testbed was developed for Thread networking
experiments, featuring a 20-node setup with a Border Router
(BR), four Full Thread Devices (FTDs), and 15 Minimal
Thread Devices (MTDs). Nordic Semiconductor nRF5340DK
boards were used for FTDs, while nRF52840 USB Dongles
were chosen for MTDs. Each Thread device was connected to
a Raspberry Pi via USB for power and debugging. To emulate
real-world conditions, transmit power levels were reduced (-
20 dBm for FTDs, -40 dBm for MTDs) to encourage local
grouping of End Devices with their nearest Router, maintain-
ing a single unpartitioned network. The Nordic Semiconductor

nRF52840-DK is used for network scanning and the Sewio
OpenSniffer is used for packet injection.

1) Channel Sniffing and Jamming: Since the jamming
attack relies on saturating the channel rather than establishing
a connection, only the active channel needs to be identified.
The OpenThread CLI’s scan command, utilizing the Mesh
Link Establishment (MLE) protocol, retrieves the channel
number, PAN ID, Extended PAN ID, and network name,
helping confirm a valid Thread network. The identified channel
is then used for packet injection via the Sewio OpenSniffer.
The OpenSniffer injects IEEE 802.15.4 packets with a 1 ms
inter-frame spacing (IFS) to disrupt communication. Packet
transmission is preferred over a modulated carrier wave as it
enables jamming event marking in Wireshark and interferes
with the MAC layer, increasing the likelihood of a successful
attack. Controlled via HTTP commands over an RJ45 connec-
tion, the OpenSniffer transmits payload-free packets through
a 12 dBi directional antenna with a 20 dB LNA, ensuring
sufficient coverage of the entire network. The transmitted
signal power is approximately 15 dBm.

Discover
Thread

Networks

Retrieve
Channel
Number

Packet
Injection

Fig. 1. Flow chart describing Channel Sniffing and Jamming Process.

B. Jamming Countermeasure

When active, the single channel radio jamming apparatus,
described in this paper, attacks the IEEE 802.15.4 PHY in the
Thread stack layer of each node on the Thread network. If
sufficient RF energy is received from the transmitted jamming
source on the correct channel by the PHY’s receiver, the
Thread device’s MAC sub-layer inhibits transmitting packets
due to a poor clear quality assessment (CCA) result in the
CSMA/CA mechanism. In addition, reception of any valid
IEEE 802.15.4 packets will be rendered impossible due to
useless or severely degraded S/N ratio at the PHY receiver,
where the ‘useful’ signal content is lost in the jamming
‘noise’. Consequently, the Thread nodes are incapable of both
transmitting and receiving IEEE 802.15.4 packets. De-tuning
the PHY’s narrow-band transceiver to another channel however
will remove the jamming event. Hence, a valid countermeasure

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.[23|24]xxxx
www.ndss-symposium.org

is to perform a channel hop to an alternative unoccupied
frequency. This section describes an implementation of this
countermeasure method on the Testbed; where the Thread
devices were programmed with firmware written in the C
programming language, incorporating Google’s well-known
open-source OpenThread API [9]. The developed counter-
measure source files are available for download from the
research group’s public GitHub repository. The developed
countermeasure source files are available for download from
the GitHub [10].

1) Jamming Detection: Reliable jamming detection was
implemented by monitoring the PHY layer’s RSSI in the
Thread device firmware. A threshold was set by measuring
the minimum RSSI without jamming and adding a -12 dBm
margin. If exceeded for 10 seconds, a channel hop was
triggered. SED devices, which normally disable their radios
to save power, were programmed to periodically assess RSSI
like MED devices, detecting jamming when the threshold was
surpassed.

2) Channel Hopping: After detecting a jamming event,
each Thread node must prepare to jump to an alternative
channel. In the experiment, an array of up to 16 IEEE 802.15.4
channels was created by the Thread Leader on initial creation
of its network (with no jamming applied) by performing a
frequency scan to determine available unoccupied channels,
and populated its array. After sorting, the array contents are
ordered randomly, with a Hop Index created to point to the
next hop in the list. As Thread devices joined the network, the

Start
Jamming
Detector

Jamming
Detected?

Y

N

N

Y MTD
Node?

Stop
Thread

Interface

Restart
Thread

Interface

Change Channel
to Hop Channel

in List
Increment List Ptr

Delay,
TD

Fig. 2. Flow diagram of the implemented single-channel Countermeasure.

list and index were shared among nodes—Routers fetched data
from the Leader, while Child devices obtained it from their
Parent. This ensured synchronization for a coordinated channel
hop during jamming. The countermeasure’s flow diagram and
timing are illustrated in figures, with equations defining re-
covery time. For networks with one FTD and multiple MTDs,
hop time factors include jamming detection delay, channel
change time, and Leader restart time. In larger networks, a
fixed delay for MTDs ensures stable topology. Both MEDs
and SEDs followed the same hopping mechanism.

C. Countermeasure Performance

Two experiments were completed on the Testbed to evaluate
the performance of the Countermeasure, in increasing Thread
network complexity; the first executed on a network topology
comprising of just one FTD and up to 19 MEDs, and the
second comprising five FTDs and 15 MEDs. Using the timing
information contained in the on-device timestamped data and
event logs maintained in each Testbed Thread device, it

was shown that each node detected the jamming event and
successfully performed a channel hop.

D. Jamming Attack Mitigation
The experimental results show that it was possible to

repeatedly detect radio jamming of the Thread network and
that a Countermeasure, by applying channel hopping, proved
reliable. However, if the Jamming equipment is continuously
tracking the network, then the networked system is perpetually
compromised and unable to function. The network’s Border
Router(s) can be configured to broadcast an alert message
(via Ethernet, cellular network, LoRaWAN, etc.) flagging the
DoS attack, so action can be taken. In addition, the individual
Thread devices can be programmed or configured to enter a
‘safe’ mode during the attack period. For example, a door
lock should close when attacked or a security lamp should
illuminate.

III. CONCLUSION AND FUTURE WORK

We implemented a channel hopping countermeasure using
off-the-shelf Thread hardware and demonstrated its effective-
ness against jamming attacks on a bespoke Testbed. The
countermeasure successfully performed continuous channel
hopping until the jammer ceased tracking or the Thread
system entered safe mode. Future work includes reducing hop
latency, improving partial jamming handling, and exploring
alternative defense strategies. All code is publicly available
on the research group’s GitHub [10]. This work is supported,
in part, by EPSRC & DSIT funded projects (EP/X040518/1),
(EP/Y037421/1), and (EP/Y019229/1).

REFERENCES

[1] S. Pradhan, W. Sun, G. Baig, and L. Qiu, “Combating replay
attacks against voice assistants,” Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol., vol. 3, no. 3, sep 2019. [Online]. Available:
https://doi.org/10.1145/3351258

[2] K. Lounis and M. Zulkernine, “Attacks and defenses in short-range
wireless technologies for iot,” IEEE Access, vol. 8, pp. 88 892–88 932,
2020.

[3] I. S. . W. Group, “Ieee standard for low-rate wireless networks,” IEEE
Std 802.15.4-2020, pp. 1–800, 2020.

[4] C. M. Ramya, M. Shanmugaraj, and R. Prabakaran, “Study on zigbee
technology,” in 2011 3rd International Conference on Electronics Com-
puter Technology, vol. 6, 2011, pp. 297–301.

[5] Threadgroup, “Overview of Thread,”
https://www.threadgroup.org/What-is-Thread/Overview/, accessed
on 25th Oct 2022.

[6] P. Yadav, N. Sagathia, and D. Wade, “Demo: Battery depletion attack
through packet injection on iot thread mesh network,” in 2024 16th
International Conference on COMmunication Systems & NETworkS
(COMSNETS), 2024, pp. 318–320.

[7] E. Bout and V. Loscrı́, “An adaptable module for designing jamming
attacks in wifi networks for ns-3,” in Proceedings of the 25th
International ACM Conference on Modeling Analysis and Simulation of
Wireless and Mobile Systems, ser. MSWiM ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 121–124. [Online].
Available: https://doi.org/10.1145/3551659.3559059

[8] E. Bout, V. Loscri, and A. Gallais, “Evolution of iot security: The era
of smart attacks,” IEEE Internet of Things Magazine, vol. 5, no. 1, pp.
108–113, 2022.

[9] OpenThread, “API,” https://openthread.io/reference/, accessed on 7th
November 2024.

[10] SystronLab, “Thread Edge Testbed GitHub,”
https://github.com/SystronLab/thread-edge-testbed, accessed on 7th
Nov 2024.

Poster: Evaluation of Radio Jamming
Countermeasures in IoT Thread Networks

Poonam Yadav, Anthony Moulds, Peter Gillingham University of York, UK

Read about our research
systronlab.github.io/projects
poonam.yadav@york.ac.uk

● The Thread protocol implements the IEEE 802.15.4 standard for establishing a radio network between IoT devices. This medium however results in the network being vulnerable to
radio channel jamming.

● We need a solution to countermeasure a radio jamming attack, enabling Thread network to recover gracefully.
● Countermeasure must be hardware agnostic and available as software in the form of an API.

Jamming Attack Scenario

We demonstrated how relatively simple it is to jam or disrupt Thread radio links and apply a
network-wide DoS. An implementation of a channel hopping countermeasure using real
off-the-shelf Thread-capable hardware was proposed, and its effectiveness demonstrated. We
showed the success of this defense mechanism against an applied jamming attack using a
bespoke Testbed. Its ability to successfully channel hop continuously through a list of
randomized available channels was shown. The countermeasure runs until either the jammer
stops tracking the network or the Thread system enters a safe-mode fallback.

Further Work: reduce countermeasure channel-hop latency, better handling of partial network
jamming, research defence against multi-channel jamming. This work is supported by EPSRC &
DSIT funded projects (EP/X040518/1), (EP/Y037421/1), and (EP/Y019229/1).

● With 30 billion Internet of Things (IoT) devices set to being connected globally by
2030, there are growing concerns around network security.

● We demonstrated how simple it is to apply a denial-of-service (DoS) attack on a
Thread network using readily available off-the-shelf (OTS) equipment.

Jamming a Thread network is achievable by saturation of the network with
continuous IEEE 802.15.4 packets, only requiring knowledge of the network's radio
channel number. The channel can be discovered by using OTS hardware, such as the
nRF5340DK (shown above).

Problem and Motivation

Countermeasure Design and ResultsTestbed and Setup

Conclusion and Further Work

● Implements 'channel hopping' to countermeasure continuous jamming attacks; uses
OpenThread API to ensure compatibility with most Thread development platforms.

● Capable of continuously hopping channels specified in an array determined by the Thread
Leader device; the channel hop array is randomized and ordered.

● The array is distributed to all network nodes.

IEEE 802.15.4 PHY & MAC
2.4 GHz (16 available
channels)

Example of Thread Mesh
Network

With Radio Jamming applied
the communication links
between Thread devices are
inoperable resulting in
network collapse.

Jamming
Signal

Countermeasure flow diagram.

We need to create a valid hop list from available free
channels.

TCOUNTERMEASURE = TJD + THOP

THOP = TC + TL + max{TMTD1 ,...TMTDN} for single FTD

THOP = TC + TL + max{TD1 ,...TDN} when TD>TR

TJD = Jamming detection time
TC = Channel change time
TL = Time for Leader to restart network
TMTD = Time for MTD devices to re-attach
TD = Optional device attachment delay
TR = Time for Router devices to re-attach

Results show Channel Hop THOP in 30 sec (max) for a Thread mesh network of 20 devices.

A 3D Spectrogram (X,Y,Z: frequency, power,
time) of network channel frequency,
showing the countermeasure applying
consecutive channel hops during
continuous jamming (where the jammer is
capable of tracking network channel
changes).

All sixteen channels are shown hopped.

A bespoke Testbed was specially designed and built to perform the experiments with
Thread networking, enabling easy placement of Thread devices to a wall mounted
magnetic panel. A Thread network made up of 20 nodes was used, consisting a Border
Router, 4 Full Thread Devices (FTDs) and 15 Minimal Thread Devices (MTDs).

The network jamming attack was applied through IEEE 802.15.4 packet injection from a
Sewio OpenSniffer device, injecting empty packets (no payload) into the network with
minimal interframe spacing, rendering the network unusable. To conduct the attack, a
Yagi antenna was pointed at the testbed at a distance of 1.5 m and transmitting at +17
dB, resulting in a minimum received signal strength indicator (RSSI) value across the
testbed of -48 dB.

Left: Yagi antenna
pointed at the
Testbed.

Right: nRF52840
Dongle MTD (top)
and nRF5340DK FTD
(bottom) used in the
experiments

With the OpenSniffer combined with an nRF5340DK, forming the jamming system, a potential
attacker could easily and inexpensively detect and disrupt a Thread network, leading to sensors
and security cameras not transmitting for example, or IoT locks not being operable and security
alarms being unusable.

The Sewio OpenSniffer is a readily
available OTS device for use in

packet injection onto a given IEEE
802.15.4 network channel.

The single-channel jamming system developed for the
research is capable of tracking and jamming all sixteen

Thread network radio channels in succession.

2.40 GHz 2.49 GHz

