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Abstract—Smart contracts play a pivotal role in blockchain
applications but are increasingly targeted by attackers, resulting
in significant financial losses. As their adoption grows across
various industries, ensuring their security has become more im-
portant than ever. Fuzzing has emerged as an effective technique
for detecting vulnerabilities in smart contracts. However, a major
limitation of current fuzzing methods is their struggle to generate
a high-quality initial seed corpus, leading to low code coverage,
which is crucial for comprehensive vulnerability detection. To
address this, we propose FuzzLGen, a novel framework that
integrates LLM-based agents with program analysis to generate
an initial seed corpus. This approach not only enhances fuzzing
effectiveness but also resolves the reliability issues associated with
LLM-based vulnerability detection by leveraging fuzz execution.
We evaluated FuzzLGen by applying it to a state-of-the-art
smart contract fuzzer. The experimental results demonstrate
that the high-quality initial seed corpus generated by FuzzLGen
significantly boosts the efficiency of fuzzing, highlighting the
framework’s effectiveness in enhancing smart contract security.

I. MOTIVATION

A critical factor influencing fuzzing effectiveness is con-
structing a high-quality initial seed [1]. A well-crafted seed can
produce valuable mutations, enabling deeper path exploration
and helping to uncover vulnerabilities. However, recent exper-
imental reviews [2] indicate that current fuzzing techniques for
smart contracts struggle with generating effective initial seed
corpus, limiting their ability to achieve comprehensive path
coverage. Given this, it is crucial to optimize the generation
of high-quality initial seed corpus for smart contracts.

Recent developments in Large Language Models (LLMs)
have introduced new insights and potential solutions in soft-
ware engineering, which may lead to innovative approaches
for generating initial seeds in smart contract fuzzing. However,
directly querying LLMs for seed generation tends to produce
high false positives and negatives, due to the intricate depen-
dencies of smart contract variables, LLM hallucinations, and
the infeasibility of feeding multiple Solidity code files into
LLMs. To solve these problems, we propose FuzzLGen, the
first seed generation framework for smart contract fuzzing that
combines LLM-based agents and program analysis.

II. CHALLENGES AND APPROACH

We encountered three key challenges during the design
and implementation of FuzzLGen: C1: Smart contract projects
often consist of multiple Solidity files, making it impractical

or costly to process all of them through LLMs directly. While
prior work has used specific function filtering techniques to
reduce contract size for LLM applications [3], this approach
is inadequate for contract size reduction in coverage analysis.
Removing certain functions may result in the loss of essential
dependencies required for properly executing various branches
within the contract. C2: Directly using LLMs struggles to
accurately generate transaction sequences that satisfy the intri-
cate branch constraints in contracts, which are difficult to cover
due to the complex and potential circular dependencies be-
tween state variables. C3: LLMs may encounter hallucination
issues, generating results that do not align with the transaction
specifications, making them unusable by the fuzzer.

To address these challenges, we design FuzzLGen, a solu-
tion that combines multiple LLM-based agents with program
analysis. The input to FuzzLGen is a smart contract project,
and its output is an initial seed corpus for the fuzzer. The
architecture of FuzzLGen, shown in Figure 1, is explained
in detail below. To address Challenge 1, we first eliminate
code that poses no security risks, such as verified library
code, and remove non-essential comments. For cases where
the contract remains too large, we employ static dependency
analysis to group functions based on their interdependencies.
This approach identifies and captures branch dependencies,
where a variable is read in one function and written in another,
as well as function call dependencies, which are represented
as a directed graph. After transforming this graph into an
undirected one, we can cluster related functions, preserving the
contract’s logic and branch coverage while reducing its size.
To address Challenge 2, the key idea is to enhance the LLM’s
understanding of Solidity code, especially in handling circular
dependencies between state variables. To achieve this, we first
identify the basic control flow structure within the Solidity
code, which can then be utilized to generate valid transaction
sequences. We design the BlockAnalyzer agent for this task.
BlockAnalyzer identifies basic blocks that do not contain
jump instructions and is equipped with knowledge of Solid-
ity syntax. It recognizes critical constructs like require,
assert, and function calls, which can alter the execution
flow. The agent outputs the basic blocks, providing essential
information that enables the PathDesigner agent to generate
valid transaction sequences. The PathDesigner agent is tasked
with generating transaction sequences, guided by restrictions
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Fig. 1. Overview of FuzzLGen.

we define, such as condition validations, function call depen-
dencies, and proper variable initializations. These constraints
ensure the validity of transaction paths. The output consists
of transaction sequences, including function parameters and
transaction arguments. To address Challenge 3, we create the
ErrorHandler agent, designed to identify and resolve errors
in the sequences generated by PathDesigner. These errors
can stem from hallucination issues, which prevent the fuzzer
from executing the sequences, or from results exceeding the
allowed output length. The ErrorHandler agent resolves these
issues by taking one of two actions: Reduction or Modify.
The Reduction action shortens the result when its length
exceeds the prompt’s output limit. The Modify action involves
correcting the result and then regenerating the seed.

III. EVALUATION

To validate the effectiveness of the initial seeds generated by
FuzzLGen, we utilized them as input for Smartian [4], a state-
of-the-art fuzzer, which achieves higher code coverage than
other tools [2]. The experiment compared the vulnerability de-
tection performance under three conditions: using Smartian’s
default seed corpus, the FuzzLGen-generated seed corpus
(denoted as LSeedSmartian), and the seed corpus directly
generated by LLMs (denoted as LLMSmartian). All setups
adhered to Smartian’s vulnerability detection framework, with
consistent execution time (one hour per contract), a benchmark
dataset of 500 contracts, and vulnerability definitions, ensuring
a fair comparison. Figure 2 presents the results. The upper
figure shows the variation in the number of vulnerabilities
detected by the fuzzer over time, depending on the initial seeds
used. Notably, within the same timeframe, FuzzLGen detects
more vulnerabilities, with a 22.4% improvement over Smar-
tian. In contrast, the LLM-generated seeds show only a small
performance improvement over Smartian, with an increase of
just 4.7%. While LLM introduces new insights and potential
solutions for software engineering, its direct application yields
limited improvement. The lower figure shows the ability to
detect vulnerabilities across different vulnerability categories.
FuzzLGen outperforms Smartian in most of these categories.
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Fig. 2. Number of bugs found by different initial seed corpus.

IV. CONCLUSION

In this paper, we proposed FuzzLGen, the first seed gen-
eration framework for smart contract fuzzing via LLM-based
agents and program analysis. We applied it to a state-of-the-art
smart contract fuzzer, and the experimental results demonstrate
that a high-quality initial seed corpus generated by FuzzLGen
substantially enhances the effectiveness of the fuzzer.
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Evaluation

Introduction Challenges
• Current smart contracts fuzzing techniques struggle with

generating effective initial seed corpus [1].
• Large Language Models (LLMs) have introduced new

insights and potential solutions in software engineering,
yet their application to smart contract seed generation
remains unexplored and challenging.

• We proposed FuzzLGen, the first seed generation
framework for smart contract fuzzing that combines LLM-
based agents and program analysis.

• C1: Smart contracts often consist of multiple Solidity files, making
direct LLM processing impractical. While existing function-filtering
methods can reduce contract size [2], they do not effectively
support LLM-based coverage analysis.

• C2: LLMs struggle to generate transaction sequences that
accurately satisfy complex branch constraints, hindered by
intricate and circular dependencies among state variables.

• C3: LLMs may produce outputs misaligned with transaction
specifications, rendering them unusable for fuzzing.
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• FuzzLGen detects more vulnerabilities,
with a 22.4% increase over Smartian
and an 18.1% increase over the direct
use of LLM.

• In the same timeframe, FuzzLGen
detected more vulnerabilities.

• FuzzLGen outperforms Smartian in
most vulnerability categories.

Generate transaction sequences


