
Poster: Usability, Acceptability, and Efficacy of
SBOM Visualization and AI Assistant

Xinyao Ma, Ankith Veldandi, Zitao Zhang, Peter Caven, Ambarish Gurjar, L. Jean Camp
Indiana University Bloomington

(maxiny, aveldan, zhangzit, pcaven, agurjar, ljcamp)@iu.edu

Abstract—The Software Bill of Materials (SBOM) has emerged

as a critical tool for mitigating information asymmetry in the

software security market. By promoting transparency across

the software supply chain, SBOMs provide stakeholders with

essential information to support decision-making throughout

a product’s lifecycle. This transparency has the potential to

systematically improve awareness of vulnerabilities and risks in

software development. To make SBOM content more accessible

and actionable, multiple visualization tools have been developed.

We conducted quantitative and qualitative experiments to eval-

uate the usability, acceptability, and efficacy of popular SBOM

visualization tools. Our findings reveal that while visualizations

are helpful, they often fall short in scalability and risk communi-

cation, particularly for complex dependency graphs. Motivated

by these limitations, we propose BomBot, an LLM-based AI

assistant, designed to help developers and stakeholders better

understand and interact with software supply chain information.

I. INTRODUCTION

The SBOM is a critical tool in software development,
providing a nested inventory of the components that make up
a software product [1]. SBOMs are essential for identifying
vulnerabilities and ensuring software security [2]. However,
the complexity of SBOM data often makes it challenging
for developers and stakeholders to interpret and act upon the
information effectively.

We aim to develop an AI-powered assistant, BomBot, de-
signed to address these challenges by providing visualization,
understanding, vulnerability identification, and suggestions
capabilities for SBOMs. BomBot leverages Large Language
Models (LLMs) to interact with users, answer questions, and
provide actionable insights. The motivation behind BomBot
stems from the limitations of current SBOM visualization
tools, which, while useful, often fall short in terms of usability,
accuracy, and scalability, especially when dealing with large
and complex dependency graphs.

In our previous research experiment, we compare the
straightforward provision of SBOM data with two popular
open-source visualization tools, ItDepends and DeepBits, with
the traditional JSON text files. Our results illustrate the need
for more effective communication within the current security
market. While SBOMs may present an effective and viable
option, their current instantiation is not suitable for most
consumers. This paper seeks to understand the implications
of information conveyance of complex code. Specifically, we
focus on how visualizing machine-readable SBOMs can be
used to increase transparency and mitigate the vulnerability

of security and privacy. The results indicate that simply
visualizing the interdependencies within nested code creates a
144.94% increase in a more accurate selection and a 162.78%
increase in risk evaluation of vulnerabilities.

II. METHODOLOGY

The methodology for developing and evaluating BomBot
was structured into three main phases: visualization evaluation,
chatbot development, and user interaction design. Each phase
was designed to address specific challenges in SBOM analysis
and vulnerability identification.

A. Visualization Evaluation

Fig. 1. Experiment design.

Two visualization tools, It-Depends and DeepBits, were
chosen for their ability to generate SBOM visualizations from
.json files and clear and easy-to-understand structures with
nodes connected with lines. The evaluation was conducted
using a controlled experiment where participants were asked
to interact with SBOM visualizations of varying complexity.
The visualizations were assessed based on their usability,
acceptability, and accuracy in identifying vulnerabilities and
providing mitigation strategies. Usability was measured using
the NASA Task Load Index (TLX), which evaluates mental
demand, physical demand, temporal demand, performance,
effort, and frustration. Acceptability and accuracy were mea-
sured through user surveys and task completion rates.

B. Chatbot Development

BomBot was developed as a Retrieval-Augmented Genera-
tion (RAG) Bot, leveraging LLMs to answer questions about
SBOMs. The chatbot integrates with the Open Source Vulnera-
bility (OSV) database to identify and categorize vulnerabilities
by risk level (low, medium, high). The system provides real-
time updates on vulnerabilities; however, mitigation informa-
tion currently requires manual input, as zero-shot training for
this task does not consistently yield accurate results.

C. Plan: User Interaction Design
Participants were given tasks to identify vulnerabilities in

SBOMs using both visualization tools and the chatbot. The
tasks were designed to simulate real-world scenarios where
developers need to assess the security of software components.

III. EVALUATION

The evaluation of the SBOM visualization tools was con-
ducted through a combination of quantitative and qualita-
tive measures. The evaluation of BomBot is planned to be
conducted as an online AI-assisted vulnerability identify and
mitigate human subject experiment, from experts to novices.

A. Visualization Efficacy

Fig. 2. Acceptability Results: finishing rates for three groups.

Fig. 3. Accuracy Results: task scores for experiment tasks and risk evaluation
of vulnerability packages for three groups.

Q1 Mentally
demanding

Q2 Hurried or rushed

Q3 Successful

Q4 Hard to
accomplish

Q5 Discouraged,
stressed, annoyed

0 5 10 15

ItDepends DeepBits JSON

Fig. 4. Usability as Measured by the NASA Task Load Index.

The NASA TLX results indicated that while visualizations
were useful, they were also mentally demanding and could
be stressful for users. Participants reported high levels of
mental effort (Q1) and frustration (Q5) when working on these
tasks. Survey results in Fig. 4 showed that 80% to 83% of
participants in visualization groups finished all tasks, but only
48.9% in the JSON group finished in Fig. 2. This discrepancy

highlights the utility of SBOM visualizations. Participants also
identified vulnerabilities with a high degree of accuracy using
the visualizations, see Fig. 3. However, the task was perceived
as burdensome, even for small packages, and likely infeasible
for graphs with thousands of nodes.

B. Future Plan: BomBot Performance
We expect the BomBot to be able to achieve high accuracy

in identifying and categorizing vulnerabilities. Participants
could query the BomBot for specific vulnerabilities (e.g., in
the Jinja2 package) and receive accurate risk assessments (e.g.,
high-risk vs. low-risk). In the real-world experiment, we expect
participants to report higher satisfaction with the BomBot than
with traditional visualization tools. The interactive nature of
the BomBot allowed users to ask questions and receive im-
mediate feedback, reducing the cognitive load associated with
interpreting complex SBOM data. The bot will then compare
the new SBOM with the original, analyze the changes, and
provide feedback on how those updates have impacted the
software’s security.

IV. CONCLUSION

While visualizations were helpful, they were not sufficient
for understanding complex SBOM data, especially for large-
scale projects. The chatbot, on the other hand, offered a more
interactive and scalable solution capable of addressing con-
cerns and answering questions regardless of the complexity of
the SBOM. We plan to integrate Microsoft Copilot suggestions
with SBOM generation to create a seamless advisory system
that provides real-time recommendations during the software
development process. Future work will focus on automating
risk mitigation information using models like BAAI/bg-m3
and BERT to provide more accurate and consistent mitigation
strategies. The team aims to expand BomBot’s capabilities
to include automated compliance verification, ensuring that
software meets regulatory and security standards. Additionally,
BomBot will collaborate with GUAC (Graph for Understand-
ing Artifact Composition) for future visualization evaluations
and API integration, enhancing the chatbot’s ability to process
and visualize complex SBOM data.

ACKNOWLEDGMENT

This work was funded by the U.S. Department of Homeland
Security under Grant (Award 17STQAC00001-07-00), US De-
partment of Defense (Contract W52P1J2093009), and funding
from CTIA. The views and conclusions contained in this
poster are those of the authors and should not be interpreted
as representing the official policy or opinions expressed or
implied by any funder.

REFERENCES

[1] National Telecommunications and Information Administrator. Framing
Software Component Transparency: Establishing a Common Software
Bill of Materials (SBOM). 2020.

[2] National Telecommunications and Information Administra-
tion. Software Suppliers Playbook: SBOM Production
and Provision. 2021. https://www.ntia.doc.gov/report/2021/
minimum-elements-software-bill-materials-sbom.

BomBot: A LLM-based AI Agent Assistant for SBOM Visualization, Understanding and Vulnerability Identification

Introduction

Motivation: SBOM Visualization Efficacy

BomBot Conversation Example Current Functions

Future Work

▪ Allow users to upload new, updated SBOMs after making changes and bot will
compare the new with the original, analyze the changes, and provide feedback.

▪ Evaluate expansions to improve acceptability, e.g. automate compliance
verification

▪ Collaborate with GUAC team from Google for future visualization evaluation and
API for chatbot.

▪ We are just beginning to understand how to merge risk communication with
SBOMs.

● Software Bill of Materials (SBOM): a nested inventory for software, a list of
ingredients that make up software components.

● SBOM Visualizations are designed to translate the data into actionable decisions.
We evaluated two visualizations for usability, acceptability, and accuracy

● BomBot: LLM-based AI assistant for developers of all levels to leverage SBOMs

Acknowledgment: This work was funded by the U.S. Department of Homeland Security under Grant (Award # 17STQAC00001-07-00), US Department
of Defense (Contract W52P1J2093009) and funding from CTIA. The views and conclusions contained in this poster are those of the authors and
should not be interpreted as representing the official policy or opinions expressed or implied by any funder.

Xinyao Ma, Ankith Veldandi, Zitao Victor Zhang, Peter Caven, Ambarish Gurjar, L. Jean Camp
Luddy School of Informatic, Computing and Engineering, Indiana University

A RAG Bot to answer question about SBOMs of known software:
• generate visual graph via .json
• connect with OSV database
• identify known vulnerabilities and risk level

• Results
• Visualizations were useful in assisting developers in identifying

vulnerabilities and mitigations.
• The task was still perceived as burdensome, even for small packages
• Likely infeasible when graphs contain thousands of nodes
• Risk were underestimated even when SBOM data are visualized

Fig.1 Comparison of a SBOM file in text (JSON), ItDepends, and and DeepBits formats

Conclusions & Limitations
Conclusions
▪ Visualizations help but are not adequate. Visualizations can differ significantly in

efficacy even when they are equally usable. One risk of both SBOM and the
associated visualizations is that people may be unduly confident that they have a
full understanding of their attack space, when in fact they are underestimating
the risks.

▪ A chatbot offers an interactive method that can address concerns and answer
questions regardless of scale. A chatbot can rank and integrate information.

Limitations
▪ There are multiple visualizations for the SBOM. Our work tested only two

options. Innovative or next iteration of visualization will improve.
▪ Text requires more attention and may interrupt programming while a

visualization can provide continuous if passive feedback.
▪ Our sample was recruited primarily from University computer science students

and using Prolific for people with computing backgrounds. There were fewer
than 20 industry participants, these were not significantly different. Repeating the
experiment with a private sector software engineering team may yield different
results.

What should I care about in this SBOM
of software?

There are two high-risk
vulnerabilities and four low-risk

vulnerabilities

Upload an SBOM of a software…

What does this mean for my code?

You need to update to the latest
version of Jinja2 or use an
alternative (if there is one)

Fig.5 Accuracy Results Fig.4 Acceptability Results

Visualizations are significantly helpful. However, they had limited efficacy even
with relatively small graphs.

This motivated us to develop BomBot, a interactive chat system to process
accurate SBOM data

Fig.2 User study experiment design

83%
80%

48.9%

Fig.3 Participant Summary

Motivation: SBOM Visualization Usability

Q1 mentally demanding

Q2 hurried or rushed

Q3 successful

Q4 hard to accomplish

Q5 discouraged, stressed,
annoyed

Output for question:
In this SBOM, what are the vulnerabilities in the Jinjia2 package? Also,

categorise it in between low, medium and high risk level.

• Visualization Tools:
• It-Depends and DeepBits make it feasible to use SBOM data to identify

vulnerabilities and the corresponding mitigations.
• SBOM data maps dependencies, highlights vulnerabilities, and provides

real-time CVE updates. Fig.6 All steps are automated except mitigation information. Mitigation information
is verified by researchers. Prompts are automated and invisible to users.

Fig. 7. Usability as Measured by the NASA Task Load Index

Implications

