
Poster: AGORA: Trust Less and Open More in
Verification for Confidential Computing

Hongbo Chen∗, Quan Zhou†, Sen Yang‡, Sixuan Dang§,
Xing Han¶, Fan Zhang‡, Danfeng Zhang§, Xiaofeng Wang∗

∗IU Bloomington, †Penn State, ‡Yale, §Duke, ¶HKUST

Abstract—Confidential computing (CC) fails to assure high-
level security properties (e.g., no data leakage) on the code. We
introduce a novel framework, AGORA, scrupulously designed to
provide a trustworthy and open verification platform for CC. To
prompt trustworthiness, we observe that specific verification tasks
can be delegated to untrusted entities while the corresponding
(smaller) validators are securely housed within the trusted com-
puting base (TCB). Moreover, through a novel smart contract-
based bounty task manager, it also utilizes crowdsourcing to
remove trust in complex theorem provers. These synergistic tech-
niques successfully ameliorate the TCB size burden associated
with two procedures: binary analysis and theorem proving. To
prompt openness, AGORA supports a versatile assertion language
that allows verification of various security policies. Moreover, the
design of AGORA enables untrusted parties to participate in any
complex processes out of AGORA’s TCB.

I. INTRODUCTION

Confidential computing (CC), powered by hardware Trusted
Execution Environments (TEEs), has gained widespread adop-
tion in modern cloud platforms [2]. However, their security
primitives fail to address users’ evolving demand for se-
curity policy compliance. While remote attestation provides
cryptographic proof of a TEE program’s integrity through
hash validation, it fails to establish assurance of code with
specific security policies (e.g., software-based fault isolation
or SFI). Consequently, users are forced to place blind trust in a
hash value rather than being presented with concrete evidence
proving the TEE program’s security properties.

Prior research has proposed various verification techniques
to validate certain security guarantees [1]. However, these
solutions partially address the challenge, as they are often
tailored to specific scenarios or security properties, resulting
in frameworks with reasonable TCB but limited extensibility.
Consequently, the verifiability of multiple policies often in-
volves stacking disparate verifiers. Unfortunately, this practice
can lead to an inflated TCB, increasing system complexity and
potentially introducing new vulnerabilities. Thus, a flexible
verification framework is urgently needed to provide auditable
proofs to end users and accommodate such scenarios.

General verification frameworks have been developed to
verify diverse security policies [5]. However, the implicit
trust placed in these heavyweight tools presents significant
security risks. Despite extensive testing, the verification stack
comprising program analyses and SMT solvers, has exhibited
various vulnerabilities. Sophisticated program analyzers (e.g.,
in eBPF) and SMT solvers have been reported with errors [4],
[6] and vulnerabilities (e.g., CVE-2023-2163).

We present AGORA, a verification framework that strikes the
best features of the previous two approaches. Compared with
general verification frameworks, AGORA is a more open verifi-
cation service that requires less trust from users. “Open more”
implies that an inclusive verification ecosystem welcomes par-
ticipation from any individual. “Trust less” implies that trust
can be removed from the verification ecosystem participants,
including the dictatorial parties like SMT solvers. Meanwhile,
unlike policy-specific verifiers, the service is compatible with
versatile policies and provides a comparable TCB size.

II. SYSTEM DESIGN

A. Overview

Achieving both trustworthiness and openness in one system
is challenging: supporting the verification of diverse policies
inherently conflicts with trusting less. General verification
frameworks often include a series of static analyzers (e.g.,
alias analysis and dependency analysis), proving techniques
(e.g., abstract interpretation and symbolic execution), and SMT
solvers as their trusted components, significantly enlarging the
TCB. Although generating the results for these analytical tasks
can be complex, validating the correctness of their results is
much simpler. Thus, our design philosophy is offloading plus
validation, delegating complex tasks outside the TCB while
maintaining simple validators within the TCB.

AGORA integrates two core components: a Binary Verifier
(BV) and a Bounty Task Manager (BTM), offloading program
analysis and constraint solving, respectively. The workflow
illustrated in Figure 1 commences with the input binary
and assertion. The assertion is synthesized by an untrusted
assertion generator conducting program analysis according
to the selected policy. The BV then validates the assertions
for correctness and formulates verification constraints based
on the policy specification. The constraint sets are output to
files, which can be verified by constraint solvers. However,
as AGORA excludes SMT solvers from the TCB, the BV
dispatches the constraint files to the BTM for further inspec-
tion. The BTM maintains a bug bounty protocol, accepting
submissions of solving results for the constraint sets from bug
bounty hunters (BBHs). If a BBH submits a bug to the BTM,
the BTM marks the binary as insecure after validation. Finally,
the verification results are documented on the blockchain
with the certified binary when the crowdsourced solutions are
received via the bug bounty protocol. Users can thus access
the verification result via blockchain primitives.

Verification Result
Constraint

Files

Binary Binary
Verifier

Bounty Task
Manager

Tasks Delegated To Untrusted Participants

Remote Attestation

User

Assertion Solution

Certified Binary

Trusted
Untrusted

Verified

TEE TEE

BlockchainPolicy

Assertion Generator

Program
Analysis

Constraint
Solving

Bug Bounty Hunter

Fig. 1. System architecture and threat model of AGORA verifier.

Policy

BinaryProof
Generator

Proof

Bounty Task
Manager

Enclave of the Binary Verifier

① Code
Preprocessor

② Proof
Validator

③ Assertion
Generator

Early
Reject

Trusted
Untrusted

Constraint Files

Validation
Fail

Fig. 2. Overview of the Binary Verifier’s workflow.

B. Binary Verification

We highlight several innovative components in AGORA’s
binary verifier in Figure 2. AGORA supports untrusted asser-
tion generators that emit assertions in a meticulously designed
language. The language is versatile (i.e., agnostic of verifica-
tion technique and security policy), striking a balance between
expressiveness and simplicity: it can encode various security
policies while still allowing a lightweight validator to check
the correctness of those untrusted assertions. AGORA further
removes the trust in complex theorem provers. The assertions,
together with the proof obligations generated for policy com-
pliance checks, form a verification constraint set, which is di-
rected into the BTM for further verification. AGORA integrates
SFI policy from VeriWASM [3]. It also supports information
flow control and side-channel mitigation policies, which are
essential for CC. We demonstrate a concrete example of SFI
verification later in the poster.

C. Bounty Task Manager

The BTM solves the constraints from the BV, fostering
an inclusive and transparent verification environment with a
minimal TCB. It borrows the idea from bug bounty programs
and delegates heavyweight theorem proving tasks to untrusted
BBHs, validating their solutions via a lightweight protocol.
This approach significantly reduces the TCB size. Morever,
BBHs can utilize a range of frameworks, such as industry
solvers and experimental frameworks, prompting openness.

However, directly adopting traditional bug bounty programs
does not work for two reasons: lack of support for no-bug
submission (i.e., verification succeeds) and heavy dependency
on a trusted third party for bug confirmation and reward
distribution. We thus design a new protocol for AGORA.

SAT
Validator

User

Task Converter

Bug Bounty Hunter

GenuineTask Bundle Fabricated ...

Task Fabricator Enclave of the
Bounty Task Manager

Binary
Verifier

skBTM

pkBTM

Smart Contract

pkBTM

①
②

③

④ ⑤

⑥ Trusted
Untrusted

Constraint Files

Fig. 3. Workflow of the bug bounty protocol for constraint solving.

Figure 3 shows our protocol. Initially, the BTM receives
constraint files from the BV. Upon a BBH’s request (①),
the Task Fabricator and the Task Converter collaboratively
generate a task bundle containing multiple constraint files
(②) and publish it via the smart contract. The BBH can
then fetch the task bundle from the smart contract (③). After
solving a task bundle, the BBH submits their answers for every
task (i.e., either UNSAT or a SAT model) to the BTM (④),
which then validates the answers using the SAT Validator,
allocates a reward (⑤), and updates the verification results
on the blockchain accordingly. Finally, users can query the
verification results (⑥), determining whether to use the binary
according to the results.

III. EVALUATION

Our prototype of AGORA consists of 12K lines of source
code, achieving more than an order of TCB size reduction
compared to solutions with trusted solvers (e.g., z3 con-
tains ∼500K LoC). Also, it achieves equivalent verification
power as verifiers implementing identical security policies.
For example, benchmarks in SPEC2006 that can be verified
by VeriWASM [3] also pass AGORA’s check. The protocol
discussed in subsection II-C induces a gas cost of $1.18 to
verify a binary, which we consider affordable.

REFERENCES

[1] H. Chen, H. H. Chen, M. Sun, K. Li, Z. Chen, and X. Wang, “A verified
confidential computing as a service framework for privacy preservation,”
in 32nd USENIX Security Symposium (USENIX Security 23), 2023, pp.
4733–4750.

[2] C. C. Consortium, “Confidential computing: Hardware-based
trusted execution for applications and data,” Confidential
Computing Consortium, Tech. Rep., jan 2021. [Online].
Available: https://confidentialcomputing.io/wp-content/uploads/sites/85/
2021/03/confidentialcomputing outreach whitepaper-8-5x11-1.pdf

[3] E. Johnson, D. Thien, Y. Alhessi, S. Narayan, F. Brown, S. Lerner,
T. McMullen, S. Savage, and D. Stefan, “Dover��, no prover��:
Sfi safety for native-compiled wasm,” in 28th Network and Distributed
Systems Security (NDSS) Symposium, 2021.

[4] J. Park, D. Winterer, C. Zhang, and Z. Su, “Generative type-aware muta-
tion for testing smt solvers,” Proceedings of the ACM on Programming
Languages, vol. 5, no. OOPSLA, pp. 1–19, 2021.

[5] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel et al., “Sok:(state of) the art of
war: Offensive techniques in binary analysis,” in 37th IEEE Symposium
on Security and Privacy (S&P). IEEE, 2016, pp. 138–157.

[6] H. Sun and Z. Su, “Validating the {eBPF} verifier via state embedding,”
in 18th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 24), 2024, pp. 615–628.

https://confidentialcomputing.io/wp-content/uploads/sites/85/2021/03/confidentialcomputing_outreach_whitepaper-8-5x11-1.pdf
https://confidentialcomputing.io/wp-content/uploads/sites/85/2021/03/confidentialcomputing_outreach_whitepaper-8-5x11-1.pdf

AGORA: Trust Less and Open More in Verification for Confidential Computing
Hongbo Chen1, Quan Zhou2, Sen Yang3, Sixuan Dang4, Xing Han5, Danfeng Zhang4, Fan Zhang3, and XiaoFeng Wang1

1Indiana University, 2The Pennsylvania State University, 3Yale University, 4Duke University, 5HKUST

Successfully Verified Policies
•Software-based Fault Isolation (SFI): sandboxing
WASM payloads (VeriWASM, Deflection)
• Information Flow Control: tracking flow of
sensitive data (ConfLLVM)
•Side-channel Mitigation: targeting load-value
injection attack (GNU as assembler)

WASM SFI Verification on SPEC 2006
•Number of lines of constraints reduced by 83%
•Average constraint solving time reduced by 82%

SSA-like Assembly Snippet
... // some calculation of %rax.1
0xbf94: mov $0x400000, %ecx.1
0xbf99: cmp %rcx.1, %rax.1
0xbf9c: jae 0xcbb0
0xbfa2: mov %rdi.0, %rcx.2
0xbfa5: add %rax.1, %rcx.2 // dst = %rcx.3
0xbfbb: mov %esi.1, [%rcx.3+0x1c] //HEAP Write
...
0xcbb0: ud2

Accompanying Assertion
0xbf94: rcx.1 = 0x400000
0xbf99: cf.1 = (rax.1 < rcx.1)
0xbfa2: rcx.2 = rdi.0
0xbfa5: rcx.3 = rcx.2 + rax.1

Validated Facts
rcx.1 = 0x400000
cf.1 = (rax.1 < rcx.1)
rcx.2 = rdi.0
rcx.3 = rcx.2 + rax.1

Path Condition (PC) at 0xbfbb
cf.1

Final Check
F ∧ PC →

rdi. 0 ≤ rcx. 3 + 0x1c ∧
(rcx. 3 + 0x1c ≤ rdi. 0 + 8G)

Two problems hinder the adoption of existing verifiers in CC
• Large trusted computing base (TCB) brings potential threats.
• Closed ecosystem rejects public scrutinization and audition.

AGORA aims to feature
• Reduced TCB size with dictatorial parties removed.
• Extensible framework supporting versatile security policies.
• Open to untrusted contributions and auditions.

Motivation & Goals Insight of Design: Offloading

Offloading complex
reasoning tasks to
untrusted parties, while
validating their results
using simple and
lightweight components
within the TCB.

Design Overview

Evaluation

Running Example of Proof Validation: SFI for WebAssembly

SFI Policy for Heap
•All read/write accesses to the 8GB heap memory region must be
address-bounded.
•Assumption: at the start of all functions, register rdi holds base address
of the heap.
•Using static single assignment (SSA) and take rdi.0 as the initial rdi,
and Addr as the accessed heap address:

HEAP!"#!$ ≡ (rdi. 0 ≤ Addr) ∧ (Addr ≤ rdi. 0 + 8G)

Verification Result
Constraint

Files

Binary Binary
Verifier

Bounty Task
Manager

Remote Attestation

UserCertified Binary Trusted
Untrusted

VerifiedTEE TEE

BlockchainPolicy

Assertion Generator

Program
Analysis

Constraint
Solving

Bug Bounty Hunter

SolutionAssertion

TCB size comparison (in SLOC) among AGORA, angr,
VeriWASM, ConfVERIFY, Deflection, and Cedilla

SAT
Validator

User

Task Converter

Bug Bounty Hunter

GenuineTask Bundle Fabricated ...

Task Fabricator TEE Running the
Bounty Task Manager

Binary
Verifier

skBTM

pkBTM

Smart Contractz

pkBTM

① ②

③

④ ⑤

⑥

Constraint Files

Policy

BinaryAssertion
Generator

Assertion

TEE Running the Binary Verifier

Code
Preprocessor

Assertion
Validator

Obligation
Generator

Early
Reject

Constraint Files

Validation
Fail

	Introduction
	System Design
	Overview
	Binary Verification
	Bounty Task Manager

	Evaluation
	References

