
Poster: Enhanced Device Identification
in Cellular IoT Using IPFIX Records

Ryuta Ohishi∗, Norihiro Okui†, Masataka Nakahara†, Masakatsu Nishigaki∗, Tetsushi Ohki∗‡
∗Shizuoka University, Hamamatsu, Shizuoka 432-8011, Japan

†KDDI Research,Inc, 2-1-15 Ohara, Fujimino, Saitama 356-8502, Japan
‡RIKEN AIP, Chuo, Tokyo 103-0027, Japan

Email: ohishi@sec.inf.shizuoka.ac.jp

Abstract—With the rapid growth of IoT devices, firmware
vulnerabilities and malware infections have become critical
concerns, potentially leading to unauthorized access and network
breaches. To address this, accurate device identification and
authentication are essential. This study proposes a method using
payload-free IPFIX records to preserve privacy, combined with
deep metric learning for device identification. The approach is
validated in a cellular IoT environment with a dataset of 72 device
models, leveraging angle-based deep metric learning algorithms.

I. INTRODUCTION

The rapid growth of IoT devices has introduced critical
security risks, including firmware exploits and malware in-
fections. Attacks like Mirai’s DDoS campaigns demonstrate
these threats, with LTE router compromises [1] underscoring
the need for stronger security in cellular IoT networks.

To facilitate the early detection of cyberattacks and to
issue timely alerts, it is essential to accurately identify the
types and characteristics of devices connected to the network.
Internet service providers (ISPs) can estimate the devices
connected in advance, enabling early warnings targeted at
specific devices and the detection of anomalies on a per-device
basis. However, most existing methods rely on payload-based
traffic analysis [2], [3], raising privacy concerns and exhibiting
limited adaptability to newly introduced devices. Furthermore,
these approaches often fail to scale effectively in real-world
environments with diverse and growing device populations.

To address these challenges, we propose a novel IoT de-
vice estimation method leveraging IPFIX(IP Flow Information
Export) records and deep metric learning. By eliminating
dependency on payload data, our approach ensures privacy
and enhances scalability. The method is specifically designed
to identify both known and unknown devices in cellular
IoT environments, demonstrating superior adaptability and
accuracy. The contributions of this paper can be summarized
as following three items:

• Proposes a privacy-aware IoT device estimation method
using IPFIX records, eliminating the need for payload
data.

• Develops a scalable framework for identifying both
known and unknown devices via deep metric learning.

• Demonstrates superior performance through experiments
on a dataset of 72 IoT device models.

Fig. 1. Overview of our device estimation framework

II. PROPOSED METHOD

A. Overview

We propose a privacy-aware IoT device estimation method
using IPFIX records and deep metric learning. This approach
employs a one-dimensional convolutional neural network
model and advanced loss functions, ArcFace and AdaCos,
to improve classification performance for both known and
unknown devices．
B. Dataset

We utilized the dataset obtained by organization affiliated
with the authors (KDDI Research, Inc). It comprises IPFIX
records collected over four years from 72 IoT devices. Each
record represents a single communication session.On aver-
age, each device has 396,836 records, ranging from 490 to
4,616,185 records.

C. Feature Extraction

Feature vectors are extracted from IPFIX records using a
1D-CNN model. The input IPFIX flow data X is processed
to generate a feature vector z as follows:

z = fθ(X) (1)

Here, fθ(·) is the feature extractor trained to maximize inter-
class separation and minimize intra-class variance.

TABLE I
METRICS AND VALUES FOR USE CASE 1

Recall
R@1 R@2 R@4 R@8 AUC EER

ArcFace 0.832 0.842 0.882 0.909 0.873 0.187
AdaCos 0.831 0.871 0.911 0.954 0.904 0.154

TABLE II
METRICS AND VALUES FOR USE CASE 2

Detection of Unknown Devices Identification of Known Devices

n Accuracy Precision TPR FPR AUC R@1 R@2 R@4 R@8

ArcFace 2 0.854 0.817 0.782 0.123 0.849 0.882 0.899 0.922 0.945
3 0.778 0.762 0.695 0.184 0.821 0.852 0.867 0.892 0.911

AdaCos 2 0.891 0.889 0.851 0.097 0.881 0.903 0.917 0.941 0.958
3 0.849 0.847 0.779 0.149 0.843 0.869 0.893 0.910 0.928

D. Model Architecture
Proposed method uses a 1D-CNN for feature extraction,

with ArcFace enhancing inter-class separability via angular
margins and AdaCos dynamically scaling to reduce intra-class
similarity. These optimizations enable robust classification,
even on imbalanced datasets.

E. Classification and Similarity Calculation
In the classification phase, the feature vector z of the target

device is extracted using the trained 1D-CNN model. This
vector is then compared with pre-registered templates T =
{t1, t2, · · · , tk}, representing k known device templates. The
device is classified based on the highest similarity score k̂:

k̂ = argmax
k

clip(cossim(z, tk)). (2)

Here, cossim(·, ·) calculates the cosine similarity between two
vectors and clip(·) clips the output between [-1, 1]. Unknown
devices are detect based on similarity threshold (µ,σ) using
a normal distribution.

F. Threshold-based unknown device detection
A device is classified as unknown if its similarity k̂ falls

outside the range [µ−nσ, µ+nσ]. The parameter µ denotes the
mean cosine similarity among the registered data, while σ rep-
resents the variance of cosine similarity among the registered
data. The value n is an arbitrary non-negative number, and in
this study, n = 2 or n = 3 is used to detect unknown devices
effectively. This configuration ensures coverage probabilities
of approximately 95% and 99.7%, respectively.

III. EVALUATION
In this study, we designed two use cases to assess the

performance of our IoT device estimation method.
Use case 1 (Known Devices Only) This case focuses exclu-
sively on known devices, simulating an environment where
device templates are pre-registered.
Use case 2 (Including Unknown Devices) This case incorpo-
rates both known and unknown devices, representing a more
realistic scenario where new, previously unseen devices may
appear in the network.

These scenarios were designed to test the method’s accu-
racy, scalability, and ability to handle unknown devices.

In use case 1, a dataset of 72 IoT device models was uti-
lized for evaluation. The experiments employed 5-fold cross-
validation, dividing the data into 80% for training and 20%
for testing. Key metrics, including Recall@k, Area Under
the Curve (AUC), and Equal Error Rate (EER), were used

to evaluate performance. As shown in TABLE I, AdaCos
outperformed ArcFace in all metrics, achieving a Recall@1 of
0.831 and a Recall@8 of 0.954. The AUC reached 0.904, and
the EER was reduced to 0.154, showcasing AdaCos’s superior
classification capability.

In use case 2, it was designed to include 58 known device
models and 14 unknown models, simulating a practical envi-
ronment. Threshold settings of n = 2 and n = 3 were tested to
classify unknown devices based on cosine similarity. As show
in TABLE II, at n = 2, AdaCos achieved an accuracy of 0.89
for unknown device detection and a Recall@1 of 0.90 for
known device identification. When the threshold was relaxed
to n = 3, detection accuracy for unknown devices decreased
slightly to 0.85, while Recall@8 for known devices remained
robust at 0.93.

Across both use cases, the proposed method demonstrated
high accuracy and adaptability. AdaCos consistently provided
better results than ArcFace, particulary in environments with
a mix of known and unknown devices. The ability to dy-
namically adjust thresholds allowed for flexibility in balancing
detection sensitivity and accuracy.

IV. CONCLUSION
This study proposed a device estimation method for IoT

environments using deep metric learning on 72 devices in
a cellular IoT setting. The results showed high accuracy in
known device estimation and effective detection of unknown
devices. This method provides a foundation for anomaly
detection and vulnerability reporting, with potential to quickly
identify unknown threats. Future work should test its applica-
tion in real-world environments.

ACKNOWLEDGEMENT

This study was supported in part by JST Moonshot JP-
MJMS2215.

REFERENCES

[1] B. N. (2025, 1) Mirai botnet exploiting routers 0-
day vulnerabilities to launch ddos attack. [Online; accessed
2025-02-04]. [Online]. Available: https://cybersecuritynews.com/
mirai-botnet-exploiting-routers-0-day-vulnerabilities/

[2] R. Bikmukhamedov and A. Nadeev, “Lightweight machine learning
classifiers of iot traffic flows,” in 2019 Systems of Signal Synchronization,
Generating and Processing in Telecommunications (SYNCHROINFO),
2019, pp. 1–5.

[3] A. Sivanathan, H. H. Gharakheili et al., “Classifying IoT devices in
smart environments using network traffic characteristics,” vol. 18, no. 8,
pp. 1745–1759. [Online]. Available: https://ieeexplore.ieee.org/document/
8440758?denied=

Introduction Evaluation

Enhanced Device Identification in Cellular IoT
Using IPFIX Records

Ryuta Ohishi Norihiro Okui Masataka Nakahara
Masakatsu Nishigaki Tetsushi Ohki

1
1

1

2

1,3

Shizuoka University KDDI Research,Inc RIKEN AIP

2

Method

Conclusion

Future Work

By identifying the types and charact eristics of devices connected to the
network, it becomes possible to detect cyberattacks early and perform anomaly
detection for each device．
• Payload-inclusive network traffic data is often used in research
• Privacy concerns create resistance to providing such information

Proposes a privacy-aware IoT device estimation method using IPFIX records without
 payload data

• Many studies are based on closed-set assumptions
 Identify devices and accurately detect unknowns in multi-device environments
• Few studies consider environments with numerous connected devices

 Shows promising results through experiments on a dataset of 72 IoT devices

Overview

Detection of Unknown Device

1. Registration Process
• Extract the feature vector of the

target device
• Save the extracted data in the database as

template data

1

1. Verification Process
• Compare features with using cosine

similarity to identify known or unknown
devices After training, use the score threshold

values !, " to detect unknown devices

• Input data: IPFIX (IP Flow Information Export) record data
• Identification using deep metric learning (loss functions: ArcFace, AdaCos)

2

• All devices within a specific network
are pre-identified

• Record data obtained from a total of
72 types of IoT devices is used

• Verification of Identification
Performance with Multiple Devices

Cosine similarity between the
pre-registered template !!	and
the input feature #"
Mean and standard deviation of
cosine similarity among
registered data

Known Devices Only Including Unknown Devices
• Devices connected to the system are

not all pre-trained
• Known devices (trained): 58 types
• Unknown devices (untrained): 14 types
• !=2, 3 thresholds

 Verification of Unknown Device
Identification Performance

Metrics and Values for Use Case 1 Metrics and Values for Use Case 2

• For Recall@8, AdaCos achieves 0.954,
surpassing ArcFace's 0.909, demonstrating
accurate device identification without
relying on payload data

• Regarding AUC and EER, AdaCos
demonstrates higher precision with fewer
misclassifications.

• For unknown device detection, AdaCos
achieves higher precision compared to
ArcFace, validating its effectiveness in
open-set scenarios

• For known device identification, AdaCos
also demonstrates superior precision

• Proposed an IoT device identification method using deep metric learning
with IPFIX records

• Achieves high accuracy for known and unknown devices
• Specifically, using AdaCos achieved better precision compared to ArcFace

• For unknown device detection, a stricter threshold setting (#=2) yielded
higherprecision

Examination of anomaly detection scenarios
Investigating anomaly detection methods using device estimation and feature extraction

Verification based on unidirectional flow records
Using unidirectional flow data only for device estimation/anomaly detection

2 3

Acknowledgement: This study was supported in part by JST Moonshot JPMJMS2215

{"flows":{"flowStart":"2019-06-21 02:31:19.799","flowEnd":"2019-06-25
08:36:51.236","srcIP":”xxx.xxx.xxx.xxx","srcPort":yyy,"dstIP":”zzz.zzz.zzz.zzz",
"pktCount":4,"byteCount":810,"revPktCount":4,"revByteCount":229,"TCPFlags":"APF",...}}

Example of an IPFIX Flow Record(1 session)

