Poster: MAzU: A Zero Trust Architecture for
Service Mesh Control Planes (#54)

Aashutosh Poudel
William & Mary
apoudel01 @wm.edu

Pankaj Niroula
William & Mary
pniroula@wm.edu

Abstract—Microservices are a dominant cloud computing
architecture because they enable applications to be built as
collections of loosely coupled services. To provide greater control
over the resultant distributed system, microservices often use an
overlay proxy network called a service mesh. A key advantage of
service meshes is their ability to implement zero trust networking
by encrypting microservice traffic with mutually authenticated
TLS. However, the service mesh control plane—particularly its
local certificate authority—becomes a critical point of trust. In
this poster, we introduce MAZU, a system designed to eliminate
trust in the service mesh control plane by replacing its certifi-
cate authority with an unprivileged principal. MAZU leverages
recent advances in registration-based encryption and integrates
seamlessly with Istio, a widely used service mesh. We present our
preliminary implementation and highlight future work.

Background. In cloud computing, a common software archi-
tecture is microservices: rather than deploy a large, monolithic
application, the software developers decompose the application
into a distributed system of small, loosely-coupled services,
that communicate via well-defined interfaces. The primary
benefits of microservices are twofold: elasticity (the cloud can
scale each component independently), and isolation (a failed
component does not, by itself, cause other components to fail).

The microservice architecture, being inherently distributed,
presents unique challenges compared to monolithic applica-
tions in terms of reliability, observability, and security. A
service mesh serves as middleware to address these challenges,
allowing each microservice to focus exclusively on its ap-
plication logic. In most service meshes, each microservice
runs in an application container and is paired with a proxy
container, known as a sidecar. The sidecar modifies the host’s
network routing so that all traffic to and from the application
container flows through it. This design enables the sidecar
to manage microservice traffic—providing features such as
authentication, authorization, and logging—without requiring
any modifications to the application itself.

Problem. A key feature of service meshes is zero trust
networking, where the sidecars tunnel communication between
microservices using mutually authenticated TLS (mTLS). To
support this, the service mesh control plane acts as a certificate
authority (CA), issuing certificates to the sidecar proxies. Ad-
ditionally, this control plane also provisions sidecars with au-
thorization rules that define which peer sidecars are allowed to
connect. Although zero trust networking stymies an attacker’s
ability to laterally move in the victim’s network, if an attacker

Collin MacDonald
William & Mary
cmacdonald01 @wm.edu

Lily Gloudemans
William & Mary
algloudemans @wm.edu

Stephen Herwig
William & Mary
smherwig@wm.edu

compromises the service mesh’s control plane, the attacker can
issue rogue certificates, impersonate applications, and redirect
traffic to malicious endpoints—effectively subverting the entire
system.

In this project, we ask the following research question:

Is it possible to reduce trust in the service mesh’s
control plane while maintaining microservice com-
patibility and performance?

Threat model. For concreteness, we define our threat model
in terms of the popular Istio service mesh, but note that Istio’s
architecture is representative of other meshes. Istio logically
comprises a control plane—which handles traffic rules, log-
ging, authorization, and certificate issuance—, and a data
plane—namely, the sidecar proxies. Within the Kubernetes
cluster, each node (a physical or virtual machine) runs an
Istio node agent, which serves as an interface between the
Istio control plane and the data plane.

We trust Kubernetes to manage the pods and nodes within
the cluster. We assume an attacker has remote code execution
on the cluster and can exploit the Istio control plane. In
particular, the attacker can issue rogue certificates, spawn
microservices to impersonate legitimate applications, and con-
figure routing rules that redirect traffic to these malicious
microservices. We trust the Istio node agent and sidecar,
but allow for bugs in these components that leak sensitive
data, such as network credentials. We do not explicitly trust
the microservice applications; however, we assume that their
containers are hardened to prevent a container escape.

Goals. Our primary security goal when designing our solu-

tion, MAzU,! is

S1 Untrusted Service Mesh Control Plane: An attacker that
breaches the service mesh’s control plane must not be
able to undermine the confidentiality or integrity of the
microservice application’s network communications.

Additionally, we have the following functional goals:

F1 Application transparency: MAZU should preserve the
core property of service meshes, which is that the ap-
plication itself remains unmodified.

IMAZU is a Chinese sea goddess and the deity of seafarers.

F2 Compatibility with existing service meshes: MAZU should
extend current service mesh software (we use Istio).

F3 Low performance overheads: MAZU should impose little
performance overhead on the microservice applications,
both in terms of client latency and resource usage.

Registration-based encryption. At a high-level, MAZU
achieves its goals by replacing the CA with a decentral-
ized protocol based on the recently introduced concept of
Registration-Based Encryption (RBE) [1], [2]. RBE is an
alternative to identity-based encryption (IBE) that eliminates
IBE’s key-escrow problem. Recall that Shamir introduced
IBE [3] as a public-key cryptosystem that removes the need
for a complex public-key infrastructure. Instead, in an IBE
scheme, a user uses a meaningful identity, such as their email
address, as their public key. Alice can then encrypt a message
to Bob knowing just Bob’s identity, along with some additional
public parameters. In turn, Bob decrypts Alice’s message using
an identity-specific secret key that he obtains from the key
authority. Unfortunately, the key authority generates the secret
key for each user, effectively becoming a key escrow and a
target for undermining the entire system.

RBE replaces IBE’s key authority with a weaker principal
called the key curator (KC) that does not have knowledge
of any secret key (or any secret information). A user in an
RBE system locally generates their keys and then publicly
registers their identity and corresponding public key with the
KC. In response, the KC updates the public parameters of the
system and returns to the user some supplementary, non-secret,
information called the user’s opening, which is necessary for
the user to decrypt ciphertexts. As new users register and the
public parameters change, existing users need to contact the
KC to fetch their updated opening. Encryption and decryption
work analogously as in IBE.

Design & implementation. Our prototype implementation of
MAZzU extends the Istio service mesh. By default, Kubernetes
provisions each microservice instance with a Kubernetes-
signed admin token containing the instance’s internal URL,
as well as the IDs for its cloud service account, node, and
pod. In a normal Istio deployment, the node agent attests to
the CA with this token as part of the certificate issuance. In
contrast, MAZU uses the token to register a unique RBE ID
for the instance, with the ID being the hash of the token.
When registering this ID, the node agent locally generates the
corresponding keypair, choosing as its private key a hash of
the token and the service’s IP address. Whereas RBE’s original
purpose is to encrypt messages, we instead use RBE purely
for registration, and the non-secret choice of a private key
serves as a one-time signature of registration. The node agent
then generates a self-signed TLS certificate for the service that
embeds the admin token.

The sidecar operates as a layer-7 (HTTP or gRPC) proxy.
During the TLS handshake between two sidecars, the client
sidecar verifies that the server’s certificate includes a signed
admin token for the intended destination URL. Additionally,
the client sidecar derives the server’s ID as a hash of the

received token. To verify that the server registered this ID, the
client locally encrypts a challenge nonce to that ID, fetches
from the KC the ID’s public opening, and derives the expected
secret key using the token and the server’s IP. If the client can
decrypt the nonce, validation succeeds and the client continues
with the connection. The server’s validation of the client works
in an analogous fashion.

Security analysis. Suppose an attacker A leaks B’s token
and tries to impersonate B. For now, we assume .4 cannot
acquire the same IP as B, but that .4 can compromise Istio’s
control plane to route services to itself. During the TLS
handshake, the peer service will derive an incorrect candidate
secret key due to the mismatch in the server’s IP, fail to decrypt
the nonce, and thus abort the connection.

Suppose now that Kubernetes tears down B, allowing A to
reuse B’s IP to launch a malicious service. If a peer service
connects to this malicious service, the peer will derive the
exact same RBE private key as for the retired B, and MAZU’s
custom TLS validation checks will pass. To counter this threat,
we note that Kubernetes automatically invalidates a service’s
token when tearing down that service. Thus, we amend the
sidecar’s certificate validation to also query Kubernetes for
the validity of a token.

Finally, a quirk of RBE is that anyone can unregister an
ID. While MAZU does not prevent re-registration attacks, it
does make such an attack detectable. For each registration,
the (untrusted) KC updates each ID’s opening; a node agent
periodically polls the KC for the updated openings for its
resident services. We modify this operation so that the KC
returns to the node agent a history of updates, where each
update includes the token, the registered public key, and an
RBE proof that the corresponding ID was registered. In this
way, ID re-registration is auditable.

Preliminary evaluation. We evaluate MAZU using the Fortio
load testing tool. Our results show that MAZU introduces
minimal overhead, adding just 0.17 ms of latency for typical
workloads compared to Istio with mTLS. We also conduct a
Prometheus-aided micro-benchmark to measure the latency of
update queries as the number of registered services increases.
The results indicate that update latency grows approximately
linearly with the number of services.

Future work. As future work, we will evaluate the perfor-
mance of MAZU using additional popular benchmarks, such
as the DeathStarBench suite. We also plan to integrate a
lightweight consensus protocol that mitigates a Byzantine-
faulty KC that presents different registration histories to dif-
ferent microservices.

REFERENCES

[1]1 S. Garg, M. Hajiabadi, M. Mahmoody, and A. Rahimi, “Registration-
based encryption: Removing private-key generator from IBE,” in Theory
of Cryptography Conference (TCC), 2018.

[2] N. Glaeser, D. Kolonelos, G. Malavolta, and A. Rahimi, “Efficient
registration-based encryption,” in ACM Conference on Computer and
Communications Security (CCS), 2023.

[3] A. Shamir, “Identity-based cryptosystems and signature schemes,” in
International Cryptology Conference (CRYPTO), 1984.

‘9659L9E SLB9LSE/STLLOL/BIOIOP//:5dNY 0P ‘EZ0Z "AON ‘6£0L-590L "dd 'Ayinoag SHJOM 3gY MOH :Z 2inbi4

qog 0l
(swesed aand ‘qog™al) idkioue = Bsw

fopt-erend mssswm S__&E_m poseg- :o;m:w_mmm ‘luyey v pue ‘Apoowiyen W 'pedelier W 'Bies ' @ =N @
—_— (qog Bujuedo ‘qog s ‘Bsw) 1dAioep

sooualasey =0

spu0vas 0zl 1ono sdb 000l ‘06d 18 SUOIROBUUOD SA AdudieT ;i ainbi4

¢9ouew.oyiad pue Ayjiqned
-WO0d 99JAJ8S0.101W Bujuieyuiew ajiym sueld |013u0d
S,ysaw 921A1aS 8y} Ul 1SnJ) 8dnpal 0} 9|qissod i S|

480, 88500
ord 65" saromeio 20
3 e

suonsanp yoleasay

'painBiyuoosiw woly Bunnsal) yo pasiwoldwod v
VO 8y Buipnjoul

>
v ¢ uollew.oul paziioyineun
) @ 91eJ}|1}-Xd PUR SDIIAISS dleUOSIadW] 0} SI9XOB1e SMO|je
@@w (Jop1noid pnojd ul siealy) Japisul JO ‘8IBM1JOS B|qeIdUNA
.

“J03e1nd A8y o11gnd e Buisn 1snJy pazijesjusdsp

w0 : : : ‘ainjonJiselyu) A1IN28S J9A0 [013U0D [Ny dABY Swuojeld
10 uonou ayy arsiyoe sdiay (3gy) uondAioug peseg uonesisibay Usa 921A18S pabeuew Bulayjo siapiaold pnojD e

- 3gy :sM00|q Buiping v0

- |B00|-ysew AQ panss| $81ed}11199 S| UO paseq s Ysey

80JAI8S B U] UONEDIUNWIWOD 9DIAIDS-0}-8DIAI9S 8IN08S

"011S| Pa|geUS-ST LW 01 paleduiod SUONIBUUOD JUSIINOUOD
79 pue g1 y10q 1e Aousie| sw/ |0 Buippe ‘pesylano Aousie|) swiajqoid
JeWIUIW S8ONPOJIUI NZBA 1BY) MOYS S1jnsal Ateuiwaid 1no wasAs 1sniy olgnd Pazl[BUSO8P € Yum wayy mm_om_a,&

suonenfen Aseurwal £Q SYD UO 80UBI[B1 INO JWI| UBD 8M ‘S SIU} 9oNpal 0] "WwaisAs
enjens lwieid A11unoas ay) Ul 1SNJ1 BAISUBIX8 Ploy SO 8auls sebejueape USOIN 991AI9S 0S| Ul JuswaBeuew 81011190 pue A1uap) :| 2inbi4
JueoIUBIS SiaxoeNe SBAIB YO B Jo 8siwoidwod ay |

n

10181nD A8y BU) Y1IM pPalelsiBal sI g PEOPIOM BU JI °q CREE] (R (T RIS

__suikoidop Auoury pons
apou umN_LoEJm BujwIFUOD pleA S| UBXO0} UlWpe)| e S sleoye) R
:UOJ}08UU0D 3y} S1dadoe Jedapls AoAug !
8y} 'dmes s 1w Buung :uonepljeA 31esyIed S1LW '€ !
'sieyawe.ed oygnd e — ajeoye0 W : i
S S9OIAISS SNOIVI[BW O} Ojel} J0alIpay i ! V
pajepdn Joj salienb 0} spuodsal pue sysanbal uoniessibal paubis ﬁl_ 4 : mmmo
1uabe apou sydoooe Jojein) Asy :03eind Aoy °Z Zﬁsn\ : vl
-Ud0J UlWpe pue gj 8y1 yioq buiuieiuod ﬂ g i
$81e01J11190 paubis-j|os a1elaual pue Jojeind Ay ayy yum I pa— TR |
(uao01 ujwpe paubis-sajyauiagny JO ysey) sqgj peopiom ‘ ”] o
19151601 syuabe apoN :ajeaynaag pue fpuap|peoppiom 'L | _—F TT—~——100_ e
Koy m~w>__n_ @L
UYSBN 9JIAI8S 011S| Uo r_o:mucwEQ_QE_ S,NZe :¢ w:gm_u_ Shex 1001 ¥ ee) sfenuapaI sgy yea| sojn1 BUNO) :2anBYUOD _QV_MMMMQ ® ejeoyIe) o
BUB|d [0U0D SBjeuIagNY H ﬂ
£ sweuoduion
S Y mm._.“oo_ﬂm_uo 1] weby apon 1old onsi ulbIo sy Jo ssajpieBal
d ansoy Ajjenualod se 1sanbai A1ans Bupeal) ‘uoneduUNWWod
wotyopon 1] < > E] webvoron SUied oeny sjdwexy 901A195-0)-92IAISS ||E 10} UOEZIIOYINE PUE UOIIEdNUSYINE
Vo) e Bl s s salinbal ey [opow A11IN28S :BUpPjIOMIBN Isni] 049Z
A ¢ paisniL auB|d [03U0D Sa}eUIagNY
H SOA|9SWAY} SBDIAISS By} BulAjipow 1noyum Aljigeral
Alepunog Joulejuod uoeolddy 801AIBS0IIN pue A1indas Buljpuey ‘S9DIAISSO0IDIW USSMIS] UOIIEDIUNWIWOD
i adeosa Jouued :paysniun T ’ : safeuew jey) Jake| ainjoniiselju| (Ysa adInIaS
A\
s8110d A Awouiny 3¢
2y LY o oy areoyIeD s6nq 0 anp 1208pIS + Juabe apop uoNe[oS|
S|ejIuapalD Xea| ued :parsnil N N
=] ,@ w 1Iney pue Buijess onsed Buljgeus - s|dy Ybnoiyl a1es1unwwod
' pous| 1aoene Ag . p . 1eY) S82IAI9S Juapuadapul ‘|lews olul Jids a.ie suoneoldde
. JOXIIN “10]id :8UB|d [03U0D OlS| - : ‘v :
e T IERET paylojdxe aq ued :paisniun VO eXIN 0lid Id 104U0D Ons| 2JoUM 3IN108}1YDJe DIBMIJOS UIDPO|N :S@DIAISSOIDIN
uBisag nzepy ISPO 1ea1y L punoiboeg
€691 Q3YILIVHD
qe78unndwo) npa wm@bBImIsyws npa wm@suewspno|be npa wm@ L op[eUOpOBWO npa-wm@ejnouud npa wma Lojapnode ANIVIN & WVITIIM
u13snil Suipusigd BimisH uaydels suewspno|9 A pleuogoe uljjod e[noJiN fexued |apnod ysoinysey

4 <
qet/o19/ saue|d [011U0D YSaJ\ 29IAI9S JO) 31N199UYDIY 1SNIL 0497 V :NZVIN

