
Poster: Towards a Lightweight Key-Enforced
Data Race Detector for Commodity Kernels

Rahul Priolkar
Arizona State University
rahul.priolkar@asu.edu

Chuqi Zhang
National University of Singapore

chuqiz@u.nus.edu

Adil Ahmad
Arizona State University

adil.ahmad@asu.edu

Abstract—Detecting data races in the kernel is critical for
ensuring both the reliability and security of modern operating
systems. However, existing kernel data race detectors, either
involving heavy instrumentations or imprecise probabilistic-based
sampling, face a persistent dilemma in balancing runtime efficiency
with detection accuracy. In this work, we propose a lightweight
solution leveraging hardware memory protection keys (Intel
MPK), enforcing thread-shared object monitoring and access
violations detection on-the-fly. To incorporate protection keys (at
page granularity) with individual object access monitoring, we
introduce the Consolidated Unique Page Allocator (CUPA) for the
kernel. CUPA efficiently represents a single physical page into a
diverse set of virtual pages associated with thread-shared objects,
allowing individual protection key assignments for each object
without significant memory overhead. Meanwhile, we leverage
virtualization extensions to overcome the hardware limitation on
the number of protection keys, supporting thousands of protection
domains for objects simultaneously. Preliminary research has
proven the functional correctness of CUPA, while results have
shown a 90MB memory and 10% performance overhead on
real-world applications, respectively.

I. BACKGROUND

A data race occurs when multiple threads access the same
memory object concurrently without appropriate synchroniza-
tion mechanisms (e.g., mutual exclusion locks), and atleast one
of the accesses is a write. Data races produce unpredictable
computational results, and can lead to reliability problems and
security vulnerabilities [5]. While data races are a problem for
all multi-threaded software, they are especially critical during
operating system kernel execution, since they can lead to full
system crashes and privilege escalation.

Given the criticality of kernel data races, prior systems
have proposed techniques to dynamically detect them during
testing. Such dynamic data race detectors monitor memory

object access behaviors across different threads and analyze

their patterns. Specifically, techniques like ThreadSanitizer
(TSAN) [6] use compilers to instrument and monitor all
read and write operations, but suffer from high performance
overheads that significantly reduce testing efficiency. In contrast,
the state of the art kernel data race detectors like KCSAN and
DataCollider [2] use probabilistic sampling methods to monitor
only a small set of shared objects at runtime. This ensures
good performance, but reduces detection effectiveness.

Recent work [1] has made strides to address the performance
and effectiveness trade-off in dynamic data race detectors for
userspace programs using the idea of key-enforced race detec-

tion. The idea leverages efficient hardware memory protection
keys (e.g., Intel MPK), a feature that allows restricting read
and write permissions to different pages at a per-thread level.
At a high-level, each shared object (e.g., heap or global) is
bound using a protection key. Each thread must acquire the key
before reading the shared object (e.g., when the thread enters a
lock-region, also called a critical section). However, the system
only grants the key to a thread, if and only if the key has not
already been acquired by other threads. Accessing a shared
object without its corresponding key results in a protection key

fault, which is logged as a potential data race.

II. RESEARCH GOAL AND CHALLENGES

Given the promising use of hardware protection keys for
enforcing object access pattern monitoring and prior wisdom in
employing them for userspace data race detection, an intuitive
question arises: “Can a protection key-enforced mechanism be

extended to support kernel-level data race detectors?”

Our study on the kernel reveals the following challenges.
C1: Integrating key semantics into kernel heap allocators.
Key-enforced race detection requires every shareable object
to be page-aligned (since MPK can only set permissions at
page-granularity [4]), and prior work designs a new userspace
memory allocator for this task. Unfortunately, adopting a new
memory allocator for commodity kernels is very challenging in
practice, since allocators are a significant codebase and current
methods are well-optimized for conserving physical memory
space. Therefore, this requirement presents a significant de-
ployment barrier for commodity kernels like Linux.
C2: Overcoming key limitations for full-scale race detection.
With key-enforced race detection, in practice, each unique
critical section requires atleast one protection key. This is a
challenge because modern hardware supports only up to 16
unique protection keys—unlike userspace programs with a
limited number of critical sections [1], commodity kernels like
Linux have thousands of unique critical sections. While there
are techniques proposed to handle such limitations, they require
transferring objects across keys and sharing keys, which leads
to high overheads and false positive data races, respectively [1].

III. DESIGN

A. Consolidated Unique Page Allocator (CUPA) Frontend

Kernel memory allocators are composed of two components:
(a) a frontend that allocates and frees virtual address ranges

to objects and (b) a backend that assigns physical pages to
allocated objects while optimizing their utilization using several
compression techniques. To enable existing kernel allocators
to be protection key-aware without fully-redesigning them, we
propose CUPA as a new kernel memory frontend.

At a high-level, CUPA leverages the following workflow.
Initially, CUPA intercepts a request for each object allocation
(e.g., using kmalloc in Linux), after the kernel backend has
allocated a physical region for the object. Then, CUPA creates
(and maintains) unique virtual pages for the requested object,
mapped to its assigned physical region. This physical region
can be shared with other objects; thus requiring no changes
to the backend. Specifically, since MPK works at virtual page
addresses [4], such sharing at the physical page-level does not
harm protection key semantics. When the object is freed, CUPA
returns its virtual page address to its internal list (explained
next), while allowing the backend to reclaim the physical
region.

One of the important optimizations required is to ensure the
frontend can allocate and free virtual pages efficiently. To do
so, CUPA follows the virtual page allocation strategy of other
Linux kernel frontends, where it maintains freelist structures for
different object sizes (e.g., at power of 2 intervals). Moreover,
these lists are temporarily maintained at a per-hardware thread

level to avoid continuous synchronization costs, while being
synchronized at discrete intervals (e.g., when the memory
allocation rate is low), or when lists are exhausted. Finally, we
seamlessly integrated CUPA into the Linux SLUB allocator, and
exposed a new flag GFP_CUPA. This required approximately
130 lines of code changes to the Linux SLUB implementation.

B. Virtualization-Extended Protection Keys

To tackle the hardware limitation of protection key numbers,
we rely on a widely-available virtualization extension to unlock
thousands of virtualized protection keys [3]. The solution
involves (a) using multiple second-level address translation
tables (particularly Intel EPT) to map different sets of protection
key domains, and (b) using hardware-assisted fast translation
table switching to change the activated protection keys.

When assigning a unique protection domain to a page, we
extend its allocation by associating it with a distinct EPT entry
alongside the legacy memory protection key ID. Pages within
the same protection domain share both the associated EPT
entry and the memory protection key ID. In contrast, pages
not assigned to any protection domain are managed using
the default protection key and native EPT entries. To quickly
switch between protection domains, we employ the hardware-
assisted EPT switching technique (namely VMFUNC), which
enables changing active EPT entries without exiting to the
hypervisor. Upon a protection domain switch, only the EPT
entries associated with the target domain are activated, while
pages belonging to other protection domains are marked as non-
accessible. Therefore, the legacy protection key is virtualized
by different sets of EPTs, allowing duplicated physical keys
to be isolated into different logical domains.

IV. PRELIMINARY RESULTS

Our implementation of the design is based on the Linux
kernel (with SLUB) and KVM hypervisor. Our preliminary
evaluation shows a 90MB additional memory usage and 10%
performance overhead on real-world applications like OpenSSH.
On system call intensive benchmarks like LMBench, we did
notice higher overheads of upto 4⇥. With thorough analysis,
we found that the majority of the performance overhead stems
from the TLB flush associated with freed CUPA pages, before
they are made available for future allocation requests. In the
future, we expect an implemented batched TLB flushing on
CUPA pages would significantly reduce such overheads.

V. DISCUSSION AND FUTURE WORK

Currently, our system allocates unique page objects and
has the ability to set permissions for each object, but does
not detect races. Therefore, the first step is to integrate our
protection key mechanisms with data race detection primitives.
Specifically, like prior work [1], the idea is to initially rely on
explicit lock-based synchronization primitives (critical sections)
to identify when shared objects are supposed to be accessed
and proactively assign keys to detect races. To this end,
we have identified all the locking primitives offered by the
kernel, and instrumented two of the most frequently used ones
i.e. mutex_lock() and spin_lock(). However, we also
intend to improve upon lock-oriented protection, because this
approach fails to account for data races in non-critical section

shared objects (⇡30% of data races according to prior studies).
At a high-level, we will achieve this by treating the code region
between an unlock and a subsequent lock as another critical
section rather than ignoring it; thereby detecting data races
in all code regions. Finally, since the system is designed for
testing, we will next integrate it into the testing pipeline of
concurrency-aware fuzz testing frameworks.

VI. CONCLUSION

Achieving the best of both worlds between performance
and detection effectiveness is a challenge for current kernel
dynamic data race detectors. This work provides a first step to
addressing this challenge using efficient hardware protection
keys, solving challenges in their use within the kernel and
providing a design roadmap towards a full data race detector.

REFERENCES

[1] Adil Ahmad, Sangho Lee, Pedro Fonseca, and Byoungyoung Lee. Kard:
Lightweight Data Race Detection with Per-thread Memory Protection. In
ACM ASPLOS, 2021.

[2] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, and Kirk
Olynyk. Effective Data-Race Detection for the Kernel. In Proceedings of

the 9th USENIX OSDI, Vancouver, Canada, 2010.
[3] Jinyu Gu, Hao Li, Wentai Li, Yubin Xia, and Haibo Chen. EPK: Scalable

and efficient memory protection keys. In USENIX ATC, 2022.
[4] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual.

Volume 3A: System Programming Guide, 2016.
[5] Yoochan Lee, Changwoo Min, and Byoungyoung Lee. ExpRace:

Exploiting kernel races through raising interrupts. In 30th USENIX Security

Symposium (USENIX Security 21).
[6] Konstantin Serebryany and Timur Iskhodzhanov. ThreadSanitizer: data

race detection in practice. In Proceedings of the Workshop on Binary

Instrumentation and Applications (WBIA), 2009.

Towards a Lightweight Key-Enforced Data Race Detector for Commodity Kernels
Rahul Priolkar1 Chuqi Zhang2 Adil Ahmad1

1Arizona State University 2National University of Singapore

Introduction to Data Races

Dynamic Kernel Data Race Detectors

Goal and Challenges

Key-Enforced Race Detection Algorithm

ØOccurs when multiple threads access the same
memory region concurrently, without a lock, and
at least one access is a “write”

ØCan lead to system crashes and even privilege
escalation if races happen during kernel execution

Design: Page-Aligned Memory Frontend

Design: Virtualized Kernel Protection Keys

Preliminary Results

Future Work and Discussion

References

lock

Unlock

Thread-1 Heap

lock

Unlock

Access
Acquire key

Cannot
acquire key

Thread-2

object

Fault!
Data race

ØLeverages efficient hardware protection keys to
detect simultaneous memory access [3]

ØCannot give the best of both worlds between
performance and detection effectiveness

Ø Techniques like ThreadSanitizer [1] incur high
overheads through compiler instrumentation

ØKCSAN and DataCollider [2] sample events
leading to lower detection effectiveness

[1] Konstantin Serebryany and Timur Iskhodzhanov.
ThreadSanitizer: data race detection in practice.
In Proceedings of the Workshop on Binary Instrumentation
and Applications (WBIA), 2009.
[2] John Erickson, Madanlal Musuvathi, Sebastian Burckhardt,
and Kirk Olynyk. Effective Data-Race Detection for the Kernel.
In Proceedings of the 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2010
[3] Adil Ahmad, Sangho Lee, Pedro Fonseca, and
Byoungyoung Lee. Kard: Lightweight Data Race Detection with
Per-thread Memory Protection. In Proceedings of the 26th
ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2021

Ø Goal: Bring key-enforced race detection to
commodity kernels

Ø Challenges:
1. Integrating key semantics into kernel heap

allocators to page align all heap objects
2. Overcoming key limitations for full-scale

race detection

Ø Allocates kernel heap objects on unique
virtual pages

Ø Maintains freelists for different object sizes,
for efficient virtual page assignment

Ø Uses kernel memory allocator backend for
physical page allocation

Ø Extend with data race detection
primitives based on Kard [3]

Ø Improve lock-oriented protection by
incorporating unlock-lock semantics

Ø Integrate into a concurrency testing
system to show performance advantage

HeapEPT-1

Fault!

HeapEPT-2

Fault!

Ø Implemented design elements for Linux
kernels and using the KVM hypervisor

Ø Low overheads <=10% on regular
programs; 4x overheads on LMBench
(amortized during execution)

Ø 90MB of more memory required

	Background
	Research Goal and Challenges
	Design
	Consolidated Unique Page Allocator (CUPA) Frontend
	Virtualization-Extended Protection Keys

	Preliminary Results
	Discussion and Future Work
	Conclusion
	References

