
Poster: Towards SBOM-based Access Control for
Transparent and Explicit Program Execution

Yuta Shimamoto∗, Hiroyuki Uekawa†, Mitsuaki Akiyama† and Toshihiro Yamauchi∗
∗ Okayama University, Okayama, Japan

Email: shimamoto@s.okayama-u.ac.jp yamauchi@okayama-u.ac.jp
†NTT Social Informatics Laboratories, Tokyo, Japan

Email: h.uekawa@ntt.com akiyama@ieee.org

Abstract—Although a Software Bill of Materials (SBOM)
plays a key role in software transparency, inconsistencies in
SBOM descriptions can undermine its value. To address this,
we propose a novel approach to program access control, SBOM-
AC, which leverages Mandatory Access Control (MAC) systems
to ensure transparent and explicit program execution. In this
study, we identify the challenges associated with implementing
this approach and present preliminary investigation results to
address these challenges.

I. INTRODUCTION

A Software Bill of Materials (SBOM) is an inventory for
explicitly enumerating and managing the various software
components included in a system, making it easier to identify
and address security and license issues. Its importance has
been highlighted in the U.S. Executive Order [1] and the EU
Cyber Resilience Act [2], drawing increasing attention.

However, since SBOMs are generated either manually or
using tools, the content of the SBOM may contradict the
actual system behavior. Below, we outline situations where
contradictions may arise and the reasons behind them:
Unintentional contradiction: (1) Human errors and (2) Inac-
curacy or incompleteness of SBOM-generation tools [3]
Intentional contradiction: To conceal malicious programs (1)
Deleting specific SBOM entries manually and (2) Manipulat-
ing tool outputs [4].

Based on these observations, situations where an SBOM has
inaccuracy and/or incompleteness can easily arise. As a result,
software transparency may deteriorate, significantly reducing
the effectiveness of software management practices based
on SBOM, including security measures such as vulnerability
mitigation.

To address the contradiction issue, it is essential to ensure
consistency between the system’s behavior and the contents of
the SBOM. To achieve consistency and transparency, we pro-
pose SBOM-based Access Control (SBOM-AC), an approach
that leverages Mandatory Access Control (MAC) mechanisms
to execute only the programs explicitly enumerated in the
SBOM selectively.

In this study, we clarify the challenges in implementing
our approach and present preliminary investigation results to
address these challenges.

Programs

Control Target

SBOM
SBOM-AC

1. Program
identification

Grant access
in SBOM

Deny access
NOT in SBOM

System

3. Policy
generation

MAC

2. Program
integrity check

4. Access Control

Policy
Input

Input

Fig. 1. Overview of our proposed approach

II. METHODOLOGY

SBOM-AC links the descriptions in the SBOM to the
programs within the system and denies access that conflicts
with the SBOM. As shown in Figure 1, SBOM-AC consists of
the following four functions: Program identification, Program
integrity check, Policy generation, and Access control.
Program identification refers to associating the programs
listed in the SBOM with their corresponding executable files
in the file system by referencing information such as file paths.
Program integrity check verifies the consistency between the
existing programs and the SBOM (e.g., comparing hash values
of programs), allowing only programs without inconsistencies
to be executed.
Policy generation creates policies that deny/grant execution
of any programs under the control target (specific directories
where executables are located).
Access control enforces access control by loading the gener-
ated policies into the MAC system.

III. CHALLENGES AND PRELIMINARY STUDY

A. Can existing tools generate SBOMs for SBOM-AC?

SBOM-AC has two requirements for SBOM: (1) it must
cover a runtime environment or system image (e.g., a file
system) rather than just code and repositories, and (2) it must
include information (e.g., hash values and file paths) to identify
distinct programs on a target system uniquely.

Tools automatically generating SBOMs have been devel-
oped to reduce human error and associated costs. However,

the scope of analysis and the output information varies sig-
nificantly across tools. To investigate the extent to which off-
the-shelf tools can be utilized to generate SBOMs meeting
SBOM-AC’s requirements, we conducted a literature review.

We analyzed the following tools mentioned in at least five
of 35 recent studies: Syft, Trivy, Cdxgen, OSS Review Toolkit
(ORT), Microsoft SBOM Tool, and Tern.
Scope for SBOM: These tools support analysis of runtime
environments or system images (as envisioned by SBOM-AC),
including file systems, VM images, Docker containers, Open
Container Initiative (OCI), Singularity Image Format (SIF),
and Kubernetes. All tools, except for ORT, support at least
one of these runtime environments. Therefore, using SBOMs
generated by these tools in SBOM-AC is feasible. While the
range of supported forms for analysis is currently limited
and varies across tools, future developments are expected to
broaden the range of supported forms.
Necessary information: Among the tools, only Syft generates
SBOMs containing the necessary information for program
identification and integrity check (i.e., specific file paths and
hash values). We hope that more tools will incorporate this
type of information into their SBOM outputs.

B. Can existing MAC systems control programs based on
SBOM-generated policies?

SBOM-AC is designed to determine programs permitted for
execution based on an SBOM and generate access control poli-
cies accordingly. Our aim in this study is to utilize MAC sys-
tems to enforce control over program execution. Specifically,
a program is granted execution only if it is correctly listed in
the SBOM; otherwise, its execution is denied. Additionally, it
is desirable for the scope of programs controlled on the system
(referred to as the “control target”) to be flexibly configurable,
depending on the type of system. This flexibility addresses
two concerns: (1) The potential overhead of controlling every
program on the system and (2) Debates over which programs
should be included in the SBOM―for instance, how to handle
programs that are standard components of Linux distributions
(i.e., OS-bundled programs).

We investigated whether off-the-shelf MAC systems can
define policies to control both the execution of programs
(allow/deny) and the scope of controlled targets. To evaluate
this, we tested AppArmor, a widely used implementation of
MAC systems.

Using a simple file system and SBOM, we created the policy
illustrated in Figure 2. In this setup, the /usr directory on the
system was designated as the control target, and s1-prog1
and s2-prog3 were permitted for execution. The policy
ensures that programs listed in the SBOM are allowed to
execute, while those not listed are denied.
Key rules implemented in the AppArmor policy:

1) Any processes are monitored. All operations are denied
by default.

2) All operations except execution are allowed.
3) Execution of programs listed in the SBOM is allowed.

/
├─ usr/bin/
│ ├─ s1-prog1 (hash=898c2aaa)
│ ├─ s1-prog2 (hash=11135ff8)
│ ├─ s2-prog3 (hash=68e45ccc)
│ └─ s2-prog4 (hash=831dfddd)
└─ home/user1/

└─ u1-prog5 (hash=45d2feee)

File system
Control Target

Software1
path=/usr/bin/s1-prog1, hash=898c2aaa
path=/usr/bin/s1-prog2, hash=4df6abbb

Software2
path=/usr/bin/s2-prog3, hash=68e45ccc

Information contained in SBOM

/** {
default-allow
/** rwmlk,
network,
capability,

allowed by SBOM
/usr/bin/s1-prog1 ix,
/usr/bin/s2-prog3 ix,

unconfined
/home/** ix,

}

1)
2)

3)

4)

Policy(AppArmor)

Fig. 2. Example of SBOM-generated policy for AppArmor

4) Programs outside the defined control target scope are
not denied execution.

Rules 1, 2, and 4 collectively define the scope of the control
target. By default, access within the control target is denied
unless explicitly allowed. Rule 3 ensures that only the pro-
grams listed in the SBOM are granted execution.

These rules ensure that only the desired programs listed
in the SBOM are executable while maintaining flexibility in
defining the control target scope. As a result, AppArmor is
shown to support the creation of policies that meet the basic
requirements of SBOM-AC.

IV. COCLUSION AND FUTURE WORK

We proposed SBOM-AC, an approach to detect and control
inconsistencies between an SBOM and a system, and presented
the challenges and preliminary investigation results. In future
work, we plan to measure the overhead of SBOM-AC and
explore the optimal scope of control targets based on system
types. Additionally, we aim to develop flexible policy gen-
eration and control mechanisms to accommodate changes in
programs (e.g., rewrites) during system operation.

REFERENCES

[1] White House, “Improving the Nation’s Cybersecurity.” [Online].
Available: https://www.federalregister.gov/documents/2021/05/17/2021-
10460/improving-the-nations-cybersecurity

[2] EU, “The Cyber Resilience Act.” [Online]. Available:
https://www.cyberresilienceact.eu/

[3] N. Kawaguchi, C. Hart, and H. Uchimura, “Understanding the effective-
ness of sbom generation tools for manually installed packages in docker
containers,” in Journal of Internet Services and Information Security,
vol. 14, August 2024, pp. 191–212.

[4] S. Yu, W. Song, X. Hu, and H. Yin, “On the correctness of metadata-
based sbom generation: A differential analysis approach,” in 2024 54th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2024, pp. 29–36.

SBOM-AC links the descriptions in the SBOM to the
programs and denies access that conflicts with the SBOM

1. Program identification
• Associates programs listed in the SBOM with executable files

in the file system (e.g., file paths)
2. Program integrity check
• Verifies the consistency between the existing programs and

the SBOM (e.g., comparing hash values of programs)
• Allows only programs without inconsistencies to be executed
3. Policy generation
• Creates policies to deny/grant execution of any programs

under the control target(Specific directories where
executables are located)

4. Access Control
• Enforces access control by loading the generated policies into

the MAC system

Towards SBOM-based Access Control for
Transparent and Explicit Program Execution

Yuta Shimamoto † Hiroyuki Uekawa ‡ Mitsuaki Akiyama ‡ Toshihiro Yamauchi †
†Okayama University ‡NTT Social InformaƟcs Laboratories

3-A. Can existing tools generate
SBOMs for SBOM-AC?

1. Introduction

2. Methodology

3-B. Can existing MAC systems control programs
based on SBOM-generated policies?

4. Future Work
• Measure the overhead of SBOM-AC and explore the optimal scope of control targets based on system types.
• Develop flexible policy generation and control mechanisms to accommodate changes in programs (e.g., rewrites) during system operation

• Executes only the
programs explicitly
enumerated in the
SBOM

• Leverages
Mandatory Access
Control (MAC)

SBOM-based
Access Control
(SBOM-AC)

What is SBOM
• A Software Bill of Materials (SBOM) is

an inventory for explicitly
enumerating and managing the
various software components
included in a system.

• SBOM makes it easier to identify and
address security and license issues.

• SBOM importance has been
highlighted in the U.S. Executive Order
and the EU Cyber Resilience Act.

Inaccuracy and incompleteness of SBOM
• The content of the SBOM may contradict the actual system behavior.
• Software transparency may deteriorate, significantly reducing the

effectiveness of software management practices based on SBOM.

Intentional
• Concealing malicious programs by
 Deleting specific SBOM

entries manually
 Manipulating tool outputs

Unintentional
• Human errors
• Inaccuracy or incompleteness

of SBOM generation tools

Contradictions

1) Any processes are monitored. All operations are denied by default.
2) All operations except execution are allowed.
3) Execution of programs listed in the SBOM is allowed.
4) Programs outside the defined control target scope are not denied execution.

• Program must be granted execution only if it is correctly listed in the SBOM
• Desirable to be flexibly configurable the scope of programs controlled on the

system (referred to as the “control target”) depending on the type of system

Required features for SBOM-AC

Example of SBOM-generated policy for AppArmor

/
├─ usr/bin/
│ ├─ s1-prog1 (hash=898c2aaa)
│ ├─ s1-prog2 (hash=11135ff8)
│ ├─ s2-prog3 (hash=68e45ccc)
│ └─ s2-prog4 (hash=831dfddd)
└─ home/user1/

└─ u1-prog5 (hash=45d2feee)

File system
Control Target

Software1
path=/usr/bin/s1-prog1, hash=898c2aaa
path=/usr/bin/s1-prog2, hash=4df6abbb

Software2
path=/usr/bin/s2-prog3, hash=68e45ccc

Information contained in SBOM

/** {
default-allow
/** rwmlk,
network,
capability,

allowed by SBOM
/usr/bin/s1-prog1 ix,
/usr/bin/s2-prog3 ix,

unconfined
/home/** ix,

}

1)
2)

3)

4)

Policy(AppArmor)

Scope for SBOM
• All tools except for ORT, support at least one of the

runtime environments.
• Range of supported forms for analysis is currently

limited and varies across tools.
Necessary information
• Only Syft's SBOMs contain the necessary information

for program identification and integrity check.

Requirements for SBOM
• Cover a runtime environment or system image (e.g., a

file system) rather than just code and repositories
• Include information (e.g., hash values and file paths)

to identify distinct programs on a target system

Runtime environment
• VM images
• Docker containers
• Open Container Initiative
• Singularity Image Format
• Kubernetes

Feasibility of using popular tools SBOMs

Popular SBOM
generation tool
• Syft
• Cdxgen
• OSS Review Toolkit (ORT)
• Microsoft SBOM Tool

• Trivy
• Tern

