
Poster: Automatizing Cybersecurity via LLMs
Burak Hasırcıoğlu, Vasilios Mavroudis, Chris Hicks

The Alan Turing Institute, London, UK
{bhasircioglu, vmavroudis, c.hicks}@turing.ac.uk

Abstract—We propose an agentic framework for Large Lan-
guage Models (LLMs) to automate cybersecurity tasks, helping
to measure the capabilities of LLMs in this domain. We introduce
the action-diversity method which ensures that LLM-based
agents consider a wide range of alternatives before deciding
on an action, allowing them to select the best option based
on their knowledge. Thanks to the action-diversity method, our
framework successfully solves all the Capture the Flag (CTF)
challenges previous agents have addressed and several challenges
that earlier works could not solve.

I. INTRODUCTION

LLMs have gained significant attention for their impressive
performance in natural language tasks, including question
answering, summarization, and text generation. Trained on
extensive internet text, they acquire vast knowledge across
many topics, enhancing their applications in various domains
that require both linguistic skills and automation.

An important field where this potential is particularly high
impact is cybersecurity. While LLMs can automate certain cy-
bersecurity operations, like penetration testing, and aid in dis-
covering vulnerabilities in software and systems—potentially
reducing cybersecurity costs—they also pose risks. The ability
to automatically identify vulnerabilities can empower mali-
cious actors, both lowering the barrier to entry for beginners
and saving time and resources for experienced hackers.

Therefore, it is crucial to evaluate the capabilities of LLMs
in automating cybersecurity operations to fully understand
their benefits and risks. In this paper, we propose an agen-
tic framework designed to address cybersecurity tasks. Our
framework consists of multiple LLM agents, each assigned
different responsibilities. Some of these agents have code-
executing capabilities, allowing them to implement proposed
solutions and refine their approaches as needed.

Additionally, we introduce an action-diversity method where
each agent considers various alternative actions and evaluates
them before deciding on the next step for a given subtask.
We have found that our approach considerably enhances the
success rate of LLMs in cybersecurity tasks compared to
previous work.

To assess the performance of our framework, we utilized
challenges from various CTF competitions as a benchmark.
The results demonstrate that our framework outperforms previ-
ous approaches by successfully solving challenges where other
methods failed.

II. METHODOLOGY

We provide an overview of our framework in Fig. 1. It con-
sists of three hierarchical layers: planning, substep execution,
and action execution.

Substep
executor Code writer

Writes code to 
execute the action

Code executor

Response 
extractor

Gets only relevant 
output

Problem 
description

+ source files

action

until
COMPLETE

Planner agent

Makes a high-level plan and 
enforces its steps

until
SOLVED

substep

result

at most 10 attempts

outputs from all 
executions

result
1

2
3

4

5

6

Fig. 1. Overview of the proposed framework

A. Planning Layer

The planning layer features a single agent known as the
planner agent. This agent is based on an LLM and serves as
the starting point for the problem-solving process. Users can
query this agent by providing a problem description and, if
applicable, the names of relevant source files. The primary
responsibility of the planner agent is to create a high-level
plan and ensure its proper execution.

After generating the plan, the planner agent sequentially
creates a general, high-level description for each substep of the
plan, which is then executed in the substep execution layer.
Based on the outcomes of each substep, the planner agent
either proceeds to the next substep or requests a refinement
of the results from the previous substep. Additionally, the
planner agent has the flexibility to modify its plan if necessary,
depending on the results obtained.

B. Substep Execution

The substep execution layer consists of a single LLM-based
agent called the substep executor. When the planner agent
assigns a substep, the substep executor is queried with this
substep along with a general description of the challenge being
addressed. To tackle the assigned substep, the substep executor
generates T different potential actions.

For each proposed action, it provides a detailed analysis
of both the value and the likelihood of success. Based on
this analysis, the substep executor selects the best action to
proceed with. This chosen action leads to the generation of a
new subtask for the code action execution layer.

Once the action execution layer either solves the subtask,
or reports a failure, the substep executor reacts accordingly. If
successful, it may refine the subtask description and request
further results from the action execution layer. If there is a



failure, the executor proposes a new action, repeating the same
process of generating T alternative proposals and evaluations.

This iterative process continues until the substep executor
determines the substep assigned by the planner agent is either
complete or cannot be resolved. Finally, the substep executor
reports the outcome of the substep back to the planner agent,
enabling it to proceed with the next step.

C. Action Execution

In the action execution layer there are two LLM-based
agents called the code writer and the response extractor, and
one software-based agent known as the code executor. Once
the substep executor decides on an action and generates a
corresponding query, the query is relayed to the code writer
which generates the executable code to fulfill the action.

After the code is generated, it is forwarded to the code
executor, which executes the code after conducting several
safety checks. At this stage, we also allow the human user
to intercept and block the execution of the code if there is a
possibility of harmful actions.

Once the code is executed, the output is sent back to the
code writer, which determines whether the action has been
completed or if the code needs to be modified to address any
errors. The code writer is allowed a maximum of 10 attempts
to correct such errors, and if it cannot successfully fix the code
within that limit, it reports a failure.

Whether the action executed successfully or resulted in
failure after 10 attempts, the response extractor reviews the
entire code execution loop. It retrieves only the relevant
outputs and generates a report for the substep executor.

III. EXPERIMENTS AND DISCUSSION

To evaluate our framework, we conducted experiments
using the same benchmarks as previous related work [1],
[2], specifically challenges from the HackTheBox (HTB),
GlacierCTF (G-CTF), SekaiCTF (S-2X) and picoCTF (p-
CTF) competitions. In [1], the earliest times at which human
participants solved the challenges are provided. During our
evaluation, we focused on challenges completed by human
participants in under 2 hours. This decision was made based on
our current time constraints and the estimated success rate of
the current version of the framework. Similarly, for p-CTF, we
selected challenges that the framework in [2] could not solve
to determine if our approach performs better. Additionally, we
included some arbitrary medium-difficulty challenges. We plan
to test all challenges from these competitions in the complete
version of our work.

For all LLM-based agents, we utilize Anthropic’s claude-

3-5-sonnet-20241022 as the underlying model. To evaluate
whether a challenge has been unsuccessful, we allow the
framework to operate for up to half an hour. If the challenge
remains unsolved after this period, we terminate the run and
conclude that the task has failed. We set the action-diversity
parameter in the substep executor to T = 10. A comparison
of our framework with related work is presented in Table I,
where each experiment is conducted only once.

TABLE I
EXPERIMENT RESULTS

Challenge Previous work Ours
Loot Stash, HTB, Reversing ↭ ↭
Packed Away, HTB, Reversing ↭ ↭
Crushing, HTB, Reversing X ↭
Permuted, HTB, Crypto X X
Labyrinth Linguist, HTB, Web X X
Partial Tenacity, HTB, Crypto X X
Delulu, HTB, pwn X ↭
Skilift, G-CTF, Crypto ↭ ↭
Glacier Exchange, G-CTF, Web X X
SOP, G-CTF, Reversing X X
Noisy CRC, S-23, Crypto X X
Network Tools, S-23, pwn X X
Chunky, S-23, Web X X
Failproof, S-22, Crypto X X
Urgent, HTB, Forensics X ↭
Flag Command, HTB, Web ↭ ↭
It Has Begun, HTB, Forensics ↭ ↭
Dynastic, HTB, Crypto ↭ ↭
Primary Knowledge, HTB, Crypto ↭ ↭
Data Siege, HTB, Forensics X X
Missing Bits, G-CTF, Crypto X X
SLCG, G-CTF, Crypto X X
RPGO, G-CTF, Reversing X X
SOP, G-CTF, Reversing X X
Eval Me, S-23, Forensics ↭ ↭
Noisier CRC, S-23, Crypto X X
White Pages, p-CTF, Forensics ↭ ↭
MacroHard WeakEdge, p-CTF, Forensics X ↭
Mind your Ps and Qs, p-CTF, Crypto ↭ ↭
Pitter, Patter, Platters, p-CTF, Forensics X ↭
Powershelly, p-CTF, Reversing X X
New Vignere, p-CTF, Crypto X X

As shown in Table I, our framework successfully addresses
all the challenges that Cybench [1] can solve and additionally
tackles three challenges—Crushing, Delulu, and Urgent—that
Cybench was unable to resolve. These challenges are among
those reported to be completed in under two hours by the top
human performers. Furthermore, we have demonstrated that
our proposed framework can solve MacroHard WeakEdge and
Pitter, Patter, Platters, which are unsolved challenges from [2].
During the development phase, we noticed that the solutions
to these additional challenges became achievable after we
introduced the action-diversity prompt. Therefore, we believe
that these preliminary results suggest a promising direction
for enhancing the performance of LLM-based frameworks in
cybersecurity tasks. Additionally, these new techniques may
imply that the capabilities of LLMs in the cybersecurity
domain are currently underestimated due to the limitations
of existing methodologies. It is possible that LLMs have the
potential to achieve significantly more than what is recognized
in the current state of the field.

REFERENCES

[1] A. K. Zhang, N. Perry, R. Dulepet, J. Ji, J. W. Lin, E. Jones, C. Menders,
G. Hussein, S. Liu, D. Jasper et al., “Cybench: A framework for
evaluating cybersecurity capabilities and risks of language models,” arXiv

preprint arXiv:2408.08926, 2024.
[2] R. Turtayev, A. Petrov, D. Volkov, and D. Volk, “Hacking ctfs with plain

agents,” arXiv preprint arXiv:2412.02776, 2024.



Automatizing Cybersecurity via Large Language Models
Burak Hasırcıo!lu, Vasilios Mavroudis, Chris Hicks

The Alan Turing Institute, London UK, bhasircioglu@turing.ac.uk

Substep executor Code writer
Writes code to execute the 

action

Code executorResponse extractor
Gets only relevant output

Problem 
description

+ source files

action

until
COMPLETE

Planner agent

Makes a high-level plan and 
enforces its steps

until
SOLVED

substep

result

at most 10 attempts

outputs from all 
executions

result1

2
3

4

5

6

Introduction

• Large Language Models (LLMs) have shown remarkable performance across
various domains

• Cybersecurity presents a unique opportunity and challenge for LLM
automation

• Our research explores an agentic framework to leverage LLMs for
cybersecurity tasks

Motivation

• LLMs can automate penetration testing and vulnerability discovery
• Potential to reduce cybersecurity costs
• May also lower the entry barrier for beginners and save time & resources for

experienced hackers
• Critical need to understand LLM capabilities and risks in cybersecurity

Framework Architecture

Three hierarchical layers:
1 Planning Layer: Planner agent creates high-level strategy
2 Substep Execution: Substep executor generates and evaluates actions
3 Action Execution: Code writer and executor implement solutions

Action-Diversity Method

Key innovation: Systematic action exploration
• Generate multiple potential actions
• Analyze value and success likelihood
• Select the most promising action
• Iterative refinement of approach

Experiment Setup

Benchmark: Capture The Flag (CTF) Challenges
• Evaluated across multiple competition challenges: HackTheBox (HTB),

GlacierCTF (G-CTF), and picoCTF (p-CTF)
• Challenges are chosen the same as previous benchmarks [1, 2]
• Challenges spanning: Reversing, Web Exploitation, Cryptography, Forensics,

Pwn
• Di!culty constraint: The best human performer can solve less than 2 hours

per challenge

Experiment Results

Challenge Previous work Ours
Loot Stash, HTB, Reversing ↭ ↭
Packed Away, HTB, Reversing ↭ ↭
Crushing, HTB, Reversing X ↭
Permuted, HTB, Crypto X X
Labyrinth Linguist, HTB, Web X X
Partial Tenacity, HTB, Crypto X X
Delulu, HTB, pwn X ↭
Skilift, G-CTF, Crypto ↭ ↭
Glacier Exchange, G-CTF, Web X X
SOP, G-CTF, Reversing X X
Noisy CRC, S-23, Crypto X X
Network Tools, S-23, pwn X X
Chunky, S-23, Web X X
Failproof, S-22, Crypto X X
Urgent, HTB, Forensics X ↭
Flag Command, HTB, Web ↭ ↭
It Has Begun, HTB, Forensics ↭ ↭
Dynastic, HTB, Crypto ↭ ↭
Primary Knowledge, HTB, Crypto ↭ ↭
Data Siege, HTB, Forensics X X
Missing Bits, G-CTF, Crypto X X
SLCG, G-CTF, Crypto X X
RPGO, G-CTF, Reversing X X
SOP, G-CTF, Reversing X X
Eval Me, S-23, Forensics ↭ ↭
Noisier CRC, S-23, Crypto X X
White Pages, p-CTF, Forensics ↭ ↭
MacroHard WeakEdge, p-CTF, Forensics X ↭
Mind your Ps and Qs, p-CTF, Crypto ↭ ↭
Pitter, Patter, Platters, p-CTF, Forensics X ↭
Powershelly, p-CTF, Reversing X X
New Vignere, p-CTF, Crypto X X

Key Achievements:
• Solved challenges previous frameworks could not
• Demonstrated LLM potential in cybersecurity

Implications

• LLMs may have underestimated capabilities in cybersecurity
• Action-diversity method shows promise
• Future work: Expand challenge coverage and refine methodology

References

[1] A. K. Zhang, N. Perry, R. Dulepet, J. Ji, J. W. Lin, E. Jones, C. Menders, G. Hussein, S. Liu, D. Jasper et al.,
“Cybench: A framework for evaluating cybersecurity capabilities and risks of language models,” arXiv preprint
arXiv:2408.08926, 2024.

[2] R. Turtayev, A. Petrov, D. Volkov, and D. Volk, “Hacking ctfs with plain agents,” arXiv preprint
arXiv:2412.02776, 2024.


