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Abstract—Deep learning models, while achieving remarkable
performances across various tasks, are vulnerable to membership
inference attacks (MIAs), wherein adversaries identify if a specific
data point was part of the model’s training set. This susceptibility
raises substantial privacy concerns, especially when models are
trained on sensitive datasets. Although various defenses have
been proposed, there is still substantial room for improvement in
the privacy-utility trade-off. In this work, we introduce a novel
defense framework against MIAs by leveraging generative models.
The key intuition of our defense is to remove the differences
between member and non-member inputs, which is exploited by
MIAs, by re-generating input samples before feeding them to the
target model. Therefore, our defense, called DIFFENCE, works
pre inference, which is unlike prior defenses that are either
training-time (modify the model) or post-inference time (modify
the model’s output).

A unique feature of DIFFENCE is that it works on input samples
only, without modifying the training or inference phase of the
target model. Therefore, it can be cascaded with other defense
mechanisms as we demonstrate through experiments. DIFFENCE is
specifically designed to preserve the model’s prediction labels for
each sample, thereby not affecting accuracy. Furthermore, we have
empirically demonstrated that it does not reduce the usefulness
of the confidence vectors. Through extensive experimentation, we
show that DIFFENCE can serve as a robust plug-n-play defense
mechanism, enhancing membership privacy without compromising
model utility—both in terms of accuracy and the usefulness of
confidence vectors—across standard and defended settings. For
instance, DIFFENCE reduces MIA attack accuracy against an
undefended model by 15.8% and attack AUC by 14.0% on
average across three datasets, all without impacting model utility.
By integrating DIFFENCE with prior defenses, we can achieve
new state-of-the-art performances in the privacy-utility trade-off.
For example, when combined with the state-of-the-art SELENA
defense it reduces attack accuracy by 9.3%, and attack AUC
by 10.0%. DIFFENCE achieves this by imposing a negligible
computation overhead, adding only 57ms to the inference time
per sample processed on average.

I. INTRODUCTION

Deep learning has made remarkable achievements in recent
years. However, it has been demonstrated that deep learning
models can memorize information from their training [7], [8],
[9], making them susceptible to membership inference attacks

Fig. 1: Examples of original samples and their recon-
structions on CIFAR-10. Original samples are successfully
identified as members by the adversary, while the reconstructed
samples are classified as non-members.

TABLE I: A comparison to prior works. ✓means the
information is required by the adversary, - otherwise.

Technique Requires
Re-training

Requires
Additional

Data

Impact on
Model

Accuracy

Deployment
Stage

AdvReg [1] ✓ ✓ High Training
MemGuard [2] - ✓ None Post-Inference

DPSGD [3] ✓ - High Training
SELENA [4] ✓ - Low Training
RelaxLoss [5] ✓ - None Training

HAMP [6] ✓ - Low Training
DIFFENCE (Scenario 1) - ✓ None Pre-inference
DIFFENCE (Scenario 2) - - None Pre-inference
DIFFENCE (Scenario 3) - - None Pre-inference

(MIAs). Such attacks seek to infer if a specific data point was
part of a model’s training set [10]. Given that deep learning
models are often trained on sensitive data, such as facial
images [11] and medical records [12], the potential success of
MIAs poses a significant threat to privacy [10].

The growing threat of MIAs has motivated the development
of different defense strategies. Existing defense mechanisms
can be categorized into two main classes based on their
application phase in the machine learning pipeline. The first
category includes defenses that operate during the training
phase. These methods employ privacy-preserving techniques
to train models in a way that reduces their memorization of
training data, thereby mitigating privacy risks [3], [1], [4], [5],
[6]. Key approaches within this category include Differential
Privacy Stochastic Gradient Descent (DPSGD) [3], adversarial
regularization (AdvReg) [1], and knowledge distillation [4].
The second category targets the post-inference phase, focusing

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.230298
www.ndss-symposium.org



 

......

AdvReg

SELENA

RelaxLoss

Hamp
Input samples Diffusion

Model Reconstructed
Samples ......

Memguard Membership
undisclosed

Membership
inferred

LabelForward LabelReverse

Training Stage
 Defense

Post-inference Stage
 Defense

Pre-inference Stage
 Defense (Ours)

Fig. 2: An illustration of different MIA defense stages and our proposed DIFFENCE. Defenses are categorized according
to their implementation stages in the machine learning pipeline: the training phase, pre-inference phase, and post-inference
phase. Different defense strategies can be deployed at various stages for an integrated defense approach. DIFFENCE uniquely
positioned in the pre-inference phase, is compatible with all other methods.

on reducing membership privacy leakage by directly rectifying
the disparities in the model’s outputs between members and
non-members. A representative defense in this category is
MemGuard [2], which modifies output confidence vectors to
fool the adversary’s attack model.

A new class of MIA defenses: In this paper, we introduce a
third category of defense mechanisms that operate in the pre-
inference stage. A pre-inference defense does not alter model
outputs or the model itself, as with the two main categories
introduced above. Instead, a pre-inference defense mechanism
modifies input samples before they are sent to the target model
for inference. To our best knowledge, no prior work has
developed a pre-inference defense against MIAs. Figure 2
compares the three categories of MIA defense techniques, and
Table I shows example mechanisms across these categories.

We introduce DIFFENCE, a novel pre-inference MIA defense
that enhances privacy without sacrificing model accuracy. DIFF-
ENCE uses diffusion models. Advanced generative models such
as GANs [13] and diffusion models [14] have been previously
employed during inference to safeguard deep learning models
from adversarial attacks [15]. However, the application of
generative models during inference to defend against privacy
attacks, specifically MIA, remains largely unexplored. In this
paper, we show that diffusion models can also serve as powerful
tools integrated into the defense framework against MIAs,
preserving membership privacy without harming model utility.

Intuitions behind DIFFENCE: The target model’s memoriza-
tion of members results in distinct behaviors when classifying
seen (member) versus unseen (non-member) samples. MIAs
exploit these behavioral discrepancies to distinguish between
members and non-members, though different attack methods
may leverage different features. In this work, we focus
on black-box attacks, which typically infer membership by
utilizing information from the sample outputs. He et al. [16]
categorized the information exploited in these attacks into
two parts: prediction posteriors and labels. We contend that
the fundamental cause of MIAs is the non-negligible gap

TABLE II: Summary of the features and information utilized
by various MIAs. ✓means the specific gap is exploited by
the attack, - otherwise. Regarding features, P denotes the use
of prediction posteriors and L denotes the use of label.

Attacks
Train-to-test

Accuracy
Gap

Prediction
Distribution

Gap
Features

NN-based attacks [17], [10], [1] ✓ ✓ P,L
Metric-corr [18] ✓ - L
Metric-loss [18] ✓ ✓ P,L
Metric-conf [17] - ✓ P
Metric-ent [19] - ✓ P

Metric-ment [17] ✓ ✓ P,L
Label-only attacks [20], [21] ✓ ✓ P,L

between the model’s outputs for members and non-members.
Building on this, we divide the features exploitable by attacks
into two categories: the train-to-test accuracy gap and the
prediction distribution gap. These features, as utilized in
existing attacks [10], [17], [18], [1], [19], are summarized in
Table II. Note that some attacks which rely solely on labels [20],
[21] may also indirectly exploit the prediction distribution gap
through the robustness of the predicted labels.

A successful MIA defense should fundamentally elimi-
nate/shrink the two gaps described above between members and
nonmembers while preserving the model’s utility. DIFFENCE
primarily focuses on minimizing the prediction distribution gap
without altering the samples’ prediction labels, thus maintaining
model accuracy. This is achieved by reconstructing the samples
using a generative model before they are input into the target
model. Through sample reconstruction, the model encounters
samples in the inference stage that are not exact replicas of
those observed during training, regardless of whether they
are member or non-member samples, effectively reducing
the discrepancy in the prediction distributions. Meanwhile,
our reconstruction process retains the semantic information
of the original samples, differing only in details, which
allows the model’s output confidence scores to accurately
reflect the characteristics of the original sample. DIFFENCE
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includes generating multiple reconstructions for each sample
and implementing various strategic selection techniques based
on different assumptions about the defender. These techniques
aim to align the prediction distributions of members and non-
members as closely as possible while maintaining the prediction
label, further details are provided in Section III-B2.
DIFFENCE’s implementation: While our defense can be
implemented using arbitrary generative models, we use dif-
fusion models [22] due to their state-of-the-art performances
in generative tasks [14] and compatibility with our defense
strategy; we therefore call our mechanism DIFFENCE, i.e.,
a diffusion-based fence against MIAs. A diffusion model
can be used to modify an original sample through forward
diffusion and reverse denoising steps, creating a new sample
that maintains the same semantic attributes while altering
non-essential details, aligning with our defense objectives
(details are discussed in Section III-B). Figure 1 provides
some example inputs and their selected reconstructions. The
diffusion model employed for defense does not need to be
exclusively designed for this purpose; hence, defenders can
utilize off-the-shelf diffusion models. Additionally, our results
demonstrate that defenders can employ diffusion models pre-
trained on different datasets to effectively defend and achieve
comparable performance. For instance, a diffusion model
trained on ImageNet can successfully provide defense for
CIFAR10.

We evaluated DIFFENCE on three benchmark datasets
(CIFAR-10 [23], CIFAR-100 [23], and SVHN [24]) and
two high-resolution image datasets (CelebA [25] and UTK-
Face [26]) using four model architectures: ResNet18 [27],
DenseNet121 [28], VGG16 [29], and Vision Transformer (ViT)
[30]. Our experiments comprehensively cover six state-of-the-
art MIAs and six state-of-the-art defenses. Note that DIFFENCE
can be viewed as a membership privacy booster that can be
cascaded with other (i.e., training or post-inference) defense
mechanisms, due to its minimal deployment constraints and
its plug-and-play flexibility. This also allows us to combine
the strengths of other methods. For instance, DIFFENCE can
be combined with defenses that address label-only attacks,
enhancing their effectiveness against other stronger attacks.
While DIFFENCE does not directly counter label-only threats,
this combination creates a comprehensive defense strategy
effective against all types of attacks. Our empirical results
validate DIFFENCE’s effectiveness in enhancing membership
privacy without decreasing the model utility, irrespective of
the model’s operational context—be it a baseline (vanilla) or a
defended setting. For example, we decreased attack accuracy for
SELENA, Relaxloss and HAMP by 9.3%, 12.2%, and 14.4%,
and attack AUC by 10.0%, 11.4%, and 14.4%, respectively,
on average across three benchmark datasets. DIFFENCE also
reduced the true positive rate (TPR) under 0.1% false positive
rate (FPR) by 52.8% on average across six tested defenses on
the SVHN dataset. All of this was achieved without any loss
in model utility, with an average additional inference overhead
of only 57ms.

In this context of utility, unlike previous studies on MIAs that

focused solely on model accuracy, we recognize model utility
encompasses not just accuracy, but also the meaningfulness of
the output confidence scores or how well the confidences are
calirbated [31], [32]. Through our evaluation, we have also ver-
ified that DIFFENCE effectively maintains the meaningfulness
of confidence scores, which indicates that it indeed preserves
the overall utility.
Summary of contributions: Our contributions are as follows:

1) We propose a novel diffusion model-based membership
inference defense framework called DIFFENCE, which
can boost the membership privacy of pre-existing (both
undefended and defended) models without compromising
the model utility.

2) We propose a new defense pipeline, which for the first
time combines defenses deployed at different stages to
achieve better defense performance.

3) We implemented the prototype of the DIFFENCE. Our
extensive experiments show that DIFFENCE can effec-
tively improve the membership privacy of existing models
without utility loss. Furthermore, we show that in certain
settings DIFFENCE can enhance both the model accuracy
and privacy of the model.

II. BACKGROUND AND PRELIMINARIES

A. Diffusion Models

Generative image modeling has seen remarkable advance-
ments in recent years, with Generative Adversarial Networks
(GANs) [13] and Variational Autoencoders (VAEs) [33]
standing out as the pioneering architectures for synthesizing
realistic images [34], [35], [36], [37]. While these frameworks
have laid the groundwork and achieved significant successes,
diffusion models [38] have recently emerged, surpassing
their predecessors in terms of performance and establishing
themselves as a leading approach in the domain of image
synthesis [14].

Denoising Diffusion Probabilistic Models (DDPMs) [22]
have emerged as a significant advancement in generative image
modeling and operate by reversing a diffusion process. This
diffusion mechanism can be expressed as

xt =
√

1− βtxt−1 +
√
βtϵt (1)

where ϵt represents Gaussian noise, and βt dictates the
magnitude of noise introduced at each iteration. After a set
number of timesteps, typically denoted as T , the data xT

becomes predominantly noise-infused.
Reconstructing meaningful samples involves reversing this

process. A denoising function is trained by DDPM, which,
when given a noised sample xt, predicts the less-noisy version
from the preceding timestep xt−1. The optimization goal is
to minimize the difference between the true and the predicted
data, typically through a mean squared error loss. During
the sampling phase, DDPM initiates with a noise distribution
sample and employs the trained denoising function to reverse
the diffusion, yielding samples that closely mirror the original
data distribution.
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B. Threat Model

1) Attacker: Black-box Access: Following prior works [2],
[6], we assume the attacker has black-box access to the target
model. This means the attacker can query the target model using
a black-box API and receive corresponding prediction vectors,
while direct access to any intermediate results, including the
reconstructions from the diffusion model and intermediate
outputs from the target model remains restricted. Therefore,
we assume there is no privacy leakage through the diffusion
model or the intermediate results of the target model.
Partial Knowledge of Membership for Members: Like
previous defenses [4], [6], we assume a strong attacker that
knows a limited number of samples from both the training
and test sets, i.e., they know the membership status of some
members and some non-members. Therefore, the attacker can
directly train their attack classifier using the known members
and non-members of the target model without the need to train
any shadow models. The goal of the attack is to infer the
membership status of any other unexposed sample.
Full Knowledge of Defense Technique: We assume the
attacker is fully aware of the deployment of the defense
technique and the architecture of the target model. In the context
of DIFFENCE, we assume the attacker has full knowledge
of how the diffusion model is deployed. All attacks against
DIFFENCE in our experiments can be considered adaptive
attacks, as we assume the attacker can process samples in the
same manner as DIFFENCE when training their attack classifier.
This means the attacker can use reconstructions from the same
diffusion model to train the attack classifier instead of using
the original samples.

2) Defender: We assume the defender possesses a private
dataset and uses it to train a target model. The defender’s
objective is to securely release the target model for user acces-
sibility. The defender aims to strike a balance between achieving
minimal membership privacy leakage and maintaining high
classification accuracy.

III. METHODOLOGY

Our main idea is to eliminate the differences in predictive
behavior between members and non-members, thereby funda-
mentally mitigating membership privacy leakage. As described
in Section I, we categorize these disparities into the train-to-test
accuracy gap and the prediction distribution gap. DIFFENCE
primarily targets the elimination of the prediction distribution
gap. However, DIFFENCE can seamlessly integrate with other
defenses that reduce the train-to-test accuracy gap, such as
SELENA [4], enabling a comprehensive defense strategy that
simultaneously addresses both gaps without sacrificing the
model’s utility, achieving state-of-the-art defense performance.
In this section, we first explain how differences in predictive
behavior can lead to privacy leakage. We then introduce how
we design DIFFENCE to narrow these gaps.

A. Intuition Behind DIFFENCE

Prior studies on MIAs have highlighted a distinct model
behavior concerning training and test data, pinpointing it as

a key contributor to membership privacy leakage [39]. The
gap in prediction distributions between members and non-
members can be reflected in various features. These may
include assigning higher confidence levels, lower loss, and
reduced prediction entropy to members. The disparities in these
features are key factors leading to membership privacy leakage,
with almost all effective MIAs exploiting one or several of these
feature discrepancies [18], [10], [19], [39]. Moreover, these
features are interrelated; for instance, lower loss often implies
reduced prediction entropy and higher confidence levels.

Carlini et al. [39] proposed parametric modeling of prediction
confidence to achieve a more Gaussian-like distribution. Such
a distribution more effectively distinguishes the prediction
distribution gap between members and non-members. In our
subsequent discussions, we adopt this parametric modeling
approach to represent the prediction gap. The only difference
is that we use the maximum confidence from the output vector
rather than the confidence of the correct class, as our focus is
on the prediction distribution gap rather than the train-to-test
accuracy gap. The parametric modeling function is shown in
Equation 2.

ϕ(p) = log

(
p

1− p

)
, for p = max(f(x)) (2)

where f(x) is the model’s output vector for input x. Figure 3
plots histograms illustrating the differences in predictions for
members and non-members on CIFAR-100 without defenses.
It can be observed that there are significant disparities in
the output distributions between members and non-members,
especially in the parametrically modeled confidence, which we
refer to as logit in this paper. Attackers can easily exploit these
differences to distinguish between members and non-members.

To address these issues, we propose a novel method that
leverages input reconstruction to eliminate the prediction
disparity between members and non-members. Our core idea is
that by reconstructing samples, the model, during classification,
encounters samples that are distinct from those it has seen
during the training phase, irrespective of whether they are from
members or non-members, thereby reducing inconsistencies
in predictions. Our proposed method, DIFFENCE, aims to
reconstruct the finer details of samples without altering their
semantic content. To this end, we employ diffusion models as
our generative model, as they align well with our objectives.

Figure 4 provides examples of how DIFFENCE narrows
the prediction gap. By reconstructing the input, DIFFENCE
ensures that the model’s predictions for both members and non-
members become more consistent, thereby mitigating the risk
of membership inference attacks. This process reduces the gaps
in confidence levels, prediction entropy, and the parametrically
modeled confidence.

B. Our Proposed DIFFENCE

DIFFENCE involves generating multiple reconstructed images
and selecting the best one that suits our purpose. Among the
generated samples, only those with the same predicted label as
the original sample are considered as candidates for selection.
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Fig. 3: Prediction distribution gap between members and non-members: The figure illustrates the disparities in prediction
distributions with respect to confidence levels, prediction entropy, and parametrically modeled confidence (predicted logits).

This ensures that the model’s predictive outcomes remain
unchanged, thereby maintaining the model accuracy. We
designed different sample selection strategies for three scenarios
based on the assumptions in the defender. These scenarios
include a defender having access to both some member and non-
member samples, having access only to members, and having
access solely to a trained model without any knowledge of
samples’ memberships. With more information, defenders can
perform a more nuanced analysis of the prediction distribution.
This enables a more strategic selection of reconstructed images,
forcing the prediction distributions of members and non-
members to align more closely, thereby providing robust
protection. We provide more details below.

1) Sample Reconstruction: For each input image, we apply
a two-phase process to obscure and subsequently reconstruct its
inherent details. First, we apply the forward diffusion procedure
using the closed-formed expression in Equation 3 provided by
Ho et al. [22] to add Gaussian noise to the image.

xt =
√
ᾱtx0 +

√
1− ᾱtϵ (3)

Where αt = 1 − βt and ᾱt =
∏t

i=1 αi. Then, the reverse
process is applied aiming to recover the original image from
the noisified image.

The two-step reconstruction of the image aligns well with
our defensive objectives. If we look into the frequency domain
by using Fourier Transform to both input images x0 and noise
ϵ, we get:

F(xt) =
√
ᾱtF(x0) +

√
1− ᾱtF(ϵ) (4)

Typically, images display a high response to low-frequency
content and a notably weaker response to high-frequency
content. This is because of the inherent smoothness of most
images. The dominant low-frequency components encapsulate
essential visual information, while the high-frequency compo-
nents, associated with fine details and edges, are comparatively
subdued [40].

Considering a small t, where ᾱt closely approximates 1, the
perturbations in the frequency domain are minor. Note that the
Fourier transform of a Gaussian sampling is itself Gaussian.
Consequently, at small t values, the forward process washes
out the high-frequency content without perturbing the low-
frequency content much. This leads to a faster alteration of the

high-frequency elements compared to the low-frequency ones
in the forward process. This dynamic is also relevant in the
context of the reverse process of denoising models. At lower
t values, these models predominantly focus on reconstructing
high-frequency content [41].

We denote the diffusion step applied to each sample in
DIFFENCE as T . By selecting an appropriate value for T , we
can preserve the essential semantic content of each image while
altering its finer details. The impact of the diffusion step T on
the performance of DIFFENCE is further explored in Section
IV-C2. During the inference phase, the two-step reconstruction
procedure reduces the gap between the prediction distributions
of members and non-members.

2) Sample Selection: We observed that the stochastic nature
of sample generation can lead to a decline in sample quality
sometimes when only one reconstructed sample is generated
for each image, potentially resulting in decreased model
test accuracy. To address this issue, we propose generating
multiple reconstructed images for each original image. Then
in alignment with our defense objective, we carefully select
the most appropriate samples to be utilized as the final input
sample.

For each original image Ii requiring privacy protection,
DIFFENCE generates N reconstructed versions, denoted as
Ri = {Ri1, Ri2, . . . , RiN}. The model f outputs a prediction
for each reconstructed image Rij , i.e., f(Rij). From these,
we identify a subset of reconstructions whose predicted labels
match the predicted label of the original image Ii forming a
set of candidate reconstructions, denoted as C. We then select
the most appropriate reconstructed image from the candidates.
Selecting a sample from this candidate set ensures that the
original prediction label of the sample remains unchanged,
guaranteeing that DIFFENCE does not impact the model’s
accuracy.

Pi = select({f(Rij) | f(Rij) = f(Ii), j = 1, . . . , N}) (5)

Here, Pi represents the final prediction for the original
image Ii, derived from the model’s prediction for the selected
reconstruction. The selection function, denoted as select(·),
chooses the optimal reconstruction from Ri based on a
criterion that evaluates the predictions of all N reconstructions.
This criterion is aligned with the defense’s objectives and
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Fig. 4: Prediction distribution gap between members and non-members under DIFFENCE across the three scenarios.
This figure displays the distribution of predicted logits on the CIFAR-100 dataset using ResNet18 with DIFFENCE in the three
scenarios.

may take into account the defender’s prior knowledge about
the prediction distributions of members and non-members.
We categorize DIFFENCE into three scenarios based on the
information available to the defender and have accordingly
designed distinct sample selection strategies for each.
Scenario 1. In this scenario, we assume that the defender
has access to subsets of both member and non-member data.
The defender initially generates N reconstructed samples for
each data point and then plots the prediction distributions
for all these reconstructions. Through the analysis of these
distribution plots, the defender can identify an optimal interval
where the predictions should ideally fall to maximize the
reduction of the prediction distribution gap between members
and non-members. Specifically, a grid search is conducted
over the overlapping regions of member and non-member
prediction distribution [min(logitmem),max(logitnonmem)]
to determine this interval. The chosen interval aims to minimize
the Jensen-Shannon (JS) divergence [42] between the prediction
distributions of members and non-members within the selected
range. This approach is based on the observation that a lower
JS divergence between member and non-member prediction
distributions typically indicates reduced membership privacy
leakage [16]. This correlation has been confirmed by our
experiments, as detailed in Section IV-C1.

Defenders require only a small subset of samples to select
the optimal interval. After the interval is determined, for each
sample requiring protection, the defender randomly selects
one sample from the candidate set C that falls within this
interval based on the prediction. If none of the candidates are
within the interval, the closest one is chosen. Another possible
approach involves continuously generating reconstructions until
the sample falls within the defined interval. However, we found
this method to be inefficient. More details on this are discussed
in Section IV-C1.

Figure 4 provides an example of DIFFENCE as applied to
the CIFAR-100 dataset. It illustrates the prediction distribution
of reconstructed samples for 1000 data points which is used
to select the optimal interval. The figure also showcases the
distribution of prediction logits for both members and non-

members after the selection of the optimal interval using the
steps outlined in DIFFENCE. This visualization demonstrates
the effectiveness of DIFFENCE in aligning the prediction distri-
butions of member and non-member data, thereby minimizing
the potential for privacy leakage.
Scenario 2. In this scenario, the defender only has access to a
subset of members, the interval selection must rely solely on the
prediction distribution of member reconstructions. In such cases,
where only the member prediction distribution is available, we
set the interval as [min(logitmem),mean(logitmem)]. This is
based on the observation that members typically exhibit higher
confidence levels, and often, the lower half of the member
distribution significantly overlaps with the upper half of the
non-member distribution. By observing Figure 4 this approach
also significantly narrows the gap between the prediction logits
of members and non-members.
Scenario 3. In this scenario, the defender is unaware of the
membership status of any sample, typically occurring when
the defender is tasked with protecting an already trained model
without having been involved in its training process. DIFFENCE
involves randomly selecting the prediction of one sample from
the generated candidates as the output. Although this method
does not deliberately restrict the prediction distribution, the
reconstruction process inherently contributes to reducing the
prediction distribution gap between members and non-members.
This effect is achieved as the model encounters newly generated
samples during the reconstruction phase, which are distinct
from any data it was exposed to during training. This novelty in
the samples ensures a more uniform response from the model,
diminishing the likelihood of differential predictions between
members and non-members.

3) Prediction Aggregation: By default, we adopt the afore-
mentioned sample selection strategy as it consistently provides
privacy protection without altering the model’s accuracy. An
alternative option is to aggregate the predictions of all generated
samples instead of selecting one. This approach may yield
superior results in specific contexts; for example, we observed
that direct averaging of predictions from generated samples
can enhance both membership privacy and model accuracy
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when the diffusion model is trained on sufficient data. Further
details on this are provided in Appendix A-C.

4) Integration with Other Defenses in a Plug-and-Play
Manner: DIFFENCE employs off-the-shelf diffusion models,
offering substantial flexibility in deployment. As outlined
in Section I, we categorize defenses into three deployment
phases. Defenses deployed in different stages are compatible
and can be used concurrently. DIFFENCE, characterized by
minimal defense assumptions, is unique in its deployment at
the pre-inference stage and offers plug-and-play capability,
allowing for integration with all other existing methods. As
illustrated in Figure 2, when combined with training phase
defenses, DIFFENCE can integrated into the inference pipeline
immediately after the model has been trained using privacy-
preserving techniques.

When combined with post-inference defenses, DIFFENCE can
be employed to reconstruct input samples within the inference
pipeline, followed by the application of the post-inference
defenses, such as MemGuard, to introduce noise into the output
prediction vector. Our experiments validate the effectiveness
of DIFFENCE in conjunction with other defenses, while also
providing new perspectives for the deployment of future defense
mechanisms.

C. Defending against Label-Only Attacks

DIFFENCE effectively reduces the prediction distribution
gap while preserving the model’s accuracy by not altering
the predicted labels for samples. However, this design choice
means that DIFFENCE is not directly effective against label-only
attacks, which exploit the model’s predicted labels rather than
the prediction confidence. Label-only attacks are generally
considered weaker and less of a priority in recent defense
works. For instance, RelaxLoss [5] excludes label-only attacks
from their evaluation, arguing that these attacks are strictly
weaker than the ones used to assess model privacy. Similarly,
HAMP [6] demonstrates that existing label-only attacks are
unsuccessful in a low false positive/negative regime.

Nonetheless, it’s worth noting that previous defenses, such
as SELENA [4] and HAMP [6], have shown success in
resisting label-only attacks. While DIFFENCE does not directly
improve defense against label-only attacks, it can be seamlessly
integrated with these existing defenses, enhancing overall
protection without sacrificing the model’s utility. Although
DIFFENCE does not specifically target label-only attacks, it
offers a flexible and non-intrusive approach to enhancing
membership privacy that can be effectively combined with
other defenses to achieve comprehensive protection.

IV. EVALUATIONS

A. Experimental Setup

Datasets. We consider three benchmark datasets and two high-
resolution datasets :

• CIFAR-10 [23]: CIFAR-10 Comprising 60,000 32x32
color images across 10 classes, Each class contains 6,000
images.

• CIFAR-100 [23]: CIFAR-100 have the same data format
as CIFAR-10, but it has 100 classes, so each class has
only 600 images.

• SVHN [24]: SVHN contains 99,289 digit images of house
numbers collected from Google Street View. Each image
has a resolution of 32x32 and is labeled with the integer
value of the digit it represents, from 0 to 9.

• CelebA [25]: CelebA contains over 200,000 high-
resolution celebrity images (178x218 pixels), each an-
notated with 40 attributes. Following prior work [43], we
selected 3 attributes to create 8-class labels.

• UTKFace [26]: A large-scale face dataset with over
20,000 images labeled by age, gender, and ethnicity
(resolutions up to 200x200 pixels). We used images from
the four largest races (White, Black, Asian, Indian) for
race-based labels.

For the CIFAR-10 and CIFAR-100 datasets, we used 25,000
samples each for training the target models. For the SVHN
dataset, we used 5,000 samples. For the CelebA and UTKFace
datasets, we used 10,000 and 5,000 samples, respectively. The
remaining samples from each dataset were reserved as non-
members or references used by defenses or attacks.
Models. For target classifiers, we consider the widely used
ResNet18 [27] as the target model. Appendix A-A provides ex-
perimental results on additional model architectures, including
DenseNet121 [28], VGG16 [29], and ViT [30].

In our default setup, each target model is trained for 100
epochs using the Adam optimizer with a learning rate of 0.001.
We apply an L2 weight decay coefficient of 10−6 and use a
batch size of 128. For ViT, we use a learning rate of 0.0001.
As we found that the performance of some recent works can
be affected by the training configurations of the target models,
we also employ their training settings to demonstrate that
DIFFENCE enhances their best outcomes.

For the diffusion models integrated into DIFFENCE, we train
standard DDPMs from scratch using the default hyperparam-
eters from the original DDPM paper [22]. Unless otherwise
mentioned, DIFFENCE uses a diffusion model trained on the
same training data as the associated defended target classifier,
and generates N = 30 reconstructed images for each sample,
with the number of diffusion steps T set to 160. Detailed
discussions on the choice of these hyperparameters are provided
in Section IV-C2.

In addition to training diffusion models on the same
distribution as the target classifier, we also demonstrate the
effectiveness of DIFFENCE using publicly available pre-trained
diffusion models trained on ImageNet [14]. This illustrates that
the diffusion models in DIFFENCE and the target classifier’s
training data do not need to be from the same distribution.
It also shows that when an off-the-shelf diffusion model
for the same dataset is not available, using a pre-trained
diffusion model on a different dataset can still provide effective
protection. More details are provided in Section IV-B5.
Attack and Defense Methods. For evaluation, we consider six
state-of-the-art attack methods: NN-based attacks [1], [17], four
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threshold-based attacks (loss, confidence, entropy, M-entropy),
and the recent LiRA attack [39].

We consider six major defenses: AdvReg [1], MemGuard
[2], SELENA [4], RelaxLoss [5], HAMP [6], and DPSGD [3].
For all attack and defense methods, we follow the original
papers and setups unless otherwise stated. Detailed information
is provided in Appendix A-E.

Following previous practice [5], we exclude label-only
attacks in our comparative experiments. DIFFENCE primarily
targets attacks beyond label-only attacks, aiming to avoid
accuracy loss by not altering predicted labels, and thus does not
directly defend against label-only attacks (more discussions are
provided in Appendix A-B). However, label-only attacks can
be effectively countered by existing defenses such as SELENA
[4] and HAMP [6], but defenses against other attacks still
need improvement. Our approach is designed to complement
these existing defenses on the stronger attacks (i.e., non label-
only MIAs), enabling a comprehensive defense strategy that
addresses all types of attacks.
Evaluation metrics. For privacy, we default to using five
of the described attacks (excluding LiRA) to evaluate two
common used metric: (i) attack accuracy and (ii) attack AUC.
Additionally, we report the TPR (True Positive Rate) at 0.1%
FPR and the TNR (True Negative Rate) at 0.1% FNR on SVHN
dataset, using LiRA which is specifically designed to achieve
superior results on this metric. We exclusively applied the
LiRA attack on the SVHN dataset due to its high computational
demands, as it requires the training of over 100 shadow models.

B. Experimental Results

1) Comparison to Baselines: We first conducted an extensive
evaluation of DIFFENCE across three benchmark datasets. For
each dataset, we evaluated the performance of models across
seven different cases including one without any protection and
six others, each employing a different defense mechanism. We
tested the impact of DIFFENCE on the models’ test accuracy
and the changes in attack accuracy and attack AUC under three
scenarios introduced in Section III-B2. Our results show that
DIFFENCE consistently enhanced privacy protection across
all settings without compromising the model accuracy. We
discuss the specific effects of DIFFENCE below.

Figure 5 shows the performance of DIFFENCE against
ResNet18 under Scenario 1. We can observe that DIFFENCE
consistently reduces the attack’s AUC and accuracy across all
cases, particularly against those methods that preserve model
usability but offer only limited protection. For instance, when
applied to ResNet18, DIFFENCE managed to decrease the attack
accuracy for undefended, HAMP, RelaxLoss, and SELENA
models by 15.8%, 14.4%, 12.2%, and 9.3%, respectively,
on average across three datasets. Similarly, the attack AUCs
showed reductions of 14.0%, 14.4%, 11.4%, and 10.0% after
employing DIFFENCE. The experimental results demonstrate
that DIFFENCE can significantly reduce privacy threats, even
with the reliance on only a small amount of additional data
(1000 non-members in our experiments). Besides ResNet18,
we also tested DIFFENCE on DenseNet121, VGG16, and ViT.

The experiments show that DIFFENCE can effectively enhance
membership privacy in all these settings (more details in
Appendix A-A).

Our experiments suggest that the optimal defense practice is
combining DIFFENCE with recent utility-preserving defenses.
This combination leverages their advantages in maintaining
utility while enhancing privacy protection. For instance, the best
privacy-utility trade-offs achieved on VGG16 were from the
integrations of DIFFENCE with SELENA and HAMP (Figure
12).

Table III presents the experimental results using ResNet18
under all three different scenarios. We show the average
attack AUC and accuracy reduction of DIFFENCE across three
datasets in each scenario. The average defense effectiveness in
Scenarios 2 and 3 is weaker than in Scenario 1, due to stronger
assumptions placed on the defender in these scenarios. However,
it is observable that they still achieve significant privacy
enhancements across all settings without compromising the
model’s accuracy. We observed that some recent defenses, such
as HAMP and RelaxLoss, have not achieved satisfactory overall
effectiveness. We found their performance heavily depends on
the manual selection of hyperparameters. Following their claims
about the impact on utility, we selected hyperparameters that
matched the test accuracy of undefended models. However, this
sometimes resulted in poor defense and even worsened privacy.
DIFFENCE can address these privacy issues while maintaining
their high utility.

In the research of MIA defense, balancing sufficient privacy
protection with model utility has always been one of the
most important objectives. Our results suggest that DIFFENCE
represents a significant step forward towards the ideal defense.

2) Evaluation of Confidence Calibration in Model Predic-
tions: DIFFENCE preserves the predicted label of the sample,
thereby not affecting the model’s accuracy. Nonetheless, the
utility of a model also involves the value of information
provided by the output confidence vector. As discussed in
Section III-B, DIFFENCE exploits diffusion model to generate
reconstructions that closely resemble the original samples,
differing only in subtle details (see Figure 1 for examples). We
propose that the confidence levels of these reconstructions are
reliable indicators and provide a dependable measure of the
original sample’s characteristics.

Previous research [32], [35], [44] emphasizes the importance
of well-calibrated model outputs, where the predicted class
probability should match its actual correctness likelihood.
Expected Calibration Error (ECE) [31], [32], [44] is a key
metric in this context, quantifying the alignment between
predicted probabilities and empirical accuracies. Essentially,
ECE measures the average discrepancy between the confidence
of a model’s predictions and the true correctness of those
predictions, providing a critical assessment of the reliability
of the model’s confidence estimates. A lower ECE suggests
better alignment of confidence scores with true probabilities,
indicating more reliable predictions. ECE is calculated as in
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(a) Attack Accuracy

(b) Attack AUC

Fig. 5: Attack accuracy and AUC on three datasets against ResNet18 under Scenario 1. We report the highest attack
accuracy and attack AUC across all attacks. The prediction accuracy delta indicates the prediction accuracy gap compared to
the undefended models, with negative numbers indicating a decrease in model accuracy.

TABLE III: Average attack accuracy and AUC across three datasets under three scenarios on ResNet18. The best defense
results in each case are highlighted in bold.

Defenses Prediction
Accuracy Delta (%)

w/o DIFFENCE w/ DIFFENCE (Scenario 1) w/ DIFFENCE (Scenario 2) w/ DIFFENCE (Scenario 3)

Attack
AUC (%)

Attack
Accuracy

(%)

Attack
AUC (%)

Attack
Accuracy

(%)

Attack
AUC (%)

Attack
Accuracy

(%)

Attack
AUC (%)

Attack
Accuracy

(%)
Undefended 0 79.14 77.73 68.08 65.41 70.79 67.12 69.12 67.02

SELENA -2.13 62.22 60.92 56.00 55.23 60.30 58.58 57.81 57.16
AdvReg -5.53 61.32 58.94 59.17 57.68 61.33 58.58 60.87 58.62
HAMP -0.23 78.96 76.08 67.60 65.10 71.23 66.61 69.18 66.31

RelaxLoss 0.97 75.81 73.78 67.13 64.75 69.56 66.19 68.60 66.07
DP-SGD -9.13 56.61 56.19 55.47 55.40 58.40 56.92 56.60 56.35

Memguard 0 69.53 68.21 66.76 64.47 67.23 65.30 67.48 65.51

equation 6:

ECE =

M∑
m=1

|Bm|
n

|acc(Bm)− conf(Bm)| (6)

where M denotes the number of bins into which the predictions
are grouped. Bm is the set of samples in the m-th bin. n
represents the total number of samples. acc(Bm) is the accuracy
within bin Bm. conf(Bm) is the average predicted confidence
for samples in bin Bm.

Figure 6 shows the ECE of the confidence vectors output
by both undefended models and models employing various
defenses across three datasets. It is observed that the ECE
values of DIFFENCE are very similar to those of the undefended

models. For instance, the ECE values for the undefended model
and the three DIFFENCE scenarios are 0.139, 0.142, 0.126, and
0.131 on average, respectively. This suggests that DIFFENCE
not only maintains the accuracy of the model but also provides
meaningful confidence scores.

However, it was observed that some defenses could lead
to a significant increase in ECE. For example, compared to
the undefended model, the average ECE of the HAMP is
222.3% higher. This could be attributed to HAMP’s strategy
of promoting high-entropy confidence vectors as a defense
against MIAs, leading to more flattened confidence distributions.
Such alterations, while serving a defensive purpose, can
yield confidence scores that lack meaningful interpretation,
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Fig. 6: Expected Calibration Error (ECE) of various
defenses across three datasets. A lower ECE value indicates
better-calibrated confidence scores.

potentially compromising the utility of the model.
In summary, our results validate the effectiveness of DIFF-

ENCE in preserving the utility of confidence scores, and also
highlight the importance of evaluating the meaningfulness of
confidence scores in the field of MIA defenses.

3) Effectiveness on Attack TPR and TNR Metrics: Following
the methodology of Carlini et al. [39], we evaluate the reliability
with which an adversary can compromise the privacy of even
a few users in a sensitive dataset, using metrics such as TPR
at 0.1% FPR and TNR at 0.1% FNR. We assess the defensive
effectiveness of DIFFENCE under the third scenario against
these metrics on the SVHN dataset, using six different attacks
including LiRA.

As illustrated in Figure 7, DIFFENCE significantly reduces
both the attack TPR and TNR in most cases. For example,
DIFFENCE decreased the attack TPR under 0.1% FPR and
TNR under 0.1% FNR against the undefended model by 63.9%
and 56.8%, respectively. When cascaded with other defenses,
DIFFENCE reduced the TPR under 0.1% FPR by 52.8% on
average across six tested defenses.

DIFFENCE has a smaller impact on methods that already
exhibit low TPR; however, these methods often compromise the
model’s utility. Consequently, DIFFENCE can be advantageously
combined with other defenses that preserve model utility but are
relatively weaker in defense effectiveness, to enhance overall
protection without significantly sacrificing utility.

4) Improving Performance Beyond Previous State-of-the-
Art: Recent advanced defenses like SELENA, RelaxLoss, and
HAMP have been reported state-of-the-art defense performance
in terms of privacy-utility trade-off in their respective papers.
However, our experments suggest that the defensive robustness
of RelaxLoss and HAMP is contingent upon the choice of
training parameters, leading to variability in their effectiveness.

For a fair and accurate comparison, we adopted the exper-
imental settings deployed in their original papers to assess
the effectiveness of DIFFENCE. In our evaluations, DIFFENCE

Fig. 7: Attack TPR and FPR on SVHN dataset. We report
the highest attack TPR and attack FPR across all attacks.

was configured with N = 10 and T = 50 in Scenario 3. The
results are shown in Table IV. Note that DIFFENCE maintains
the original predicted labels of the model. While this does
not eliminate the privacy risks posed by the accuracy gap
between training and test sets, it significantly mitigates the risk
of privacy leakage arising from other inconsistent prediction
behaviors.

We observed that DIFFENCE can effectively enhance mem-
bership privacy in most settings. For instance, for HAMP,
DIFFENCE successfully reduced attack AUC and accuracy
from 67.4% and 65.9% to 64.7% and 61.5%, respectively.
DIFFENCE did not show improvement in the RelaxLoss setting,
as there was no room for privacy enhancement by reducing
the prediction distribution gap. In this case, a simple attack
assuming all correctly classified samples as members achieved
the highest attack accuracy. Our experiments demonstrate that
DIFFENCE can be applied to the best defense models proposed
in prior works, further enhancing privacy by reducing the
prediction distribution gap.

5) Evaluating DIFFENCE with Publicly Available Diffusion
Models : Although DIFFENCE requires deploying a diffusion
model, the model does not need to be trained on the same
dataset as the target model. Therefore, defenders can leverage
off-the-shelf diffusion models, including publicly available
models trained on different datasets.

To demonstrate this, we evaluated DIFFENCE on two high-
resolution datasets: CelebA [25] and UTKFace [26] in Scenario
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(a) Attack Accuracy

(b) Attack AUC

Fig. 8: Attack accuracy and AUC on two high-resolution datasets against ResNet18, where DIFFENCE employs a publicly
released diffusion model trained on ImageNet.

TABLE IV: Performance of DIFFENCE on CIFAR-100. Here
we directly adopted settings from previous papers.

Defenses
Training
Accuracy

(%)

Test
Accuracy

(%)

Attack
AUC (%)

Attack
Accuracy

(%)
SELENA

Undefended /
+DIFFENCE

100.0 /
100.0

78.4 /
78.4

76.2 /
64.8

74.5 /
63.0

SELENA /
+DIFFENCE

77.3 /
77.3

75.0 /
75.0

55.5 /
51.8

55.1 /
52.7

RelaxLoss
Undefended /
+DIFFENCE

67.3 /
67.3

34.1 /
34.1

72.4 /
69.5

67.9 /
67.0

RelaxLoss /
+DIFFENCE

52.9 /
52.9

36.6 /
36.6

59.5 /
59.7

57.6 /
57.7

HAMP
Undefended /
+DIFFENCE

91.4 /
91.4

58.7 /
58.7

70.8 /
67.9

67.5 /
66.1

HAMP /
+DIFFENCE

78.6 /
78.6

55.6 /
55.6

67.4 /
64.7

65.9 /
61.5

3 using a publicly available diffusion model trained on
ImageNet by Dhariwal et al. [14] with settings of N = 10 and
T = 200. To the best of our knowledge, we are the first to
conduct comprehensive MIA tests on these datasets using the
original resolution without resizing, employing five attacks and
seven defenses. The experimental results are shown in Figure
8. It can be observed that DIFFENCE effectively enhances

membership privacy in all cases without compromising model
accuracy. On CelebA, DIFFENCE decreases attack AUC by an
average of 6.2% and attack accuracy by 6.0%. On UTKFace,
DIFFENCE decreases attack AUC by 9.5% and attack accuracy
by 9.9% on average. On CelebA and UTKFace, the combi-
nations of HAMP + DIFFENCE and SELENA + DIFFENCE
achieved the best utility-privacy trade-offs, respectively.

We also conducted experiments on three benchmark
datasets—CIFAR-10, CIFAR-100, and SVHN-using the same
public diffusion model. The results demonstrate that DIFFENCE
with the pretrained diffusion model provides effective defense
across all three datasets. On average, DIFFENCE reduces the
attack AUC by 4.8% and attack accuracy by 5.3%. For more
details, please refer to Figure 13 in the Appendix. Additionally,
the reconstructions generated by the diffusion model are nearly
identical to the original samples, with only imperceptible visual
differences, as shown in Figure 14.

C. Ablation study

As introduced in Section III, DIFFENCE employs a diffusion
model to reconstruct samples, protecting the membership
privacy of the original samples. We generate multiple samples
and select the prediction of the most suitable sample as the
final output based on the defense objectives and the information
available to the defender. This process involves considering
several factors, including the choice of interval, the number of
reconstructions N generated for each sample, and the diffusion
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(a) CIFAR-10 (b) CIFAR-100 (c) SVHN

Fig. 9: Attack AUC and accuracy under different levels of Jensen-Shannon (JS) divergence between member and
non-member prediction distributions. We tested it on three dataset using ResNet18 and set diffusion steps T = 40 and the
number of reconstructions N to 50.

Fig. 10: Cumulative Distribution Function (CDF) of the
number of generations required for reconstructions to
fall within different intervals when T = 100 on CIFAR-
100. The ’percentile’ indicates the anticipated probability of
reconstructions falling within the given interval, as determined
by analyzing the samples available to the defender.

step T . In this section, we delve further into discussing the
impact of the parameters and sample selection strategy.

1) Sample Selection Strategies: In Scenario 1, the main
idea of DIFFENCE involves setting an interval within which
the prediction logits of both members and non-members are
encouraged to fall. This strategy aims to align the prediction
distributions of members and non-members towards a range
in the middle. It is important to note that DIFFENCE uses a
fixed number of reconstructions N and diffusion steps T as
the basis for selecting the optimal interval. Given the fixed N ,
not all samples can fall within the chosen interval. For these
outliers, we select the sample that is closest to the interval.

An alternative approach might involve continuously generat-
ing reconstructions for each sample after setting the interval, to
force their predictions into this range. However, we found
this method to be highly inefficient. Figure 10 illustrates
the cumulative distribution of samples falling within various

intervals as the number of reconstructions increases. It reveals
that if a sample does not fall within the interval in its initial
generation, it is unlikely to do so in subsequent iterations.
Therefore, continuously generating new samples is not a
practical solution.

In terms of interval selection, we tested various intervals
and opted for the one where the JS divergence between
members’ and non-members’ prediction logits is minimized.
This approach is predicated on our observation that the JS di-
vergence of prediction logits between member and non-member
samples correlates significantly with attack performance. This
correlation has also been noted by He et al. [16] in their
research.

Figure 9 depicts attack AUC and accuracy on three datasets
in relation to the different JS divergence between member and
non-member prediction distributions when DIFFENCE is solely
applied. Each point in the figure corresponds to a selectable
interval, where choosing different intervals results in varying
JS divergences. A key observation is the negative correlation
between JS divergence and privacy protection – smaller JS
divergences typically indicate stronger membership privacy
protection. These results substantiate the effectiveness of our
interval selection strategy.

2) Effect of Hyperparameters: We then varied the values
of N and T to observe the changes in defense performance.
Note that DIFFENCE does not alter the prediction labels, and
therefore, does not impact the model’s test accuracy.

An increase in T leads to a more substantial alteration of
the original sample, thereby enlarging the divergence between
the generated samples and the original ones. A higher N
enhances the pool of alternative images, enriching the selection
process for our sample selection strategy. This, in turn, mitigates
randomness and enables a more consistent selection of suitable
replacement samples.

As depicted in Figure 11, both the attack AUC and accuracy
decrease as T and N increase and a more pronounced decrease
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(a) Attack AUC

(b) Attack Accuracy

Fig. 11: Attack AUC and attack accuracy against DIFFENCE
with different numbers of generated samples N and
Diffusion Steps T on average across three datasets. We
varies N from 2 to 50 and T from 40 to 260.

is observed with larger T values. However, increasing T and
N will also increase the time of sample generation, potentially
increasing the latency of inference. This introduces a trade-
off: optimizing the defense’s effectiveness versus minimizing
inference delay. The balance between improved privacy and
reduced latency should be tailored to the requirements of the
specific task in practice.

V. DISCUSSIONS

A. Overhead of Different Defenses

Our experiments include seven defense methods, where
HAMP, SELENA, RelaxLoss, AdvReg, and DPSGD are
training-phase defenses, and MemGuard and DIFFENCE operate
during the inference phase. We evaluated the overhead of these
defenses during training and testing based on their deployment
phase. The training and inference overhead were measured on a

TABLE V: Inference overhead comparison of different
defenses.

Defenses CIFAR-10 (ms) CIFAR-100 (ms) SVHN (ms)

Undefended 26 24 24
Memguard 732 612 586
DIFFENCE 82 82 81

single NVIDIA RTX-8000 GPU with 40GB of memory. Here,
we primarily discuss the inference overhead, with Appendix
A-D reporting the results on training overhead comparison.

MemGuard generates adversarial noise for each sample’s
confidence vector to deceive the attacker’s model, necessitating
the solving of complex optimization problems for each sample.
In contrast, DIFFENCE, which involves calculating optimal
intervals for samples before inference, is a one-time task that
does not add overhead during the inference phase. The primary
overhead of DIFFENCE comes from processing the original
samples with a diffusion model. To enhance this process,
we utilize Denoising Diffusion Implicit Models (DDIM)
[45], which streamline the diffusion process by providing
a means to skip sampling steps and directly estimate the
denoised image from noisy observations, significantly reducing
computational demands. Table V reports the inference times
for the undefended model, MemGuard, and DIFFENCE on
three benchmark datasets. We measured the inference overhead
by performing inference on 100 random member and non-
member samples and taking the average. As shown in Table
V, DIFFENCE outperforms MemGuard in terms of inference
phase running time and only adds an average of 57ms to the
inference time compared to the undefended model, highlighting
DIFFENCE’s efficiency and low overhead upon deployment.

B. Pre-training MIA Defenses

In Section I, we categorized MIA defenses into three
classes based on where they kick in during the ML pipeline:
training phase defenses, pre-inference defenses, and post-
inference defenses. One could also consider techniques that
work during ML pre-training as another class of MIA defense,
e.g., techniques like dataset condensation (DC) [46]. However,
we argue that these techniques tend to mitigate MIA more
as a side effect than as a primary focus. Furthermore, their
effectiveness in defending against MIA has been questioned
in recent work [47].

Also, one could consider these pre-training techniques as
a sub-class of our training phase defenses. In fact, some
training stage defenses, such as SELENA and HAMP, already
incorporate specifically designed dataset processing. Therefore,
we did not make pre-training a separate class of MIA defenses.

VI. RELATED WORKS

A membership inference attack [10] aims to determine if a
specific sample was in a model’s training data, posing risks of
sensitive individual information leakage. This section overviews
various such attacks and defenses, highlighting their diversity
across scenarios.
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A. Membership Inference Attacks

Shokri et al. [10] introduced a black-box MIA that employs
a shadow training technique to train an attack model to
differentiate the model’s output, categorizing it as either a
member or non-member. In a different approach, Salem et
al. [17] streamlined the process by training only a single
shadow model, assuming the attacker lacks access to similar
distribution data as the training dataset, yet still achieving
notable effectiveness. Expanding on these concepts, Nasr et
al. [48] presented a white-box MIA targeting ML models. For
each data sample, they computed the corresponding gradients
over the parameters of the white-box target classifier, utilized
as features of the data sample for membership inference.

Choquette-Choo et al. [20] developed a label-only MIA
concept, where the target model reveals only the predicted
label. Their attack’s efficacy relies on the model’s increased
resilience to perturbations like augmentations and noise in the
training data. Complementing this, Li et al. [21] presented
two specific label-only MIAs: the transfer-based MIA and the
perturbation-based MIA. Remarkably, these label-only attacks
achieve a balanced accuracy on par with that of the shadow-
model strategies.

Song [19] employs a modified entropy measure, using shadow
models to approximate the distributions of entropy values for
members and non-members across each class. Essentially, the
attacker conducts a hypothesis test between the distributions
of (per-class) members and non-members, given a model
f and a target sample (x, y). Yeom et al. [18] proposed
a loss-based membership inference attack, leveraging the
tendency of machine learning models to minimize training
loss. This attack identifies training examples by observing
lower loss values. Carlini et al. [39] forged ahead with the
development of a Likelihood Ratio-based attack (LiRA). This
attack has demonstrated success in outperforming previous
attacks, especially at low False Positive Rates. In the LiRA
approach, an attacker trains N shadow models using samples
from distribution D. Half include the target point (x, y), and
half do not. Two Gaussian fits are applied to these model
confidences. The membership inference is then deduced for
(x, y) in the target model using a Likelihood-ratio test based
on these fits.

B. Existing Defenses

Initial research on defenses against MIA showed that
certain regularization techniques, like dropout [49], can curb
overfitting, resulting in modest privacy enhancements in neural
networks [10]. Another method, early stopping [50], also serves
to prevent model overfitting, potentially reducing MIA accuracy,
albeit at the cost of compromising model utility.

Several studies have proposed defenses during the training
phase. Nasr et al. [1] proposed an adversarial regularization
technique, a min-max game-based training algorithm aiming to
reduce training loss and increase MIA loss. Shejwalkar [51] in-
troduced a defense against MIAs through knowledge distillation,
transferring knowledge from an undefended private-dataset-
trained model to another using a public dataset. Tang et al. [4]

proposed a knowledge distillation-based defense balancing
privacy and utility. They partitioned the training dataset into K
subsets, trained K sub-models on each, and used these to train
a separate public model with scores from non-training samples.
Chen [5] developed RelaxLoss, a training scheme balancing
privacy and utility by minimizing loss distribution disparities
to reduce membership privacy risks.

Some other defenses are applied separately from the training
phase. Jia et al. [2] proposed MemGuard, a method that
operates in two stages. It first crafts a noise vector to transform
confidence scores into adversarial examples under utility-loss
constraints. Then, it integrates this noise into the confidence
score vector based on a derived analytical probability. Chen [6]
introduced HAMP, a defense mechanism encompassing both
training and test-time defenses. Its training component aims to
lower model confidence on training samples, countering the
overconfidence induced by hard labels in standard training.

Differential privacy (DP) [52], [53] is a prominent method
extensively employed to offer theoretical privacy guarantees in
ML models. Within this framework, noise can be introduced to
both the objective function [54] and gradients [3], [55]. While
DP provides robust privacy assurances, it has been observed
to significantly compromise utility [1].

VII. CONCLUSION

In this work, we introduced DIFFENCE, a novel defense
method that addresses the challenge of membership inference
attacks (MIAs) in machine learning (ML). DIFFENCE effec-
tively diminishes the distinction in prediction behaviors between
members and non-members through input reconstruction using
diffusion models. By generating multiple reconstructions and
selectively utilizing predictions based on defined criteria,
DIFFENCE significantly narrows the prediction distribution
gaps exploited in MIAs.

We categorized defenses into three deployment phases and,
for the first time, proposed integrating different defenses to
enhance overall protection. DIFFENCE can be cascaded in
a plug-and-play manner with other defenses. Although our
strategy requires the use of a diffusion model, it does not
necessarily require the diffusion model to be specifically trained
for defense; instead, off-the-shelf diffusion models can be
used—even those trained on datasets different from the target
model’s training dataset—thereby demonstrating considerable
flexibility and effectiveness. By combining DIFFENCE with
others, we effectively address both the train-to-test accuracy gap
and the prediction distribution gap. Our extensive experiments
across multiple datasets have validated DIFFENCE ’s efficacy
in enhancing membership privacy without sacrificing model
utility—preserving both accuracy and the meaningfulness of
confidence vectors.
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APPENDIX A
APPENDIX

A. Experimental Results on Different Model Architectures

This section presents our additional experimental results
on different model architectures, including DenseNet121 [28],
VGG16 [29], and ViT [30]1. The results are illustrated in Figure
12. Consistent with our findings on ResNet18, DIFFENCE
effectively reduces both attack accuracy and attack AUC
without impacting model accuracy. For example, DIFFENCE
reduces the attack AUC on average by 5.3% and the attack
accuracy by 4.6% on average on the VGG16 model. On the ViT
model, DIFFENCE achieves reductions of 7.7% in attack AUC
and 6.6% in attack accuracy on average. Additionally, it can
be observed that combining DIFFENCE with recent defenses
such as SELENA and HAMP achieves the best privacy-utility
trade-off.

B. Impact of DIFFENCE on label-only MIAs

In this section, we discuss the impact of DIFFENCE on
label-only MIAs [20], [21] and defenses. Both DIFFENCE and
label-only attacks rely on perturbations to the original images.
Intuitively, DIFFENCE modifies the input only after the target
model f has assigned a label to the noised inputs x′ created by
the label-only attack. This process alters the output confidence
score without changing the predicted label f(x′). Therefore,

1ViT contains layers that are incompatible with the DPSGD implementation
in the Opacus library, so we omitted DPSGD from the experiments on ViT.

the target model with or without DIFFENCE responds the same
to label-only attack queries. Consequently, DIFFENCE has no
impact on label-only MIAs or defenses against them.

We used two types of label-only MIAs: the baseline gap
attack [18] and the state-of-the-art boundary attack [21], [20]
to test the impact of DIFFENCE. As shown in Table VI, as
expected, DIFFENCE has no effect on the performance of label-
only attacks and defenses against them. In all settings, the
results with and without DIFFENCE were nearly identical.

C. Defending with Stronger Diffusion Models

In our previous experiments, we assumed that the training
set size of the defender’s diffusion model and the size of the
classifier’s training set are the same. Furthermore, to ensure
no decrease in model accuracy, we only select reconstructed
samples that match the original sample labels.

Interestingly, however, we discovered that when a stronger
diffusion model is employed in the defense—specifically, a
model trained on a dataset larger than that of the classifier,
directly averaging the predictions of all generated samples can
enhance both the classifier’s privacy and its accuracy.

We utilized a publicly available diffusion model trained
on 50,000 samples from CIFAR-10 to defend our classifiers,
which were trained on 25,000 samples. The results, as shown
in the Table VII, indicate that in all cases, the classifiers not
only achieved enhanced privacy but also exhibited higher test
accuracy. Given that diffusion model training does not require
labeled data, it can be performed on a large, public, unlabeled
dataset. We leave a more detailed discussion on how diffusion
models can improve classifiers’ accuracy for future work.

D. Comparison of Defense Training Overhead

In addition to the inference overhead discussed in Section
V-A, we also report the overhead of training-phase defenses
during the training stage. The results are shown in Table VIII.

E. Additional Experimental Details

For all attacks, we randomly selected 2000 members and
2000 non-members as target samples to perform MIAs. For
NN-based attacks, we used the same attack model architecture
and training configuration as in previous work [6], saving
training checkpoints and using the attack model that achieved
the highest attack AUC on the target samples.

For defenses, HAMP [6] uses an entropy threshold γ and
a regularizer parameter α, while RelaxLoss [5] uses α to
balance utility and privacy. However, automated parameter
selection is not provided. Following their papers, we used
grid search to train multiple models with different parameters
and selected the models based on their claimed impact on
utility. HAMP includes both training-phase regularization and
testing-time output modification (retaining predicted labels
while randomizing confidence scores). In our experiments, we
included only the training-phase defense of HAMP because
its testing-time output modification renders the confidence
scores meaningless, as the generated confidence scores are
entirely derived from randomly generated images. Adversarial
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(a) Attack Accuracy

(b) Attack AUC

Fig. 12: Attack accuracy and AUC on CIFAR-10 against three models with three different architectures. We report the
highest attack accuracy and attack AUC across all attacks. The prediction accuracy delta indicates the prediction accuracy gap
compared to the undefended models, with negative numbers indicating a decrease in model accuracy.

TABLE VI: Comparison of Label-only MIAs against ResNet18 w/o and w/ DIFFENCE.

Defenses Gap Attack Boundary Attack
Accuracy w/o

DIFFENCE (%)
Accuracy w/

DIFFENCE (%)
AUC w/o

DIFFENCE (%)
Accuracy w/o

DIFFENCE (%)
AUC w/

DIFFENCE (%)
Accuracy w/

DIFFENCE (%)
Undefended 58.5 58.5 70.8 69.5 70.9 69.3
SELENA 52.9 52.9 59.7 58.9 59.7 59.4
AdvReg 57.6 57.6 61.7 59.7 60.9 59.4
HAMP 58.6 58.6 69.5 66.8 69.5 67.3
RelaxLoss 58.2 58.2 67.6 66.3 67.7 66.4
DPSGD 54.6 54.6 57.3 56.5 57.7 57.1
MemGuard 58.5 58.5 70.8 69.5 70.9 69.3

regularization [1] uses the α parameter to balance model
accuracy and privacy protection. We set α to 6 for CIFAR-10,
CIFAR-100, and SVHN, and 4 for CelebA and UTKFace. For
DP-SGD [3], we used PyTorch Opacus 2 to train the DP-SGD
model, fixing a norm clipping bound of 1.2 and setting a
noise multiplier of 0.1 for CIFAR-10, 0.05 for CIFAR-100 and
SVHN, and 0.01 for CelebA and UTKFace. For SELENA [4],
we followed the original paper’ settings with K = 25 and
L = 10, where K is the total number of teacher models and
L is the number of teacher models whose training sets do not
contain a given member sample.

2https://github.com/pytorch/opacus
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(a) Attack Accuracy

(b) Attack AUC

Fig. 13: Attack accuracy and AUC on three datasets against ResNet18, where DIFFENCE employs a publicly released
diffusion model trained on ImageNet.

TABLE VII: Performance of DIFFENCE on CIFAR-10 when
using a stronger diffusion model.

Defenses
Test

Accuracy
(%)

Attack
Accuracy

(%)

Attack
AUC (%)

Undefended /
+DIFFENCE

81.4 /
83.2

73.0 /
66.2

75.9 /
69.3

AdvReg /
+DIFFENCE

78.4 /
80.3

60.3 /
57.5

61.0 /
58.2

DPSGD /
+DIFFENCE

74.7 /
75.7

55.3 /
54.4

55.3 /
54.5

SELENA /
+DIFFENCE

79.2 /
79.8

60.4 /
57.2

60.1 /
57.0

RelaxLoss /
+DIFFENCE

81.2 /
82.1

65.1 /
61.5

69.5 /
63.7

HAMP /
+DIFFENCE

81.1 /
82.7

65.2 /
62.5

69.4 /
62.2

TABLE VIII: Training overhead comparison of different
defenses.

Defenses CIFAR-10 (h) CIFAR-100 (h) SVHN (h)
Undefended 0.6 0.6 0.4
SELENA 10.9 11.9 9.3
AdvReg 10.9 12.6 6.8
HAMP 0.8 0.8 0.5
RelaxLoss 0.5 0.6 0.4
DP-SGD 0.8 0.9 0.6

Fig. 14: Examples of original samples and their reconstruc-
tions on CIFAR-10, with reconstructions generated by a
diffusion model pretrained on ImageNet.
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APPENDIX B
ARTIFACT APPENDIX

A. Description & Requirements

1) How to Access: The artifact is archived on Zenodo: https:
//doi.org/10.5281/zenodo.13706131. The corresponding GitHub
repository can be found https://github.com/SPIN-UMass/
Diffence.

2) Hardware Dependencies: The primary hardware depen-
dencies are commodity GPUs, such as the NVIDIA Quadro
RTX 8000 and NVIDIA GeForce RTX 2080 Ti, which were
used in our experiments. Our code is designed to run on a
university cluster, and we have modified the scripts to also
work with standard commodity GPUs.

3) Software Dependencies: The main software dependencies
include PyTorch, torchvision, TensorFlow, pandas, Opacus,
scikit-learn, numpy, scipy, and matplotlib. We provide a conda
environment file, environment.yaml, which can be used
to install all necessary software dependencies with a single
command using conda. Please refer to the README file for
installation instructions.

4) Benchmarks: Benchmark datasets: CIFAR-10, CIFAR-
100, and SVHN. Models: Undefended models and models
protected by different defense methods including SELENA,
AdvReg, HAMP, RelaxLoss, DPSGD, and MemGuard. Addi-
tionally, models with DIFFENCE (our method) deployed on top
of the previously mentioned models.

We provide the aforementioned datasets and pretrained
models, as well as the corresponding diffusion models used
for DIFFENCE.

B. Artifact Installation & Configuration

First, download the artifact from the address provided in
Section A.1, which includes the ‘environment.yaml‘ file. Run
the following command to install the dependencies:

conda env create -f environment.yaml

If you do not have conda installed, first install conda
by following the instructions on their official documenta-
tion: https://docs.conda.io/projects/conda/en/latest/user-guide/
install/index.html.

C. Experiment Workflow

The main workflow of the experiment includes:
1. Training target models: - This includes both undefended

models and models with different defense techniques.
2. Testing models: - Measure test accuracy. - Evaluate

membership privacy using different membership inference
attacks (MIAs), assessed by metrics such as attack AUC and
accuracy.

3. Deploying DIFFENCE: - Apply DIFFENCE to the above-
tested models. - Re-evaluate model accuracy and the effective-
ness of MIAs using the same methods.

4. Comparing results: - Compare the changes in model
accuracy and membership privacy before and after deploying
DIFFENCE.

D. Major Claims

• (C1): DIFFENCE can enhance the membership privacy
of both undefended models and models with existing
defenses without compromising their utility. This is proven
by experiment (E1), with results mainly illustrated in Fig.
5 and additional references such as Table III.

E. Evaluation

DIFFENCE can serve as a robust plug-and-play defense
mechanism to enhance the membership privacy of both
undefended models and models trained with state-of-the-art
defenses without compromising model utility.

Note: Given the time constraints of the artifact evaluation,
we recommend first evaluating the impact of DIFFENCE on
the undefended model and the SELENA model (the defense
that achieves the best overall utility-privacy trade-off in our
evaluation).

This evaluation demonstrates that DIFFENCE enhances the
defense against MIAs for both undefended models and the
best-performing defense, without compromising accuracy. The
results should be consistent with the conclusions in Fig.
5, showing that adding DIFFENCE does not change model
accuracy but reduces attack AUC and ACC to a comparable
extent as described in Fig. 5.

Additionally, code and pre-trained models for other defense
models are provided for anyone interested in conducting a
comprehensive evaluation.

1) Experiment (E1): This experiment verifies the model’s
accuracy and the effectiveness of MIAs before and after
deploying DIFFENCE.

[Preparation]
1) First, navigate to the folder of the dataset to be tested,

e.g., CIFAR-10:
cd cifar10

2) Download and partition the dataset:
python data_partition.py

3) Obtain the diffusion model used for DIFFENCE:
We provide our pretrained diffusion model checkpoints
and instructions on how to download them in the
repository.
(Optional) Train the diffusion model from scratch by
following the instructions in the README file.

[Execution]
1) Train the undefended model and models with existing

defenses:
We provide our pretrained models. You can find the
download address in the repository.
(Optional) You can retrain specific defended models using
the commands listed in all-train-all.sh.

2) Test model accuracy and membership privacy:
cd evaluate_MIAs # Navigate to the test
script folder
bash evaluate_mia.sh --defense
<defense name> # defense name in
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Fig. 15: Example output showcasing the model accuracy from the evaluation files

Fig. 16: Example output showcasing the recorded effectiveness of MIAs against the model

{undefended, selena, advreg, hamp, relaxloss,
dpsgd}

After completion, the results of the above experiments will
be saved in the ./results folder.

[Results]
The above process will save the corresponding results in

DIFFENCE/<dataset_name>/evaluate_MIAs/results.
For example, file names such as selena and
selena_w_DIFFENCE correspond to the results of
using SELENA defense alone and deploying DIFFENCE on top
of it, respectively. Each file records the model’s accuracy (e.g.,
as shown in Fig. 15) and the effectiveness of MIAs against
the model (as shown in Fig. 16). The best attack ACC and
AUC are used to indicate the level of the model’s membership
privacy.

The key results should be validated by comparing the changes
in model accuracy and membership privacy.
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