
RACONTEUR: A Knowledgeable, Insightful, and
Portable LLM-Powered Shell Command Explainer

Jiangyi Deng1♠, Xinfeng Li1♠, Yanjiao Chen1✉, Yijie Bai1, Haiqin Weng2,
Yan Liu2, Tao Wei2, Wenyuan Xu1

1Zhejiang University, 2Ant Group
{jydeng, xinfengli, chenyanjiao, baiyj, wyxu}@zju.edu.cn
{haiqin.wenghaiqin, bencao.ly, lenx.wei}@antgroup.com

Abstract—Malicious shell commands are linchpins to many
cyber-attacks, but may not be easy to understand by security
analysts due to complicated and often disguised code structures.
Advances in large language models (LLMs) have unlocked the
possibility of generating understandable explanations for shell
commands. However, existing general-purpose LLMs suffer from
a lack of expert knowledge and a tendency to hallucinate in the
task of shell command explanation. In this paper, we present
RACONTEUR, a knowledgeable, expressive and portable shell
command explainer powered by LLM. RACONTEUR is infused with
professional knowledge to provide comprehensive explanations on
shell commands, including not only what the command does (i.e.,
behavior) but also why the command does it (i.e., purpose). To shed
light on the high-level intent of the command, we also translate
the natural-language-based explanation into standard technique &
tactic defined by MITRE ATT&CK, the worldwide knowledge base
of cybersecurity. To enable RACONTEUR to explain unseen private
commands, we further develop a documentation retriever to
obtain relevant information from complementary documentations
to assist the explanation process. We have created a large-
scale dataset for training and conducted extensive experiments
to evaluate the capability of RACONTEUR in shell command
explanation. The experiments verify that RACONTEUR is able
to provide high-quality explanations and in-depth insight of the
intent of the command.

I. INTRODUCTION

Ongoing cyber-attacks are significant threats to an organiza-
tion’s data, applications and other valuable assets [52], [21],
[23]. Malicious shell commands often act as springboards for
attackers to gain remote control of victim computers. To thwart
such attempts, intrusion detection systems (IDS) usually capture
and alert suspicious shell command for further investigation by
human analysts. Manual auditing on alerted shell commands is
a key part of security operation. Security analysts are expected
to fully understand the commands, from their literal semantics
to high-level intents. However, the complex syntax and stealthy
nature of malicious commands make it difficult for junior
technicians and even security experts to understand.

♠ Both authors contributed equally to the paper.

The recent breakthrough in large language models (LLMs)
has unlocked the potential of code explanation for programmers
and non-programmers. It has been found that commercial
LLMs (e.g., ChatGPT) can generate understandable and fairly
accurate explanations for commonly-used commands via
user prompts [49], [33], [34], [10], [25]. Nonetheless, when
presented with complicated or unseen commands, general-
purpose LLMs will provide erroneous and even hallucinated
explanations. This situation may be worsened for companies
that use special shell commands containing private utilities
or sensitive parameters. For example, Samsung has banned
the use of ChatGPT and other AI-powered chatbots after an
accidental leakage of sensitive internal source code [48].

In this paper, we develop an LLM-powered shell command
explainer, named RACONTEUR, which provides knowledgeable
and insightful explanations on shell commands, especially
malicious ones. RACONTEUR is also portable to private shell
commands that are absent from its training dataset. These
design goals are realized through addressing the following
challenges.

• How to endow a general-purpose LLM with expert
knowledge in shell command explanation?

Existing general-purpose LLMs have unsatisfying perfor-
mance on shell command explanation, especially for malicious
commands. Fine-tuning a general-purpose LLM is a promising
and affordable solution, but there is a lack of domain data for
the task of shell command explanation. To tackle this problem,
we construct a fine-tuning dataset of ⟨prompt, response⟩
pairs. To account for diversity in user prompts, we design both
rule-based and model-based methods to generate a large variety
of prompts. The responses are composed with professional
knowledge from prestigious code libraries. After fine-tuning,
RACONTEUR is able to explain the action of each step in the
shell command as well as summarize the overall behavior of
the shell command.

• How to provide insightful interpretations of the intent of
a shell command?

An in-depth understanding of commands not only in-
cludes step-by-step description of the semantics but also
an abstraction of the intents, i.e., to understand what the
attacker wants to achieve (tactic) by what means (technique).
Translating the natural-language-based description into the

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.230798
www.ndss-symposium.org



technique & tactic defined by the MITRE ATT&CK framework
helps analysts quickly seek for corresponding mitigations.
For example, the semantic explanation of the command
rundll32.exe keymgr, KRShowKeyMgr may be “The
command executes the exported function KRShowKeyMgr
located in keymgr.dll using rundll32.exe.” It is more
helpful if analysts also understand the technique behind this
command, i.e., to export the stored Windows credentials from
the credential manager to a file, which belongs to the “T1003 -
OS Credential Dumping” technique. The ultimate intent of this
action is “TA0006 - Credential Access” tactic in the MITRE
ATT&CK framework. By pinpointing the technique and tactic,
a wealth of prior knowledge can be harnessed to respond to
this threat. Unfortunately, there is a gap between the natural-
language-based explanation and the standard description given
by MITRE ATT&CK documentations. To address this gap,
we establish an embedding model that maps the description
of RACONTEUR and that of MITRE ATT&CK into the same
embedding space, based on which we match the command to
the technique and tactic with the most similar descriptions.

• How to provide accurate information about private shell
commands that are unseen in the training phase?

A large portion of commands executed in an organization
are proprietary, involving utilities, parameters, and files that are
developed within the organization and are for internal use only.
An LLM may provide inaccurate and fictitious information
when presented with unseen commands that are not publicly
available. To enable RACONTEUR to be portable to private
shell commands, we design a documentation retriever to glean
relevant contexts in complementary documentations (e.g., pri-
vate documentations of the company) to assist the explanation
process of RACONTEUR. In this way, RACONTEUR can analyze
commands according to the provided documentations and
provide faithful explanations.

We implement a fully-functional prototype of RACONTEUR
and create a dataset to conduct extensive experiments to evalu-
ate the capability of RACONTEUR. We compare RACONTEUR
with three baseline models, i.e., GPT-3.5-Turbo, GPT-4 and
ChatGLM2-6B. Among them, GPT-4 is the most powerful
commercial LLM so far. Our extensive experiments demonstrate
that RACONTEUR achieves superior explanation performance
than the baselines in both English and Chinese languages.
RACONTEUR also performs well in technique and tactic
identification, which helps shed light on the high-level intents
of commands.

We summarize our main contributions as follows:

• We propose RACONTEUR, an LLM-powered shell com-
mand explainer that can provide knowledgeable and
insightful descriptions on shell commands, especially
malicious ones, to assist security analysts in identifying
potential cyber-attacks.

• We equip RACONTEUR with a holistic toolkit including
behavior explainer, intent identifier, and documentation
retriever, allowing RACONTEUR to provide comprehensive

and faithful explanations on public and private shell
commands.

• We have conducted extensive experiments to verify that
RACONTEUR is able to provide high-quality explanations
and in-depth insight of the intent of the command. The
dataset we curated is open-source to boost further research
in LLM-aided code explanation1.

II. BACKGROUND AND MOTIVATION

A. Shell Command Explanation
Shell commands allow users to interact with operating

systems, e.g., enter commands and receive responses. Many
crucial cyber-attacks, e.g., masquerade attacks, are enabled by
malicious shell commands [50]. Intrusion detection systems
(IDS) often capture and report suspicious shell commands
to security analysts for further confirmation. However, the
complicated formations of shell commands usually make
it difficult for junior technical personnel or even experts
to truly understand its ultimate purpose. A shell command
consists of utilities (a.k.a., executables) followed by options and
parameters. As shown in the following benign and malicious
shell commands, bash is a utility, -c is an option, and the
entire subsequent string within the single quotes is a parameter.

A Benign Shell Command� �
bash -c ’exec 137<>/dev/tcp/ip_addr/port
&& echo -e "GET /_health/HTTP/1.1\r\nhost:
ip_addr" >&137 && grep ok -s -m 1 <&137’�

A Malicious Reverse Shell Command� �
bash -c ’0<&137-;exec 137<>/dev/tcp/ip_addr
/port;sh <&137 >&137 2>&137’�
Technique & tactic. To analyze shell commands, especially

malicious ones, it is essential to understand both the technique
and the tactic. The technique is the concrete actions of the
commands, i.e., “how” the commands are executed step by
step. The tactic is the ultimate purpose of the commands, i.e.,
“why” the commands are performed. Take a shell command for
running malicious codes as an example. The tactic is executing
the malicious codes. In order to achieve this goal, the technique
may involve abusing Unix shell scripts for execution, e.g.,
the reverse shell example above. Identifying both the tactic
and the technique of a shell command helps analysts better
understand the purpose and the habits of attackers. The most
commonly-used tactics and techniques of malicious commands
are taxonomized in MITRE ATT&CK’s2, a globally-accessible
knowledge base according to real-world observations. MITRE
ATT&CK defines 14 tactics and about 200 techniques, which
can be leveraged to interpret malicious shell commands.

Automatic command explanation. To assist human experts
in understanding the technique and tactic of a shell command,
automated explanation systems have been developed. Current
breakthrough in large language models (LLMs) also gives
rise to LLM-based command explanation algorithms. However,

1https://raconteur-ndss.github.io/
2https://attack.mitre.org/

2

https://raconteur-ndss.github.io/
https://attack.mitre.org/


there are two main challenges facing existing systems. First,
LLM-based systems suffer from intrinsic defects, especially
regarding faithfulness and factuality. The output of an LLM-
based system may not faithfully follow user instructions (i.e.,
the answer is irrelevant) or provide true facts (i.e., the answer
is incorrect) [35]. Second, the queried shell commands may be
unseen to the explanation system trained with public datasets.
For example, many companies design special shell utilities, e.g.,
used within the enterprise. The shell parameters, e.g., IP address
(ip_addr) and port (port), may be private information of
a company. These special shell commands are usually absent
from the training dataset of a general command explanation
system, leading to poor generalization problems.

B. Generative Language Models

Generative language models output texts given an input
prompt, widely applied to translation, summarization, and
question answering. With recent advances of large-scale pre-
training, commercial LLMs such as ChatGPT exhibit remark-
able performance across a broad spectrum of tasks [6].

A typical training pipeline of generative LLMs includes
pre-training and fine-tuning [45]. Due to its prohibitive re-
quirements of training data and computational resources [22],
pre-training is usually performed by professional AI companies
like OpenAI [45]. Fine-tuning is an important way of turning
a general-purpose LLM into a domain-specific LLM, e.g., for
malicious command analysis. Specifically, a pre-trained LLM
can be fine-tuned on a labelled dataset of ⟨prompt, response⟩
pairs for the target task in the given domain. In this way,
the domain-specific LLM will achieve better performance on
specific tasks.

Faithfulness and factuality are two serious concerns about
LLMs, which means the output may diverge from the prompt
(violating faithfulness) or misalign with established world
knowledge (violating factuality) [35]. Pre-trained models, e.g.,
ChatGPT, are shown to have a high degree of faithfulness but
not factuality [26]. To enhance factuality, retrieval-augmented
generation (RAG) [58] has been proposed, which complements
the original user prompt with related facts and knowledge
via web browsing [40], [31] or document retrieval [43]. The
original user prompt is encoded into an embedding vector,
which is used to retrieve relevant texts from available sources
based on semantic similarity. The semantic similarity between
two texts can be computed by measuring the distance between
two embedding vectors. The user prompt and the retrieved
texts are combined as a new prompt to be fed into the LLM
to elicit more factual output.

C. A Real-World Motivating Example

In this part, we give an example of explaining a real-world
malicious shell command by RACONTEUR. The command
is presented in the above malicious reverse shell command
example in §II-A. This malicious command can enable an
attacker to gain remote control, which was captured by the
IDS in real-world security operation.

The aim of the malicious shell command is to establish an
illegal connection to a remote computer at ip_addr:port
and redirect the input and output of the victim system’s shell
so that the attacker can access it remotely. As we can see in the
example, the malicious shell command has a similar form to the
benign shell command, e.g., they both have IP address and port
and redirect the standard input and output. To make matters
worse, the malicious shell command contains obfuscating file
descriptors (e.g., &137) and complicated redirections (e.g.,
<&137 >&137 2>&137). Therefore, it is hard for analysts to
identify the ulterior motive of the command.

The explanation generated by RACONTEUR for this com-
mand is shown in the following example. The explanation
consists of two sections, i.e., behavior explanation and intent
prediction. The behavior explanation section first describes
the behavior of each action in the command (i.e., Step by
step explanation), and then summarizes the overall behavior
of the command (i.e., Overall). The intent prediction section
(i.e., Tactic & Technique) derives the technique and tactic of
the command in a standard framework based on its behaviors.
The holistic explanation provided by RACONTEUR enables
analysts to quickly comprehend both semantics and intents of
the command, assisting them in making informed decisions
for further countermeasures.

An Explanation on the Malicious Shell Command

Step by step explanation:
• bash -c: This command is invoking the Bash shell

and running a command within it.
• 0<&137-: This is redirecting file descriptor 0 (stdin)

to file descriptor 137 and closing file descriptor 137.
This is a common technique used in reverse shells to
redirect input/output to a network socket.

• exec 137<>/dev/tcp/ip_addr/port: This is
creating a new file descriptor 137 and opening a TCP
connection to the IP address ip_addr on port port.
This is the reverse shell connection.

• sh <&137 >&137 2>&137: This is executing the shell
command and redirecting input, output, and errors to
file descriptor 137. This is the reverse shell payload.

Overall: The command is attempting to establish a reverse
shell connection to a remote host and execute a shell
command on that host. This could be used for malicious
purposes such as remote access or data exfiltration.

Tactic: Execution Technique: Unix Shell

III. SYSTEM MODEL

We define the system model in terms of the actors, the
assumptions of their capabilities, and the security objectives.

A. Actor

In the context of security operation within an organization,
we refer to the party attempting to execute malicious shell
commands for assets such as sensitive information or control

3



Behavior

B2V

T1548
T1134

T1531
T1087

…

Description
Behavior
Encoder

Matched: T1548

Step by step explanation:
<explanation, behavior>

Command Intent:
<T1548: xxxxxx>

What does the 
command mean?
<command>

User Query

Prompt Template

The command documentation is as 
follows:<documentation>
---------------------------------
Answer the question below according 
to the documentation above:
<user_query>

<command>

System Query
Intrusion Detection

System (IDS)

Alert

③ ①

② Intent Identifier

Security Analyst

LLM

Command Behavior
Explainer

Doc-Augmented
Enhancer

Fig. 1: Inference pipeline of RACONTEUR. The system receives queries from analysts and IDS. First, related documentations of the requested
command are retrieved. Then a documentation-augmented prompt is created and fed into the command behavior explainer for analysis. The
summarized behavior of the command is utilized for intent identification.

access as the attacker, and the party analyzing such suspicious
commands as the analyst. In a typical security operation
scenario, the malicious commands executed by the attacker are
captured and flagged by the IDS for violating specific rules.
Subsequently, this alert is sent to the analyst to confirm whether
it constitutes a genuine attack.

B. Capability

Attacker. We assume that the attacker can operate the shell
within the system, e.g., they may be insiders with malicious
intent or intruders who have gained initial access. They
may design complex and potentially obfuscated commands
to mislead the IDS and the analyst.

Analyst. We assume that the analyst possesses basic knowl-
edge and skills in security operation, including the ability
to comprehend the semantics of shell commands with the
help of natural language explanations. Furthermore, the ana-
lyst can assess whether these commands exhibit malicious
or benign behavior based on their descriptions in natural
language. Additionally, we assume that the analyst can decipher
obfuscated commands when their obfuscation is recognized,
thereby revealing the underlying undisguised commands.

C. Security Objective

The primary goal of RACONTEUR is to aid analysts in
understanding the semantics and intents of shell commands,
encompassing Unix Shell and PowerShell. This goal can be
delineated into four key security objectives:

• Comprehensiveness. This denotes that the explanations
provided by RACONTEUR should facilitate the analyst’s
comprehension of the command’s semantics.

• Insightfulness. This signifies that RACONTEUR should
help the analyst to determine whether the command is
malicious or benign, elucidating the tactics and techniques
employed if the command is indeed malicious.

• Correctness. This indicates that the content generated
by RACONTEUR should be factually correct even when
handling proprietary and private commands.

• Portability. This implies that RACONTEUR should func-
tion within a local environment without necessitating
reliance on online services.

It is important to note that our aim is not to directly classify
whether a command is malicious or not, but rather to aid the
analyst in making that determination.

IV. RACONTEUR: DETAILED CONSTRUCTION

As shown in Figure 1, RACONTEUR mainly consists of
three core modules, i.e., behavior explainer, intent identifier,
and doc-augmented enhancer.

Behavior Explainer (➀) takes the user prompt as input and
outputs the behavior explanation section (i.e., Step by step
explanation & Overall). The behavior explainer is obtained by
fine-tuning a general LLM with a carefully-constructed dataset
consisting of ⟨prompt, response⟩ pairs. To transform the
general LLM into an expert LLM in shell command explanation,
we extract knowledge from code libraries to compose high-
quality responses.

Intent Identifier (➁) takes the behavior summary from the
behavior explainer and outputs the intent prediction (i.e., Tactic
& Technique). By mapping behavior descriptions in natural
language into the standardized MITRE ATT&CK framework,
RACONTEUR assists analysts in further analyzing potential
attacks.

Doc-Augmented Enhancer (➂) improves the performance
of the behavior explainer and the intent identifier by aug-
menting user prompt with relevant information retrieved from
command documentations. To retrieve appropriate information,
we design both rule-based and model-based methods to match
the prompted shell command with useful texts in command
documentations.

A. Behavior Explainer

The behavior explainer gives a detailed step-by-step expla-
nation of the command, including descriptions of the utilities,
options, and parameters. The behavior explainer can point out
potential malicious attempt of the command in the overall
behavior summary. When a malicious attempt is specified,

4



Prompt Diversification

Malicious Cmd

NL2Bash

Shell Script

PowerShell Script

<prompt>
<meta-info>
<docs> ChatGPT

Knowledge-Infused
Prompt

Public Command
Libraries

Single-Round 
Dataset

<utility1>: <desc.u1>
<param.1>: <desc.p1>
…
<param.n>: <desc.pn>
-----------------------------
<utility2>: <desc.u2>
…

(Cmd, Type, NL Desc.)

(Cmd, NL Desc.)

(Cmd, Comment)

(Cmd, Comment)

Retrieved
Documentation <docs>

Meta-Information
<meta-info>

Preprocess

<response>

<prompt>

T1: Can you clarify <cmd>
T2: Please describe <cmd>

…

Response Professionalization

Ask as many different 
questions as possible 
about …

Expression Diversification Question Augmentation
USER: <prompt1>
AI: <answer1>

USER: < prompt1>
AI: <answer1>
USER: <prompt2>
AI: <answer2>
...

Multi-Round 
Dataset

Fig. 2: Dataset generation pipeline of RACONTEUR. The prompt diversification module is utilized to generate prompts with diversified
expressions and questions. In the response professionalization module, commands from different data sources are prompted with
corresponding meta-information and command documentations for accurate responses.

the behavior explainer is designed to describe the type of the
malicious attempt and the countermeasures to be taken.

Existing general-purpose LLMs are not professional enough
for the task of command explanation. We leverage fine-tuning
to establish an expert behavior explainer with a carefully-
constructed dataset of ⟨prompt, response⟩ pairs. Given a
prompt qi, the fine-tuning process aims to maximize the
conditional probability of producing the response ri,

max
θ

E
⟨qi,ri⟩∼D

pθ (ri|qi) , (1)

where θ denotes the parameters of the behavior explainer model,
initialized by a pre-trained general-purpose LLM. D is the
fine-tuning dataset.

A major challenge is how to construct a high-quality fine-
tuning dataset. First, user prompts have diversified forms of
descriptions. Therefore, we need to enrich qi to account for
prompt diversity. Second, to ensure factuality of the explanation,
we should infuse distilled expert knowledge into response ri.
We tackle these two problems by prompt diversification and
response professionalization, as shown in Figure 2. Specifically,
we diversify the expression and augment the question of
prompts in prompt diversification module. For each prompt,
we infuse both meta-information (extracted from the command
libraries) and retrieved related documentation to construct a
knowledge-infused prompt. Subsequently, we use an online
LLM service (GPT-3.5-Turbo) to organize the expert knowledge
we provide and generate accurate answers/responses. Single
⟨prompt, response⟩ pairs constitute the single-round dialogue
dataset. Multiple ⟨prompt, response⟩ pairs are amalgamated
within one dialogue to constitute the multi-round dialogue
dataset. The details of the two modules are as follows.

1) Prompt Diversification: We consider two aspects for
prompt diversification. First, users may use different expres-
sions to try to obtain command explanations, e.g., “Please
provide a detailed explanation for <command>.” or “Could
you please shed some light on <command>?”. Second, apart
from a general command explanation, users may be interested

in a specific aspect of the command, e.g., “What can I do with
<command>.” or “What does -c mean in <command>?”

To account for different expressions, we craft a set of
templates (Appendix A) to construct varied prompts as

⟨qi, ri⟩ −→ ⟨Q(qi, t), ri⟩ , t ∼ T, (2)

where Q(·, ·) converts the original prompt qi based on the tem-
plate t sampled from the template set T. Different expressions
of the same prompt correspond to the same response ri. Note
that the set of templates can be easily extended using sentence
rephrasing techniques in existing works [30].

To consider other aspects of a shell command that users
may be interested in, we construct an extended set of potential
prompts by querying general-purpose commercial LLMs as
follows.

Question Augmentation Prompt

Ask as many different questions as possible about the
following command from all perspectives, and respond in
the format of one question per line.

Command: <command>

The extended prompt set also enables us to construct
⟨multi-round prompt, response⟩ pairs that allows RACON-
TEUR to engage in a multi-round dialogue with users as follows.

An Example of Multi-Round Dialogue

USER: What does command bash -c ’0<&137
-;exec ... <&137 >&137 2>&137’ do?

RACONTEUR: The command bash can ...
USER: What is the meaning of -c?
RACONTEUR: In bash, -c is used to ...
... ...

In this way, the behavior explainer can answer questions on
various aspects of the command in a multi-round interactive
manner. This allows analysts to continue asking questions if
there is anything unclear about the explanation.

5



2) Response Professionalization: To guarantee factuality
of the explanation, we construct responses by referring to
professional explanations in code libraries.

Malicious shell command libraries. We resort to three
libraries that contain different kinds of malicious Unix Shell
or PowerShell commands.

• atomic-red-team. Atomic Red Team3 is a library of
tests mapped to the MITRE ATT&CK framework. Each
test includes the test command, the test name, the test
description, and the attack technique it belongs to.

• metta. Metta4 is another library of tests in the MITRE
ATT&CK framework. Each test includes the command,
the name, the description, the attack technique and the
tactic it belongs to.

• reverse-shell. We generate this dataset via the
Metasploit framework5 as reverse shells require special
attention in cybersecurity attacks.

Benign shell command libraries. We adopt two libraries of
benign shell commands.

• NL2Bash. We utilize NL2Bash [29], which is originally
designed for translating natural language descriptions into
Bash commands.

• The Stack. We utilize the Unix Shell and PowerShell
subsets of The Stack [24], which is a large code library.
Note that, the shell scripts might contain comments,
providing extra information about the commands.

The meta-information provided by the command libraries
and the documentation related to each command are combined
to generate accurate responses. The prompt template we use is
as follows.

Knowledge-Infused Prompt

Please refer to the command documentations and
command descriptions, answer the following questions:
<prompt>

Command documentation:
<docs>

Command description:
MITRE ATT&CK Technique: <meta:type>
cmd name: <meta:name>
cmd description: <meta:desc>

B. Intent Identifier

In this section, we aim to identify the technique and tactic
of the shell command in a standard way. First, we leverage
the behavior explanation and search for the technique with the
most similar description. Note that a tactic consists of a series
of techniques and a technique may be used to achieve multiple
tactics. Then, we predict the tactic of the command based on
the identified technique.

3https://github.com/redcanaryco/atomic-red-team
4https://github.com/uber-common/metta
5https://www.metasploit.com/

As shown in Figure 3, to match the behavior descriptions
given by the behavior explainer and the standard technique
descriptions in the MITRE ATT&CK framework, we build
a translator based on the Text2Vec model. Text2Vec is a
natural language processing technique used to acquire vector
representations of texts. Text2Vec models can map two texts
with different syntax but similar semantics to vectors that are
in close proximity. Conversely, texts with different semantics
will be mapped to vectors that are distantly positioned from
each other. Our intuition is to map the behavior description
and the technique description into the same embedding space
and then compute the distance between the embedding vec-
tors. However, there may be a gap between the generated
behavior description and the standard technique description
that cannot be well bridged by a vanilla Text2Vec model.
To tackle this problem, we fine-tune a Text2Vec model
on a dataset of ⟨behavior, technique description, label⟩
triples to obtain an enhanced behavior-and-description-to-vector
(BD2Vec) model. label ∈ {0, 1} denotes whether or not the
behavior matches the technique description. More specifi-
cally, for each command sourced from atomic-red-team
and metta, we acquire its behavior also using response
professionalization as mentioned in §IV-A2, wherein we
substitute the <prompt> in the knowledge-infused prompt
with a behavior description prompt. The behavior description
prompt is tailored to facilitate the generation of descriptions
aligned with the style of the MITRE ATT&CK framework
through in-context learning (ICL) [36], as depicted below.

Behavior Description Prompt

Very briefly describe what adversaries attempt to do by
the following shell command:
Command: <command>

Example (follow the style of the following DESCRIP-
TION):

Command: <example-cmd>
DESCRIPTION: <example-std-desc>

The BD2Vec model encodes the behavior description and
the standard description into vectors. In this way, the technique
te of the shell command is identified by

te = argmax
i∈I

S (V(d),V(si)) , (3)

where V(·) denotes the BD2Vec model, S(·, ·) is the function to
compute the similarity score, and I is the set of all techniques,
e.g., 196 techniques in the MITRE ATT&CK framework. d is
the description of the shell command and si is the standard
description of technique i.

To identify the tactic ta of a shell command, we construct a
vector set Ij for each tactic j ∈ J, consisting of all technique
description vectors belonging to that tactic. Then the tactic is
identified by

ta = argmax
j∈J

avg

(
Topk
i∈Ij

[S (V(d),V(si))]

)
, (4)

6

https://github.com/redcanaryco/atomic-red-team
https://github.com/uber-common/metta
https://www.metasploit.com/


Prompt

Behavior Desc.
Prompt

Intent Matching
Dataset

Behavior

ATOMIC-RED-TEAM / METTA Tests

{
'Technique': 'T1003.001'
'Description': '… Directory database 

NTDS.dit may be dumped by 
copying …'

'Command': 'wmic shadowcopy call 
create Volume=C:\\'}

ChatGPT

{
'Technique': 'T1003.001'
'Description': 'create a Volume Shadow Copy 

using WMI, which can be used to dump the 
Active Directory database NTDS.dit on a 
domain controller.'

}

MITRE ATT&CK Framework

Description

Training Phase

Prompt

Behavior Desc.
Prompt

Behavior
<command>

System Query

B2V

T1548
T1134

T1531
T1087

…

Embedding Similarity Tactic IdentificationTechnique Identification

TA0006:Credential Access
The adversary is trying to 
steal account names and 

passwords

T1003:OS Credential Dumping
… dump credentials to obtain 
account login and credential 

material …

Inference Phase

LLM

Command
Explainer

BD2Vec

Response
Prof.

Fig. 3: Intent identification design of RACONTEUR. In the training phase, a Text2Vec model is fine-tuned to acquire an enhanced BD2Vec
model, which maps the behavior description from LLMs and the standard description into the same embedding space. In the inference phase,
the behavior description is encoded into a vector for comparison with a set of standard technique descriptions.

where Topk(·) is a function that picks the k largest elements.
avg(·) is the average function.

C. Doc-Augmented Enhancer

The user prompt alone provides limited hint for RACONTEUR.
To enhance the quality of explanation, we augment the original
user prompt with relevant information retrieved from command
documentations as shown in Figure 1. The user prompt and
the retrieved texts are combined as a new prompt to be fed
into RACONTEUR.

The key of command documentation retrieval is to search
for most relevant information to the user prompt. To achieve
this goal, we match the command in the user prompt with
contents in available documentations. Similar to intent iden-
tification, we fine-tune a Text2Vec model into a command-
and-documentation-to-vector (CD2Vec) model with a carefully-
constructed dataset of ⟨command , doc, label⟩ triples, where
label denotes whether the command and the documentation
are related.

We utilize the Linux manual pages of Bash commands to
curate a dataset as follows.

1) Extraction of utility and option descriptions: Given the
consistent structure of Linux manual pages across utilities, we
utilized regular expression matching to extract the descriptions
of utilities and their respective options. This method enabled
us to establish the ground-truth documentation for each utility
and its associated options.

2) Generation of shell commands: We randomly create shell
commands by combining utilities and their options, which
are not necessary to be real-world commands, e.g., ls --
ignore-backups and ls --color -t. As we possess
the knowledge regarding the utilities and options associated
with each shell command, we are able to ascertain the ground-
truth documentation for each command. (from Step 1).

3) Documentation chunking: We partition the raw documen-
tations into chunks by certain rules, i.e., word count or line
feeds, simulating documentation snippets.

4) Creation of triples: We obtain ⟨command, doc, label⟩
triples by verifying whether the documentation snippet is in
the ground-truth set (from Step 2).

The doc-augmented enhancer enables RACONTEUR to ex-
plain private shell commands that are not in public datasets by
retrieving relevant information from private documentations.
Note that a company may define new private shell commands
with the same name as but different meanings from public shell
commands in the training set of LLMs. In this case, we expect
RACONTEUR to explain the private shell commands mainly
according to the private documentation but not on the mem-
orized knowledge extracted from public shell commands. To
realize this purpose, in the training phase, after documentation
retrieval, we substitute the objects (e.g., utilities) in both the
command and the retrieved contexts with random strings as if
they are unseen by RACONTEUR. In this way, RACONTEUR can
be trained to create explanations relying on the documentations
faithfully.

V. EXPERIMENT SETUP

A. Prototype
We have implemented a fully-functional prototype of

RACONTEUR.
• Behavior explainer (➀). The behavior explainer is obtained

by fine-tuning ChatGLM2-6B, an open-source bilingual
(Chinese-English) chat model of 6 billion parameters [63],
[12]. We conduct the fine-tuning process using four
NVIDIA A100 (80GB) GPUs for four days with a batch
size of 16 and a learning rate of 1e-4 for 42,000 steps.
We set the maximum length of queries and responses as
1,024 tokens. The total number of tokens for fine-tuning
is 232 millions.

• Intent identifier (➁). The key component of the intent
identifier, i.e., the BD2Vec that aligns the embedding
space of the generated behavior explanation and the
standard description of the MITRE ATT&CK framework,
is materialized with five Text2Vec models, i.e., Sentence-
T5large [41], GTR-T5XL [42], SGPT [38], E5large [54],
and E5large(FT).

7



• Doc-augmented enhancer (➂). The key component of
the doc-augmented enhancer, i.e., the CD2Vec model
that relates the command and relevant information in
documentations, is obtained by fine-tuning the second
version of E5large model. E5large is the state-of-the-art
text embedding model of 330 million parameters [54]. The
embedding size is 1,024. We fine-tune the model using
low-rank adaptation (LoRA) [18], a popular parameter-
efficient fine-tuning method.

B. Datasets

We have curated three datasets for constructing the behav-
ior explainer, intent identifier, and doc-augmented enhancer,
respectively.

1) Dataset for command explainer: As mentioned in §IV-A2,
we construct the dataset for the command explainer based on
five data sources. The dataset contains a total of 254,000
samples. We split the dataset into 9:0.5:0.5 for training,
validation, and testing respectively. The test set is built to
fulfil the following properties.

• Diversity. The test set includes both malicious and benign
shell commands. More than 300 types of malicious Unix
Shell and PowerShell commands are included.

• Bilingual. The test set includes both Chinese and English
queries and responses.

• Single-round & multi-round. The test set consists of
both single-round and multi-round samples for command
explanation. The multi-round samples enhance the user-
system interaction.

• Inspected by human experts. Four computer science
researchers have been recruited to inspect and refine 200
of the test samples to be served as evaluation references.

More details of the test set is presented in Table IX. Note
that all commands in our test set are real-world commands.
Furthermore, there is no overlap between commands in our
training set and test set. Therefore, the commands in the test
set can be regarded as new and unseen.

2) Dataset for intent identifier: We utilize the
atomic-red-team dataset for training and validating the
BC2Vec model of the intent identifier, while the metta
dataset is used for testing. In total, atomic-red-team and
metta contain malicious shell commands of 129 techniques
(293 sub-techniques) and 14 tactics, all of which have been
labelled with ground-truth techniques and tactics by security
experts. We have manually verified the labels of the test set
and discovered that some of the labels were out-of-date due
to the continuous maintenance and updates of the MITRE
ATT&CK framework. Consequently, we have replaced these
labels with the correct ones from the most recent version
of the MITRE ATT&CK framework. Note that the original
test set exhibits non-uniformity. A naive model that predicts
the densest techniques can achieve a Top-1 ACC of 10.7%
and a Top-5 ACC of 41.4%. To mitigate the impact of data
distribution imbalance, we create a balanced version of the
test set through resampling.

3) Dataset for doc-augmented enhancer: As mentioned in
§IV-C, we construct a documentation retrieval dataset with the
Linux manual pages of 1,662 Bash utilities, curating around
952,000 triples. We split the dataset into 9:0.5:0.5 for training,
validating, and testing the CD2Vec model of the doc-augmented
enhancer.

C. Evaluation Methods

To comprehensively assess the performance of RACONTEUR,
we conduct both quantitative and qualitative evaluations.

1) Quantitative evaluations: We use the following quantifi-
able metrics to evaluate the performance of RACONTEUR.

• Quantifiable metric for behavior explainer. We adopt four
well-established quantifiable metrics, i.e., ROUGE [28],
BLEU [46], METEOR [2] and CIDEr [51] to evaluate
the performance of the behavior explainer, which provide
token-level interpretable evaluations of natural language
outputs. METEOR and CIDEr are two advanced metrics
that have demonstrated a high correlation with human
judgments [2], [51].

– ROUGE (Recall-Oriented Understudy for Gisting
Evaluation) [28] is an NLP metric that compares
a machine-produced text against the ground-truth
text. A higher ROUGE-k means a larger k-grams
overlapping between the generated text and the
ground-truth text. k is usually set as 1 or 2. ROUGE-ℓ
measures the longest common sub-sequence (LCS)
of the generated text and the ground-truth text.

– BLEU (Bilingual Evaluation Understudy) [46] is
an NLP metric that is precision-oriented. A higher
BLEU-k indicates a larger k-grams overlapping be-
tween the generated text and the ground-truth text. k
is usually set to 4.

– METEOR (Metric for Evaluation of Translation
with Explicit ORdering) [2] is an advanced NLP
metric that takes into account word order, stemming
matching and synonymy matching, aspects which are
not considered by BLEU.

– CIDEr (Consensus-Based Image Description Evalua-
tion) [51] is an advanced NLP metric originally de-
signed to compute the similarity between a machine-
generated image description and the ground-truth
description.

We also conduct end-to-end evaluation on the performance
of the behavior explainer by using the generated command
explanations for command classification, simulating the
scenario when security analysts are presented with the
command explanations. In this way, accuracy, precision,
and recall are utilized as metrics.

• Quantifiable metric for intent identifier. We use Top-
k ACC to assess the accuracy of the intent identifier
in detecting the techniques and tactics of malicious
commands. Top-k ACC represents the proportion of cases
where the ground-truth label is among the top k labels

8



TABLE I: The Overall Performance of the Command Explainer.

Model
Malicious Command‡ Benign Command†

ROUGE-1 ROUGE-2 ROUGE-ℓ BLEU-4 METEOR CIDEr ROUGE-1 ROUGE-2 ROUGE-ℓ BLEU-4 METEOR CIDEr

GPT-3.5-Turbo 48.7 24.3 34.5 36.3 39.1 30.2 54.3 27.0 35.2 29.5 40.9 16.8
GPT-4 45.5 20.3 30.5 40.5 32.5 14.6 51.8 25.8 36.2 34.2 34.5 12.0
ChatGLM2-6B 42.5 18.0 26.9 35.2 31.5 10.4 50.5 24.3 32.1 30.9 32.5 9.3
RACONTEUR 68.9 51.5 58.8 59.5 51.1 128.5 69.3 46.1 53.1 48.5 50.5 43.0

Increased$ 62.1% 186.1% 118.5% 69.0% 62.2% 1137.1% 37.2% 89.7% 65.4% 57.0% 55.7% 362.9%
cf. GPT-4⋆ 151.4% 253.7% 192.8% 146.9% 157.1% 880.5% 133.8% 178.7% 146.7% 141.8% 146.4% 358.7%
‡ Malicious Command consists of data from atomic-red-team, metta, and reverse-shell.
† Benign Command consists of data from NL2Bash.
$ Increased: the percentage improvement of RACONTEUR over the original ChatGLM2-6B model.
⋆ cf. GPT-4: the achieved percentage of GPT-4 performance.

TABLE II: The Overall Performance of the Command Explainer
on HumanCheck Test Set.

Model
HumanCheck

ROUGE-1 ROUGE-2 ROUGE-ℓ BLEU-4 METEOR CIDEr

GPT-3.5-Turbo 62.1 37.5 45.9 48.8 43.3 30.3
GPT-4 54.4 29.1 36.9 38.8 31.1 6.8
ChatGLM2-6B 55.7 29.4 34.9 38.3 32.6 6.8
RACONTEUR 69.6 47.7 53.3 53.6 48.9 47.0

Increased$ 25.0% 62.2% 52.7% 39.9% 49.8% 594.4%
cf. GPT-4⋆ 127.9% 163.9% 144.4% 138.1% 157.0% 693.5%
$ Increased: the percentage improvement of RACONTEUR over the original
ChatGLM2-6B model.
⋆ cf. GPT-4: the achieved percentage of GPT-4 performance.

TABLE III: End-to-End Evaluation of The Performance of the
Command Explainer.

Model
Classification Metrics

Precision (%) Recall (%) Accuracy (%)

GPT-3.5-Turbo 78.7 62.6 72.8
GPT-4 76.7 59.8 70.8
ChatGLM2-6B 77.6 47.1 66.7
RACONTEUR 83.7 79.2 81.8

predicted (ranked by similarity scores). A higher Top-k
ACC means that the matching method can better infer the
attacker’s intent.

• Quantifiable metric for doc-augmented enhancer. AUC-
ROC is used to evaluate the performance of the doc-
augmented enhancer. A higher AUC-ROC (Area Under
the ROC curve) score indicates that the CD2Vec model
can effectively encode related command-documentation
pairs to be in close proximity, while distinctly separating
unrelated pairs.

2) Qualitative evaluations: We have recruited 52 undergrad-
uate and graduate students majoring in computer science to
assess the responses of RACONTEUR. The detailed evaluation
process and results are provided in §VI-D.

D. Baselines

1) Baselines for behavior explainer: For behavior expla-
nation, we compare RACONTEUR with GPT-3.5-Turbo [6],

[45], GPT-4 [44] and the original ChatGLM2-6B [12], [63].
GPT-3.5-Turbo and GPT-4 are two commercial state-of-the-art
LLMs and ChatGLM2-6B is an open-source bilingual (Chinese-
English) model.

2) Baselines for intent identifier: For intent identifier, we
compare RACONTEUR with GPT-3.5-Turbo and GPT-4. In
particular, we demonstrate a chain-of-thought [61] process in
the prompt together with an example of a command and its
corresponding technique. Then, we query GPT-3.5-Turbo and
GPT-4 to identify a given command’s technique and tactic.

3) Baselines for doc-augmented enhancer: For doc-
augmented enhancer, we compare RACONTEUR with four
state-of-the-art embedding models, i.e., Sentence-T5large [41],
GTR-T5XL [42], SGPT [38], and E5large [54], which are state-
of-the-art Text2Vec models on the massive text embedding
benchmark [39]. Detailed information of the baseline models
is summarized in Table VII and VIII.

VI. EVALUATION RESULTS

A. Command Explanation

1) Overall Performance: As shown in Table I, we compare
the explanation capability of RACONTEUR with baselines
regarding both malicious and benign commands. We can see
that RACONTEUR achieves the best explanation performance on
both malicious and benign commands in terms of all six metrics,
improving the vanilla ChatGLM2-6B by 37.2%∼1137.1%.
Note that, the three baselines perform worse on malicious
commands than on benign commands in terms of ROUGE-
k, which means some expected information related to the
malicious commands is not mentioned in their responses. In
contrast, RACONTEUR shows equal and even better explanation
performance on malicious commands, e.g., RACONTEUR out-
performs the second-best by 41% and 32% in terms of ROUGE-
ℓ and BLEU-4, respectively. This may result from the response
professionalization that we design in §IV-A2 to incorporate
knowledge of malicious commands into RACONTEUR. We
also evaluate RACONTEUR and the three baselines on the
HumanCheck test set, which is inspected and corrected by
four computer science researchers. We can see in Table II
that RACONTEUR also achieves the best performance on
HumanCheck test set.

9



TABLE IV: The Performance on Three Tasks.

Model
Explanation & Explanation w/ Doc.†

ROUGE-1 ROUGE-2 ROUGE-ℓ BLEU-4

GPT-3.5-Turbo 49.3 24.0 31.4 28.8
GPT-4 48.5 23.7 32.7 36.9
ChatGLM2-6B 46.3 21.9 28.9 31.6
RACONTEUR 68.4 48.1 54.6 52.9

Increased$ 47.7% 119.6% 88.9% 67.4%
cf. GPT-4⋆ 141.0% 203.0% 167.0% 143.3%

Model
Behavior Summarization

ROUGE-1 ROUGE-2 ROUGE-ℓ BLEU-4

GPT-3.5-Turbo 51.1 26.0 39.5 43.8
GPT-4 44.8 18.2 30.5 42.7
ChatGLM2-6B 41.6 15.7 26.8 38.5
RACONTEUR 70.3 53.9 62.1 63.8

Increased$ 69.0% 243.3% 131.7% 65.7%
cf. GPT-4⋆ 156.9% 296.2% 203.6% 149.4%
† Explanation & Explanation w/ Doc. include both the explanation task
and the explanation with documentation task.
$ Increased: the percentage improvement of RACONTEUR over the
original ChatGLM2-6B model.
⋆ cf. GPT-4: the achieved percentage of GPT-4 performance.

2) End-to-End Evaluation of Overall Performance: In order
to evaluate the insightfulness of the command explanations
for aiding security analysts in making judgments, we provide
the command explanations to GPT-3.5-Turbo for command
classification. As depicted in Table III, RACONTEUR achieves
the highest precision (83.7%), recall (79.2%) and accuracy
(81.8%). It demonstrates that the explanations generated by
RACONTEUR are more effective in facilitating command
comprehension for identifying malicious commands.

3) Different Tasks: We compare RACONTEUR with the base-
lines on two tasks, i.e., step-by-step explanation and behavior
summarization. We present the results in Table IV. As shown in
Table IV, RACONTEUR outperforms the three baselines on the
step-by-step explanation and behavior summarization tasks by
a large margin (e.g., over 40% and 30% in terms of ROUGE-ℓ
and BLEU-4, respectively).

4) Different Expressions of Query: Since users might use
different ways to ask RACONTEUR to explain a command,
in this part, we evaluate RACONTEUR’s robustness against
diversified expressions of explanation queries. We present
the evaluation results of three types of query expressions in
Table X in Appendix D, including the original query, the
diversified query and the diversified query with documentations.
We create diversified queries by converting the original queries
into different expressions using Equation (2). We can see
that RACONTEUR performs consistently on all three query
expressions and achieves the best performance comparing with
the baselines. This suggests that RACONTEUR can generate
comprehensive explanations without explicit or intentional
prompting. Moreover, RACONTEUR demonstrates the best
performance on diversified queries with documentation. This un-
derscores the robustness of RACONTEUR to query expressions

0.1 0.3 0.5 0.7 0.9
Top-P

50

55

60

65

70

Va
lu

e

ROUGE-1
ROUGE-2
ROUGE-L
BLEU-4

(a) Different top-p for inference (temperature=0.8)

0.1 0.3 0.5 0.7 0.9
Temperature

50

55

60

65

70

Va
lu

e

ROUGE-1
ROUGE-2
ROUGE-L
BLEU-4

(b) Different temperature for inference (top-p=0.8)

Fig. 4: The impact of temperature and top-p on the performance of
RACONTEUR.

and its proficiency in leveraging command documentations. We
notice that the performance of the baselines degrades when
queries are in different expressions. It is because existing
general-purpose LLMs are not trained to account for the
variance in queries. In contrast, RACONTEUR provides complete
analysis when requested by different expressions of explanation
queries.

5) Different Languages: We also evaluate the bilingual
capability of RACONTEUR comparing with the three baselines.
As shown in Table XI in Appendix E, we test four models
on the same tasks both in Chinese and English. RACONTEUR
achieves the best performance in both languages. Note that
it seems that these four models have better performance in
English than in Chinese, however, the metrics for Chinese
and English are computed in different ways in terms of word
segmentation (a.k.a., tokenization) and thus are not comparable.

6) Different Inference Hyper-Parameters: In this part, we
evaluate the impact of the inference hyper-parameters, including
the temperature and the top-p parameters. We set temperature
and top-p from 0.1 to 0.9, evaluate RACONTEUR on the
HumanCheck test set, and present the evaluation results in
Figure 4. We find that these two parameters have little impact
on the performance of RACONTEUR. When we vary the
temperature, the performance of RACONTEUR only changes
by 1%∼3%, and reaches the best result when temperature=0.3.
When we vary p, the performance of RACONTEUR only changes

10



0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Sentence-T5-Large (AUC = 0.857)
GTR-T5-XL (AUC = 0.921)
SGPT (AUC = 0.785)
E5-Large-v2 (AUC = 0.881)
Ours (CD2Vec) (AUC = 0.981)

Fig. 5: ROC curves of five Text2Vec models. Our CD2Vec model
obtains the highest AUC, indicating the best discriminating ability.

by 2%∼4%, and achieves the best result when p=0.5.

B. Intent Identification

We compare the intent identification capability of RACON-
TEUR with baselines GPT-3.5-Turbo and GPT-4. We present the
evaluation results for the original test set in Table V and those
for the balanced test set in Table VI. Overall, the fine-tuned ver-
sion of E5large achieves the best performance on both technique
and tactic identification. All five of our materializations of the
intent identifier show superior performance compared to GPT-
3.5-Turbo and GPT-4. For example, SGPT, though performing
the worst among our five materializations of the intent identifier,
still surpasses GPT-3.5-Turbo and GPT-4 by 16.4% and 7.1%
in terms of Top-1 ACC on technique and tactic identification,
respectively. We attribute this to our behavior-oriented intent
identification method. Note that, the Top-1 and Top-5 ACC of
RACONTEUR (52.4% and 83.0%) significantly surpass those of
the naive model that predicts the densest techniques mentioned
in §V-B, i.e., 10.7% and 41.4%. Additionally, we observe only
minor differences between the results of Table V and Table VI.
This demonstrates that the superiority of RACONTEUR is not
contingent upon data distribution imbalance.

C. Doc-Augmented Enhancer

A Text2Vec model attributing high similarity scores to related
command-documentation pairs and low scores to unrelated pairs
is more proficient in retrieving the correct documentation snip-
pets within a documentation database. From the dataset detailed
in §IV-C, we randomly select 9,782 ⟨command, doc, label⟩
triples, both related and unrelated, as our test set. We compare
our CD2Vec with four baselines. The ROC curves are presented
in Figure 5, where our CD2Vec achieves the highest AUC of
0.981. This performance significantly surpasses that of the
baselines, of which the average AUC is 0.858. Note that the
baseline models each have a larger number of model parameters
than ours. This result highlights that our lightweight doc-
augmented enhancer is able to determine the relevance between
a given shell command and a documentation snippet.

TABLE V: Technique and Tactic Identification Performance
on the Original Test Set.

Model
Technique (ACC) Tactic (ACC)

Top-1 Top-5 Top-10 Top-1

GPT-3.5-Turbo 25.6 33.8 35.0 45.7
GPT-4 26.0 32.5 36.2 55.5

Sentence-T5large 45.4 80.1 87.3 69.4
GTR-T5XL 50.8 79.6 87.5 70.5
SGPT 42.4 75.0 84.3 62.6
E5large 48.5 78.2 87.1 69.3
E5large (FT) 52.4 83.0 90.4 75.0

TABLE VI: Technique and Tactic Identification Performance
on the Balanced Test Set.

Model
Technique (ACC) Tactic (ACC)

Top-1 Top-5 Top-10 Top-1

GPT-3.5-Turbo 27.0 32.9 34.1 43.3
GPT-4 28.1 32.0 34.9 52.3

Sentence-T5large 51.2 78.8 86.6 66.7
GTR-T5XL 51.3 80.2 88.1 69.4
SGPT 48.5 78.4 86.8 67.3
E5large 50.5 81.3 87.8 69.0
E5large (FT) 56.0 82.1 89.3 74.3

D. User Study

We conduct a user study to qualitatively evaluate the perfor-
mance of RACONTEUR. We have recruited 52 undergraduate
and graduate students majoring in computer science to answer
three sets of questions. The participants are asked to evaluate
their proficiency in shell command, i.e., at elementary, inter-
mediate, and advanced levels6. The proportions of elementary,
intermediate and advanced participants are 35%, 38% and
27%, respectively. In the first part, each question consists
of one command and the corresponding explanation (from
three baselines or RACONTEUR). Participants are requested
to provide three scores, i.e., to rate the explanation based on
whether it helps them understand the details and intent of the
command, as well as whether it helps them determine whether
the command is malicious or not, using a scale of 1∼5 points. In
the second part, participants are asked to compare the reference
answer and the response from LLMs, and rate the correctness
of the response on a scale of 1∼5 points. The first two parts
consist of 40 questions, with 20 malicious commands and 20
benign commands, along with responses from RACONTEUR,
GPT-4, GPT-3.5-Turbo, and ChatGLM2. In the third part, each
question consists of one command and two responses from
different methods. Participants are asked to choose the one they
prefer and after that describe the reason why a specific response

6In general, advanced level indicates more than 7 years of Unix Shell or
PowerShell experience, intermediate is 3∼7 years, and elementary is 0∼3
years.

11



Malicious Command Benign Command
0

1

2

3

4

5
Sc

or
e

3.15

3.79
4.18 4.38

3.94
4.294.28 4.36

Detail Score

GPT-3.5
GPT-4

ChatGLM2
Raconteur

(a) Details of commands

Malicious Command Benign Command
0

1

2

3

4

5

Sc
or

e

4.22 4.334.48 4.354.19
4.474.50 4.50

Intent Score

GPT-3.5
GPT-4

ChatGLM2
Raconteur

(b) Intents of commands

Malicious Command Benign Command
0

1

2

3

4

5

Sc
or

e

2.99 2.973.16 3.20
3.45

3.18

3.99

3.19

GPT-3.5
GPT-4

ChatGLM2
Raconteur

(c) Malicious or benign

Malicious Command Benign Command
0

1

2

3

4

5

Sc
or

e 2.78

3.95
4.38 4.59

2.88

4.20
4.59 4.37

GPT-3.5
GPT-4

ChatGLM2
Raconteur

(d) Correctness

vs GPT-3.5 vs GPT-4 vs ChatGLM2
0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)
3.2

96.8

21.1

78.8

19.2

80.8

GPT-3.5
GPT-4

ChatGLM2
Raconteur

(e) Preference

Fig. 6: The results of the user study. RACONTEUR achieves the best comprehensiveness and correctness for malicious commands and the
second-best for benign commands (slightly lower than GPT-4) (a & d). RACONTEUR demonstrates superior insightfulness on both malicious
and benign commands (b & c). Participants favor the explanations provided by RACONTEUR over those of baselines (e).

is considered good. This part includes 12 questions comparing
RACONTEUR to GPT-4, GPT-3.5-Turbo, and ChatGLM2.

1) Comprehensiveness & Correctness: Comprehensiveness
indicates that the explanation helps individuals understand the
details of the command. As depicted in Figure 6(a), RACON-
TEUR achieves the highest score for malicious commands and
the second-highest score for benign commands (slightly lower
than GPT-4), which aligns with the results in §VI-A1. This
demonstrates that RACONTEUR can generate comprehensive
explanations, aiding the understanding of both malicious and
benign commands. As shown in Figure 6(d), RACONTEUR
achieves the best correctness on malicious commands and
the second-best on benign commands. We notice that GPT-
3.5-Turbo gets relatively unsatisfying results. We inspect the
responses of GPT-3.5-Turbo and find that it tends to return
brief and short explanations when not explicitly prompted.

2) Insightfulness: Insightfulness indicates that the expla-
nation helps individuals understand the intent of the com-
mand, enabling them to determine whether the command
is malicious or benign. As depicted in Figure 6(b) and
Figure 6(c), RACONTEUR demonstrates superior performance
on both malicious and benign commands. It is noteworthy that
RACONTEUR outperforms baselines in assisting individuals to
identify malicious commands.

3) Preference: Preference directly represents the likability
of RACONTEUR compared with those of baselines. As shown

in Figure 6(e), participants favor the explanations provided by
RACONTEUR over those of baselines. This validates the high
quality of explanations generated by RACONTEUR.

Based on the free descriptions regarding the reasons for
preference, we identify two factors that are deemed beneficial
and valuable for command analysis, i.e., detailed formatted
explanations and explicit warnings. It shows that more detailed
and formatted responses with a clear hierarchical structure are
preferred. Furthermore, explicit warnings about the malicious
nature of commands can enhance analysts’ alertness.

VII. RELATED WORK

In this section, we briefly review the most related works
on human-oriented code explanation and machine-oriented log
analysis.

A. Human-Oriented Code Explanation

Code Explanation. The category of works within code
explanation endeavors to generate comprehensive explanations
that aid in the better understanding of code by humans. Over the
recent years, the emergence of large-scale pre-trained models
has catalyzed several initiatives in the field of code explanation.
Notably, Sarse et al. [49] and MacNeil et al. [33], [34] explored
and evaluated generating code explanations by large language
models (LLMs) for education purposes. Denny et al. [10] in-
troduced and evaluated robosourcing for educational resources,

12



i.e., querying LLMs to replace some of the work traditionally
performed by the crowd. Leinonen et al. [25] compared the
explanation generated by LLMs with those created by students,
and found that LLMs outperformed students in terms of
accuracy and understandability.

Existing works above [49], [33], [34], [10], [25] uti-
lized cloud services of closed-source LLMs (e.g., OpenAI’s
Codex [7] and GPT-3 [6]) for normal code explanation.
However, the use of cloud services is restricted when it comes
to explaining proprietary commands, due to their sensitive
nature and close association with company operations and
internal network states. In contrast, RACONTEUR is founded
upon a customized local LLM and incorporates support for
handling malicious commands, thereby enhancing its capability
to assist in shell log auditing. This unique approach not only
ensures a more secure and tailored solution for code explanation,
especially in scenarios involving proprietary commands, but
also aligns with the imperative need for heightened security
measures in contemporary software development practices.

Code Summarization. The objective of code summarization
is to generate natural language comments for code, which aligns
with the goal of code explanation to a certain extent. Early
endeavors in code summarization were information retrieval-
based. Haiduc et al. [17], Eddy et al. [13] and Wong et al. [62]
proposed to search comments from similar code snippets to
create summaries. Moreno et al. [37] extracted keywords
in code snippets for Java class summaries. However, these
information retrieval-based methods falter when no similar
code snippet exists or when identifiers in the code are poorly
named, a common occurrence in the context of malicious shell
commands.

In recent years, learning-based methods have gained traction.
Allamanis et al. [1] proposed a convolutional attention network
for extreme (very short) code summarization. Iyer et al. [20]
used long short-term memory (LSTM) networks with atten-
tion to produce summaries of C# and SQL code snippets.
Hu et al. [19] and Wan et al. [53] incorporated an abstract
syntax tree structure as well as sequential content of code
snippets into an encoder-decoder model for better comment
generation. Wei et al. [60] proposed a joint model to take advan-
tage of the dulity of code generation and code summarization.
Given the success of transformer in NLP, Wang et al. [55] and
Clement et al. [8] applied transformer in code-to-text (code
summarization) and text-to-code (code generation) tasks.

Considering the promising effectiveness of graph neural
networks (GNNs) on structured data, Fernandes et al. [15],
Wang et al. [56] and Wang et al. [57] utilized GNN to reason
about the long-distance relationships in code. Stepping into the
era of pre-training language models (PLMs), a series of multi-
tasking PLMs [32], [14], [59], [16], [58], [27] for code have
been proposed for various code understanding and generation
tasks, including code summarization.

While code summarization can be viewed as a form of brief
explanation, detailed explanations are preferred in practice
for better comprehension. Moreover, existing methods are
developed for general code, whereas RACONTEUR supports

explaining proprietary commands based on documentation
and analyzing malicious commands at a high-level through
technique and tactic identification.

B. Machine-Oriented Log Analysis

In the realm of cybersecurity, there has been a significant
focus on the automated analysis of logs for various downstream
tasks, with an emphasis on providing explanations tailored
for machine understanding rather than human consumption.
Notably, Crespi et al. [9] applied unsupervised NLP methods
on honeypot command logs to cluster IP addresses aiming
at botnet detection. Boffa et al. [4] leveraged bag of words
and Word2Vec to learn representations from honeypot logs
and identify groups of similar SSH/Telnet sessions and attacks.
These endeavors predominantly represent data mining efforts
aimed at offering initial insights derived from log data.

Expanding on this, Boffa et al. [5] took a step further by
delving into the identification of specific tactics employed
by attackers within individual segments of shell sessions.
While these efforts mark significant progress, they primarily
yield trace-based or label-like outcomes. In contrast, our
proposed system goes beyond mere traces or labels, offering
comprehensive and easily comprehensible natural language
explanations for commands. Moreover, RACONTEUR not only
identifies the tactics employed by attackers but also discerns
more granular techniques from individual commands, rather
than analyzing entire sessions.

In a somewhat different vein, other research efforts [11], [3]
have focused on learning representations from network data for
predictive tasks such as delay prediction. These pursuits, while
valuable, are orthogonal to our primary objective of explicating
and understanding malicious activities within command logs.
Our emphasis lies in providing clear, human-readable insights
into the nature of potentially harmful commands, thereby
enhancing the interpretability of cybersecurity log analysis.

VIII. CONCLUSION & FUTURE WORK

In this work, we present the design, implementation, and
evaluation of RACONTEUR, a knowledgeable, insightful and
portable shell command explainer powered by LLM, which
provides bottom-up explanations of shell commands and
assists shell log auditing in security operation. RACONTEUR is
infused with professional knowledge to provide comprehensive
explanations on shell commands, including not only what
the command does but also why the command does it. Our
extensive experiments demonstrate that RACONTEUR achieves
much better explanation performance than the original base
model, which is even comparable to the GPT series on
benign and malicious shell commands in both English and
Chinese. RACONTEUR also achieves superior technique and
tactic identification performance. However, RACONTEUR can
be further improved in four aspects:

Obfuscation. We have observed that when presented with
obfuscated commands, RACONTEUR can notify the analyst
within the explanation that the commands have indeed been
obfuscated. Moreover, RACONTEUR can effectively explain

13



commands with payloads obfuscated using techniques such
as Base64 encoding. This success may be attributed to the
emerging ability of existing LLMs to comprehend syntactic
transformations [47], such as string splicing, common encoding,
and simple encryption. However, due to the absence of a
benchmark for obfuscated commands, we consider a more
comprehensive evaluation of the analysis of obfuscated com-
mands as a focus for our future work.

Shell session. A shell session consists of continuous com-
mands executed by potential attackers, which contains more
information about the attack. Although RACONTEUR has al-
ready shown satisfying performance on analyzing a standalone
shell command and a compound command that consists of
multiple commands, extending to shell sessions that consists
of sequential shell commands might be more conducive, e.g.,
for honey-pot analysis and APT analysis.

Other logs. RACONTEUR is now designed for assisting shell
log auditing. A future direction is to extend the system to
analyze other kinds of logs, e.g., network logs, database logs,
web server logs, etc. Extending RACONTEUR to fine-tuning
the base model on other log modalities requires extensive
labelled data which is expensive. A possible solution is through
incremental pre-training on unsupervised data of network logs,
database logs, web server logs, etc. This is our future direction.

Base model selection. In this paper, we choose ChatGLM2-
6B as our base model and further fine-tune it into RACONTEUR
for professional command explanation. We choose ChatGLM2-
6B because it is the state-of-the-art within open-source bilingual
(Chinese-English) LLMs. But a limitation is that ChatGLM2-
6B only has 6 billion parameters, which may not be able to
beat the performance of larger models, e.g., GPT-3.5-Turbo
and GPT-4. Although we are happy to see that RACONTEUR
has already achieved satisfying performance compared with
our baselines in §VI, exploration of larger open-source models
as the base model may improve the performance further.

ACKNOWLEDGEMENT

We sincerely thank all the anonymous reviewers for their
valuable comments. This work was supported by China
NSFC Grant 61925109 and by Ant Group. The authors from
Ant Group were supported by the Leading Innovative and
Entrepreneur Team Introduction Program of HangZhou (Grant
No. TD2020001). Yanjiao Chen is the corresponding author.

REFERENCES

[1] M. Allamanis, H. Peng, and C. Sutton, “A Convolutional Attention
Network for Extreme Summarization of Source Code,” in International
Conference on Machine Learning. JMLR.org, 2016.

[2] S. Banerjee and A. Lavie, “METEOR: an automatic metric for MT eval-
uation with improved correlation with human judgments,” in Workshop
on Intrinsic and Extrinsic Evaluation Measures for Machine Translation
and/or Summarization. Association for Computational Linguistics, 2005.

[3] Z. Ben-Houidi, R. Azorin, M. Gallo, A. Finamore, and D. Rossi, “Towards
a Systematic Multi-modal Representation Learning for Network Data,”
in ACM Workshop on Hot Topics in Networks, 2022.

[4] M. Boffa, G. Milan, L. Vassio, I. Drago, M. Mellia, and Z. Ben-Houidi,
“Towards NLP-based Processing of Honeypot Logs,” in IEEE European
Symposium on Security and Privacy, 2022.

[5] M. Boffa, R. V. Valentim, L. Vassio, D. Giordano, I. Drago, M. Mellia, and
Z. B. Houidi, “LogPr\’ecis: Unleashing Language Models for Automated
Shell Log Analysis,” arXiv preprint arXiv:2307.08309, 2023.

[6] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language Models
are Few-shot Learners,” in Conference on Neural Information Processing
Systems. PMLR, 2020.

[7] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating Large
Language Models Trained on Code,” arXiv preprint arXiv:2107.03374,
2021.

[8] C. B. Clement, D. Drain, J. Timcheck, A. Svyatkovskiy, and N. Sundare-
san, “PyMT5: Multi-mode Translation of Natural Language and Python
Code with Transformers,” in Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, 2020.

[9] V. Crespi, W. Hardaker, S. Abu-El-Haija, and A. Galstyan, “Identifying
Botnet IP Address Clusters Using Natural Language Processing Tech-
niques on Honeypot Command Logs,” arXiv preprint arXiv:2104.10232,
2021.

[10] P. Denny, S. Sarsa, A. Hellas, and J. Leinonen, “Robosourcing Edu-
cational Resources - Leveraging Large Language Models for Learner-
sourcing,” in Workshop on Learnersourcing: Student-Generated Content.
CEUR-WS.org, 2022.

[11] A. Dietmüller, S. Ray, R. Jacob, and L. Vanbever, “A New Hope for
Network Model Generalization,” in ACM Workshop on Hot Topics in
Networks, 2022.

[12] Z. Du, Y. Qian, X. Liu, M. Ding, J. Qiu, Z. Yang, and J. Tang, “GLM:
General Language Model Pretraining with Autoregressive Blank Infilling,”
in Annual Meeting of the Association for Computational Linguistics, 2022.

[13] B. P. Eddy, J. A. Robinson, N. A. Kraft, and J. C. Carver, “Evaluating
Source Code Summarization Techniques: Replication and Expansion,” in
International Conference on Program Comprehension. IEEE Computer
Society, 2013.

[14] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou,
B. Qin, T. Liu, D. Jiang, and M. Zhou, “CodeBERT: A Pre-Trained
Model for Programming and Natural Languages,” in Conference on
Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, 2020.

[15] P. Fernandes, M. Allamanis, and M. Brockschmidt, “Structured Neural
Summarization,” in International Conference on Learning Representa-
tions. OpenReview.net, 2019.

[16] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu, M. Tufano, S. K. Deng, C. B. Clement, D. Drain,
N. Sundaresan, J. Yin, D. Jiang, and M. Zhou, “GraphCodeBERT:
Pre-training Code Representations with Data Flow,” in International
Conference on Learning Representations. OpenReview.net, 2021.

[17] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the Use of
Automated Text Summarization Techniques for Summarizing Source
Code,” in Conference on Reverse Engineering. IEEE Computer Society,
2010.

[18] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
and W. Chen, “Lora: Low-rank adaptation of large language models,” in
International Conference on Learning Representations. OpenReview.net,
2022.

[19] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep Code Comment
Generation,” in Conference on Program Comprehension. ACM, 2018.

[20] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing
Source Code using a Neural Attention Model,” in Annual Meeting of
the Association for Computational Linguistics, 2016.

[21] L. A. Johnson Kinyua, “AI/ML in Security Orchestration, Automation
and Response: Future Research Directions,” Intelligent Automation &
Soft Computing, vol. 28, no. 2, pp. 527–545, 2021.

[22] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child,
S. Gray, A. Radford, J. Wu, and D. Amodei, “Scaling Laws for Neural
Language Models,” arXiv preprint arXiv:2001.08361, 2020.

[23] M. Khalili, M. Zhang, D. Borbor, L. Wang, N. Scarabeo, and M.-A.
Zamor, “Monitoring and Improving Managed Security Services inside a
Security Operation Center,” EAI Endorsed Transactions on Security and
Safety, vol. 5, no. 18, 2019.

[24] D. Kocetkov, R. Li, L. B. Allal, J. Li, C. Mou, C. M. Ferrandis, Y. Jernite,
M. Mitchell, S. Hughes, T. Wolf, D. Bahdanau, L. von Werra, and
H. de Vries, “The Stack: 3 TB of Permissively Licensed Source Code,”
arXiv preprint arXiv:2211.15533, 2022.

14



[25] J. Leinonen, P. Denny, S. MacNeil, S. Sarsa, S. Bernstein, J. Kim, A. Tran,
and A. Hellas, “Comparing Code Explanations Created by Students and
Large Language Models,” in Conference on Innovation and Technology
in Computer Science Education V. ACM, 2023.

[26] B. Li, G. Fang, Y. Yang, Q. Wang, W. Ye, W. Zhao, and S. Zhang, “Eval-
uating ChatGPT’s Information Extraction Capabilities: An Assessment
of Performance, Explainability, Calibration, and Faithfulness,” arXiv
preprint arXiv:2304.11633, 2023.

[27] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou,
M. Marone, C. Akiki, J. Li, J. Chim et al., “StarCoder: May the Source
be with You!” arXiv preprint arXiv:2305.06161, 2023.

[28] C.-Y. Lin, “Rouge: A Package for Automatic Evaluation of Summaries,”
in Text summarization branches out. Association for Computational
Linguistics, 2004.

[29] X. V. Lin, C. Wang, L. Zettlemoyer, and M. D. Ernst, “NL2Bash: A
Corpus and Semantic Parser for Natural Language Interface to the Linux
Operating System,” in International Conference on Language Resources
and Evaluation. European Language Resources Association, 2018.

[30] C. Liu, F. Zhao, L. Qing, Y. Kang, C. Sun, K. Kuang, and F. Wu, “Goal-
oriented prompt attack and safety evaluation for llms,” arXiv preprint
arXiv:2309.11830, 2023.

[31] X. Liu, H. Lai, H. Yu, Y. Xu, A. Zeng, Z. Du, P. Zhang, Y. Dong, and
J. Tang, “WebGLM: Towards An Efficient Web-Enhanced Question An-
swering System with Human Preferences,” in ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, 2023.

[32] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. B.
Clement, D. Drain, D. Jiang, D. Tang, G. Li, L. Zhou, L. Shou, L. Zhou,
M. Tufano, M. Gong, M. Zhou, N. Duan, N. Sundaresan, S. K. Deng,
S. Fu, and S. Liu, “CodeXGLUE: A Machine Learning Benchmark
Dataset for Code Understanding and Generation,” in Neural Information
Processing Systems Track on Datasets and Benchmarks. PMLR, 2021.

[33] S. MacNeil, A. Tran, A. Hellas, J. Kim, S. Sarsa, P. Denny, S. Bernstein,
and J. Leinonen, “Experiences from Using Code Explanations Generated
by Large Language Models in a Web Software Development E-Book,”
in Technical Symposium on Computer Science Education, 2023.

[34] S. MacNeil, A. Tran, D. Mogil, S. Bernstein, E. Ross, and Z. Huang,
“Generating Diverse Code Explanations using the GPT-3 Large Language
Model,” in Conference on International Computing Education Research.
ACM, 2022.

[35] J. Maynez, S. Narayan, B. Bohnet, and R. T. McDonald, “On Faithfulness
and Factuality in Abstractive Summarization,” in Annual Meeting of the
Association for Computational Linguistics, 2020.

[36] S. Min, X. Lyu, A. Holtzman, M. Artetxe, M. Lewis, H. Hajishirzi, and
L. Zettlemoyer, “Rethinking the Role of Demonstrations: What Makes In-
Context Learning Work?” in Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, 2022.

[37] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. L. Pollock, and K. Vijay-
Shanker, “Automatic Generation of Natural Language Summaries for
Java Classes,” in International Conference on Program Comprehension.
IEEE Computer Society, 2013.

[38] N. Muennighoff, “SGPT: GPT Sentence Embeddings for Semantic
Search,” arXiv preprint arXiv:2202.08904, 2022.

[39] N. Muennighoff, N. Tazi, L. Magne, and N. Reimers, “MTEB: Massive
Text Embedding Benchmark,” in Conference of the European Chapter
of the Association for Computational Linguistics, 2023.

[40] R. Nakano, J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim, C. Hesse,
S. Jain, V. Kosaraju, W. Saunders, X. Jiang, K. Cobbe, T. Eloundou,
G. Krueger, K. Button, M. Knight, B. Chess, and J. Schulman, “WebGPT:
Browser-assisted Question-answering with Human Feedback,” arXiv
preprint arXiv:2112.09332, 2021.

[41] J. Ni, G. H. Ábrego, N. Constant, J. Ma, K. B. Hall, D. Cer, and Y. Yang,
“Sentence-T5: Scalable Sentence Encoders from Pre-trained Text-to-text
Models,” arXiv preprint arXiv:2108.08877, 2021.

[42] J. Ni, C. Qu, J. Lu, Z. Dai, G. H. Ábrego, J. Ma, V. Y. Zhao, Y. Luan,
K. B. Hall, and M.-W. Chang, “Large Dual Encoders are Generalizable
Retrievers,” arXiv preprint arXiv:2112.07899, 2021.

[43] OpenAI, “Chatgpt plugins,” https://openai.com/blog/chatgpt-plugins.
[44] ——, “GPT-4 technical report,” arXiv preprint arXiv:2303.08774, 2023.

[45] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton,
L. Miller, M. Simens, A. Askell, P. Welinder, P. F. Christiano, J. Leike,
and R. Lowe, “Training Language Models to Follow Instructions with
Human Feedback,” in Conference on Neural Information Processing
Systems. PMLR, 2022.

[46] K. Papineni, S. Roukos, T. Ward, and W. Zhu, “BLEU: a Method for
Automatic Evaluation of Machine Translation,” in Annual Meeting of
the Association for Computational Linguistics, 2002.

[47] A. Rao, S. Vashistha, A. Naik, S. Aditya, and M. Choudhury, “Tricking
llms into disobedience: Formalizing, analyzing, and detecting jailbreaks,”
arXiv preprint arXiv: 2305.14965, 2024.

[48] S. Ray, “Samsung Bans ChatGPT Among Employees After Sensitive
Code Leak,” https://www.forbes.com/sites/siladityaray/2023/05/02/sams
ung-bans-chatgpt-and-other-chatbots-for-employees-after-sensitive-c
ode-leak.

[49] S. Sarsa, P. Denny, A. Hellas, and J. Leinonen, “Automatic Generation of
Programming Exercises and Code Explanations Using Large Language
Models,” in Conference on International Computing Education Research.
ACM, 2022.

[50] M. Schonlau and M. Theus, “Detecting Masquerades in Intrusion
Detection based on Unpopular Commands,” Information Processing
Letters, vol. 76, no. 1-2, pp. 33–38, 2000.

[51] R. Vedantam, C. L. Zitnick, and D. Parikh, “Cider: Consensus-based
image description evaluation,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2015.

[52] M. Vielberth, F. Böhm, I. Fichtinger, and G. Pernul, “Security Operations
Center: A Systematic Study and Open Challenges,” IEEE Access, vol. 8,
pp. 227 756–227 779, 2020.

[53] Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu, and P. S.
Yu, “Improving Automatic Source Code Summarization via Deep
Reinforcement Learning,” in ACM/IEEE International Conference on
Automated Software Engineering, 2018.

[54] L. Wang, N. Yang, X. Huang, B. Jiao, L. Yang, D. Jiang, R. Majumder,
and F. Wei, “Text Embeddings by Weakly-Supervised Contrastive Pre-
training,” arXiv preprint arXiv:2212.03533, 2022.

[55] W. Wang, Y. Zhang, Z. Zeng, and G. Xu, “Transˆ 3: A Transformer-based
Framework for Unifying Code Summarization and Code Search,” arXiv
preprint arXiv:2003.03238, 2020.

[56] Y. Wang, E. Shi, L. Du, X. Yang, Y. Hu, S. Han, H. Zhang, and D. Zhang,
“Cocosum: Contextual Code Summarization with Multi-relational Graph
Neural Network,” arXiv preprint arXiv:2107.01933, 2021.

[57] Y. Wang, Y. Dong, X. Lu, and A. Zhou, “GypSum: Learning Hybrid
Representations for Code Summarization,” in IEEE/ACM International
Conference on Program Comprehension, 2022.

[58] Y. Wang, H. Le, A. D. Gotmare, N. D. Bui, J. Li, and S. C. Hoi,
“CodeT5+: Open Code Large Language Models for Code Understanding
and Generation,” arXiv preprint arXiv:2305.07922, 2023.

[59] Y. Wang, W. Wang, S. R. Joty, and S. C. H. Hoi, “CodeT5: Identifier-
aware Unified Pre-trained Encoder-Decoder Models for Code Understand-
ing and Generation,” in Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, 2021.

[60] B. Wei, G. Li, X. Xia, Z. Fu, and Z. Jin, “Code Generation as a Dual
Task of Code Summarization,” in Conference on Neural Information
Processing Systems. PMLR, 2019.

[61] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. H. Chi,
Q. V. Le, and D. Zhou, “Chain-of-thought prompting elicits reasoning in
large language models,” in Conference on Neural Information Processing
Systems. PMLR, 2022.

[62] E. Wong, T. Liu, and L. Tan, “CloCom: Mining Existing Source Code
for Automatic Comment Generation,” in International Conference on
Software Analysis, Evolution, and Reengineering. IEEE Computer
Society, 2015.

[63] A. Zeng, X. Liu, Z. Du, Z. Wang, H. Lai, M. Ding, Z. Yang, Y. Xu,
W. Zheng, X. Xia, W. L. Tam, Z. Ma, Y. Xue, J. Zhai, W. Chen, Z. Liu,
P. Zhang, Y. Dong, and J. Tang, “GLM-130B: An Open Bilingual Pre-
trained Model,” in International Conference on Learning Representations.
OpenReview.net, 2023.

15

https://openai.com/blog/chatgpt-plugins
https://www.forbes.com/sites/siladityaray/2023/05/02/samsung-bans-chatgpt-and-other-chatbots-for-employees-after-sensitive-code-leak
https://www.forbes.com/sites/siladityaray/2023/05/02/samsung-bans-chatgpt-and-other-chatbots-for-employees-after-sensitive-code-leak
https://www.forbes.com/sites/siladityaray/2023/05/02/samsung-bans-chatgpt-and-other-chatbots-for-employees-after-sensitive-code-leak


APPENDIX A
EXPRESSION DIVERSIFICATION

Template Set of Different Expressions

• Can you clarify <command>
• Please describe <command>
• Elaborate on <command>
• Can you give me more details about <command>
• Could you shed some light on <command>
• I would like to understand <command>
• Can you break down <command>
• Can you make it clear <command>
• Can you give a rundown <command>
• Please provide a detailed explanation <command>
• I would like a detailed explanation <command>
• Kindly provide a thorough explanation <command>
• Can you give a detailed explanation <command>
• Please explain in detail <command>
• Can you explain it in detail <command>
• Could you provide a comprehensive explanation <command>
• Could you go into a detail about the command <command>

APPENDIX B
BASELINES

TABLE VII: The Baselines for Behavior Explainer and Intent Identifier.

Models Type Accessibility #Parameters

GPT-3.5-Turbo Generative Closed-Source 175B
GPT-4 Generative Closed-Source 100T
ChatGLM2-6B Generative Open-Source 6B

TABLE VIII: The Baselines for Doc-Augmented Enhancer.

Models Type Accessibility #Param. Dimension†

Sentence-T5large Text2Vec Open-Source 335M 768
GTR-T5XL Text2Vec Open-Source 1,240M 768
SGPT Text2Vec Open-Source 1,300M 2,048
E5large Text2Vec Open-Source 330M 1,024
† Embedding Dimension: the models encode arbitrary-length text
into a fixed-dimensional vector, e.g., 1,024.

16



APPENDIX C
TEST SET

TABLE IX: Test Sets of the Command Explainer.
Type Data Source Language Task‡ Prompt† #Samples Alias

Malicious
Command-Line

reverse-shell

Chinese Explanation Original Q. 785 rs-zh-ex-or
Chinese Explanation Augmented Q. 743 rs-zh-ex-au
Chinese Explanation Augmented Q. w/ Doc 773 rs-zh-ex-ad

English Explanation Original Q. 954 rs-en-ex-or
English Explanation Augmented Q. 933 rs-en-ex-au
English Explanation Augmented Q. w/ Doc 919 rs-en-ex-ad

metta

Chinese Explanation Original Q. 5 me-zh-ex-or
Chinese Explanation Augmented Q. 5 me-zh-ex-au
Chinese Explanation Augmented Q. w/ Doc 8 me-zh-ex-ad

English Explanation Original Q. 9 me-en-ex-or
English Explanation Augmented Q. 7 me-en-ex-au
English Explanation Augmented Q. w/ Doc 10 me-en-ex-ad

English Behavior Original Q. 196 me-en-be-or
English Behavior Augmented Q. 212 me-en-be-au
English Behavior Augmented Q. w/ Doc 323 me-en-be-ad

atomic-red-team

Chinese Explanation Original Q. 68 rt-zh-ex-or
Chinese Explanation Augmented Q. 58 rt-zh-ex-au
Chinese Explanation Augmented Q. w/ Doc 71 rt-zh-ex-ad

English Explanation Original Q. 66 rt-en-ex-or
English Explanation Augmented Q. 57 rt-en-ex-au
English Explanation Augmented Q. w/ Doc 69 rt-en-ex-ad

English Behavior Original Q. 1464 rt-en-be-or
English Behavior Augmented Q. 1418 rt-en-be-au
English Behavior Augmented Q. w/ Doc 1918 rt-en-be-ad

Benign
Command-Line NL2Bash

Chinese Explanation Original Q. 397 nb-zh-ex-or
Chinese Explanation Augmented Q. 396 nb-zh-ex-au
Chinese Explanation Augmented Q. w/ Doc 369 nb-zh-ex-ad

Chinese Explanation w/ Doc Original Q. 410 nb-zh-ed-or
Chinese Explanation w/ Doc Augmented Q. 409 nb-zh-ed-au
Chinese Explanation w/ Doc Augmented Q. w/ Doc 411 nb-zh-ed-ad

Chinese Multi-round Original Q. 5162 nb-zh-mu-or

English Explanation w/ Doc Original Q. 386 nb-zh-ed-or
English Explanation w/ Doc Augmented Q. 396 nb-zh-ed-au
English Explanation w/ Doc Augmented Q. w/ Doc 407 nb-zh-ed-ad

Benign &
Malicious

atomic-red-team &
NL2Bash

Chinese &
English

Explanation &
Explanation w/ Doc Original 200 HumanCheck

‡ Explanation: detailed explanation; Explanation w/ Doc: detailed explanation given documentations; Multi-round: multi-round
interation; Behavior: behavior summarization.
† Original Q.: use the same prompts as when requesting ChatGPT; Augmented Q.: use augmented prompts; Augmented Q. w/
Doc: use augmented prompts with documentations.

17



APPENDIX D
DIFFERENT EXPRESSIONS OF QUERY

TABLE X: The Performance on Diversified Queries.

Model
Original Query Diversified Query† Diversified Query w/ Doc.†

ROUGE-1 ROUGE-2 ROUGE-ℓ BLEU-4 ROUGE-1 ROUGE-2 ROUGE-ℓ BLEU-4 ROUGE-1 ROUGE-2 ROUGE-ℓ BLEU-4

GPT-3.5-Turbo 61.2 37.2 46.6 50.3 45.9 19.7 29.8 30.0 43.6 18.2 27.6 24.2
GPT-4 50.3 24.6 34.6 41.7 45.3 20.2 30.3 38.2 45.7 20.1 30.7 37.6
ChatGLM2-6B 49.3 23.6 31.1 38.0 41.4 17.3 26.5 31.8 42.9 17.8 26.9 32.9
RACONTEUR 70.4 52.0 58.7 57.9 68.5 49.3 56.6 56.2 68.5 49.6 57.0 56.8
† Diversified Query: the form of the query is converted using Equation (2).

APPENDIX E
DIFFERENT LANGUAGES

TABLE XI: The Performance on Chinese and English.
ChineseModel ROUGE-1 ROUGE-2 ROUGE-ℓ BLEU-4

GPT-3.5-Turbo 46.6 20.6 29.2 19.6
GPT-4 46.5 20.9 31.9 26.4
ChatGLM2-6B 43.5 18.2 26.8 21.7
RACONTEUR 65.7 44.0 51.6 42.9

EnglishModel ROUGE-1 ROUGE-2 ROUGE-ℓ BLEU-4

GPT-3.5-Turbo 50.8 26.9 32.5 38.6
GPT-4 49.4 26.1 32.5 49.1
ChatGLM2-6B 48.1 25.5 30.4 42.8
RACONTEUR 70.9 53.2 58.4 65.1

18


	Introduction
	Background and Motivation
	Shell Command Explanation
	Generative Language Models
	A Real-World Motivating Example

	System Model
	Actor
	Capability
	Security Objective

	Raconteur: Detailed Construction
	Behavior Explainer
	Prompt Diversification
	Response Professionalization

	Intent Identifier
	Doc-Augmented Enhancer
	Extraction of utility and option descriptions
	Generation of shell commands
	Documentation chunking
	Creation of triples


	Experiment Setup
	Prototype
	Datasets
	Dataset for command explainer
	Dataset for intent identifier
	Dataset for doc-augmented enhancer

	Evaluation Methods
	Quantitative evaluations
	Qualitative evaluations

	Baselines
	Baselines for behavior explainer
	Baselines for intent identifier
	Baselines for doc-augmented enhancer


	Evaluation Results
	Command Explanation
	Overall Performance
	End-to-End Evaluation of Overall Performance
	Different Tasks
	Different Expressions of Query
	Different Languages
	Different Inference Hyper-Parameters

	Intent Identification
	Doc-Augmented Enhancer
	User Study
	Comprehensiveness & Correctness
	Insightfulness
	Preference


	Related Work
	Human-Oriented Code Explanation
	Machine-Oriented Log Analysis

	Conclusion & Future Work
	References
	Appendix A: Expression Diversification
	Appendix B: Baselines
	Appendix C: Test Set
	Appendix D: Different Expressions of Query
	Appendix E: Different Languages

