Bobtail: Improved Blockchain Security With Low-Variance Mining

GEORGE BISSIAS BRIAN LEVINE

UNIVERSITY OF MASSACHUSETTS AMHERST

Compressed Review of Blockchains

- We focus on *public / open* blockchains that use proof-of-work (PoW)
- Decentralized and distributed ledgers
 - Ledger comprises set of transactions
 - Financial, logistical, legal, ...
- PoW: not the only approach, but most popular and relatively easy to analyze

Proof-of-Work Mining Basics

- Miners repeatedly hash block header
- Hashes are within [0,S]
- A block is mined when hash falls below t
- Block time T is function of hash rate h
 (seconds)
- Convention is to extend longest chain

Miners "draw" numbers until they cross threshold 5

- Miners "draw" numbers until they cross threshold 5
- Each draw "costs" a hash

- Miners "draw" numbers until they cross threshold 5
- Each draw "costs" a hash

- Miners "draw" numbers until they cross threshold 5
- Each draw "costs" a hash
- First to cross threshold wins
- Winner receives a reward and proposes a block

- Miners "draw" numbers until they cross threshold 5
- Each draw "costs" a hash
- First to cross threshold wins
- Winner receives a reward and proposes a block
- Game repeats

Mining statistics

- Time to draw below threshold is approximately Expon $\begin{pmatrix} T \\ - \\ 0 \end{pmatrix}$
- > 20% miner expects to take 4 times as long to mine a block as others

Double-spending Attack

- Alice trades car for 1 BTC
- Transaction appears in block 1
- Assumes majority are mining chain
- Alice knows about law of large numbers
- Goods are released only once payment has *z* "confirmations"

Double-spending Attack

- Bob steals goods if red chain grows longer than blue
- Relies on high variance of the exponential distribution
- Goods worth more than cost of attack?

Attack Success Probability

- Attacker needs to get ahead by at least one block sometime after the first z. blocks
- Even a 20% miner has 5% chance of winning after 6 blocks

Bobtail Protocol Details

- Assemble a block containing transactions
- Hash header as usual to generate "proofs"
- Disseminate proofs that are "low enough" to neighbors
- Maintain queue of lowest k proofs
- Assemble k proofs whose mean is below t
- Each proof miner receives reward

 Miners draw numbers until the average of any 2 cross threshold 5

- Miners draw numbers until the average of any 2 cross threshold 5
- Each draw still "costs" a hash

- Miners draw numbers until the average of any 2 cross threshold 5
- Each draw still "costs" a hash

- Miners draw numbers until the average of any 2 cross threshold 5
- Each draw still "costs" a hash

- Miners draw numbers until the average of any 2 cross threshold 5
- Each draw still "costs" a hash
- First 2 to cross threshold win
- Winners receive a reward and lowest proposes a block

Impact on Doublespend Attack Efficacy

- Status quo (Bitcoin)
 - 20% attacker succeeds
 approximately 5% of the time
 after 6 confirmations
- Bobtail with k=20
 - 20% attacker succeeds less than
 1% of the time with just 2
 confirmations

Embargo Period z

Relative Statistics

Mining time with Bobtail for fixed target t:

• Expected value increases by $\frac{k+1}{2}$ • Variance increases by $\frac{(k+1)(2k+1)}{6k}$

When expected times are aligned:

$$t_k = \frac{k+1}{2}t$$

Relative variance O(1/k)

What is the Cost?

Size of meta data increases by $k \cdot 160B$

What is the Cost?

- Size of meta data increases by $k \cdot 160B$
- Increased network overhead
 - Mitigated by not sending proofs in the "tail"
 - Graphene can be used to reduce redundancy

What is the Cost?

- Size of meta data increases by $k \cdot 160B$
- Increased network overhead
- New attacks must be considered
 - Proof withholding
 - Denial-of-Service (DoS)

Summary

- Mining process is akin to a lottery
- We can skew statistics in favor of honest majority
- This greatly mitigates fundamental attacks
 - Doublespend susceptibility reduced by orders of magnitude
- Primary cost is increased network and block overhead