Bobtail: Improved Blockchain Security With Low-Variance Mining

GEORGE BISSIAS BRIAN LEVINE

UNIVERSITY OF MASSACHUSETTS AMHERST

Compressed Review of Blockchains

- Ledger comprises set of transactions
- Financial, logistical, legal, ...
- PoW: not the only approach, but most popular and relatively easy to analyze

Proof-of-Work Mining Basics

- Miners repeatedly hash block header
- Hashes are within $[0, S]$
- A block is mined when hash falls below t
- Block time T is function of hash rate h (seconds)
- Convention is to extend longest chain

Mining is a Lottery

- Miners "draw" numbers
until they cross threshold 5

Mining is a Lottery

- Miners "draw" numbers until they cross threshold 5
- Each draw "costs" a hash

Mining is a Lottery

- Miners "draw" numbers until they cross threshold 5
- Each draw "costs" a hash

Mining is a Lottery

- Miners "draw" numbers until they cross threshold 5
- Each draw "costs" a hash
- First to cross threshold wins
- Winner receives a reward and proposes a block

Mining is a Lottery

- Miners "draw" numbers until they cross threshold 5
- Each draw "costs" a hash
- First to cross threshold wins
- Winner receives a reward and proposes a block
- Game repeats

응

Mining statistics

- Time to draw below threshold is approximately Expon $\left(\frac{T}{q}\right)$
- 20% miner expects to take 4 times as long to mine a block as others

Double-spending Attack

- Alice trades car for 1 BTC
- Transaction appears in block 1
- Assumes majority are mining chain
- Alice knows about law of large numbers
- Goods are released only once payment has z "confirmations"

Double-spending Attack

- Bob steals goods if red chain grows longer than blue
- Relies on high variance of the exponential distribution
, Goods worth more than cost of attack?

Attack Success Probability

$$
\text { attacker mining power }-0.1-0.2-0.3-0.4-0.45
$$

- Attacker needs to get ahead by at least one block
sometime after the first z blocks
- Even a 20\% miner has 5\% chance of winning after 6 blocks

Bobtail Protocol Details

- Assemble a block containing transactions
- Hash header as usual to generate "proofs"
- Disseminate proofs that are "low enough" to neighbors
- Maintain queue of lowest k proofs
- Assemble k proofs whose mean is below t
, Each proof miner receives reward

New Lottery: Bobtail

- Miners draw numbers until the average of any 2 cross threshold 5

New Lottery: Bobtail

- Miners draw numbers until the average of any 2 cross threshold 5
- Each draw still "costs" a hash

New Lottery: Bobtail

- Miners draw numbers until the average of any 2 cross threshold 5
- Each draw still "costs" a hash

New Lottery: Bobtail

- Miners draw numbers until the average of any 2 cross threshold 5
- Each draw still "costs" a hash

New Lottery: Bobtail

- Miners draw numbers until the average of any 2 cross threshold 5
- Each draw still "costs" a hash
- First 2 to cross threshold win
- Winners receive a reward and lowest proposes a block

Impact on Doublespend Attack Efficacy

$$
\text { attacker mining power }-0.1-0.2-0.3-0.4-0.45
$$

- Status quo (Bitcoin)
- 20\% attacker succeeds approximately 5% of the time after 6 confirmations
- Bobtail with $\mathrm{k}=20$
- 20% attacker succeeds less than 1% of the time with just 2 confirmations

Relative Statistics

- Mining time with Bobtail for fixed target t :
- Expected value increases by $\frac{k+1}{2}$
- Variance increases by $\frac{(k+1)(2 k+1)}{6 k}$
- When expected times are aligned:
, $t_{k}=\frac{k+1}{2} t$
- Relative variance $O(1 / k)$

What is the Cost?

- Size of meta data increases by $k \cdot 160 \mathrm{~B}$

What is the Cost?

- Size of meta data increases by $k \cdot 160 \mathrm{~B}$
- Increased network overhead
- Mitigated by not sending proofs in the "tail"

Gamma shape k

- Graphene can be used to reduce redundancy

What is the Cost?

- Size of meta data increases by $k \cdot 160 \mathrm{~B}$
- Increased network overhead
- New attacks must be considered
- Proof withholding
- Denial-of-Service (DoS)

Summary

- Mining process is akin to a lottery
- We can skew statistics in favor of honest majority
- This greatly mitigates fundamental attacks
- Doublespend susceptibility reduced by orders of magnitude
- Primary cost is increased network and block overhead

