
FirmDiff: Improving the Configuration of Linux
Kernels Geared Towards Firmware Re-hosting

Ioannis Angelakopoulos, Gianluca Stringhini, and Manuel Egele
Boston University

{jaggel, gian, megele}@bu.edu

Abstract—Re-hosting Internet of Things (IoT) firmware can
oftentimes be a tedious process, especially when analysts have to
intervene with the analysis to ensure further progress. When it
comes to Linux-based firmware, one crucial problem that current
re-hosting systems face, is that the configuration of the custom
kernels used by these systems, significantly deviates from the
configuration of the IoT kernel modules used in firmware images.
As a consequence, kernel artifacts, such as the memory layout
of data structures might differ between the custom kernels and
the IoT kernel modules. To analyze the IoT kernel modules
within these kernels, the analyst often has to invest significant
amount of engineering effort and time to align the offending
data structures within the custom kernels. In this paper, we
present FirmDiff, an automated binary diffing framework that
enables analysts to effectively detect and align the misaligned data
structures between the custom kernels produced by the FirmSolo
re-hosting framework and the Linux kernel modules in IoT
firmware. The goal of FirmDiff is to improve the configuration
of FirmSolo’s kernels to closely approximate the configuration of
the IoT kernels in the firmware images, such that the IoT kernel
modules can be analyzed without errors. We evaluate FirmDiff
on a dataset of 10 firmware images with 148 IoT kernel modules
that crash during re-hosting with FirmSolo. Using FirmDiff’s
findings, we identify 37 misaligned data structures in FirmSolo’s
kernels for these images. After aligning the layout of 35 of these
data structures, FirmSolo’s refined kernels successfully load 28
previously crashing kernel modules.

I INTRODUCTION

Analyzing the firmware code that runs on Internet of Things
(IoT) devices has always been a formidable challenge for
analysts. Generally, the IoT domain is characterized by the
insufficient information disclosed by vendors about the func-
tionality of firmware and the lack of source code. Due to
this fact, every firmware analysis solution might suffer from
limitations that can hinder the analysis. Thus, analysts often
have to manually intervene with the analysis process and
invest an extensive amount of engineering effort and time to
address the issues and ensure further progress. Unfortunately,
there are few automated solutions that can lift some of the
manual investigation burden and improve the efficiency and
effectiveness of firmware analysis.

Firmware analysis is a well-studied research area. On
the one hand, static analysis techniques [8], [13], [24] offer

scalable solutions, however at the expense of soundness. On
the other hand, dynamic analysis approaches [2], [5], [16],
[21], [26], [27], [31] provide good tradeoffs between scalability
and robustness, but frequently require human mediation to
aid the analysis. When it comes to complex code though,
such as Linux-based (kernel level) firmware code, dynamic
analysis techniques (e.g., re-hosting) are more popular since
they produce fewer false positives than static analysis.

Linux-based firmware resembles general purpose operating
systems (i.e., consists of a kernel, the drivers, and the user
space applications) albeit storage-optimized and restricted in
terms of capabilities, to be able to run on low-power, low-
memory IoT devices. However, the simplicity of IoT Linux
kernels is entirely outweighed by the huge variety of IoT
hardware peripherals that these kernels target. Unfortunately,
state-of-the-art emulators support only but a fraction of that
hardware and are thus incapable of emulating these IoT ker-
nels. To account for this issue, Linux-based re-hosting systems
substitute the IoT kernels within IoT firmware (images) with
custom configured and built kernels that can be emulated by
current emulators. Next, these custom kernels are used to ana-
lyze either the user level code or drivers in the target firmware.
Compared to the other re-hosting approaches, FirmSolo [2]
is the only scalable system that automatically configures and
builds custom emulation-ready kernels, whose configuration
approximates the corresponding IoT kernels. FirmSolo uses
these kernels to load and dynamically analyze the IoT kernel
modules within firmware images.

However, FirmSolo’s kernel configuration process is inher-
ently dependent on the metadata (i.e., kernel symbols) embed-
ded within the IoT privileged code (kernel and kernel modules)
and the kernel source code used to compile the custom kernels
(FirmSolo uses only open source kernel versions). By design,
FirmSolo primarily ensures that kernel symbols (functions and
data structures) are available to the IoT kernel modules in order
for the latter to load into the custom kernel. FirmSolo focuses
on lower level implementation semantics, such as ensuring
that the IoT kernel modules access the members of the data
structures in the custom kernels at the correct offset, only when
issues arise during re-hosting. In particular, inconsistencies
in the memory layout of these data structures can lead to
misaligned data structure memory accesses during the analysis,
which in turn can lead to these IoT kernel modules crashing.
Generally, the memory layout of kernel data structures is
affected by two causes: the configuration options used in the
kernel build process and any modifications directly applied
by the vendors in their kernels’ source code. While FirmSolo
attempts to fix the layout of data structures when IoT kernel

Workshop on Binary Analysis Research (BAR) 2024
1 March 2024, San Diego, CA, USA
ISBN 979-8-9894372-0-7
https://dx.doi.org/10.14722/bar.2024.23012
www.ndss-symposium.org

modules crash while being loaded into the custom kernel, the
layout alignment algorithm used by FirmSolo is limited. The
algorithm must meet certain requirements, such as that the
crashing IoT kernel modules must be open source and not
stripped and that the IoT kernels’ source code must not be
modified by vendors (see Section II-C for more information
on the algorithm’s requirements). If these prerequisites are
not met, the layout recovery algorithm will create incorrect
solutions. Specifically, in the cases where data structures are
modified by vendors at source (e.g., extra members added),
FirmSolo cannot detect and apply the correct modifications
in these data structures. Since FirmSolo uses the open-source
versions of the IoT kernels and is limited only to adjusting
the layout of data structures through toggling configuration
options during the kernel build process, modified data struc-
tures remain misaligned. To successfully load and analyze the
kernel modules in these cases, the analyst has to manually
detect the modifications and configuration options that align
the offending data structures within FirmSolo’s kernels.

This paper introduces FirmDiff, a binary diffing frame-
work that compares the memory layout of data structures
common to both the IoT kernel modules (and IoT kernel) and
FirmSolo’s custom kernels. FirmDiff’s goal is to help the
analyst identify differences in the memory layout of data struc-
tures common between the IoT kernel modules and FirmSolo’s
custom kernels, and also provide sufficient information to the
analyst to address these differences. Consequently, by aligning
the layout of these data structures, the analyst can build
custom kernels that closely resemble their IoT counterparts.
The premise behind building these refined kernels is to load
and analyze the IoT kernel modules without misaligned data
structure accesses that occur during emulation, thus improving
the overall firmware re-hosting. Specifically, the outcome of
FirmDiff’s analysis are the names of data structures and
their members (i.e., their offsets and names) that are misaligned
between the IoT kernel modules and FirmSolo’s custom kernel.
Analysts can use this information to enhance FirmSolo’s kernel
configuration and build process to produce refined custom
kernels that can load and analyze the IoT kernel modules with-
out crashes thwarting the analysis. In particular, FirmDiff
detects function matches between the diffed binaries and for
each function pair it further matches the non-primitive type
variables (i.e., of a kernel data structure type) used within
these functions. The differences in the memory accesses of
these variable pairs (i.e., the corresponding data structure
members) indicate discrepancies between the configuration of
FirmSolo’s custom kernel and the IoT kernel or data structure
modifications in the IoT kernel. In turn, the analyst can address
these differences and modifications in FirmSolo’s kernels, to
prevent (kernel module) crashes occurring during the IoT
kernel module analysis.

As its foundation, FirmDiff uses Ghidriff [6] a bi-
nary diffing tool that conducts fast and effective compar-
isons of similar binaries at function granularity. We evaluate
FirmDiff on a dataset of 7 firmware images, originating
from FirmSolo [2]. Furthermore, we also analyze 3 additional
modern images from the Greenhouse dataset (published in
2023) to assess whether FirmDiff’s analysis capabilities
work for modern firmware. Overall, these firmware images
contain 148 kernel modules that crash during the analysis
with FirmSolo. We showcase how the information produced

by FirmDiff aids analysts to supplement the configuration
process of FirmSolo to produce custom kernels that better ap-
proximate the IoT kernels used by the firmware images in our
dataset. FirmDiff identifies 37 misaligned data structures
in FirmSolo’s kernels for these images. After aligning the
layout of 35 of these data structures, FirmSolo’s refined kernels
successfully load 28 previously crashing kernel modules.

In summary we make the following contributions.

• We propose a novel data structure memory layout com-
parison technique that identifies inconsistencies between
the configuration of FirmSolo’s custom kernels and the
IoT kernels of firmware images. By addressing these
inconsistencies, analysts can produce refined kernels that
can load and effectively analyze IoT kernel modules
without crashes occurring during the analysis.

• We present FirmDiff, the prototype implementation of
this technique. FirmDiff constitutes a binary diffing
framework that compares the memory layout of data
structures that are common between FirmSolo’s custom
kernels and the IoT kernel modules.

• To showcase FirmDiff’s effectiveness in improving
firmware analysis we compare the refined kernel configu-
rations and kernels produced with the help of FirmDiff
against the ones produced by FirmSolo. We show that the
custom kernels produced with the help of FirmDiff,
achieve better firmware re-hosting compared to the ker-
nels produced by FirmSolo.

To further foster research in the area, we will make
FirmDiff’s source code available to the public 1.

II BACKGROUND

In this Section, we provide background information about
Ghidra, Ghidriff, and FirmSolo, which are the foundations of
FirmDiff.

II-A Ghidra

Ghidra [10] is a state-of-the-art binary reverse engineering
tool. Similar to the other reverse engineering systems[1],
[15], [22], Ghidra offers various types of analyses, such as
disassembling and decompiling binary code, extracting meta-
data information (e.g, the endianness, the architecture and
debugging information – DWARF), binary rewriting, etc. In
addition, alongside the main analysis tool, Ghidra also offers
a built-in binary diffing utility, called Ghidra Version
Tracking (GVT). GVT’s primary functionality is to compare
two (similar) binaries and by using different correlators (e.g.,
Exact Function Bytes Match, Exact Function Instructions
Match, Similar Symbol Name Match, etc), match the functions
between the compared binaries. As the names suggest these
example correlators match functions (between the compared
binaries) if the bytes comprising their body are identical, match
functions if they consist of the same instructions, and if the
function names match, respectively. We note here that the use
of these correlators enables GVT to match functions that are
not 100% identical, and might contain changes (e.g., patches)
between the two binaries.

1https://github.com/BUseclab/FirmDiff

2

https://github.com/BUseclab/FirmDiff

FS: struct sk_buff

protocol : 0x62

network_header : 0x90

data : 0xa4

...

...

...

(a) Memory layout of struct
sk_buff in the FSkern.

sp : 0x4c

IoT: struct sk_buff

protocol : 0x66

network_header : 0x94

data : 0xa8

...

...

...

(b) Memory layout of struct
sk_buff in the IoTkern.

1 struct sk_buff {
2 struct sk_buff *next;
3 ...
4 #ifdef CONFIG_XFRM
5 struct sec_path *sp;
6 #endif
7 unsigned int len, data_len;
8 ...
9 __be16 protocol;

10 ...
11 }

(c) Source code implementation of struct sk_buff
in the Linux 3.4.103 kernel.

Fig. 1: Example of the misaligned data structure struct sk_buff. Figures 1a and 1b illustrate the incorrect and correct
offsets of the misaligned members of struct sk_buff (red and blue shapes, respectively). Here the analyst has to
enable the configuration option CONFIG_XFRM during FirmSolo’s kernel build process to align the members protocol,
network_header, and data at the correct offsets.

Furthermore, users have the option to instrument Ghidra’s
whole analysis pipeline through Python. Specifically, they can
execute Ghidra in headless mode (via Python scripts) and
run either the native and/or their own custom analysis on the
target binary without invoking Ghidra’s GUI. Of course this
capability benefits scalability since multiple binaries can be
analyzed automatically without human intervention.

II-B Ghidriff

Ghidriff [6] is a command line binary diffing tool designed for
fast and effective comparison of similar binaries (i.e., multiple
versions of the same binary). Essentially, Ghidriff is a Python
wrapper on top of Ghidra’s headless mode that also leverages
GVT for binary diffing. Originally, GVT was tied to Ghidra’s
GUI and was unavailable in Ghidra’s headless mode. Ghidriff
is the first system that disassociates GVT’s functionality from
Ghidra’s GUI to enable binary diffing in the headless mode.

Note that Ghidriff goes beyond merely running GVT
in headless mode and also generates additional information.
For example, Ghidriff also provides the similarity ratio of
matched functions (i.e., decompiled code, instruction, basic
block similarity ratio, etc), code diffs of modified functions,
the names and code of added and removed functions between
the compared binaries. FirmDiff relies on Ghidriff’s capa-
bility to infer matching functions, even in stripped binaries
(i.e., their function names are stripped), to further match the
variables used in these functions. We discuss how FirmDiff
implements the variable matching process in Section IV.

II-C FirmSolo

FirmSolo is a full-system re-hosting framework targeting
Linux-based firmware code. Specifically, FirmSolo is designed
to re-host privileged level firmware code, in the form of
kernel modules. Similar to other re-hosting frameworks such as
Firmadyne [5], FirmAE [16], Honware [27] and EASIER [21],
FirmSolo replaces the IoT kernel within the firmware im-
age with a custom kernel supported by emulators, such as
QEMU [3]. The kernel replacement is crucial since the IoT
kernels are built specifically to run on physical IoT hardware.
Since, state-of-the-art emulators do not support the numerous

different hardware that billions of IoT devices use [11], these
emulators cannot emulate their IoT kernels.

FirmSolo automatically reverse engineers the IoT kernel
of the target firmware image and in turn uses the information
extracted to configure and build a custom kernel that closely
approximates the image’s IoT kernel (but is supported by
QEMU). Specifically, FirmSolo extracts the kernel symbols
used by the IoT kernel modules (and the IoT kernel if it is
available) of the target image and maps these symbols to the
configuration options that guard their implementation in the
kernel source code. These configuration options comprise the
configuration of FirmSolo’s custom kernel. Once it is built, the
custom kernel can in turn be used by dynamic analysis systems
to load and analyze the kernel modules within the target
firmware image. Unfortunately, the IoT kernel modules can
crash during their emulation. Certain crashes occur when the
IoT kernel modules incorrectly access data structures shared
with the custom kernel. FirmSolo implements a data structure
memory alignment algorithm that aligns the layout of common
data structures between the custom kernel and IoT kernel
modules. However, this algorithm operates only on IoT kernel
modules that conform to these requirements:

1) The crashing IoT kernel modules are open-source and
their equivalent upstream kernel modules must be com-
piled by FirmSolo.

2) The crashing IoT kernel modules are not stripped (i.e., the
function names used by the kernel modules are available).

3) There is an available crash dump (i.e., a kernel Oops
message).

4) The crash occurs while the IoT kernel modules are being
loaded into the custom kernel (i.e., while executing their
init_module function).

5) The crash occurs within a known function that belongs
to the crashing IoT kernel modules or their dependencies
and not within a function of the custom kernel.

6) The misaligned data structures are not modified at source
by the vendors (FirmSolo uses the unmodified open
source equivalents of the IoT kernels).

3

FirmSolo

IoTkern/IoTkos

FSkern/FSkos

Firmware Image
Conf. Options

CONFIG_XFRM
CONFIG_IPV6_MROUTE

Manual Mods

Binary Diffing2

Ghidra

GVT

Ghidriff

Binary1 (DWARF)

Function: funcA
Vars:
varX: struct net

Accessed:
varX->memberA: 0x4c
varX->memberB: 0x70

Binary2

Function: funcA
Vars:
 varY

Accessed:
varY + 0x54
varY + 0x88

Kernel Build1
Manual Analysis

Variable Matching

Fig. 2: The overview of FirmDiff. The figure depicts the 2 stages of FirmDiff. In the Kernel Build stage, FirmDiff
consumes a firmware image and analyzes it with FirmSolo. In the Binary Diffing stage, FirmDiff diffs the FSkos and IoTkos

open-source modules with Ghidriff and matches the variables used within the functions of the compared binaries. The analyst
analyzes the information produces by FirmDiff to correct the layout of misaligned data structures.

These limitations prevent FirmSolo from aligning all the data
structures whose layout in the custom kernel differs from the
layout that the IoT kernel modules expect. As a result FirmSolo
cannot address the kernel module crashes in these scenarios.
FirmDiff only requires that there exist open source IoT
kernel modules so that it can analyze these modules along with
their counterparts compiled by FirmSolo (see Section IV-B).

III MOTIVATION

As previously mentioned, FirmSolo produces kernels (i.e.,
FSkern) whose configuration approximates the configuration
of the kernels used by firmware images (i.e., IoTkern). There
are cases, though, where there are important discrepancies
between the configuration of the FSkern and IoTkern. Specif-
ically, these configuration discrepancies might cause the views
of the memory layout of common data structures between the
FSkern and the IoTkern and IoT kernel modules (IoTkos) to
differ. Consequently, there is a high possibility that misaligned
data structure accesses occur when the IoTkos are loaded or
executed within the FSkern, further leading to crashes. We
provide a motivating example of such a case in Figure 1.

In this scenario, the misaligned data structure is struct
sk_buff. Figures 1a and 1b showcase the memory layout of
struct sk_buff in the FSkern and IoTkos (and IoTkern),
respectively, while Listing 1c illustrates the implementation of
struct sk_buff in the Linux source code. In our example,
the members protocol and data are misaligned by 4
bytes between the FSkern and the IoTkern. The struct
sk_buff data structure and specifically the two members
above are accessed by the bonding.ko kernel module (used
to combine networking interfaces). However, these members
are not accessed during the execution of the kernel module’s
initialization function. Instead, they are accessed when func-
tion bond_arp_rcv is executed. As a result the example
module does not crash when loaded into the FSkern, only
when its code (and specifically function bond_arp_rcv)
is executed. Thus, FirmSolo cannot automatically detect and
fix the misaligned data structure struct sk_buff. To
correctly align these members, the analyst has to enable
the configuration option CONFIG_XFRM (see lines 4-6 in
Listing 1c) which will insert the member sp, with a size of
4 bytes, before the two misaligned members, thereby bringing
these members to the correct offsets. Unfortunately, as is the
case in this example, if a kernel module does not meet the six

requirements discussed in Section II-C, FirmSolo is unable to
automatically detect the issue and correct the memory layout
of struct sk_buff. In Section IV-B we detail how an
analyst can rely on FirmDiff to pinpoint the misaligned data
structure and its offending members to align the layout of the
target data structure.

IV OVERVIEW

In this Section we discuss the design of FirmDiff, whose
goal is to aid analysts in improving FirmSolo’s kernel con-
figuration to closely approximate the configuration of the IoT
kernels in firmware images. In turn, FirmSolo’s kernels can
be used to analyze either the user level programs or the
kernel modules within these images by preventing errors (i.e.,
kernel module crashes) from occurring during the analysis. In
Section V we provide detailed information about how analysts
can use FirmDiff’s results to improve FirmSolo’s kernel
configuration and build process.

As illustrated in Figure 2, FirmDiff consists of two
stages; 1 The Kernel Build stage where FirmDiff uses
FirmSolo to build the custom kernel and kernel modules
for the target firmware image. 2 The Binary Diffing stage,
where FirmDiff diffs all the open-source kernel modules
of a firmware image with their upstream variants built by
FirmSolo in stage 1 . During the diffing process, FirmDiff
first matches the functions between the compared kernel
modules. Then, for each function match, FirmDiff further
pairs the variables (with a data structure type) and outputs
these variables’ memory accesses. Any discrepancies in these
memory accesses indicate the existence of misaligned data
structures between the IoT and FirmSolo’s kernels. By fixing
these data structure layout discrepancies, analysts can prevent
the IoT kernel modules from crashing when analyzed within
FirmSolo’s kernels.

IV-A Kernel Build

Stage 1 is responsible for building a custom kernel that can
load and analyze the IoTkos of a firmware image Fimage. It is
an iterative stage since the analyst can invoke the kernel build
process multiple times (see Section IV-C).

Initially, FirmDiff uses FirmSolo’s analysis pipeline to
build the FSkern and FSkos for Fimage. The FSkos are kernel

4

modules which have an open-source (or upstream) counterpart
in Fimage and are compiled by default by FirmSolo. It is
important that the modules in FSkos and their counterparts
in IoTkos are available, so that FirmDiff can diff them.

After the diffing process in stage 2 concludes, the analyst
can supplement the configuration of FirmSolo with additional
options and re-invoke stage 1 or modify the kernel source
(i.e., the layout of data structures) and manually compile
the custom kernel. Technically, FirmSolo could be substituted
with any other firmware re-hosting framework that uses a
custom kernel, such as Firmadyne, FirmAE, Honware or
EASIER. However, these systems use pre-built kernels that
are not accompanied by open-source kernel modules that have
a counterpart in Fimage. Thus, for FirmDiff to function,
these systems would have to be modified to also produce open-
source kernel modules with a counterpart in IoTkern. FirmSolo
is the only system which for every firmware image auto-
matically produces the kernel modules (FSkos) with IoTkos

counterparts. This justifies our decision of using FirmSolo as
one of the foundation blocks of FirmDiff.

IV-B Binary Diffing

In stage 2 , FirmDiff compares the modules in FSkos

with their counterparts in IoTkos. This stage aims to reveal
discrepancies in the layouts of data structures between the
modules in FSkos (and FSkern) and the modules in IoTkos.

The kernel data structures represent shared data, with spe-
cific semantics (i.e., the memory layout), between the kernel
and the kernel modules. Both parties that use these data (i.e.,
the kernel and kernel modules) must agree on these semantics,
so that all data accesses are correct. Data structures that are
defined in and used only by the kernel, of course, do not
conform to this rule. The memory layouts of data structures can
be affected by two aspects; 1) The configuration options in the
kernel configuration, and 2) Any modifications implemented
by the vendors in their kernels’ source code. To make sure that
both the FSkern and IoTkos agree about the layout of their
common data structures, it is important to first identify these
common data structures and then detect which configuration
options or vendor modifications affect their memory layout. As
stated in Section II-C, FirmSolo’s memory layout alignment
algorithm needs to meet certain conditions and thus cannot
always identify these data structures and find the options or
modifications that affect their layout.

In contrast, FirmDiff only requires that either the crash-
ing modules in IoTkos are open source or there exist other
open source modules in IoTkos that use the same (or a subset)
of data structures that the crashing modules use. By default
though, FirmDiff uses Ghidriff to diff all the open-source
modules in IoTkos with their variants in FSkos produced
in stage 1 . Furthermore, unlike FirmSolo’s memory layout
alignment algorithm which is limited by FirmSolo’s dynamic
nature (see requirement 4 in Section II-C), FirmDiff’s static
analysis can detect data structure misalignments throughout
the analyzed kernel modules. We discuss how FirmDiff’s
analysis works below.

For each compared pair of kernel module binaries,
FirmDiff follows these steps: 1) It analyzes both binaries
with Ghidra. 2) It runs GVT on the two binaries and matches

their functions. 3) Finally, for each function match FirmDiff
invokes the variable matching algorithm. This algorithm cor-
relates the variables with a data structure type (e.g., struct
net) between the matched functions. It leverages the DWARF
information embedded within the FSkos and FSkern during
their compilation, to detect the data structure types of the
variables. FirmDiff disregards variables with a primitive
type (e.g., int) since their memory layout is static and not
affected by any configuration options in the kernel. Once the
variables with a data structure type are paired (between the
diffed binaries), FirmDiff proceeds to extract the memory
accesses for each variable in a pair. These memory accesses
correspond to data structure members accessed (i.e., their off-
sets from the base of the data structure). FirmDiff displays
the member accesses (member names and their offsets) for
each variable pair side by side, enabling a quick and easy
comparison. If the offsets do not match, the memory layout of
the target data structure (i.e., the type of the variable pair under
test) is misaligned between the modules in FSkos and IoTkos.
After the variable matching algorithm concludes, FirmDiff
stores all the information produced (i.e., the variable pairs and
their member accesses for each function) within the JSON and
markdown files produced by Ghidriff.

IV-C Manual Analysis

After the information produced by FirmDiff is available, the
analyst can parse that information to extract the misaligned
data structures highlighted by FirmDiff. Afterwards, by
using other tools available (e.g., [4], [10], [14], [18]) the
analyst can pinpoint the root cause behind the data structure
misalignments. Specifically, for each variable pair (with a data
structure type) the analyst can infer if and which members
are shifted and by how many bytes. Based on the number
of bytes shifted, they can in turn detect which configuration
options need to be toggled in FirmSolo’s kernel configuration
process or manually modify the data structures’ source code
to align these members between the compared binaries. To
infer which options need to be toggled, the analyst can consult
FirmSolo’s built-in utility which provides a mapping for each
data structure (in the FSkern kernel) and the options that
affect its layout. The outcome of this analysis is a refined
FSkern that agrees with the IoTkos about the layout of the
data structures fixed by the analyst. The IoTkos should not
crash when correctly accessing the members of the aligned data
structures while being analyzed within the refined FSkern.

V IMPLEMENTATION

In this Section we provide the implementation details behind
FirmDiff.

V-A Kernel Build

In the first iteration of stage 1 , FirmDiff consumes a
firmware image Fimage as input and analyzes it with FirmSolo.
In turn, FirmSolo produces the FSkern and FSkos for Fimage.
We note that it is not necessary to execute FirmSolo’s entire
analysis pipeline, as FirmDiff only requires FSkern and
FSkos. Thus, FirmDiff can be instructed to run FirmSolo
until the kernel build step and omit the resource-intensive
emulation and data structure layout recovery steps. Next,
FirmDiff provides the FSkos and IoTkos to stage 2 .

5

Func: FFS

Var 1: VFSA (struct net)
Def-Use Chain:

addiu s1,s0,0x298
lw a2,0x2a8(s0)
lw a0,0x2b8(s0)
...

Var 2: VFSB (struct nf_conn)
Def-Use Chain:

sw v0,0x4(s1)
sw v1,0x6c(s1)
lw v0,0xd0(a0)
...

Func: FIOT

Var 1: VIOTA
Def-Use Chain:

addiu s1,s0,0x2bc
lw v0,0x2cc(s0)
lw a2,0x2dc(s0)
...

Var 2: VIOTB
Def-Use Chain:

sw v0,0x4(s1)
sw v1,0x6c(s1)
lw v0,0xd8(a0)
...

Def-Use Chains Representation

BFS BIOT

Fig. 3: Example of the Def-Use chains inference for variables
VFSA and VFSB (accessed by function FFS) and variables
VIOTA and VIOTB (accessed by function FIOT).

Stage 1 is iterative, the analyst can re-invoke it after they
analyze the information produced by stage 2 . Specifically, the
analyst can either modify the configuration of the FSkern by
adding or removing configuration options during FirmSolo’s
kernel configuration process or they can manually modify the
kernel source, change the configuration and re-compile the
FSkern and its FSkos (see Section V-C).

V-B Binary Diffing

In stage 2 , FirmDiff diffs every open-source kernel mod-
ule in the IoTkos with its counterpart in FSkos, using Ghidriff.
By default, Ghidriff analyzes the binaries with both Ghidra’s
main and GVT tools to find which functions match between
the diffed binaries. To realize FirmDiff, we modify Ghidriff
to also match variables used by the same functions (found by
GVT) in the diffed binaries, and detect the memory accesses
for these variables (i.e., the variable matching algorithm ex-
plained below). The information about the matched variables
and their memory accesses helps the analyst align the memory
layouts of misaligned data structures between the modules
in FSkern and IoTkos. Below we detail the analysis steps
followed in this stage.

Ghidra Analysis. First, every binary pair is analyzed with
Ghidra’s main tool. We note that the FSkern and the modules
in FSkos contain debugging information (i.e., DWARF) which
we use later during the variable matching process. Next every
pair of binaries is analyzed with Ghidra’s Version Tracking
(GVT) tool. GVT uses 15 different correlators (i.e. heuristics),
to match the functions between the compared binaries.

Once the function matching process concludes, FirmDiff
initiates its variable matching algorithm for each found pair of
functions between the compared binaries. For simplicity, for
any two binaries diffed (or compared) we refer to the binary
originating from FirmSolo as BFS and the binary originating
from Fimage as BIoT . Similarly, we refer as FFS and FIoT

the functions matched between the BFS and the BIoT .

Variable Matching. FirmDiff first lifts FFS and FIoT

to Ghidra’s PcodeOp Intermediate Representation (IR). By
using the IR of the functions, FirmDiff extracts the Def-
Use chains of all the variables within FFS and FIoT . The

Variable Matching

BFS
Instruction Vectors:

Var 1: VFSA
Instr: {lw:2, addiu:1, sw:1, sb:0}
Vector CFSA = [2,1,1,0,...,4]

Var 2: VFSB
Instr: {lw:1, addiu:0, sw:2, sb:0}
Vector CFSB = [1,0,2,0,...,3]

Instruction Vectors:

Var 1: VIOTA
Instr: {lw:2, addiu:1, sw:0, sb:1}
Vector CIOTA = [2,1,0,1,...,4]

Var 2: VIOTB
Instr: {lw:1, addiu:0, sw:2, sb:0}
Vector CIOTB = [1,0,2,0,...,3]

BIOT

Cosine Similarity

Cmp 1:
Cos(CFSA,CIOTA) = 0.96

Cmp 2:
Cos(CFSA,CIOTB) = 0.91

Cmp 3:
Cos(CFSB,CIOTA) = 0.80

Cmp 4:
Cos(CFSB,CIOTB) = 1

Var Pairing

Pair 1: VFSA x VIOTA

VFSA->ct (0x298)
VFSA->ct.hash (0x2a8)

VFSA->ct.stat (0x2b8)

VIOTA + 0x2bc
VIOTA + 0x2cc

VIOTA + 0x2dc

Pair 2: VFSB x VIOTB

VFSB->tuplehash (0x4)
VFSB->timeout (0x6c)

VFSB->ext (0xd0)

VIOTB + 0x4
VIOTB + 0x6c

VIOTB + 0xd8

(struct net)

(struct nf_conn)

Vector Creation

Fig. 4: The variable matching algorithm. First, FirmDiff
creates a vector where each coordinate corresponds to an
ISA mnemonic and each value corresponds to the times the
mnemonic occurs in the Def-Use chain. In this case vectors
CFSA, CFSB , CIOTA and CIOTB correspond to variables
VFSA, VFSB , VIOTA, and VIOTB , respectively. By using the
cosine similarity measurement, FirmDiff pairs the variables
VFSA and VIOTA (of type struct net) and the variables
VFSB and VIOTB (of type struct nf_conn). Finally,
FirmDiff displays the members and offsets of the accessed
members of each variable.

Def-Use chains are represented as the assembly instructions
(FirmDiff maps PcodeOp back to MIPS or ARM assembly)
that access each variable. In turn, these assembly instructions
reveal how each function accesses the memory of the cor-
responding variable (i.e., the corresponding data structures’
members). We illustrate how FirmDiff represents the Def-
Use chains in Figure 3. In this example, functions FFS and
FIoT access the variables VFSA, VFSB , and VIoTA, VIoTB ,
respectively. Since BFS has debugging information available,
the types (and accessed members) of VFSA and VFSB are
known; struct net and struct nf_conn, respectively.
FirmDiff will propagate this information to variables VIoTA

and VIoTB , during the variable pairing step discussed below.
After the variable Def-Use chains are available, FirmDiff
invokes the variable pairing step.

Variable Pairing. The variable pairing step borrows its
logic from the layout alignment algorithm that FirmSolo uses.
We present the inner workings of variable pairing in Figure 4.
First, FirmDiff maps the Def-Use chains for the variables
VFSA, VFSB , VIoTA and VIoTB into the vectors CFSA,
CFSB , CIoTA and CIoTB , respectively. Specifically, each ISA
mnemonic (e.g., sw) is mapped to a coordinate in the vector.
The value of each coordinate is equal to the number of times
the corresponding mnemonic occurs in the Def-Use chain
of the target variable. In addition, we set the last element
of each vector as the total number of instructions access-
ing the corresponding variable to make the vector similarity
measurement discussed below more accurate. Specifically, to
match the variables VFSA and VFSB with the variables VIoTA

and VIoTB , FirmDiff uses the cosine similarity measure-
ment [28] between CFSA, CFSB and CIoTA, CIoTB . The
variables with the highest similarity score are considered a
pair. In our example, variable VFSA is paired with VIoTA and
variable VFSB is paired with VIoTB . Furthermore there can

6

only be one match between the variables in FFS and FIOT ,
to not confuse the analyst during the manual analysis process.

Once the variable matches are available, FirmDiff trans-
fers the types from the variables in FFS to their counterpart
in FIOT . If the variable has a primitive type (e.g., int),
FirmDiff discards the pair since its layout is always static
and cannot be modified manually or by toggling configura-
tion options (i.e., it cannot be incorrectly accessed). Thus,
FirmDiff keeps only the variable pairs with a data structure
type, since their layout can be modified and potentially be
misaligned between BFS and the BIoT . For these variable
pairs, FirmDiff outputs their type and their accessed mem-
bers (i.e., names and offsets) in ascending order by offset.
The information about which members are accessed and their
offsets is embedded within the Def-Use chains and DWARF in-
formation extracted previously. We note here that FirmDiff
only knows the names of the data structure members accessed
for the variables in FFS , due to the availability of the DWARF
information in BFS . For variables that belong in FIOT (since
BIOT is usually stripped), FirmDiff displays only the
offsets of the accessed members. Once the variable matching
algorithm concludes, FirmDiff stores the variable pairs and
their accesses for each matched function within a JSON and
a markdown file. Next, these findings can be parsed and/or
processed programatically by the analyst.

V-C Manual Analysis

To identify any potential misaligned data structures between
the FSkern and the modules in IoTkos (and the IoTkern), the
analyst can process the data structure type variable pairings and
their memory accesses for the matched functions in BFS and
BIOT . Specifically, misaligned data structures are recognizable
based on the differences (or shifts) in the offsets of their ac-
cessed members within two matched functions. As FirmDiff
does not provide further information about the root cause
behind these shifts, the analyst leverage other complementary
static and dynamic analysis tools (e.g., cscope [18], pahole [4],
Ghidra [10] and GDB [14]) to find the reason behind the
misalignments. As mentioned in Section IV-B the layout of
data structures is affected by the configuration options in
the kernel configuration and any modifications applied by
vendors in their kernels’ source code. FirmSolo provides a
builtin utility that maps each data structure in the FSkern

to the configuration options that affect the layout of the
data structure. The analyst can first consult this utility to
explore possible alignment solutions requiring only toggling
configuration options. When no effective solution is achieved,
it is an indication that the IoT kernel source code has been
modified by the vendors (see Section VI-C). Thus, the analyst
can either modify FSkern’s source code (i.e., pad the layout of
data structures) and/or its configuration to correctly align the
layout of the misaligned data structures and re-invoke stage
1 to build the refined FSkern kernel. If the refined FSkern

kernel and IoTkos agree about the layout of their common data
structures then the IoTkos should not crash when accessing the
correctly aligned members of these data structures (while being
loaded or executed within the FSkern).

Image # Vendor Kernel Arch CS KOs CK KOs MA DS
1 TPLink 2.6.21.5 MIPS 4 2 2
2 Trendnet 2.6.31 MIPS 1 2 4
3 DLink 2.6.33.2 MIPS 2 2* 3
4 Zyxel 2.6.36 MIPS 4 2 2
5 ASUS 2.6.36 MIPS 4 2 2
6 TPLink 3.0.21 ARM 1 2 7
7 Netgear 3.4.103 ARM 6 1 3
8 TPLink 4.1.52 ARM 4 1 5
9 Netgear 4.4.60 ARM 11 1 5

10 ASUS 4.4.198 MIPS 111 4 4
Total 148 18 37

TABLE I: Statistics about the firmware images in our dataset.
The table depicts the identifier of each firmware image, the
vendor, the kernel version, the architecture, the number of
kernel modules crashed (CS) during FirmSolo’s re-hosting,
the number of kernel modules we manually checked (CK)
for each image and finally the number of misaligned (MA)
data structures (DS) detected with FirmDiff. The * indicates
that we also analyzed the FSkern along with IoTkern for
the specific image. With the blue color and green colors we
represent the firmware images originating from the FirmSolo
and Greenhouse datasets, respectively.

VI EVALUATION

In this Section we evaluate FirmDiff’s effectiveness in
firmware re-hosting. In particular, we provide the answers to
the following research questions:

RQ1 How efficient is FirmDiff in highlighting misaligned
data structures in the FSkern and FSkos (§ VI-B)?

RQ2 How effective is FirmDiff in improving the kernel
configuration of the FSkern (§ VI-C)?

RQ3 Can FirmDiff improve FirmSolo’s firmware re-hosting
(§ VI-D)?

First, we discuss our dataset and next detail our experi-
mental analysis to answer the research questions above.

VI-A Dataset

We evaluate FirmDiff on a set of 10 firmware images
with 7 of the images originating from the FirmSolo dataset.
Specifically, we randomly select the set from the images that
have persistent kernel module crashes in FirmSolo, even after
applying its memory layout alignment algorithm. We aim to
illustrate that FirmDiff is capable of aiding the analyst in
correctly aligning the memory layout of the misaligned data
structures in these cases. We also evaluate FirmDiff on 3
randomly picked firmware images from the Greenhouse [26]
dataset which was published in 2023. We choose a set of
images that FirmSolo can successfully emulate and load their
kernel modules, but is unable to address their kernel module
crashes. The reason for this additional set of images is to
showcase that FirmDiff’s analysis is also applicable to
modern firmware images. The images in our dataset belong
to 6 vendors and their kernels range from version 2.6.21.5
to 4.4.198. We provide the relevant information in Table I.

VI-B Misaligned Data Structures

In this Section we evaluate the accuracy of FirmDiff’s vari-
able matching algorithm and also compare its efficiency with

7

FirmSolo’s misaligned data structure discovery capabilities, to
answer RQ1.

Overall, FirmDiff analyzes 842 open source kernel
modules (i.e., open source kernel modules in IoTkos and
their counterparts in FSkos). During this analysis, FirmDiff
matches 29,485 functions and pairs 28,269 variables (with a
data structure type). Out of the total functions matched, 20,564
(70%) functions actually contain zero variable pairs with a
data structure type. FirmDiff’s analysis takes 17 minutes on
average. Due to the volume of the results, we manually verify
FirmDiff’s findings for a subset of 18 crashing open source
kernel modules and 1 kernel binary and confirm the existence
of 37 misaligned data structures. We detail how we proceed
to correct the layout of these data structures in Section VI-C.

Variable Matching Accuracy. To measure the accuracy
of the variable matching algorithm, we randomly choose one
kernel module per image (i.e., 10 kernel modules) out of
the 18 kernel modules we analyzed. Next, we sample 10
functions per kernel module (100 functions in total) and verify
if FirmDiff correctly matches (or pairs) the variables in the
sampled functions. In particular, we confirm that FirmDiff
pairs 392 variables in total. Out of these pairs, 233 (59%) are
correct pairs while 159 (41%) are not. We observe that the
incorrect pairs are most prevalent between variables accessed
by a single instruction, which tend to confuse the variable
matching algorithm. Nevertheless, a data structure can be ref-
erenced multiple times (through distinct variables) in different
functions in a kernel module. Thus, the analyst can extract
sufficient information to align the layout of the data structure
by consulting only the correct variable pairs (corresponding to
the data structure), while discarding the incorrect pairs.

Kernel Analysis. During our experiments, we opt to not
analyze the FSkern and IoTkern kernels for these images with
FirmDiff. Specifically, the analysis takes hours, due to the
thousands of functions and variables that are matched between
these binaries. In addition, having the IoTkern available is not
guaranteed. In our case, we are able to extract the IoTkern for
only 2 images in our dataset, thus we emphasize the analysis
of kernel modules.

Image 3 is the only case where we proceed to analyze the
FSkern and IoTkern kernels with FirmDiff. In particular,
the image contains two crashing kernel modules, one open
source (nf_conntrack_prot_gre.ko) and one closed
source (jcp.ko 2). The jcp.ko kernel module implements
a proprietary protocol that exposes USB devices over the
network. Since the nf_conntrack_prot_gre.ko exists
in both the FSkos and IoTkos, both versions are analyzed
by FirmDiff. However, jcp.ko does not have an up-
stream counterpart compiled by FirmSolo. Thus, we can-
not analyze jcp.ko with FirmDiff to identify potential
misaligned data structures between this kernel module and
the FSkern kernel. Unfortunately, FirmDiff’s analysis on
nf_conntrack_prot_gre.ko is ineffective and does not
provide information about the misaligned data accessed by
this kernel module. For these reasons, we also proceed to
analyze the IoTkern and FSkern for image 3 since the kernels
have information about all the data structures that are shared

2https://www.silextechnology.com/connectivity-solutions/device-connectiv
ity/sx-virtual-usb-sdk-for-linux

between the kernel modules (open and closed source) and the
core kernel. We aim to detect the misaligned data structures
accessed by both crashing kernel modules in this case. We note
though, that the entire analysis takes over 5 hours, hence it is
not scalable for a large number of firmware images. In addi-
tion, compared to the hundreds of functions matched within
the kernel modules, in this case there are 14,066 functions
matched between the IoTkern and FSkern kernels. Analyzing
all the function matches for potential misaligned data structures
requires extensive effort and time. For this reason, we inspect
only the first 200 functions matched between IoTkern and
FSkern for image 3 and identify 4 misaligned data structures.

FirmDiff vs. FirmSolo. In general, FirmDiff outper-
forms FirmSolo by highlighting 16 unique misaligned data
structures during our experiments, while FirmSolo only de-
tects 4 with its layout alignment mechanism. We provide a
detailed breakdown of the identified data structures for both
FirmDiff and FirmSolo in Table II in Appendix A. Thus,
FirmDiff’s high efficiency in highlighting misaligned data
structures, also justifies FirmDiff’s utility as a complemen-
tary analysis to FirmSolo.

VI-C Kernel Configuration

Identifying misaligned data structures is only the first step. To
improve firmware re-hosting and analysis, the analyst needs
to address these misalignments. In this Section we detail
how FirmDiff’s analysis aids the analyst to improve the
configuration of FirmSolo’s kernels, to answer RQ2.

For this experiment, we further analyze the 37 misaligned
data structures highlighted by FirmDiff (see Section VI-B),
using complementary source code and binary introspection
tools [4], [10], [14], [18]. We successfully align 35 out of
these 37 data structures in the corresponding FSkern kernels,
by either toggling configuration options in the kernel, directly
modifying the source code of the data structures or both.
We note that we are able to identify the combination of
configuration options and modifications that align the layout
of these data structures through trial and error. Of course
human expertise and knowledge also plays a crucial role in
this case. Specifically, we are able to correct the layout of
20 data structures by simply toggling configuration options
in the kernels, 10 data structures by directly modifying their
implementation in the kernel source code, and 5 data structures
by both toggling options and modifying their source code.
In contrast, FirmSolo’s memory alignment algorithm is only
able to correct the layout of 4 misaligned data structures
(see Table II in Appendix A). Unfortunately, we are unable
to align the layout of 2 data structures (struct net and
net_device) for a single image (i.e, image 10). In particular,
we cannot guess the correct combination of modifications
and configuration options that align the layout of these data
structures. As we discuss below, extensive modifications by the
vendors in their kernel source code can impede the analyst’s
layout alignment process.

Vendor Modifications. The majority of the misaligned data
structures we identify in the three modern images (12 of 15
data structures), are modified in their source code by the
vendors. Listing 7 provides the code diff of the implementation
of struct net_device between the upstream version of

8

https://www.silextechnology.com/connectivity-solutions/device-connectivity/sx-virtual-usb-sdk-for-linux
https://www.silextechnology.com/connectivity-solutions/device-connectivity/sx-virtual-usb-sdk-for-linux

1 struct net_device {
2 char name[IFNAMSIZ];
3 ...
4 const struct header_ops *header_ops;
5 unsigned int flags;
6 ...
7 }

Fig. 5: Implementation of struct net_device in the
open source Linux-4.4.60.

1 struct net_device {
2 char name[IFNAMSIZ];
3 ...
4 #ifdef CONFIG_ETHERNET_PACKET_MANGLE
5 void (*eth_mangle_rx)(...);
6 struct sk_buff *(*eth_mangle_tx)(...);
7 #endif
8 const struct header_ops *header_ops;
9 unsigned int flags;

10 ...
11 }

Fig. 6: Implementation of struct net_device in the
IoT Linux-4.4.60.

Fig. 7: Code diff of the source implementation of struct net_device between the upstream and IoT version of Linux-4.4.60.

the kernel and the modified kernel used by Netgear (we down-
loaded the GPL code provided by Netgear for image 9). The
struct net_device is the core representation of network
devices in the kernel, containing information about the network
adapters and the configuration of the network devices. In this
example, we showcase a small portion of the modifications im-
plemented by Netgear in their kernel source code. Specifically,
the modified kernel contains additional configuration options
(e.g., CONFIG_ETHERNET_PACKET_MANGLE) that guard
members of struct net_device that are not present in
the upstream kernel (see line 3 in Figure 5 and lines 4-7 in
Figure 6). As the name of the newly added configuration option
and members (eth_mangle_rx and eth_mangle_tx)
suggest, this functionality is relevant to mangling ethernet
packets. We note here that without consulting the kernel source
code used by the vendors, it is not possible to guarantee
that our alignment solutions are “correct”. In particular, we
might not use the same configuration options or place the
modifications in the exact places as the vendors. Unfortunately,
we are only able to retrieve the GPL source code of images 8
and 9. Of course, we only use the GPL source code to verify
the code modifications in the vendors’ kernels and do not rely
on the source code for the analysis in any form. Nevertheless,
as we discuss next, the majority of our solutions are effective
in improving firmware re-hosting.

VI-D Firmware Re-hosting

In this Section we discuss how FirmDiff improves Firm-
Solo’s firmware re-hosting, to answer RQ3. We aim to prevent
IoT kernel module crashes that are related to misaligned
accesses (specifically regarding the misaligned data structures
we identified) during FirmSolo’s emulation.

In this experiment, we re-host our firmware images with
FirmSolo, using the refined custom kernels and attempt to
load the 148 kernel modules that originally crash while being
loaded in the FSkern kernels. Next, we observe which of these
kernel modules can load successfully in the refined kernels.
If successfully loaded, these kernel modules can be in turn
analyzed with FirmSolo’s downstream analysis. In particular,
during our experiments 28 kernel modules load successfully
due to our layout alignment solutions implemented with the
help of FirmDiff. In contrast, FirmSolo is only able to
address the crashes for and successfully load 5 kernel modules
with its automated layout alignment algorithm.

Failed Cases. The majority of the kernel modules (114 out
of 120) continue to crash due to lingering misaligned data
structures. Most of these kernel modules (111 out of 114)
belong to image 10. As we mention in Section VI-C, we are
unable to fix all the misaligned data structures in this case.
However, upon further inspection of the crashes, we observe
that they occur within the load_module function (respon-
sible for loading the kernel modules into the kernel). Based
on this observation we confirm with Ghidra that the struct
module data structure is misaligned (not highlighted by
FirmDiff) and incorrectly accessed by the load_module
function. Unfortunately, we cannot find a working alignment
solution for struct module, which might significantly re-
duce the number of the crashing modules in image 10. For the
remaining 3 kernel modules, our layout alignment solutions did
not address the crashes. Note that even if all data structures are
correctly aligned, other errors can still lead to module crashes.
For example, unrelated (to the layouts of data structures)
accesses to MMIO regions can be the root cause for such
issues. Furthermore, 5 out of the 120 crashing kernel modules,
crash with a Kernel bug detected bug type that is not related
to misaligned data structure accesses (as opposed to Unable to
handle kernel paging request at). These types of bugs indicate
that the kernel module code reached a check that failed and
resulted in a kernel trap. FirmSolo’s authors also confirmed the
existence of these bugs and observed that vendors had modified
the checks in their own kernels to prevent the code execution
from reaching the traps. We do not consider these types of
bugs as a limitation of FirmDiff, as they are not related to
misaligned data structures. Finally, 1 kernel module (jcp.ko)
crashes when accessing the misaligned kmem_cache data
structure. FirmSolo, by default, is able to detect and correct
misalignments in this data structure. However, the crash has
to occur within the kmem_cache_alloc function, which is
not the case with jcp.ko. Our analysis with Ghidra, shows
that the crash occurs after the kmem_cache_alloc function
is executed. Similar to FirmSolo, FirmDiff’s analysis does
not detect the misalignment of kmem_cache, and thus we do
not address this crash.

FirmSolo’s re-hosting experiments only showcase if and
how many kernel modules are successfully loaded in the
refined FSkern kernels. To further illustrate the utility of
FirmDiff in firmware re-hosting, we check if the “fixed”
kernel modules crash while their code is executed during

9

emulation. For this purpose, we use the FirmSolo-compatible
Firmadyne system to emulate the firmware images in our
dataset. All the experiments run without errors except one case
(i.e., image 7) where a crash occurs due to a kernel bug. Again
the crash is not related to a misaligned data structure and thus
it is not considered a limitation of FirmDiff.

VII DISCUSSION

In this Section we discuss future applications, the limitations
of FirmDiff and remaining gaps in the research land-
scape to analyze Linux-based IoT firmware kernel modules.
Even though its main target is IoT privileged firmware code,
FirmDiff can also be applied to the same targets as Ghidriff,
i.e., general purpose OS binaries. Since FirmDiff relies on
Ghidra and Ghidriff, its binary analysis is OS agnostic. For
example, we can use FirmDiff to analyze patched kernel
modules targeting general purpose OS machines. As previously
mentioned, FirmDiff’s goal is to expose misaligned data
structures in FirmSolo’s kernels, which can lead to kernel
module crashes, if the IoT kernel modules access these data
structures during the emulation. Currently, the analyst has to
manually align the layout of these offending data structures,
through toggling configuration options during the kernel build
or by directly modifying these data structures. Similar to
FirmSolo, the alignment process can be (partially) automated
to alleviate some of the burden of the analysis from the analyst.
We leave this as future work.

FirmDiff like other static analysis systems has limi-
tations. First, FirmDiff’s analysis depends tightly on the
accuracy of Ghidra. If Ghidra incorrectly analyzes the target
binaries (e.g., incorrectly disassembles the code of functions),
FirmDiff’s analysis will in turn be ineffective. Second,
unlike FirmSolo, FirmDiff cannot pinpoint the origin of
the crashes within the kernel modules. FirmDiff, only
provides information about the layout of data structures used
by the crashing kernel modules. The analyst is responsible
for identifying if the actual root cause behind the crash is a
misaligned data structure access or another type of bug.

VIII RELATED WORK

Linux-based Firmware Re-hosting. Costin et al. [9] is one
of the first works that pioneered firmware re-hosting. They
employed QEMU’s [3] userland emulation and chroot to
execute and analyze the services (e.g., webservers) within
the file-systems of firmware images. Similar, Greenhouse [26]
focuses on isolating and re-hosting the individual services
within firmware images using QEMU’s userland emulation.
Firmadyne [5] and FirmAE [16] are full-system re-hosting
frameworks which re-host and analyze the user level code
within firmware images. They achieve full-system re-hosting
by replacing the binary kernels within firmware images with
custom pre-built and emulation-ready kernels. These kernels
can execute the user level code of firmware images and expose
it to various bug and vulnerability analyses. Similar, Hon-
ware [27] uses re-hosting to create fake (honeypot) firmware
devices, deployed on the Internet, to study real world attacks.

EASIER [21] and FirmSolo [2] also belong in the full-
system re-hosting frameworks family. Contrary to the afore-
mentioned firmware re-hosting systems, EASIER and Firm-

Solo target the firmware kernel modules in IoT firmware.
Both systems replace the firmware kernels with custom built
kernels that are supported by QEMU. The kernels are tailored
primarily to load the firmware kernel modules and expose them
to dynamic analyses (e.g., fuzzing). All the aforementioned re-
hosting systems (except FirmSolo and EASIER) use pre-built
kernels that target thousands of images, but cannot load any
IoTkos. Even though EASIER can load IoT kernel modules,
it can only do so for ARM firmware and a small number of
modules. In contrast, FirmSolo’s kernels can analyze the kernel
modules of thousands of (both MIPS and ARM) firmware im-
ages. However, as discussed in Section III FirmSolo’s custom
kernels are not always configured properly, thus resulting in the
IoT kernel modules crashing when loaded or executed in these
kernels. FirmDiff’s analysis aids the analysts to manually
configure and build custom kernels that better approximate
their IoT counterparts to address these crashes.

Hardware-in-the-loop. Systems in this category follow a
hybrid approach which relies on both re-hosting and the phys-
ical IoT device to analyze IoT firmware code. AVATAR [29],
SURROGATES [17] and Inception [7] are examples of systems
that forward I/O operations to the physical device through
its debugging interface (e.g., JTAG) while firmware code is
execute and analyzed within the emulator (e.g., QEMU). While
these systems can effectively re-host and analyze IoT firmware
code, they are not scalable due to the requirement that the
physical IoT device is available.

Data Structure Layout Recovery. Recovering the layout
of data structures from (kernel) binaries is a well covered
research topic. The majority of works [20], [23], [25] recover
the data structure memory accesses via symbolic execution.
Other approaches [12], [19], [30] extract the layout of data
structures within binaries through various control and data
flow techniques. Unfortunately, both the absence of semantic
information in the IoT binaries and/or the requirement to em-
ulate the IoT kernels (see Section II-C) pose great limitations
in discovering the layout of the data structures used by the
IoT kernel modules. In contrast, FirmDiff provides a fast
and effective static analysis approach, which overcomes the
aforementioned limitations. First, FirmDiff does not require
to emulate the IoT firmware kernels and second by using
the debugging information embedded in FirmSolo’s kernel
modules, FirmDiff is able to recover the type and (partially)
the layout of data structures used by the IoT kernel modules.

IX CONCLUSION

In this paper, we present FirmDiff, a binary diffing frame-
work that compares the memory layouts of data structures
common to FirmSolo’s custom kernels and IoT kernel mod-
ules. FirmDiff’s goal is help the analyst detect potential
differences in the memory layouts of these data structures
and also address these differences. In turn, the analyst can
build robust kernels that can load and analyze the IoT kernel
modules without crashes occurring during emulation.

X ACKNOWLEDGEMENTS

We would like to thank our anonymous reviewers for their
valuable feedback and comments. This research was enabled
by National Science Foundation under grant CNS-1942793.

10

APPENDIX

Data Struct. # Seen Opts Only Mods Only Both
FirmDiff
net 7 7 0 0
sk buff 7 3 2 2
nf conn 5 1 3 1
net device 5 2 1 2
wiphy 2 0 2 0
cfg80211 registered device 1 0 0 1
ip tunnel 1 1 0 0
inet6 ifaddr 1 1 0 0
inet6 dev 1 1 0 0
ipv6 pinfo 1 1 0 0
cfg80211 scan request 1 0 1 0
wireless dev 1 1 0 0
input dev 1 1 0 0
inode 1 1 0 0
neighbour 1 0 0 1
bonding 1 0 1 0
Total 37 (35) 20 10 7(5)
FirmSolo
struct module 8 8 0 0
struct net 2 2 0 0
struct net device 1 1 0 0
struct kmem cache alloc 1 1 0 0
Total 12 (4) 12 0 0

TABLE II: The misaligned data structures identified using
FirmDiff and FirmSolo and the types of alignments applied
in for each data structure (i.e., configuration options only, mod-
ifications only, or both). FirmSolo can only apply alignments
that require toggling configuration options. The parentheses in
the total values indicate how many of these data structures are
successfully aligned when using each system.

The table illustrates the unique misaligned data structures
we identify with the help of FirmDiff, as well as the
misaligned data structures detected by FirmSolo during the
analysis of the kernel modules in our dataset. With the help
of FirmDiff we are able to detect more unique misaligned
data structures (16) compared to FirmSolo (4). In addition, by
using the information provided by FirmDiff we are able
to align the layout of 35 misaligned data structures, while
FirmSolo correctly aligns only 4 misaligned data structures.
Thus, FirmDiff outperforms FirmSolo both in the detection
and layout alignment discovery.

REFERENCES

[1] V. 35, “Binary Ninja,” https://binary.ninja/, 2024.
[2] I. Angelakopoulos, G. Stringhini, and M. Egele, “FirmSolo: Enabling

dynamic analysis of binary Linux-based IoT kernel modules,” in Pro-
ceedings of the USENIX Security Symposium, 2023.

[3] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in
Proceedings of the Annual Conference on USENIX Annual Technical
Conference (ATC), 2005.

[4] A. Carvalho, “Pahole,” https://lwn.net/Articles/335942/, 2009.
[5] D. D. Chen, M. Egele, M. Woo, and D. Brumley, “Towards Auto-

mated Dynamic Analysis for Linux-based Embedded Firmware,” in
Proceedings of the Network and Distributed System Security Symposium
(NDSS), 2016.

[6] Clearbluejar, “Ghidriff,” https://github.com/clearbluejar/ghidriff, 2023.
[7] N. Corteggiani, G. Camurati, and A. Francillon, “Inception: System-

Wide Security Testing of Real-World Embedded Systems Software,” in
Proceedings of the USENIX Security Symposium, 2018.

[8] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A Large-Scale
Analysis of the Security of Embedded Firmwares,” in Proceedings of
the USENIX Security Symposium, 2014.

[9] A. Costin, A. Zarras, and A. Francillon, “Automated Dynamic Firmware
Analysis at Scale: A Case Study on Embedded Web Interfaces,”
in Proceedings of the ACM on Asia Conference on Computer and
Communications Security (ASIACCS), 2016.

[10] N. R. Directorate, “Ghidra,” https://ghidra-sre.org/, 2024.
[11] A. Fasano, T. Ballo, M. Muench, T. Leek, A. Bulekov, B. Dolan-

Gavitt, M. Egele, A. Francillon, L. Lu, N. Gregory, D. Balzarotti,
and W. Robertson, “SoK: Enabling Security Analyses of Embedded
Systems via Rehosting,” in Proceedings of the ACM Asia Conference
on Computer and Communications Security (ASIACCS), 2021.

[12] Q. Feng, A. Prakash, M. Wang, C. Carmony, and H. Yin, “Origen:
Automatic extraction of offset-revealing instructions for cross-version
memory analysis,” in Proceedings of the ACM on Asia Conference on
Computer and Communications Security (ASIACCS), 2016.

[13] P. Ferrara, A. K. Mandal, A. Cortesi, and F. Spoto, “Static Analysis for
Discovering IoT Vulnerabilities,” 2021.

[14] GNU, “GDB The GNU Project Debugger,” https://www.sourceware.o
rg/gdb/, 2024.

[15] Hex-Rays, “IDAPro,” https://hex-rays.com/ida-pro/, 2024.
[16] M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim, “FirmAE:

Towards Large-Scale Emulation of IoT Firmware for Dynamic Anal-
ysis,” in Proceedings of the Annual Computer Security Applications
Conference (ACSAC), 2020.

[17] K. Koscher, T. Kohno, and D. Molnar, “SURROGATES: Enabling Near-
Real-Time Dynamic Analyses of Embedded Systems,” in Proceedings
of the USENIX Workshop on Offensive Technologies (WOOT), 2015.

[18] B. Labs, “Cscope,” http://cscope.sourceforge.net/, 2012.
[19] J. Lee, T. Avgerinos, and D. Brumley, “TIE: principled reverse engi-

neering of types in binary programs,” in Proceedings of the Network
and Distributed System Security Symposium (NDSS), 2011.

[20] Z. Lin, X. Zhang, and D. Xu, “Automatic reverse engineering of data
structures from binary execution,” in Proceedings of the CERIAS Annual
Information Security Symposium, 2010.

[21] I. Pustogarov, Q. Wu, and D. Lie, “Ex-vivo Dynamic Analysis Frame-
work for Android Device Drivers,” in Proceedings of the IEEE Sympo-
sium on Security and Privacy (SP), 2020.

[22] Radare, “Radare2,” https://rada.re/n/, 2024.
[23] T. Rupprecht, X. Chen, D. H. White, J. H. Boockmann, G. Lüttgen,

and H. Bos, “Dsibin: Identifying dynamic data structures in c/c++
binaries,” in Proceedings of the IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2017.

[24] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna, “Fir-
malice - Automatic Detection of Authentication Bypass Vulnerabilities
in Binary Firmware,” in Proceedings of the Network and Distributed
System Security Symposium (NDSS), 2015.

[25] A. Slowinska, T. Stancescu, and H. Bos, “Howard: A Dynamic Exca-
vator for Reverse Engineering Data Structures,” in Proceedings of the
Network and Distributed System Security Symposium (NDSS), 2011.

[26] H. J. Tay, K. Zeng, J. M. Vadayath, A. S. Raj, A. Dutcher, T. Reddy,
W. Gibbs, Z. L. Basque, F. Dong, Z. Smith, A. Doupé, T. Bao,
Y. Shoshitaishvili, and R. Wang, “Greenhouse: Single-Service rehosting
of Linux-Based firmware binaries in User-Space emulation,” in 32nd
USENIX Security Symposium (USENIX Security 23), 2023.

[27] A. Vetterl and R. Clayton, “Honware: A Virtual Honeypot Framework
for Capturing CPE and IoT Zero Days,” in Proceedings of the APWG
Symposium on Electronic Crime Research (eCrime), 2019.

[28] Wikipedia, “Cosine Similarity,” https://en.wikipedia.org/wiki/Cosine s
imilarity, 2024.

[29] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, “AVATAR:
A Framework to Support Dynamic Security Analysis of Embedded
Systems’ Firmwares,” in Proceedings of the Network and Distributed
System Security Symposium (NDSS), 2014.

[30] Z. Zhang, Y. Ye, W. You, G. Tao, W.-C. Lee, Y. Kwon, Y. Aafer, and
X. Zhang, “OSPREY: Recovery of Variable and Data Structure via
Probabilistic Analysis for Stripped Binary,” in in Proceedings of the
IEEE Symposium on Security and Privacy (SP), 2021.

11

https://binary.ninja/
https://lwn.net/Articles/335942/
https://github.com/clearbluejar/ghidriff
https://ghidra-sre.org/
https://www.sourceware.org/gdb/
https://www.sourceware.org/gdb/
https://hex-rays.com/ida-pro/
http://cscope.sourceforge.net/
https://rada.re/n/
https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Cosine_similarity

[31] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun,
“FIRM-AFL: High-Throughput Greybox Fuzzing of IoT Firmware via
Augmented Process Emulation,” in Proceedings of the USENIX Security
Symposium, 2019.

12

	Introduction
	Background
	Ghidra
	Ghidriff
	FirmSolo

	Motivation
	Overview
	Kernel Build
	Binary Diffing
	Manual Analysis

	Implementation
	Kernel Build
	Binary Diffing
	Manual Analysis

	Evaluation
	Dataset
	Misaligned Data Structures
	Kernel Configuration
	Firmware Re-hosting

	Discussion
	Related Work
	Conclusion
	Acknowledgements
	Appendix
	References

