GTrans: Graph Transformer-Based
Obfuscation-resilient Binary Code Similarity
Detection

Yun Zhang*, Yuling Liu*, Ge Cheng’ Bo Ou*
*College of Computer Science and Electronic Engineering, Hunan University
School of Computer Science & School of Cyberspace Science, Xiangtan University
yunzhangcn @outlook.com, yuling_liu@hnu.edu.cn, chengge@xtu.edu.cn and oubo@hnu.edu.cn

Abstract—In the field of computer security, binary code
similarity detection is a crucial for identifying malicious software,
copyright infringement, and software vulnerabilities. However,
obfuscation techniques not only changes the structure and fea-
tures of the code but also effectively conceal its potential malicious
behaviors or infringing nature, thereby increasing the complexity
of detection. Although methods based on graph neural networks
have become the forefront technology for solving code similarity
detection due to their effective processing and representation of
code structures, they have limitations in dealing with obfuscated
function matching, especially in scenarios involving control flow
obfuscation. This paper proposes a method based on Graph
Transformers aimed at improving the accuracy and efficiency of
obfuscation-resilient binary code similarity detection. Our method
utilizes Transformers to extract global information and employs
three different encodings to determine the relative importance
or influence of nodes in the CFG, the relative position between
nodes, and the hierarchical relationships within the CFG. This
method demonstrates significant adaptability to various obfusca-
tion techniques and exhibits enhanced robustness and scalability
when processing large datasets.

I. INTRODUCTION

In the field of computer security, binary code similarity
detection is widely used in various scenarios such as malware
identification, software plagiarism detection, and vulnerability
discovery. According to the 2023 Synopsys report ', 84% of
the audited codebases contained at least one known open-
source vulnerability, an increase of nearly 4% compared to the
previous year. This problem is particularly severe in the field
of the Internet of Things (IoT), where high-risk vulnerabilities
have increased by 130% since 2018, and in 2023, 53% of
audited applications contained high-risk vulnerabilities. Given
that IoT software is deployed on thousands or even millions of
devices and is always on, vulnerabilities are amplified across
a wider attack surface. However, code obfuscation techniques
can not only obscure the logic and structure of the code,
making it difficult to understand its true purpose but can

Ihttps://www.synopsys.com/software-integrity/resources/analyst-
reports/open-source-security-risk-analysis.html

Workshop on Binary Analysis Research (BAR) 2024
1 March 2024, San Diego, CA, USA

ISBN 979-8-9894372-0-7
https://dx.doi.org/10.14722/bar.2024.23006
www.ndss-symposium.org

also hide malicious behavior within the code, significantly
increasing the difficulty of detection.

In recent years, methods based on Graph Neural Networks
(GNNs) have achieved significant results in binary code sim-
ilarity detection across optimization levels and architectures.
For example, Focus [9] designed a novel GNN, using a cus-
tomized learning model and multi-head attention mechanism to
extract semantic and key features; GMN [18] adds cross-graph
attention in GNN to compute graph matching information.
GNNs typically consider only the direct neighbors of a node
in each iteration, which leads them to capture local structural
features better than the global features of the entire graph.
However, obfuscation techniques (such as fake control flow,
control flow flattening) can significantly change the program’s
control flow graph (CFG), potentially misleading GNNs in
interpreting local information. This misleading design could
cause GNN-based methods to make incorrect inferences when
conducting obfuscation-resilient similarity detection.

Furthermore, current research methods have not considered
the differences between the graph structure of binary code
and the topological structure of traditional graph data. The
CFG of binary code contains not only the logical paths of
program execution but also a unique hierarchical structure
composed of dominance relations. This hierarchical structure
plays a key role in the analysis of binary code. It not only
helps in understanding the execution paths of the program but
also facilitates identifying critical decision points within the
program.

For this purpose, we proposed an obfuscation-resilient
binary code similarity detection method based on the graph
Transformer. This method leverages the Transformer model’s
ability to capture global information for graph embedding
and uses spatial and hierarchical encoding to capture invari-
ant information after control flow obfuscation. Specifically,
first, the method employs the self-attention mechanism of the
Transformer to establish connections between any nodes in
the graph, capturing dependencies over longer node distances
without being constrained by the adjacent node aggregation
method of graph neural networks.

Secondly, we added centrality encoding, spatial encoding,
and hierarchical encoding to the Transformer to capture the
relatively stable logical and semantic information in binary
code during control flow obfuscation and code structure trans-
formation. The centrality encoding is used to capture the

importance of nodes in the CFG. Some nodes in the graph may
play more important roles in the program’s operation and logic,
such as loops, conditional judgments, or critical computations.
For this, we use the number of nodes dominated by a node as
a measure of its importance, and encode this information to
add to the node’s feature vector.

Spatial encoding and hierarchical encoding are used to
capture the relationships between nodes in the CFG. Unlike
structured data, the nodes in graph data are connected by edges.
We model this topological structure, using the spatial relation-
ships between nodes as their relative positions, and assign a
learnable embedding as a bias term for attention. Hierarchical
encoding focuses on the dominance relationships between
nodes in the CFG. We use the dominator tree, constructed from
dominance relationships, as a concrete representation of these
relationships, and compute the path lengths between nodes
in the dominator tree as a representation of the hierarchical
relationship, likewise assigning an embedding vector to add to
the attention.

We studied the performance and accuracy of our method
under five different obfuscation strategies. The experimental
results show that our method’s average AUC score exceeded
0.91, reaching as high as 0.95, and outperformed existing
methods.

The main contributions of this paper are:

1) We propose an obfuscation-resilient binary code sim-
ilarity detection method based on the graph Trans-
former, which is used to capture global information
of the graph. This method utilizes three graph en-
coding strategies to obtain invariant information of
binary code after obfuscation, especially control flow
obfuscation.

2) In addition to adding relative position encoding of
nodes in the CFG, our method also introduces a
hierarchical encoding unique to binary code.

3) Extensive evaluations show that the performance of
GTrans in detecting function similarity under differ-
ent obfuscation strategies surpasses the latest binary
similarity detection methods. The experiments cover
various aspects of obfuscation techniques, includ-
ing substituting instructions, splitting basic blocks,
adding pseudo-logic, and completely disrupting the
original CFG.

The rest of this paper is organized as follows: In Section
2, we describe GTrans in detail, then in Section 3, we provide
specific details of the experiments and report the experimental
results. Section 4 discusses related work.

II. DESIGN OF GTRANS

We first preprocess the binary functions, which includes
using disassembly tools such as IDA Pro ? and ANGR [28] to
obtain the CFG, constructing the dominator tree based on the
control flow graph, and treating the instructions within basic
blocks as an instruction sequence. We adopt natural language
processing methods to extract semantic information, generating
initial feature vectors for the nodes.

Zhttps://hex-rays.com/ida-pro/

Next, we feed a pair of CFG and dominator tree into a
Siamese network, which uses graph Transformer technology
to extract features from the input data, employing cosine
similarity for the measurement of similarity, ultimately out-
putting a similarity score between two functions. In order to
accurately capture the logical and semantic information of the
program amidst control flow obfuscation and code structure
changes, we have designed three types of encoding in the graph
Transformer:

Centrality encoding is used to obtain the relative impor-
tance or influence of nodes in the CFG. In the CFG, when a
node dominates a significant number of other nodes, it usually
means that the code segment of that node has a critical control
effect on multiple parts of the entire program and may be
considered a key segment or decision node of the program.

Spatial encoding is used to capture the relative positional
relationships between nodes in the graph. Graph data differs
fundamentally from other types of structured data, such as
text or images. In graph data, nodes exist in a non-Euclidean
space and are defined by edges that connect them. Based
on this characteristic, spatial encoding is used to capture the
topological relationships of nodes in this non-Euclidean space.

Hierarchical encoding is used to capture the hierarchical
relationships in the CFG. Unlike the topology depicted by tra-
ditional graph data, CFGs also contain a hierarchical structure
built from dominance relationships. To capture this hierarchical
information, we represent the dominance relationships between
basic blocks by constructing a dominator tree of the CFG.

A. Dominator Tree

The dominator tree is a tree-like structure that represents
the dominance relationships between nodes in a CFG. It is
used to extract structural features of binary code, such as
centrality and hierarchy. As shown in Figure 1, if every path
from the entry node of the CFG to node n passes through
node d, then node d dominates node n. The dominator tree
more vividly describes this domination information. In this tree
structure, the entry node serves as the root node. Each node
d only dominates its descendant nodes in the tree, and this
dominance relationship is entirely based on the corresponding
relationships in the CFG.

The dominator tree can help understand the control flow
structure within a program and the program’s execution paths.
In the dominator tree, each successor node of a node is dom-
inated by that node, meaning to reach these successor nodes,
the program must pass through that node. Simultaneously, the
dominator tree is a foundation for static program analysis,
which can be used to determine critical decision points in a
program, such as which lines of code influence a particular
line of the program, or which lines must be executed before
executing a specific line of code.

B. Graph Transformer

Figure 2 depicts the architecture of the graph Transformer.
In addition to the three types of graph encoding added, we also
choose to apply layer normalization (LN) [33] before the multi-
head self-attention (MHA) and feed-forward network (FFN)
blocks. Specifically:

Dominator Tree

Fig. 1: CFG and Dominant Node Tree

self-attention
Spatial Encoding
MatMul Vi Va2 Vs Vi Vs
Vi
(2]

vz

vi
" oy] [

SoftMax
Vs

Vi V2 Vs v Vs
Scale v
va
Attention v 0
MatMul w
" ()
Norm Hierarchical Encoding.

— Q K Vv ONONO,
D —{ T

[T

node feature vector

Multi-Head

Centrality Encoding

Fig. 2: Graph Transformer Architecture

B ® = MHALN(R=Y)) 4+ p0-1 (1)

KD = FNN(LN(K) +1'®)

In the formula, h(*~1) represents the feature vector gener-
ated by the (I—1)th layer encoder, and &' () is the intermediate
result of the /th layer.

Centrality Encoding. In graph theory, the centrality of a
node is often considered a key factor in understanding the
graph, but this can be easily overlooked in the traditional
Transformer’s self-attention mechanism. We use the number
of dominated nodes as a measure of centrality. If a node
dominates many other nodes, it may imply that the node plays
a key role in the control flow, such as being the entry point
of a loop or the start of a conditional branch. Considering that
this centrality encoding is applied to each individual node, we
choose to incorporate it into the node’s features as input, as
follows:

Ty =m; + Zoq(vs) (3)

In the diagram, x; represents the feature vector of node v;
,and z € R? is a learnable embedding vector based on the
number of other nodes dominated by v; , denoted as ¢4(v;). By
integrating centrality encoding into the input, the self-attention
mechanism can more effectively capture the node importance
signals between the query and the key. Thus, this method can
not only capture semantic relevance in the attention mechanism
but also identify the importance of nodes.

Spatial Encoding. In a CFG, nodes exist in a non-
Euclidean space, and their connections are defined by edges.
However, this mechanism raises a problem: the model must
provide explicit indications of different positions, or appropri-
ately encode the dependency on positions (such as locality) at
each layer. When handling sequential data, adding embeddings
for each position is a common practice. However, in a graph
structure, nodes are not arranged in a sequence; they may be
scattered across a multi-dimensional space and connected by
edges. To better capture the graph structure information in
the model, we introduce a specific spatial encoding method
to describe the position of nodes.

Specifically, the function (i,) is used to measure the
relative spatial position between nodes v; and v; in the CFG. If
two nodes are connected, (7, j) corresponds to the distance
of the shortest path between v; and v;. For disconnected nodes,
the output of ¢, is defined as a special value, —1. For each
output value of ¢, , we assign a learnable scalar b, (; ;) and
choose to consider this scalar as a bias term in the self-attention
mechanism. Let A;; represent the element at position (7, j) in

the Query-Key product matrix A, then:

(ziWq)(x;Wi)"
Vd

Aij = + be, (i))

In this context, b, (; ;) is a learnable scalar indexed by
©s(i,7) and is shared across all layers. With spatial encoding,
each node within every layer of the Transformer can adap-
tively focus on all other nodes based on the graph structure
information.

Hierarchical Encoding. Unlike conventional graph data,
CFGs not only have the topological features of graphs but
also integrate the hierarchical structure of trees, specifically
the dominator tree. To capture this unique feature, we employ
hierarchical encoding to describe the relative positioning of
nodes within the tree structure. This method assigns a real-
valued embedding vector to each pair of nodes based on their
relative hierarchical positions. Specifically, for each pair of
nodes (v;,v;), we use ¢p(i,j) to describe the hierarchical
position of node v; relative to node v; in the dominator tree. If
there is a dominance relationship between two nodes, @y, (4, j)
represents the path length between them. For pairs of nodes
without a dominance relationship, the output of ¢, is set to a
specific value, —1. We assign a learnable scalar b, (; ;) to each
output of o, and add it to the bias term of the attention module.
That is, we incorporate hierarchical encoding in formula 4:

(z:Wq) (x;Wi)™
Vd

In the graph Transformer, spatial encoding and hierarchical
encoding are implemented as two bias terms in the calculation
of attention weights. This means that in estimating attention
weights, in addition to considering the traditional contributions
of queries, keys, and values, the spatial and hierarchical
structure information of the CFG is also integrated.

Aij = + by, (i) +bgniiyy)

Graph-Level Representation. To optimize the represen-
tation of the entire graph, we add a special graph-level repre-
sentation node. In the CFG, this special node forms a unique
connection with every node within the graph. In the dominator
tree, this node has dominance over all other nodes, making
the representation of the entire graph equivalent to the feature
vector of this special node in the final hierarchical level. The
graph-level representation node integrates the overall global
information of the graph, avoiding the problem of excessive
smoothing. At the same time, it enables global propagation
of information for each node without the need for additional
encoding. This optimization not only simplifies the represen-
tation of the graph but also enhances the representation and
processing capabilities of graph information, thereby making
the performance of binary function similarity detection more
stable across multiple scenarios.

C. Similarity Measurement

Given a pair of inputs 7 and x5, the Siamese network
extracts their feature representations f(z1) and f(x3), through
a graph Transformer respectively. Then, the similarity between
the two feature vectors is calculated using cosine similarity:

similarity = cos(f(x1), f(z2)) = m (6)

The loss function uses binary cross-entropy, utilizing the
difference between the cosine similarity scores and the true
labels, with the loss for a batch of size IV being:

L= lplog (3) + (-) log (1~ 3] (1)

1
0 = i(similarityi +1) (8)

III. EVALUATION

To verify the advantages of our method in binary obfus-
cation scenarios, we selected the dataset from Trex [25] and
conducted empirical analysis to compare the performance and
accuracy of our method in detecting binary code similarity
under various obfuscation and transformation techniques. Ad-
ditionally, we conducted a series of ablation experiments to
validate the significant role of structural encoding in enhancing
model performance. These experimental results will further
demonstrate the advantages of our method.

A. Implementation

GTrans is implemented using Python 3 and the Py-
Torch framework, with the preprocessing phase employing the
ANGR [28] framework. The experimental environment is set
up on the Ubuntu 18.04 operating system, with the server
hardware configuration including a 3.20GHz Intel Core i7-
8700 processor, 128GB of RAM, and 4 NVIDIA GeForce
GTX 1060 graphics cards.

During the training phase of the model, the batch size was
set to 128, with a learning rate of 2e-4, using the AdamW
optimizer. The model had 32 attention heads, 6 encoders, and
the dimension of the node feature vectors was 512. The model
was trained for approximately 19 hours.

Datasets. To comprehensively and deeply evaluate the
effectiveness and practicality of GTrans, we selected a dataset
provided by Trex [25] for our study. This dataset includes
5,384 binary files from several different software projects on
the X64 platform, where various code obfuscation techniques
by Hikari 3 were applied.

During the training process, we divided the dataset into
a training set (comprising 80%), a validation set (10%), and
a test set (10%). Simultaneously, the original and obfuscated
versions of the same function were considered as similar sam-
ples, while combinations of different functions were regarded
as dissimilar samples.

Baseline Comparisons. GTrans is compared in perfor-
mance with Gemini [34], Asm2Vec [6], Asteria [36], Asteria-
Pro [38] and GMN [18] to comprehensively assess the ef-
fectiveness and superiority of the method in the analysis of
obfuscated function similarity.

B. Effectiveness

Obfuscated Function Similarity Detection. We con-
ducted a series of detailed experiments on the O-LLVM [14]
obfuscator to comprehensively evaluate the efficiency and
robustness of our method under various obfuscation strategies
and configurations. These experiments are based on multiple
projects covered in the dataset and specifically focus on various
obfuscation strategies. These include Bogus Control Flow
(BCF), Control Flow Flattening (CFF), Instruction Substitution
(SUB), Basic Block Splitting (SPL), and Sequentially Enabling
All the Above Obfuscations (ALL), for a comprehensive
performance evaluation.

Table I reports the average test AUC scores of GTrans
running five times on each project. Overall, GTrans achieved
an average AUC score of over 0.9 across all test projects, with
the highest score reaching 0.975. These results indicate that
GTrans can effectively detect similarities between functions
even in different obfuscation strategy environments. We note
that GTrans performs best under SUB, which is intuitive,
as this type of obfuscation mainly targets the code and has
less impact on its basic structure (such as the core logic of
functions).

When considering different software projects, GTrans par-
ticularly stands out in projects such as Libmicrohttpd and
Findutils, with high AUC scores. Conversely, in some projects

3https://github.com/HikariObfuscator/Hikari

TABLE I: Average Test AUC Scores of GTrans Running Five
Times on Each Project

BCF CFF SUB SPL ALL

Binutils 0.906 | 0.923 | 0951 | 0.921 | 0.943
Busybox 0.938 | 0917 | 0928 | 0.920 | 0.937
Coreutils 0.929 | 0.920 | 0937 | 0.932 | 0.927

Curl 0917 | 0.908 | 0943 | 0.923 | 0.926
Diffutils 0.900 | 0.925 | 0.968 | 0.929 | 0918
Findutils 0942 | 0915 | 0953 | 0918 | 0.945

GMP 0919 | 0915 | 0933 | 0.908 | 0.932

ImageMagick | 0.904 | 0.908 | 0.968 | 0911 | 0.932
Libmicrohttpd | 0.938 | 0918 | 0.975 | 0.939 | 0.949
LibtomCrypt 0917 | 0914 | 0967 | 0915 | 0.944

OpenSSL 0.908 | 0.907 | 0.943 | 0.906 | 0.930

Putty 0.901 0.900 | 0.927 | 0.932 | 0.934
Sqlite 0.905 | 0916 | 0951 | 0.928 | 0.934
Zlib 0914 | 0.907 | 0932 | 0.921 | 0.937
Average 0917 | 0914 | 0948 | 0.922 | 0.935

TABLE II: AUC Scores of GTrans, Gemini, GMN, Asm2Vec,
Asteria and Asteria-Pro under Different Obfuscation Strategies

BCF CFF SUB SPL ALL
Gemini 0.804 | 0.741 | 0902 | 0.811 | 0.846
GMN 0.802 | 0.705 | 0914 | 0.812 | 0.852
Asm2Vec 0.857 | 0.834 | 0.892 | 0.847 | 0.810
Asteria 0.818 | 0.715 | 0.908 | 0.835 | 0.821
Asteria-Pro | 0.824 | 0.708 | 0915 | 0.821 0.832
GTrans 0.908 | 0911 | 0.955 | 0.921 | 0.933

like Binutils and LibtomCrypt, the performance under all
obfuscation strategies is relatively lower, which may be related
to the specific code structures and obfuscation methods of these
projects. Overall, GTrans demonstrates good performance in
detecting code similarity under different obfuscation strategies,
especially under the SUB strategy. Below, we will detail
GTrans’s comprehensive performance under each obfuscation
strategy and compare it with other methods.

Table II shows the AUC scores of GTrans and other meth-
ods under different obfuscation strategies. Through analysis, it
is known that GTrans leads in AUC scores across all tested
obfuscation strategies compared to the other three methods.
Specifically, GTrans has AUC scores of 0.908 and 0.911 in
BCF and CFF, respectively, significantly higher than the other
methods. It was also found that GMN performs the worst under
CFFE. CFF reorganizes all the basic blocks in the CFG into
a large loop structure, substantially altering the structure of
the CFG. Therefore, the GMN method, which relies on graph
neural networks to capture the local structure of graphs, is most
affected, and GTrans improves by 29.22% compared to GMN.
BCF achieves obfuscation by introducing additional control
flow paths in the program, greatly affecting the structure.
Compared to other methods, GTrans has higher AUC scores
by 12.93%, 13.21%, 5.95%, 11%, and 10.2%, respectively.

This indicates that GTrans has stronger robustness and
effectiveness in dealing with these structural obfuscations.
The self-attention mechanism of GTrans’s Transformer can
better understand the relationships between distant nodes in

TABLE III: Precision@1 of GTrans, Gemini, GMN, Asm2Vec,
Asteria and Asteria-Pro under Different Obfuscation Strategies

BCF CFF SUB SPL ALL
Gemini 0.758 | 0.702 | 0.954 | 0.758 | 0.714
GMN 0.707 | 0.668 | 0.961 | 0.751 0.707
Asm2Vec 0.881 | 0.836 | 0.955 | 0.891 | 0.815
Asteria 0.719 | 0.649 | 0969 | 0.757 | 0.717
Asteria-Pro | 0.729 | 0.684 | 0.968 | 0.758 | 0.721
GTrans 0.943 | 0.937 | 0987 | 0.951 | 0.947

the graph and consider the information of the entire graph
at each step, helping to understand the graph structure more
comprehensively.

SUB replaces simple instructions in the original code
with functionally equivalent but more complex instruction
sequences, having a significant impact on assembly instruc-
tions. Under this obfuscation strategy, GTrans’s AUC score
reached 0.955, 4.48% higher than GMN and 4.37% higher
than Asteria-Pro. Under SPL, GTrans improved by 8.73%,
10.30%, and 13.56% compared to Asm2Vec, Asteria, and
Gemini, respectively. SPL splits sequentially executed code
blocks into smaller blocks and transforms the direct and
clear execution paths into more complex control flows. This
obfuscation strategy affects both assembly instructions and the
CFG structure. This shows that GTrans maintains its robustness
and efficiency whether under instruction obfuscation strategies
or strategies that obfuscate both instructions and structure.

Table III details the Precision@1 performance of each
method under different obfuscations. The experimental results
show that GTrans exhibits significant advantages under all
obfuscation strategies. Specifically, GTrans achieved a Pre-
cision@1 of 0.943 under BCF, which is an improvement of
7.04%, 33.38%, and 31.15% compared to Asm2Vec, GMN,
and Asteria, respectively. In instruction substitution, which
greatly affects assembly instructions, GTrans performed the
best with a Precision@1 of 0.987. Under other obfuscations,
it also exceeded 0.93, further confirming its stability and
efficiency in different obfuscation environments.

In summary, GMN, which is based on local structure,
exhibits significant limitations in similarity detection under
obfuscation strategies that greatly alter structural information,
such as fake control flow and control flow flattening. This may
be due to the fact that in structural obfuscation, increasing
local structural information introduces noise into the function
embedding, reducing the efficiency of the model. In contrast,
GTrans extracts global information and uses an attention
mechanism to focus on invariant information in obfuscation.
Therefore, GTrans remains stable in performance even in
scenarios with significant structural changes.

Ablation Experiment. We conducted ablation experiments
on the dataset to separately assess the impact of centrality
encoding and hierarchical encoding on the method. Since
Graphormer [39] utilizes degree centrality encoding as a mea-
sure of node importance, GTrans was compared and analyzed
with methods using degree centrality as the centrality encoding
strategy and with methods that disabled hierarchical encoding.
The experimental results are shown in Table IV.

TABLE IV: AUC Scores of GTrans, Degree Centrality Encod-
ing Methods and Disabled Hierarchical Encoding Methods

BCF CFF SUB SPL ALL
Degree Centrality Encoding 0.812 | 0.835 | 0.871 0.851 0.863
Disabled Hierarchical Encoding | 0.801 0.816 | 0.859 | 0.839 | 0.846
GTrans 0.897 | 0911 | 0958 | 0.922 | 0.934

From the experimental results, it can be seen that among
all obfuscation strategies, GTrans’ AUC score is significantly
better than the other two methods. Specifically, compared to
GTrans, the degree centrality encoding method experienced
a 9.48% drop in AUC score in BCF and a 9.08% drop in
SUB. This is because, unlike traditional social networks, in
CFGs, the degree of each node varies little, mostly ranging
between 1 and 4. The centrality encoding that considers the
number of dominant nodes takes into account the position and
role of a node in the entire CFG. It can effectively measure
a node’s role as a bridge or key player in information flow
within the network. Therefore, GTrans’ centrality encoding
is a more reasonable choice for assessing the importance of
nodes in CFGs. Compared to methods that disable hierarchical
encoding, GTrans showed an average improvement of 11.1%
across different obfuscation strategies. This indicates that hi-
erarchical encoding can better cope with structural changes
brought about by obfuscation, enhancing the accuracy and
reliability of detecting similarities in obfuscation functions.

IV. RELATED WORK
A. Graph Transformers

Currently, achievements have been made in processing
graph data using Transformers by modifying the Transformer
architecture to suit graph representation tasks [24]. These
studies mainly involve modifying the layers of the Transformer
or changing the encoding method for positional information in
graphs.

Customized Transformer. By customizing the Trans-
former, such as adding GNN [26] to the self-attention of the
Transformer, incorporating substructures of the graph [43], or
expanding multi-head attention [4], it is adapted to capture the
structural features of graphs, enabling it to process graph data.
Dwivedi et al. [8] proposed an attention mechanism based on
neighborhood connectivity. Exphormer [27] introduced sparse
attention mechanisms and global attention with virtual nodes.
Simultaneously, EGT [13] introduced an edge channel, allow-
ing the model to process not only node information but also
the relational information between nodes.

Graph Positional Encoding. Early researchers introduced
absolute positional encoding to explicitly encode the positional
information of graphs in Transformers. For example, Dwivedi
[43] used the graph Laplacian [3] as positional encoding for
input features. SAN [16] uses learned positional encodings
to capture the complete Laplacian spectrum of the graph.
Later researchers began to explore encoding relative positional
information, for instance, Graphormer [39] assigns a learnable
embedding to each pair of nodes based on their spatial rela-
tionship, adding it as a bias term in the attention calculation.

B. Binary Code Similarity Detection

In the field of binary code similarity detection, significant
achievements have been made using deep learning methods
[21]. Given the high similarity between binary instructions
and text, researchers have begun to introduce natural language
models for binary code similarity detection [42]. Initially, re-
search primarily relied on word embedding models to generate
instruction embeddings and further revealed the dependencies
between instructions through neural networks [30], [22], such
as Inter-BIN [29], which proposed a multi-feature fusion
lightweight instruction embedding method, and Deepbindiff
[7] that adopts TADW [35] to incorporate node features into
graph representations. With the development of Transformer
[31], researchers began to use its self-attention mechanism to
generate embeddings of control flows [32], optimizing them
specifically to produce high-quality embeddings [11], [17]. For
example, Order Matters [41] uses the BERT [15] model to
extract semantic information from CFGs, while Ahn and others
[1] use binary cross-entropy as an optimization loss function.

In addition to semantic information, researchers are also
highly focused on the structural information of binary code,
often using graph neural networks to mine the structural fea-
tures of CFGs [9] or convolutional neural networks to learn the
feature representations of code [12]. Furthermore, constructing
more complex graphs [10], adopting hierarchical architectures
[2], or using the program’s AST to introduce hierarchical struc-
tures [23], [37]. For instance, Gemini [34] uses Structure2Vec
[5] for graph embedding. Asteria-Pro [38] adds pre-filtering
and reordering modules on the basis of Asteria [37]. aDiff
[19] combines three different levels of semantic features for
a more comprehensive function description. VulHawk [20]
elevates binary code to microcode and then embeds it using
graph convolutional networks. BEDetector [40] adopts a graph
attention encoding model to extract multi-granularity features
of functions

The existing methods, whether based on hierarchical struc-
tures or relying on graph neural networks, strongly depend on
the connectivity among nodes in the CFG. This dependency
means that when control flow obfuscation alters the program
structure, their performance and accuracy often suffer.

However, GTrans, when processing CFGs with Transform-
ers, does not simply rely on the statically defined connections
between nodes in the CFG. Instead, it learns the dynamic
relationships between nodes through the training process. This
is particularly important because it means that even when the
control flow is obfuscated and the CFG structure changes,
GTrans can maintain its performance unaffected.

V. CONCLUSION

GTrans incorporates three types of encodings within the
Transformer to address the issue of binary code similarity
detection under various obfuscation strategies. We believe this
to be sufficient, as these encodings capture both types of
structures in the CFG and reflect the differing importance of
nodes. In addition, it is worth exploring whether there are
better ways to represent the relative positions of nodes in the
CFG and the dominator tree through encodings.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

S. Ahn, S. Ahn, H. Koo, and Y. Paek, “Practical binary code similarity
detection with bert-based transferable similarity learning,” in Proceed-
ings of the 38th Annual Computer Security Applications Conference,
2022, pp. 361-374.

S. Alrabaee, “A stratified approach to function fingerprinting in program
binaries using diverse features,” Expert Systems with Applications, vol.
193, p. 116384, 2022.

M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality
reduction and data representation,” Neural computation, vol. 15, no. 6,
pp. 1373-1396, 2003.

D. Cai and W. Lam, “Graph transformer for graph-to-sequence learn-
ing,” in Proceedings of the AAAI conference on artificial intelligence,
vol. 34, no. 05, 2020, pp. 7464-7471.

H. Dai, B. Dai, and L. Song, “Discriminative embeddings of latent
variable models for structured data,” in International conference on
machine learning. PMLR, 2016, pp. 2702-2711.

S. H. Ding, B. C. Fung, and P. Charland, “Asm2vec: Boosting static
representation robustness for binary clone search against code obfusca-
tion and compiler optimization,” in 2019 IEEE Symposium on Security
and Privacy (SP). 1EEE, 2019, pp. 472-489.

Y. Duan, X. Li, J. Wang, and H. Yin, “Deepbindift: Learning program-
wide code representations for binary diffing,” in Network and distributed
system security symposium, 2020.

V. P. Dwivedi and X. Bresson, “A generalization of transformer net-
works to graphs,” 2021.

L. Fu, S. Ji, C. Liu, P. Liu, F. Duan, Z. Wang, W. Chen, and T. Wang,
“Focus: Function clone identification on cross-platform,” International
Journal of Intelligent Systems, vol. 37, no. 8, pp. 5082-5112, 2022.

J. Gao, X. Yang, Y. Fu, Y. Jiang, and J. Sun, “Vulseeker: A semantic
learning based vulnerability seeker for cross-platform binary,” in Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, 2018, pp. 896—899.

Y. Gu, H. Shu, and F. Hu, “Uniasm: Binary code similarity detection
without fine-tuning,” 2023.

X. Huo, M. Li, Z.-H. Zhou et al., “Learning unified features from
natural and programming languages for locating buggy source code.”
in IJCAI vol. 16, no. 2016, 2016, pp. 1606-1612.

M. S. Hussain, M. J. Zaki, and D. Subramanian, “Edge-augmented
graph transformers: Global self-attention is enough for graphs,” arXiv
preprint arXiv:2108.03348, 2021.

P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-1lvim—
software protection for the masses,” in 2015 ieee/acm 1st international
workshop on software protection. 1EEE, 2015, pp. 3-9.

J. D. M.-W. C. Kenton and L. K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings
of naacL-HLT, vol. 1, 2019, p. 2.

D. Kreuzer, D. Beaini, W. Hamilton, V. Létourneau, and P. Tossou,
“Rethinking graph transformers with spectral attention,” Advances in
Neural Information Processing Systems, vol. 34, pp. 21618-21629,
2021.

X. Li, Y. Qu, and H. Yin, “Palmtree: Learning an assembly language
model for instruction embedding,” in Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, 2021,
pp. 3236-3251.

Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, “Graph matching
networks for learning the similarity of graph structured objects,” in
International conference on machine learning. PMLR, 2019, pp. 3835—
3845.

B. Liu, W. Huo, C. Zhang, W. Li, F. Li, A. Piao, and W. Zou, “adiff:
cross-version binary code similarity detection with dnn,” in Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, 2018, pp. 667-678.

Z. Luo, P. Wang, B. Wang, Y. Tang, W. Xie, X. Zhou, D. Liu,
and K. Lu, “Vulhawk: Cross-architecture vulnerability detection with
entropy-based binary code search.” in NDSS, 2023.

A. Marcelli, M. Graziano, X. Ugarte-Pedrero, Y. Fratantonio, M. Man-
souri, and D. Balzarotti, “How machine learning is solving the binary

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[40]

function similarity problem,” in 3Ist USENIX Security Symposium
(USENIX Security 22), 2022, pp. 2099-2116.

L. Massarelli, G. A. Di Luna, F. Petroni, R. Baldoni, and L. Querzoni,
“Safe: Self-attentive function embeddings for binary similarity,” in
Detection of Intrusions and Malware, and Vulnerability Assessment:
16th International Conference, DIMVA 2019, Gothenburg, Sweden, June
19-20, 2019, Proceedings 16. Springer, 2019, pp. 309-329.

L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural
networks over tree structures for programming language processing,” in
Proceedings of the AAAI conference on artificial intelligence, vol. 30,
no. 1, 2016.

L. Miiller, M. Galkin, C. Morris, and L. Rampések, “Attending to graph
transformers,” 2023.

K. Pei, Z. Xuan, J. Yang, S. Jana, and B. Ray, “Learning approximate
execution semantics from traces for binary function similarity,” /EEE
Transactions on Software Engineering, 2022.

Y. Rong, Y. Bian, T. Xu, W. Xie, Y. Wei, W. Huang, and J. Huang, “Self-
supervised graph transformer on large-scale molecular data,” Advances
in Neural Information Processing Systems, vol. 33, pp. 12559-12571,
2020.

H. Shirzad, A. Velingker, B. Venkatachalam, D. J. Sutherland, and A. K.
Sinop, “Exphormer: Sparse transformers for graphs,” 2023.

Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel et al., “Sok:(state
of) the art of war: Offensive techniques in binary analysis,” in 2016
IEEE symposium on security and privacy (SP). 1EEE, 2016, pp. 138-
157.

Q. Song, Y. Zhang, B. Wang, and Y. Chen, “Inter-bin: Interaction-based
cross-architecture iot binary similarity comparison,” IEEE Internet of
Things Journal, vol. 9, no. 20, pp. 20018-20033, 2022.

D. Tian, X. Jia, R. Ma, S. Liu, W. Liu, and C. Hu, “Bindeep: A deep
learning approach to binary code similarity detection,” Expert Systems
with Applications, vol. 168, p. 114348, 2021.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

H. Wang, W. Qu, G. Katz, W. Zhu, Z. Gao, H. Qiu, J. Zhuge, and
C. Zhang, “Jtrans: Jump-aware transformer for binary code similarity
detection,” in Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2022, pp. 1-13.

R. Xiong, Y. Yang, D. He, K. Zheng, S. Zheng, C. Xing, H. Zhang,
Y. Lan, L. Wang, and T. Liu, “On layer normalization in the trans-
former architecture,” in International Conference on Machine Learning.
PMLR, 2020, pp. 10524-10533.

X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural network-
based graph embedding for cross-platform binary code similarity detec-
tion,” in Proceedings of the 2017 ACM SIGSAC conference on computer
and communications security, 2017, pp. 363-376.

C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, “Network
representation learning with rich text information.” in IJCAI, vol. 2015,
2015, pp. 2111-2117.

S. Yang, L. Cheng, and Zeng, “Asteria: Deep learning-based ast-
encoding for cross-platform binary code similarity detection,” in 2021
51st Annual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN). 1EEE, 2021, pp. 224-236.

S. Yang, L. Cheng, Y. Zeng, Z. Lang, H. Zhu, and Z. Shi, “Asteria: Deep
learning-based ast-encoding for cross-platform binary code similarity
detection,” in 2021 51st Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). 1EEE, 2021, pp. 224—
236.

S. Yang, C. Dong, Y. Xiao, Y. Cheng, Z. Shi, Z. Li, and L. Sun, “Asteria-
pro: Enhancing deep-learning based binary code similarity detection
by incorporating domain knowledge,” ACM Transactions on Software
Engineering and Methodology, 2023.

C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T.-Y.
Liu, “Do transformers really perform badly for graph representation?”

Advances in Neural Information Processing Systems, vol. 34, pp.
28 877-28 888, 2021.

L. Yu, Y. Lu, Y. Shen, H. Huang, and K. Zhu, “Bedetector: A two-

[41]

[42]

[43]

channel encoding method to detect vulnerabilities based on binary
similarity,” IEEE Access, vol. 9, pp. 51631-51 645, 2021.

Z. Yu, R. Cao, Q. Tang, S. Nie, J. Huang, and S. Wu, “Order matters:
Semantic-aware neural networks for binary code similarity detection,”
in Proceedings of the AAAI conference on artificial intelligence, vol. 34,
no. 01, 2020, pp. 1145-1152.

F. Zuo, X. Li, P. Young, L. Luo, Q. Zeng, and Z. Zhang, “Neural
machine translation inspired binary code similarity comparison beyond
function pairs,” in Network and Distributed Systems Security (NDSS)
Symposium 2019, 2019.

Lukasz Maziarka, T. Danel, S. Mucha, K. Rataj, J. Tabor, and S. Jas-
trzebski, “Molecule attention transformer,” 2020.

