
CBAT: A Comparative Binary Analysis Tool

Chloe Fortuna, JT Paasch
STR

{chloe.fortuna,j.paasch}@str.us

Sam Lasser, Philip Zucker
Draper

{slasser,pzucker}@draper.com

Chris Casinghino
Jane Street

ccasinghino@janestreet.com

Cody Roux
Amazon Web Services
codyroux@amazon.com

Abstract—Modifying a binary program without access to the
original source code is an error-prone task. In many cases,
the modified binary must be tested or otherwise validated to
ensure that the change had its intended effect and no others—a
process that can be labor-intensive. This paper presents CBAT, an
automated tool for verifying the correctness of binary transfor-
mations. CBAT’s approach to this task is based on a differential
program analysis that checks a relative correctness property over
the original and modified versions of a function. CBAT applies
this analysis to the binary domain by implementing it as an
extension to the BAP binary analysis toolkit. We highlight several
features of CBAT that contribute to the tool’s efficiency and to the
interpretability of its output. We evaluate CBAT’s performance
by using the tool to verify modifications to three collections of
functions taken from real-world binaries.

I. INTRODUCTION

Software engineers often need to modify deployed code
to fix bugs, remove bloat, and add new security features. In
some cases, they must perform these modifications without
access to the original source code—for example, because the
software depends on closed-source libraries, or because it
includes legacy components for which source code is no longer
available. This process of late-stage software customization is
difficult and error-prone [6], and in high-assurance settings,
the modified software must undergo recertification to ensure
that the changes did not introduce new bugs [16]. Late-stage
software customization, and certification of the results, could
be made more efficient and robust with the help of automated
tools for comparative analysis of binary programs: i.e., tools
for verifying that a modified binary has the same semantics
as the original one, modulo any changes that were introduced
intentionally.

In this work, we present the Comparative Binary Analysis
Tool (CBAT), a formal methods-based framework for verify-
ing the correctness of binary code transformations. CBAT’s
novel approach to this problem relies on differential program
analysis techniques that are built atop an open-source binary
analysis toolkit. The goal of differential program analysis is to
check relative correctness properties over pairs of programs: in
the case of CBAT, over the original and modified versions of a

This work is sponsored by ONR/NAWC Contract N6833518C0107. Its con-
tent does not necessarily reflect the position or policy of the US Government
and no official endorsement should be inferred.

program. We have adapted the approach to the binary domain
by implementing CBAT as an extension to the Binary Analysis
Platform (BAP) [4], a toolkit for binary analysis. BAP enables
CBAT to analyze binaries for a range of architectures by lifting
them to a platform-independent intermediate language.

CBAT’s primary component is the wp differential program
analyzer. The wp tool operates on the original and modified
versions of a function. It also takes in a relative correctness
specification expressed in first-order logic. The tool performs
a weakest precondition (WP) analysis [8] over these inputs to
compute a logical formula that is true if and only if the speci-
fication holds. The wp tool then dispatches this condition to a
Satisfiability Modulo Theories (SMT) solver. The solver either
returns a countermodel—an initial machine configuration that
causes the two functions to behave in a way that violates the
correctness specification—or it reports that it can find no such
countermodel.

This work makes the following contributions:

1) We present the wp differential program analyzer, a tool
that supports safe binary patching by checking the correct-
ness of a modified binary function relative to the original
version.

2) We highlight three features of wp and its ecosystem
that support efficient program analyses and interpretable
analysis results: (a) an interactive debugger for exploring
why a given countermodel leads to a correctness property
violation; (b) integration with multiple SMT solvers for
fast assertion checking and decoding of solver-produced
countermodels; and (c) function summaries for tractable
analysis of functions that call other functions.

3) We evaluate wp’s performance on three data sets of
functions taken from real-world binaries.

CBAT is an open source project. The development is avail-
able online [1]; it includes a tutorial and interactive exercises.

This paper is organized as follows. In §II, we review back-
ground information on weakest precondition and differential
program analyses. In §III, we introduce wp via an example
interaction with the tool. In §IV, we describe several key fea-
tures of CBAT’s user interface and underlying implementation.
Finally, we evaluate the performance of wp in §V and survey
related work in §VI.

II. BACKGROUND

A. Weakest Precondition Analysis

Weakest precondition (WP) analysis was introduced by
Dijkstra [8]. The analysis checks assertions of the following

Workshop on Binary Analysis Research (BAR) 2024
1 March 2024, San Diego, CA, USA
ISBN 979-8-9894372-0-7
https://dx.doi.org/10.14722/bar.2024.23009
www.ndss-symposium.org

enum msg_ty {
NAV = 42,
LOG = 59,
DEPLOY = 64,
...

};

void process_message(enum msg_ty t, msg m) {
switch (t) {
case NAV:
adjust_heading(m.data);

case LOG:
log_current_status(m.status);
break;

case DEPLOY:
deploy_payload();
break;

...
}

}

(a) Original version of process_message. A break state-
ment is deliberately omitted from the NAV case so that each
course alteration is immediately followed by a logging event.

enum msg_ty {
NAV = 42,
// LOG is no longer defined
DEPLOY = 64,
...

};

void process_message(enum msg_ty t, msg m) {
switch (t) {
case NAV:
adjust_heading(m.data);

// LOG case removed

case DEPLOY:
deploy_payload();
break;

...
}

}

(b) Modified version of process_message in which logging
has been removed. The change introduces unintended behavior:
each NAV event is immediately followed by a DEPLOY event.

Fig. 1: C source code for two versions of the process_message function that processes a command signal and invokes the
corresponding task handler. A msg (the second argument to process_message) is a struct with status and data fields;
we omit its definition for brevity because it is the same in both programs.

form: if program c begins execution in a state that satisfies
precondition P , and c terminates, then the final state neces-
sarily satisfies postcondition Q. We write such an assertion
as {P} c {Q}. WP checks an assertion by working backwards
through each program statement to compute the weakest pre-
condition: the predicate P ′ that satisfies {P ′} c {Q} while
placing the fewest possible restrictions on the initial state. The
original assertion {P} c {Q} holds iff P implies P ′.

B. Differential Analysis via Program Composition

CBAT relies on the key insight that to check a relative
correctness property over two programs, one can compose the
programs and then check a corresponding property over the
composed program [14]. For example, consider the following
two versions of a program fragment:

(p1) int x = 3; if (y) {x = 5;}
(p2) int x = 5; if (y) {x = 7;}

One might wish to verify that for any y value, p2 computes
a greater x value than p1. To verify this fact, CBAT renames
variables so that the two fragments do not interfere with each
other, and it builds the following composed program:

(p1 ◦ p2) int x1 = 3; if (y1) {x1 = 5;}
int x2 = 5; if (y2) {x2 = 7;}

The tool then checks the following assertion about this com-
posed program: if y1 = y2 at the start of execution, then
x1 < x2 when the program ends. If this assertion holds, it
implies the relative correctness property stated above.

III. CBAT’S DIFFERENTIAL ANALYSIS BY EXAMPLE

We introduce the wp tool with an example involving a
binary patch for a simplified spacecraft control program.

A. A Binary Patch-Induced Bug

The spacecraft controller’s process_message function
(Figure 1a) processes command signals and dispatches tasks to
the appropriate handlers: a NAV signal alters the craft’s course,
LOG writes the craft’s current status to a log, DEPLOY deploys
a research instrument, etc. In our example, the programmer has
decided that each course alteration should be logged and has
therefore omitted a break statement from the NAV case of the
switch statement. As a result, execution falls through from
the NAV case to the LOG case, and each navigation event is
followed by a logging event.

Suppose that maintainers of this code perform late-stage
software customization to remove the logging feature, produc-
ing the function in Figure 1b. (We show the modified function
in source format for readability, but the patch is applied to
an x86-64 binary.) Now the program has a bug: execution
falls through from the NAV case to the DEPLOY case, and
each navigation event will inadvertently deploy the research
instrument.

B. Invoking and Controlling WP Analysis

The program’s maintainers or an external certifier may wish
to validate the change by checking various relative properties
of the two program versions. For example, because the change
removes functionality, a reasonable property is that the mod-
ified program should call a subset of the functions that the
original program calls. To check this property, the certifier can
invoke wp as shown in the example terminal session in Figure
2. The wp tool is implemented as a plugin to BAP and thus
invoked via the command bap wp. The final two arguments to
the command, orig_prog and mod_prog, are the original
and modified versions of the example binary, respectively. The
remaining arguments have the following meanings:

2

•••
user@host:˜/cbat-example$ bap wp \
> --func=process_message \
> --show=paths \
> --compare-func-calls \
> orig_prog mod_prog
Evaluating precondition.
Checking precondition with Z3.

Property falsified. Counterexample found.

Model:
...
RSP |-> 0x000000003f8000c0
RDI |-> 0x000000000000002a
...

Fig. 2: Example invocation of wp on binaries orig_prog
and mod_prog. The tool checks that each run of the modified
process_message function makes a subset of the function
calls in the corresponding run of the original version. The tool
determines that the binaries violate this relative correctness
property, and it outputs a countermodel (shown in partial
form) in which register RDI holds 0x2a = 42. When the two
versions of process_message begin execution from this
configuration (i.e., when the first argument is a NAV value),
they will behave in a way that violates the specification.

• The --func=process_message argument tells wp
to compare the two binaries’ respective versions of the
process_message function.

• The --show flag controls the output that wp produces.
In this case, the paths argument to --show tells wp
that if the tool determines that the correctness property in
question is false, it should output a visual representation
of the function execution paths that violate the property.
We give examples of such paths in Section III-C.

• The --compare-func-calls flag specifies that ev-
ery function call in a run of the modified binary should
also occur in a corresponding run of the original binary.

C. Finding and Interpreting a Countermodel

The wp tool is able to determine that the original
and modified versions of process_message violate the
--compare-func-calls specification. In such a case, the
tool produces a countermodel demonstrating why the specifi-
cation is false. A countermodel is a mapping from machine
registers and memory locations to their contents; when the
two functions begin executing from this configuration, their
behavior violates the assertion.

A portion of the wp-produced countermodel for our ex-
ample appears in Figure 2; the countermodel maps register
RDI to the value 0x2a (42). RDI holds the first argument to
a called function according to the x86-64 calling conventions,
and 42 is the integer representation of the msg_ty value NAV.
Therefore, this countermodel reveals that when the modified
version of process_message receives a NAV value as its
first argument, it calls a function that the original version does
not (namely, deploy_payload).

000016a4:
000016b0: #12582770 := RBP
000016b4: RSP := RSP - 8
000016ba: mem := mem with [RSP, el]:u64 <- #12582770
000016c2: RBP := RSP
000016dc: #12582769 := RSP
000016e0: RSP := RSP - 0x20
000016e4: CF := #12582769 < 0x20
000016ea: OF := high:1[(#12582769 ^ 0x20) & (#12582769 ^ RSP)]
000016ef: AF := 0x10 = (0x10 & (RSP ^ #12582769 ^ 0x20))
000016f4: PF :=
 ~low:1[let $24 = RSP >> 4 ^ RSP in
 let $25 = $24 >> 2 ^ $24 in $25 >> 1 ^ $25]
000016f8: SF := high:1[RSP]
000016fc: ZF := 0 = RSP
00001708: mem := mem with [RBP - 4, el]:u32 <- low:32[RDI]
00001710: RCX := RDX
00001718: RAX := RSI
00001720: RDX := RDI
00001728: RDX := RCX
00001734: mem := mem with [RBP - 0x20, el]:u64 <- RAX
00001740: mem := mem with [RBP - 0x18, el]:u64 <- RDX
0000175e: #12582766 := mem[RBP - 4, el]:u32 - 0x2A
00001763: CF := mem[RBP - 4, el]:u32 < 0x2A
0000176b: OF := high:1[(mem[RBP - 4, el]:u32 ^ 0x2A) &
 (mem[RBP - 4, el]:u32 ^ #12582766)]
00001771: AF := 0x10 = (0x10 & (#12582766 ^ mem[RBP - 4, el]:u32 ^ 0x2A))
00001776: PF :=
 ~low:1[let $24 = #12582766 >> 4 ^ #12582766 in
 let $25 = $24 >> 2 ^ $24 in $25 >> 1 ^ $25]
0000177a: SF := high:1[#12582766]
0000177e: ZF := 0 = #12582766
00001785: when ZF goto %00001782

00001e88: goto %00001cc7

00001782:
00001790: RAX := mem[RBP - 0x18, el]:u64
00001798: RDI := RAX
000017a4: RSP := RSP - 8
000017a9: mem := mem with [RSP, el]:u64 <- 0x1162
000017ab: call %00001e7d with return %00001c41

00001cc7:
00001ce3: #12582727 := mem[RBP - 4, el]:u32 - 0x40
00001ce8: CF := mem[RBP - 4, el]:u32 < 0x40
00001cf0: OF := high:1[(mem[RBP - 4, el]:u32 ^ 0x40) &
 (mem[RBP - 4, el]:u32 ^ #12582727)]
00001cf6: AF := 0x10 = (0x10 & (#12582727 ^ mem[RBP - 4, el]:u32 ^ 0x40))
00001cfb: PF :=
 ~low:1[let $24 = #12582727 >> 4 ^ #12582727 in
 let $25 = $24 >> 2 ^ $24 in $25 >> 1 ^ $25]
00001cff: SF := high:1[#12582727]
00001d03: ZF := 0 = #12582727
00001d09: when ZF goto %00001c41

00001e87: goto %00001d0d

00001c41:
00001c4a: RSP := RSP - 8
00001c4f: mem := mem with [RSP, el]:u64 <- 0x1167
00001c51: call %00001e7e with return %00001c53

00001d0d:
00001d0f: goto %00001c55

00001c53:
00001e86: goto %00001c55

00001c55:
00001c62: RSP := RBP
00001c67: RBP := mem[RSP, el]:u64
00001c6b: RSP := RSP + 8
00001c78: #12582730 := mem[RSP, el]:u64
00001c7c: RSP := RSP + 8

00001c7f: call #12582730 with noreturn

Fig. 3: Example wp-produced control flow graph in which
highlighted edges represent the function’s countermodel-
induced execution path. Basic blocks are sequences of state-
ments in BAP Intermediate Language (BIL).

The mechanism by which a wp-produced countermodel
leads to a property violation may not be immediately obvious.
To help the user understand the relationship between coun-
termodel and violation, wp can produce a visual trace of the
countermodel-induced execution path through each function.
When wp is invoked with the --show=paths argument and
it detects a countermodel, the tool outputs a control flow graph
(CFG) for each analyzed function. In each CFG, the execution
path induced by the countermodel is highlighted, enabling the
user to trace the behavior that violates the specification. Figure
3 shows the highlighted CFG that wp produces for the modified
version of process_message.

When a static depiction of control flow provides inadequate
insight into an analyzed function’s behavior, the user can trace
the function’s execution dynamically with bildb, CBAT’s
interactive debugger; see Section IV-A for details.

D. Aside: Predefined and Custom Specifications

The --compare-func-calls property used in our
example is one of several predefined relative correctness
specifications that wp makes available. Additional examples
of predefined specifications are as follows:

• --trip-asserts ensures that execution never reaches
calls to __assert_fail().

• --compare-post-reg-values=r1,r2,...
asserts that when the functions terminate, registers
r1,r2,... hold the same values in both final states.

3

• --check-invalid-derefs assumes that all memory
dereferences in the original binary are valid, and it checks
that all additional dereferences in the modified binary are
valid (i.e., they involve locations on the stack or heap).

The user can also provide custom specifications to wp
via --precond and --postcond flags that take arguments
in SMT-LIB syntax [2], a standard input language for SMT
solvers. For example, one could invoke wp with the following
argument to --postcond:

(assert (= RAX_orig RAX_mod))

In this specification, RAX_orig and RAX_mod refer to x86-
64 return register RAX in the original and modified func-
tions, respectively. The specification asserts that RAX should
hold the same value at the end of both functions’ execu-
tions; in other words, the functions should return the same
value. (Note that one could also express this property with
a predefined specification by calling wp with the argument
--compare-post-reg-values=RAX).

A limitation of CBAT’s support for custom specifications
is that the user must be familiar with both SMT-LIB and the
target architecture’s ABI. A question for future work is how
to enable non-expert users to write expressive specifications.

IV. CBAT FEATURES AND IMPLEMENTATION
HIGHLIGHTS

In this section, we highlight three key features of CBAT:
an interactive debugger for tracing countermodel-induced
function behavior; integration with multiple SMT solvers for
optimizing solver performance; and function summaries for
modeling the behavior of called functions.

A. Interactive Debugger

The BAP Instruction Language Debugger, or bildb, is
a CBAT component that helps users understand why a wp-
produced countermodel violates the correctness specification
provided to wp. The debugger executes a lifted binary function
in an interactive manner; the user can step forward and
backward through the function’s execution, load values into
machine registers and memory addresses, and set breakpoints.

When wp produces a countermodel, the user can invoke
the debugger with the wp-generated machine configuration as
the starting point to observe how that configuration produces
behavior that violates the specification. To begin this process,
the user directs wp to save the countermodel in a bildb-
compatible format via the --bildb-output flag. For ex-
ample, adding the argument --bildb-output=init.yml
to the wp invocation in Figure 2 stores the countermodel in the
YAML file init.yml. The user then launches bildb with
this initial configuration by running the command shown in
Figure 4. As the debugger’s excerpted output shows, register
RDI is mapped to the value 0x2A—the NAV argument that
leads to a property violation—at the start of execution.

The bildb tool relies on BAP’s engine for microexecution
of code fragments in a virtual environment without user-
provided input. Microexecution does not require the host
machine to be able to execute the binary under analysis;
this property makes the tool a useful alternative to traditional
debuggers like gdb.

•••
user@host:˜/cbat-example$ bap \
> --pass=run \
> --bildb-debug \
> --bildb-init=init.yml \
> orig_prog
BIL Debugger
Starting up...

Architecture
Type: x86_64
Address size: 64
Registers:
R10 R11 ...

Initialized state
Variables:
...
RDI : 0x2A
...

Entering subroutine: [%00000fc2] _start
...
Entering block %000003f5
...
>>> (h for help)

Fig. 4: Example invocation of the bildb debugger on binary
orig_prog, starting from the wp-produced countermodel
stored in file init.yml. In the initial machine configuration
(shown in partial form), register RDI holds 0x2A, the integer
representation of a NAV value. The user enter commands at the
prompt to step to different instructions or breakpoints, display
or modify various components of machine state, etc.

Fig. 5: The Boolector SMT solver’s per-problem speedup
over Z3 on 130 verification problems. Problems were sampled
randomly from the Lift/Recompile wp benchmark described in
Section V. While the two solvers are on par for most instances,
Boolector is faster on average. Boolector is at least 20s slower
on four functions, and at least 20s faster on 21 functions.

4

B. SMT Solver Integration

The wp tool relies on an SMT solver to check whether the
weakest precondition formula that it computes is satisfiable.
The tool’s default solver, Z3 [7], offers both excellent perfor-
mance and facilities for interpreting the results it produces.
However, other solvers sometimes perform better on certain
classes of formulas. For example, we observed that the Boolec-
tor SMT solver [17] achieved better average running time than
Z3 on one of our benchmarks (see Figure 5). Here, we describe
a novel technique for integrating wp with alternative solvers in
a way that can boost performance while retaining the benefits
of Z3’s interpretation facilities.

The wp tool interacts with a solver at up to two points
during an analysis: (1) when wp converts its internal represen-
tation of a precondition to the solver’s input format; and (2)
when wp expresses a solver-produced countermodel in terms of
the input programs’ variables and control flow to help the user
understand why the assertion is false. Passing a precondition to
an alternative solver is straightforward, because wp produces
a formula in the solver-agnostic SMT-LIB format. However,
when interpreting a countermodel, wp relies on a Z3-specific
library for examining and querying countermodels. To obtain
the performance benefits of an alternative solver A and the
interpretability benefits of Z3, we run A in concert with Z3 as
follows:

1) We first check the formula with solver A.
2) If A finds a countermodel, it outputs this model in a

solver-agnostic SMT-LIB format. This output contains
instantiations of the formula’s logical variables that falsify
the formula.

3) We then run Z3 on the original formula, adding assertions
that set the logical variables to the values found by A.
This step enables Z3 to find the same countermodel
instantly.

4) We use CBAT’s existing Z3 integration mechanism to
translate the countermodel into information about the
input programs to display to the user.

In cases where A is faster than Z3, this approach improves
performance while still enabling wp to use Z3’s tools for
interpreting the countermodel.

C. Function Summaries

The wp tool’s analysis is intraprocedural: it analyzes two
versions of a single function. The tool’s main approach to
handling a function call within the function being analyzed
involves using a function summary: a high-level specifica-
tion of the called function’s behavior. A function summary
{P} f {Q} asserts that if the machine’s state (memory and
registers) satisfies precondition P when function f is called,
then the state satisfies postcondition Q after f returns. Function
summaries enable wp to incorporate the effects of a called
function f into its analysis without examining the body of f ,
which would make the analysis intractable (since f itself might
call other functions).

CBAT includes both a library of nine predefined function
summaries and facilities for defining custom summaries. The
user can select which predefined summaries to use via a
--fun-specs flag, which takes a list of summary names

as an argument. When wp analysis reaches a called function
with no custom summary, the tool uses the first summary from
this list that applies to the function. Possible arguments to
--fun-specs include the following:

• chaos-caller-saved asserts that a function can load
arbitrary values into caller-saved registers.

• verifier-error asserts that a function triggers an
error. This summary can be used to determine whether
the function is reachable.

• verifier-nondet models the behavior of nondeter-
ministic memory management functions such as malloc.
This summary asserts that a function can return an arbi-
trary pointer.

The user can also define function summaries that express
more fine-grained or application-specific properties. The user
provides custom summaries to wp in SMT-LIB syntax via a
--user-func-specs flag. For example, suppose that an
x86 64 program includes a div function, which computes
the integer division of its first argument by its second. To
ensure that calls to div never result in an attempt to divide
by zero, the user can invoke wp with the following argument
to --user-func-specs:

div, (assert (not (= RSI (_ bv0 64)))),
(assert true)

In this function summary, the precondition states that the
second argument to div is not equal to zero (x86 64 register
RSI holds the second argument to a called function, and
(_ bv0 64) is a 64-bit representation of zero). The trivial
postcondition (assert true) places no restrictions on
program state after a div call.

V. PERFORMANCE EVALUATION FOR CBAT’S WP
ANALYSIS

We evaluate the wp tool’s performance by using it to verify
modifications to three collections of binary functions. In each
experiment, wp runs on the original and modified versions
of a binary, checking that each modified function produces
the same callee-saved register values as its analogue in the
original binary. Such a check has four possible outcomes: wp
can verify the property, find a countermodel, return “unknown”
(indicating that the underlying solver could not verify or falsify
the property), or time out (we use a one-kilosecond per-
function time limit).

Our benchmarks are based on the following transformations
and binaries:

• The RetroWrite benchmark is based on an instrumenta-
tion pass [9] that prepares a binary for integration with
the American Fuzzy Lop (AFL) fuzzing framework [20].
This pass was used to modify the Linux base64 utility.

• The Lift/Recompile benchmark is based on a binary
lifting and recompilation framework [10], [18] that was
used to modify a version of GNU tar.

• The Embrittle benchmark is based on a tool [11] that per-
forms various binary transformations, including shuffling
blocks and renaming program elements. These transfor-
mations were applied to a second version of GNU tar.

5

Benchmark # Functions Verified Countermodels Unknowns Timeouts

RetroWrite 145 123 (84.8%) 2 (1.4%) 0 (0.0%) 20 (13.8%)
Lift/Recompile 1171 804 (68.7%) 59 (5.0%) 7 (0.6%) 301 (25.7%)

Embrittle 1511 1143 (75.6%) 84 (5.6%) 62 (4.1%) 222 (14.7%)

Fig. 6: The total number of functions in each benchmark, and the results of using wp to compare the pre- and post-transformation
versions of each function. For each input, wp can verify the transformation, find a countermodel suggesting that the transformation
violates the correctness property, return an “unknown” value, or time out.

Fig. 7: Function size (measured in # basic blocks) vs. wp
total runtime for a sample of problem instances from the
Lift/Recompile benchmark.

Figure 6 lists the total number of functions in each benchmark,
as well as the number of functions that result in each outcome.
The wp tool verifies or finds a countermodel for 86%, 74%, and
81% of inputs in the three benchmarks, respectively. Further
inspection is required to determine whether each countermodel
that wp produces in these experiments represents a property
violation or a false positive. In practice, checking a complex
property of a large program with complete fidelity to the
underlying machine is intractable, so tools like CBAT must
simplify the machine model in a way that leads to some false
positives.

It is difficult to count false negatives—property violations
that the tool fails to detect—because doing so would require
a source of ground truth about which modified functions are
incorrect relative to the original ones. We merely note that
for performance reasons, wp makes a number of standard
simplifying assumptions that can produce false negatives. A
classic example is loop unrolling: wp replaces each program
loop with a finite, user-configurable number of instances of
the loop body. As a result, wp can fail to detect violations that
only occur after a number of loop iterations that is greater than
the unrolling factor.

Interestingly, we observed that while the time required
to compute a weakest precondition is closely correlated with
function size, SMT solving time is not closely correlated with
function size. Therefore, neither is wp’s total runtime, because
solving time dominates total runtime. Figure 7 illustrates the
apparent absence of a strong relationship between function size

and total runtime for several hundred problem instances from
the Lift/Recompile benchmark.

VI. RELATED WORK

A. Differential Analysis

Lahiri et al. [14] describe a technique for differential asser-
tion checking (DAC), or proving relative correctness between
two program versions. The authors observe that performing
this task is more efficient than proving absolute correctness of
the later version. They implement the technique within the
SYMDIFF semantic differencing tool [13]. Earlier work on
reducing false positive rates of concurrent program verifiers
[12] describes an approach to DAC for bounded programs.
DAC involves composing two programs so that correctness
can be expressed in terms of the product program; Barthe et
al. [3] describe product programs in a general setting. CBAT
adapts the framework of product program-based DAC to the
binary domain.

B. Binary Analysis Toolkits

Binary analysis toolkits lift binaries to an intermediate
representation (IR) and facilitate program analyses at the IR
level. CBAT is implemented as a collection of plugins for the
Binary Analysis Platform (BAP) [4], an open source toolkit.
Another widely used toolkit is angr [19]. Submissions based
on BAP and angr placed first and third, respectively, at the
DARPA Cyber Grand Challenge [5], a competition among
automated cyber defense systems. More recently, the Ghidra
framework [15] developed and open-sourced by the NSA has
emerged as a popular tool for binary analysis.

ACKNOWLEDGMENT

We thank Ivan Gotovchits for maintaining BAP and for
extending it with new features in support of the CBAT project’s
research goals.

REFERENCES

[1] “GitHub repository for the CBAT development,” 2023. [Online].
Available: https://github.com/draperlaboratory/cbat tools

[2] C. Barrett, A. Stump, C. Tinelli et al., “The SMT-LIB Standard: Version
2.0,” in Proceedings of the 8th International Workshop on Satisfiability
Modulo Theories, vol. 13, 2010, p. 14.

[3] G. Barthe, J. M. Crespo, and C. Kunz, “Relational Verification
Using Product Programs,” in 17th International Symposium on
Formal Methods, 2011. [Online]. Available: https://doi.org/10.1007/
978-3-642-21437-0 17

[4] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: A
Binary Analysis Platform,” in Computer Aided Verification, 2011.
[Online]. Available: https://doi.org/10.1007/978-3-642-22110-1 37

6

https://github.com/draperlaboratory/cbat_tools
https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1007/978-3-642-22110-1_37

[5] DARPA, “Cyber Grand Challenge Homepage,” Available: https://www.
cybergrandchallenge.com, 2016.

[6] ——, “Broad Agency Announcement: Assured Micropatching
(AMP),” 2019. [Online]. Available: https://sam.gov/api/prod/opps/
v3/opportunities/resources/files/5b8ab57b7efcbc34e18a46d1cbbe6fe2/
download?&status=archived&token=

[7] L. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in Tools
and Algorithms for the Construction and Analysis of Systems, 2008.
[Online]. Available: https://doi.org/10.1007/978-3-540-78800-3 24

[8] E. W. Dijkstra, “Guarded Commands, Nondeterminacy and Formal
Derivation of Programs,” Communications of the ACM, vol. 18,
no. 8, pp. 453–457, 1975. [Online]. Available: https://doi.org/10.1145/
360933.360975

[9] S. Dinesh, N. Burow, D. Xu, and M. Payer, “RetroWrite: Statically
Instrumenting COTS Binaries for Fuzzing and Sanitization,” in IEEE
Symposium on Security and Privacy, 2020. [Online]. Available:
https://doi.org/10.1109/SP40000.2020.00009

[10] A. Flores-Montoya and E. M. Schulte, “Datalog Disassembly,”
in USENIX Security Symposium, 2020. [Online]. Available: https:
//dl.acm.org/doi/10.5555/3489212.3489273

[11] Galois, Inc., “Software Fault Encouragement project summary,” 2017.
[Online]. Available: https://galois.com/project/brittle/

[12] S. Joshi, S. K. Lahiri, and A. Lal, “Underspecified Harnesses and
Interleaved Bugs,” in Principles of Programming Languages, 2012.
[Online]. Available: https://doi.org/10.1145/2103656.2103662

[13] S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebêlo,
“SYMDIFF: A Language-Agnostic Semantic Diff Tool for Imperative
Programs,” in Computer Aided Verification, 2012. [Online]. Available:
https://doi.org/10.1007/978-3-642-31424-7 54

[14] S. K. Lahiri, K. L. McMillan, R. Sharma, and C. Hawblitzel,
“Differential Assertion Checking,” in 9th Joint Meeting on Foundations
of Software Engineering, 2013. [Online]. Available: https://doi.org/10.
1145/2491411.2491452

[15] National Security Agency, “Ghidra,” 2019. [Online]. Available:
https://ghidra-sre.org/

[16] S. Nelson, B. Fischer, E. Denney, J. Schumann, J. Richardson,
and P. Oh, “Product-Oriented Software Certification Process for
Software Synthesis,” Tech. Rep. NASA/CR-2004-212819, 2004.
[Online]. Available: https://ntrs.nasa.gov/api/citations/20040034049/
downloads/20040034049.pdf

[17] A. Niemetz, M. Preiner, and A. Biere, “Boolector 2.0,” Journal on
Satisfiability, Boolean Modeling and Computation, vol. 9, no. 1, pp.
53–58, 2014.

[18] E. M. Schulte, J. Dorn, A. Flores-Montoya, A. Ballman, and
T. Johnson, “GTIRB: Intermediate Representation for Binaries,”
Computing Research Repository, 2019. [Online]. Available: http:
//arxiv.org/abs/1907.02859

[19] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Krügel, and G. Vigna,
“SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis,” in IEEE Symposium on Security and Privacy, 2016.
[Online]. Available: https://doi.org/10.1109/SP.2016.17

[20] M. Zalewski, “american fuzzy lop,” 2017. [Online]. Available:
https://lcamtuf.coredump.cx/afl/

7

https://www.cybergrandchallenge.com
https://www.cybergrandchallenge.com
https://sam.gov/api/prod/opps/v3/opportunities/resources/files/5b8ab57b7efcbc34e18a46d1cbbe6fe2/download?&status=archived&token=
https://sam.gov/api/prod/opps/v3/opportunities/resources/files/5b8ab57b7efcbc34e18a46d1cbbe6fe2/download?&status=archived&token=
https://sam.gov/api/prod/opps/v3/opportunities/resources/files/5b8ab57b7efcbc34e18a46d1cbbe6fe2/download?&status=archived&token=
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/360933.360975
https://doi.org/10.1109/SP40000.2020.00009
https://dl.acm.org/doi/10.5555/3489212.3489273
https://dl.acm.org/doi/10.5555/3489212.3489273
https://galois.com/project/brittle/
https://doi.org/10.1145/2103656.2103662
https://doi.org/10.1007/978-3-642-31424-7_54
https://doi.org/10.1145/2491411.2491452
https://doi.org/10.1145/2491411.2491452
https://ghidra-sre.org/
https://ntrs.nasa.gov/api/citations/20040034049/downloads/20040034049.pdf
https://ntrs.nasa.gov/api/citations/20040034049/downloads/20040034049.pdf
http://arxiv.org/abs/1907.02859
http://arxiv.org/abs/1907.02859
https://doi.org/10.1109/SP.2016.17
https://lcamtuf.coredump.cx/afl/

	Introduction
	Background
	Weakest Precondition Analysis
	Differential Analysis via Program Composition

	CBAT's Differential Analysis by Example
	A Binary Patch-Induced Bug
	Invoking and Controlling WP Analysis
	Finding and Interpreting a Countermodel
	Aside: Predefined and Custom Specifications

	CBAT Features and Implementation Highlights
	Interactive Debugger
	SMT Solver Integration
	Function Summaries

	Performance Evaluation for CBAT's WP Analysis
	Related Work
	Differential Analysis
	Binary Analysis Toolkits

	References

