
Feedback-Guided API Fuzzing of 5G Network
Tianchang Yang, Sathiyajith K S, Ashwin Senthil Arumugam, Syed Rafiul Hussain

The Pennsylvania State University
{tzy5088, sxk6394, ajs9797, hussain1}@psu.edu

Abstract—We present our work-in-progress on designing and
implementing a black-box evolutionary fuzzer for REST APIs,
specifically targeting 5G core networks that utilize a service-
based architecture (SBA). Unlike existing tools that rely on static
generation-based approaches, our approach progressively refines
test inputs to explore deeper code regions in the target system. We
incorporate a thorough analysis of the limited response message
feedback available in black-box settings and employ a carefully
crafted mutation method to generate effective state-aware test
inputs. Evaluation of our current implementation has uncovered
two previously unknown vulnerabilities in open-source 5G core
network implementations, resulting in the assignment of two
CVEs. Additionally, our approach already demonstrates superior
performance compared to existing black-box fuzzing methods.

I. INTRODUCTION

The 5G core network serves as the backbone of mod-
ern telecommunications, supporting features such as ultra-
low latency, massive device connectivity, and enhanced mo-
bile broadband. To achieve these functionalities, it adopts
a Service-Based Architecture (SBA), which relies on REST
APIs for communication between its functional modules, Net-
work Functions (NFs) [1]. These APIs facilitate the exchange
of critical control information throughout the operation of the
core network, making them vital for the proper functioning
of the overall cellular network. While the SBA design offers
significant flexibility and scalability, it also expands the attack
surface, exposing each NF to potential malicious API requests
that could lead to severe consequences, such as service disrup-
tion, unauthorized access, or exposure of sensitive data, poten-
tially affecting millions of users and devices. This underscores
an urgent need for robust testing methodologies to ensure the
reliability and security of 5G core network implementations.

Testing REST APIs presents unique challenges, particularly
in the context of 5G core networks. Black-box testing ap-
proaches are often the only feasible option due to restricted
access to source code and the underlying infrastructure. Ex-
isting black-box tools [2], [3], [4], [5] primarily rely on static
generation-based methods to produce test cases. However,
these methods struggle to explore deep code regions and are
ineffective at handling stateful interactions [3]. Furthermore,
they often depend on static dictionaries for parameter values
and fail to fully utilize the feedback provided by response

messages [2], [5], [4], missing critical opportunities to refine
test inputs and uncover hidden vulnerabilities.

We present our work-in-progress of addressing these lim-
itations by designing and implementing a black-box evolu-
tionary fuzzer specifically tailored for REST APIs in 5G core
networks. Our approach introduces the following key improve-
ments over existing work: (1) Dynamic refinement of test in-
puts: unlike static generation-based methods, our evolutionary
fuzzer progressively refines test inputs by analyzing feedback
from response messages, enabling deeper exploration of the
target system. (2) State-aware testing: we carefully design
mutation strategies that respect dependencies between requests
and generate state-aware test cases to uncover vulnerabilities
in stateful interactions. (3) Feedback-driven analysis: our
method incorporates a fine-grained analysis of response mes-
sages, utilizing not only response codes but also the content
of messages to guide test case generation more effectively.
Scope. This work focuses on identifying implementation is-
sues in the 5G core network, in contrast to formal methods that
analyze mobile network specifications to detect specification
errors [6], [7]. Our current testing targets easily observable
5XX errors, which indicate unexpected server-side failures
caused by improperly handled requests or server crashes.
Evaluation & contribution. To demonstrate the efficacy of
our approach, we evaluate our implementation on real-world
5G core network implementations. Our fuzzer identifies two
previously unknown vulnerabilities, resulting in the assign-
ment of two CVEs. The contributions of this work are:

• We propose a novel black-box evolutionary fuzzing ap-
proach for REST APIs, specifically designed for the
service-based architecture of 5G core networks.

• We introduce a state-aware mutation and a feedback-
driven analysis framework to dynamically refine test cases
and effectively guide exploration.

• We evaluated our approach on open-source 5G core
network implementations, demonstrating its effectiveness
in discovering vulnerabilities and achieving superior code
coverage compared to existing state-of-the-art tools.

II. BACKGROUND

A. 5G Core Network and REST API

Cellular networks consist of the core network, base stations,
and User Equipment (UE) such as smartphones. The core
network handles user authentication, request processing, and
connectivity management. 5G core networks revolutionize the
monolithic, closed design of previous generations by adopting
a service-based architecture, dividing operations into modular

Workshop on Security and Privacy of Next-Generation Networks
(FutureG) 2025
24 February 2025, San Diego, CA, USA
ISBN 979-8-9919276-7-3
https://dx.doi.org/10.14722/futureg.2025.23071
www.ndss-symposium.org



components called Network Functions (NFs). Key NFs include
the AMF (Access and Mobility Management Function), which
handles user registration, mobility management, and connec-
tion establishment, and the UPF (User Plane Function), which
manages PDU sessions, packet forwarding, and routing.

NFs within the core network communicate with each other
via REST APIs. REST APIs facilitate communication between
clients and servers using standard HTTP methods such as
GET, POST, PUT, and DELETE. Requests typically include
an HTTP method, a URL (representing a resource), headers
(e.g., authentication tokens or content type), and optionally a
body. Server responses include an HTTP status code (e.g.,
2XX for success, 4XX for client errors, and 5XX for un-
expected internal server errors), headers, and often a body
with requested data or response messages. Swagger [8] is a
specification language used to describe and define REST APIs,
offering a structured format to detail API endpoints, request
formats, request methods, parameters, and response structures.

III. RELATED WORK

A. Testing of 5G and Beyond Mobile Networks

Existing efforts on core network security primarily em-
ploy formal verification methods [9], [6], [7], which rely on
protocol specifications to identify specification errors but are
ineffective at detecting implementation flaws. Prior implemen-
tation testings of cellular networks [10], [11], [12], [13], [14],
[15], [16], [17], [18] focus on specific interfaces in mobile
networks. These approaches typically require significant man-
ual effort to construct message grammars and often rely on
code coverage information (i.e., white- or gray-box access to
instrument the program) to achieve optimal results. However,
they overlook the potential of directly utilizing well-defined
REST API specifications [19] for core network testing, which
could substantially reduce harnessing and manual effort.

B. REST API Fuzzing

REST API fuzzing [2], [3], [4], [5], [20], [21], [22], [23],
[24], [25], [26], [27] uncovers hidden errors within the reach-
able execution states of a cloud service. REST API fuzzers
automate request sequence generations to test a target server
and use the responses to identify errors. A typical REST API
fuzzer [2], [3] generally comprises the following components.
Compiler is responsible for parsing REST API specifications
(e.g., Swagger [8]) to produce internal grammars and request
templates for the fuzzer. During this process, the fuzzer:
(1) constructs an internal grammar and structural representa-
tion for each request type, (2) builds a dictionary to generate
values for each basic-type parameter during fuzzing, (3) and
infers dependencies between different request methods.
Generation Module creates test requests to explore new code
regions and uncover vulnerabilities in the target system. It
has two primary tasks: generating meaningful request se-
quences and populating parameter values for each message
in a sequence. REST API requests are inherently stateful. For
instance, testing a GET or DELETE method often requires
the client to first POST an object to create it. To address

these dependencies, the compiler initially extracts relation-
ships statically from the API specification (e.g., ensuring a
PUT command is executed before GET for the same URL
object). During fuzzing, the fuzzer dynamically refines request
sequences by exploring different combinations of messages.
If a constructed sequence consistently results in 2XX status
code, it is considered valid and stored as a reusable template.
Parameter values for each request in a sequence template are
instantiated using the dictionary generated during the compi-
lation phase. These values can be user-provided or predefined.
Checker evaluates the outcomes of testing sequences to
identify vulnerabilities. The checker first detects whether the
server returns a 5XX status code, which signals an internal
server error. Additional sophisticated validations can also be
implemented. For instance, a use-after-free check ensures that
after a DELETE method is invoked, subsequent GET requests
on the same object do not incorrectly return success.
Limitations. However, these existing approaches are insuffi-
cient for uncovering vulnerabilities due to several key limita-
tions: (1) Their generation-based techniques lack the capabil-
ity to systematically explore deeply-rooted vulnerabilities, as
they do not iteratively refine inputs based on prior findings.
(2) They rely heavily on pre-defined dictionaries to gener-
ate test inputs, making them unable to detect vulnerabilities
triggered by edge cases or values not present in the dictio-
nary. (3) They fail to fully utilize available feedback. While
black-box testing is inherently constrained, existing methods
typically rely only on response codes to evaluate test inputs,
neglecting detailed response messages, which often contain
critical information like error causes and other contexts. As a
result of these limitations, existing tools struggle to achieve
high code coverage, typically falling below 50%, and fail to
identify deeply-rooted vulnerabilities [28], [29].

IV. APPROACH

The 5G core network is maintained by network operators,
restricting direct testing access. Consequently, testing is typ-
ically limited to black-box approaches, where access to the
source code or the machines hosting each NF is not permitted.
Instead, only observable black-box metrics, such as response
messages, can be utilized. Due to similar challenges, REST
API testing tools [2], [3], [4], [5] typically all employ this de-
sign. In this work, we adopt a black-box testing methodology.

To overcome the limitations of existing REST API testing
tools’ generation-based methods, we adopt a mutation-based
approach inspired by mutation fuzzers [30], [31]. As illustrated
in Figure 1, our method leverages the limited feedback avail-
able in black-box testing to iteratively refine and mutate test
inputs that trigger interesting behaviors, enabling progressive
exploration of the target system. Our fine-grained response
analysis identifies and preserves inputs that lead to novel
system states. While we retain the compiler and checker
components from previous methods, we replace the static gen-
eration module with a dynamic mutator to generate effective
test cases by mutating inputs from the test corpus. Through

2



Target NF

Other NF1 Other NF2

...

5G Core Network

Corpus
Response
Evaluation

Sequence
Selection

Sequence
Mutation

Test 
Msgs

Response Code
& MessagesCorpus

Sequence

Compiler
Swagger

API
Definition

API grammar
Fuzzer

Vulnerable Input
Sequence & Responses

Fig. 1: Architecture of Our Approach

this iterative refinement, our approach uncovers vulnerabilities
more efficiently and targets deeper system states.

A. Response Evaluation

For each sequence of inputs, we analyze the corresponding
responses to determine whether the sequence has invoked pre-
viously unseen behaviors (i.e., discovered new system states).
Specifically, we evaluate the type, code, and message of the
response. If any part reveals a previously unobserved behavior,
the corresponding input sequence is retained as an interesting
test case. To avoid saving redundant or meaningless test cases,
we implement a filtering mechanism for 4XX responses. A
4XX response typically indicates an invalid request, which
often renders the subsequent messages in the sequence un-
interesting. Therefore, if a 4XX response is encountered, we
disregard the remaining messages in the sequence. Without this
mechanism, the approach risks accumulating long, arbitrary
concatenations of irrelevant test cases in the corpus, which
dilutes the effectiveness of further mutations.

B. Sequence-Aware Mutation

Effective mutation requires careful selection of both the
sequence and the specific message to mutate. We calculate
a priority score for each sequence in the corpus based on its
length and mutation depth. The intuition is to prioritize longer
sequences, as they are more likely to explore deeper imple-
mentation states, and sequences that have undergone more
mutations, to prioritize the exploration of newly-discovered
program regions. Conversely, sequences that fail to reveal
interesting behaviors even after multiple mutations are depri-
oritized. Score S for a sequence si is given by:

S(si) = α · length(si) + β · depth(si),
where length(si) is the number of messages in the sequence
si, depth(si) is the number of mutations the sequence has un-
dergone, and α and β are weights that balance the importance
of length and mutation depth. The possibility of each sequence
si being selected to mutate is based on normalized scores:

P (Si) =
S(si)∑
j S(sj)

,

This ensures that sequences with higher scores are more likely
to be selected, while still maintaining diversity in selection.

Once a sequence is selected, we apply only one mutation
at a time to minimize deviations from the original sequence
and ensure a high probability that the mutated test sequence
is still accepted by the target. Within the selected sequence,
we calculate a priority score for each message mj in si based

on its position in the sequence and its mutation history. The
score S for a message mj is given by:

S(mj) = γ · j

len(si)
+ δ · 1

1 + mutations(mj)
,

where len(si) represents the total length of the sequence,
so j

len(si) assigns higher weights to later messages in the
sequence to reduce early rejection of the mutated sequence.
Mutations(mj) is the number of times the message has been
mutated, which prioritizes under-tested messages. γ and δ are
weights that balance the influence of position and mutation
history. The message is also selected based on the normal-
ized probability similar to sequence selection. Each selected
message undergoes one of the following mutation strategies:
(1) In-place mutation, which modifies the values within the
message, such as altering parameter values. (2) Replacement
that swaps the selected message with another valid message,
either randomly or selected from a different sequence in the
corpus. (3) Deletion, which removes the message from the
sequence. (4) Addition, that inserts a new message or multiple
messages into the sequence, selected from another sequence in
the corpus. (5) Crossover, by combining parts of the selected
message with another message to create a hybrid test case.

V. EVALUATION

To evaluate the effectiveness of our approach, we aim to
address the following research questions:

• RQ1. How effective is our approach in identifying real
vulnerabilities in 5G core networks?

• RQ2. How does our approach compare to existing REST
API testing tools?

A. Identified Vulnerabilities

To address RQ1, we evaluated our approach on the major
NFs of a popular open-source 5G core network implementa-
tion, free5GC [32] over a 24-hour testing period. During this
evaluation, we uncovered two previously unknown vulnerabil-
ities that caused system crashes. Both issues were assigned
CVEs and acknowledged by the developers. Patches to fix
both issues have been merged. The identified vulnerabilities
highlight critical flaws in input validation and error handling
in the target implementation. Both issues occur in AMF’s
Event Exposure API, which provides subscription manage-
ment for AMF events. The first vulnerability is triggered by
the absence of a mandatory EventList parameter. Instead of
returning a client error (e.g., a 400 Bad Request), AMF fails
to handle the missing parameter gracefully, leading to a null
pointer dereference and triggering a 500 Internal Server Error.
Similarly, the second vulnerability arises when AMF attempts
to access a malformed or incomplete payload, leading to a
similar Internal Server error. Both issues stem from insufficient
checks for null values before dereferencing critical fields.

The identified vulnerabilities pose significant risks to the
reliability and security of 5G core networks. Exploiting these
weaknesses, an attacker could craft malicious requests with
missing or malformed parameters to induce a denial of service
attack on the AMF. This could disrupt critical functionalities

3



TABLE I: Comparison of REST API Testing Tools
Tool Approach Test Generation Feedback/Oracle Stateful Notes
Ours Black-box Evolutionary-

based
Response codes &
messages

Yes Dynamically refines test cases using mutation; prioritizes exploration
based on response diversity.

RESTler [2] Black-box Generation-
based

Response codes Yes Extracts dependencies from API specifications and uses static dictio-
naries for parameter values; limited by lack of mutation.

Miner [3] Black-box Generation-
based

Response codes Yes Applies neural network to generate valid long request sequences.
However, it lacks dynamic refinement of test inputs.

EvoMaster [4] Black-
/White-box

Random/ muta-
tion

Response codes Yes Black-box mode applies random test generations; white-box applies
mutation algorithms, but only supports Java targets.

Forest [5] Black-box Generation-
based

Response codes Yes Applies tree-based approach to infer API-dependency graphs from
specifications. Employs static dictionary-based test generation.

RestTestGen [26] Black-box Nominal/error
tests

Response codes &
format

Yes Performs nominal tests using generation values and error tests by
mutating nominal tests to invalid values/fields.

RESTest [20] Black-box Model-based Response codes Yes Analyzes inter-parameter dependencies in specifications to produce
nominal/faulty values for tests.

WuppieFuzz [27] Black-
/White-box

Coverage-guided Response codes,
code coverage

Yes Supports code coverage from languages supported by LibAFL, and
utilizes API specifications for request generation and mutation.

such as event subscription and notification handling, affecting
network stability. However, these vulnerabilities are challeng-
ing to detect using existing tools because: (1) Static test cases
existing generation-based tools employ may not include edge
cases such as missing or malformed fields. (2) Detecting these
issues requires understanding stateful dependencies between
API requests. For example, the Event Exposure API must
validate and maintain the subscription state, but existing tools
cannot model such dependencies effectively.

B. Comparison Against Existing Tools

To answer RQ2, we conduct a comparative analysis of
our approach with other popular REST API testing tools,
presented in Table I. Our approach is the only one that
employs an evolutionary algorithm in black-box settings,
which enables dynamic refinement of test cases, compared
to the static random generation-based techniques used by
other black-box tools. Our approach leverages state-aware
sequence mutation to explore complex interactions effectively.
Compared to WuppieFuzz and EvoMaster, whose efficiency
depends on their white-box coverage-guided testing, our black-
box approach is more flexible, operating effectively without
requiring instrumentation. This makes our tool more applicable
to test 5G core networks where source access is unavailable.

To further evaluate our approach, we conducted a quan-
titative comparison with popular existing tools, includ-
ing RESTler [2], foREST [5], and EvoMaster (black-box
mode) [4]. Each tool was executed with its default configura-
tions for a duration of 24 hours on the Event Exposure API
of the AMF in free5GC [32]. The coverage growth over time
is shown in Figure 2. As illustrated, our approach achieves
the highest code coverage and demonstrates continuous growth
throughout the testing period. In contrast, other compared tools
stagnate after approximately six hours, where their generation-
based methods struggle to uncover additional coverage.

0 6 12 18 24
Time (hours)

37
00

38
00

Ed
ge

 C
ov

er
ag

e

Ours
RESTler
foREST
EvoMaster

0 6 12 18 24
Time (hours)69

00
70

00
71

00
72

00

Bl
oc

k 
Co

ve
ra

ge

Fig. 2: Edge/Basic Block Coverage of Different Tools Over Time

VI. CONCLUSION & FUTURE DIRECTION

We presented our work-in-progress of designing and im-
plementing a black-box evolutionary fuzzer for REST APIs
in 5G networks, addressing the limitations of existing static
generation-based methods through dynamic feedback-driven
refinement and state-aware sequence mutations. Our evaluation
uncovered two critical vulnerabilities in a widely used 5G
core implementation, demonstrating the effectiveness of our
approach in finding flaws that could disrupt 5G operations. We
plan to enhance our approach in the following key directions.
Domain-informed test generation. Incorporating domain-
specific knowledge into sequence generation can significantly
improve the effectiveness of testing. Understanding the spe-
cific roles and interactions of NFs in 5G core networks
and their associated procedures can help craft sequences that
target inter-function dependencies and stateful interactions. For
instance, the registration procedure in 5G involves intricate
communication between various NFs with complex parameter
dependencies. Existing approaches fail to infer such depen-
dencies, making it challenging to generate a complete and
successful registration sequence. Leveraging domain-informed
heuristics could guide the mutation process to produce test
cases that reflect realistic traffic patterns and uncover edge
cases specific to telecommunication protocols.
LLM-enhanced parameter & sequence construction. Large
language models (LLMs) offer significant potential for enhanc-
ing parameter generation and sequence construction through
semantic understanding. LLMs trained on API specifications,
technical documentation, and runtime logs could infer pa-
rameter constraints, relationships, and valid values, enabling
the creation of highly realistic and contextually relevant test
cases. Additionally, LLMs could assist in synthesizing com-
plex API sequences by reasoning about dependencies and
plausible interactions. By integrating LLM-powered insights
with feedback-driven refinement, our approach could achieve
greater depth and breadth of exploration, uncovering complex,
multi-step vulnerabilities that traditional methods cannot find.

ACKNOWLEDGEMENTS

This work has been supported by the NSF under grants
2145631, 2215017, 2226447, and 2326898, and by DARPA
under contract number D22AP00148.

4



REFERENCES

[1] 3rd Generation Partnership Project (3GPP), “3GPP TS
23.501 V19.2.0: System Architecture for the 5G System
(5GS),” 3GPP, Tech. Rep., September 2025, accessed: 2025-
01-07. [Online]. Available: https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.aspx?specificationId=3144

[2] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Restler: Stateful rest api
fuzzing,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), 2019, pp. 748–758.

[3] C. Lyu, J. Xu, S. Ji, X. Zhang, Q. Wang, B. Zhao, G. Pan, W. Cao,
P. Chen, and R. Beyah, “Miner: a hybrid data-driven approach for rest
api fuzzing,” in Proceedings of the 32nd USENIX Conference on Security
Symposium, ser. SEC ’23. USA: USENIX Association, 2023.

[4] A. Arcuri, “Evomaster: Evolutionary multi-context automated system
test generation,” in 2018 IEEE 11th International Conference on Soft-
ware Testing, Verification and Validation (ICST), 2018, pp. 394–397.

[5] J. Lin, T. Li, Y. Chen, G. Wei, J. Lin, S. Zhang, and H. Xu, “forest:
A tree-based black-box fuzzing approach for restful apis,” in 2023
IEEE 34th International Symposium on Software Reliability Engineering
(ISSRE), 2023, pp. 695–705.

[6] S. R. Hussain, M. Echeverria, I. Karim, O. Chowdhury, and E. Bertino,
“5greasoner: A property-directed security and privacy analysis frame-
work for 5g cellular network protocol,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, 2019,
pp. 669–684.

[7] M. Akon, T. Yang, Y. Dong, and S. R. Hussain, “Formal analysis
of access control mechanism of 5g core network,” in Proceedings of
the 2023 ACM SIGSAC Conference on Computer and Communications
Security, 2023, pp. 666–680.

[8] “Swagger: API Documentation and Design Tools.” [Online]. Available:
https://swagger.io/

[9] D. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and V. Stettler,
“A formal analysis of 5g authentication,” in Proceedings of the 2018
ACM SIGSAC conference on computer and communications security,
2018, pp. 1383–1396.

[10] S. R. Hussain, I. Karim, A. A. Ishtiaq, O. Chowdhury, and E. Bertino,
“Noncompliance as deviant behavior: An automated black-box noncom-
pliance checker for 4g lte cellular devices,” in Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security,
2021, pp. 1082–1099.

[11] D. Rupprecht, K. Kohls, T. Holz, and C. Pöpper, “Call me maybe:
Eavesdropping encrypted lte calls with revolte.” in USENIX Security
Symposium, 2020, pp. 73–88.

[12] E. Kim, D. Kim, C. Park, I. Yun, and Y. Kim, “Basespec: Comparative
analysis of baseband software and cellular specifications for l3 proto-
cols.” in NDSS, 2021.

[13] D. Maier, L. Seidel, and S. Park, “Basesafe: Baseband sanitized fuzzing
through emulation,” in Proceedings of the 13th ACM conference on
security and privacy in wireless and mobile networks, 2020, pp. 122–
132.

[14] T. Yang, S. M. M. Rashid, A. Ranjbar, G. Tan, and S. R.
Hussain, “ORANalyst: Systematic testing framework for open RAN
implementations,” in 33rd USENIX Security Symposium (USENIX
Security 24). Philadelphia, PA: USENIX Association, Aug. 2024,
pp. 1921–1938. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity24/presentation/yang-tianchang

[15] K. Tu, A. A. Ishtiaq, S. M. M. Rashid, Y. Dong, W. Wang,
T. Wu, and S. R. Hussain, “Logic gone astray: A security analysis
framework for the control plane protocols of 5g basebands,” in 33rd
USENIX Security Symposium (USENIX Security 24). Philadelphia, PA:
USENIX Association, Aug. 2024, pp. 3063–3080. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity24/presentation/tu

[16] G. Nakas, P. Radoglou-Grammatikis, G. Amponis, T. Lagkas, V. Ar-
gyriou, S. Goudos, and P. Sarigiannidis, “5g-fuzz: An attack generator
for fuzzing 5gc, using generative adversarial networks,” in 2023 IEEE
Globecom Workshops (GC Wkshps), 2023, pp. 347–352.

[17] I. Siroš, D. Singelée, and B. Preneel, “Covfuzz: Coverage-based fuzzer
for 4g5g protocols,” 2024. [Online]. Available: https://arxiv.org/abs/
2410.20958

[18] S. L. S. C. S. S. E. K. Matheus E. Garbelini, Zewen Shang, “5Ghoul :
Unleashing Chaos on 5G Edge Devices ,” https://asset-group.github.io/
disclosures/5ghoul/, 2023.

[19] 3rd Generation Partnership Project (3GPP), “3GPP 5G Specification
series,” 2024. [Online]. Available: https://www.3gpp.org/dynareport?
code=29-series.htm

[20] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “RESTest: Automated
Black-Box Testing of RESTful Web APIs,” in Proceedings of the
30th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA ’21. Association for Computing Machinery, 2021.

[21] “Schemathesis: Property-Based Testing for Your APIs.” [Online].
Available: https://github.com/schemathesis/schemathesis

[22] “Tcases: Model-Based API Testing Framework.” [Online]. Available:
https://github.com/Cornutum/tcases

[23] “Dredd: Language-Agnostic API Validation Tool.” [Online]. Available:
https://github.com/apiaryio/dredd

[24] “bBOXRT: Black-Box RESTful Testing Tool.” [Online]. Available:
https://git.dei.uc.pt/cnl/bBOXRT

[25] “APIFuzzer: REST API Security Fuzzer.” [Online]. Available: https:
//github.com/KissPeter/APIFuzzer

[26] D. Corradini, A. Zampieri, M. Pasqua, and M. Ceccato, “Resttestgen: An
extensible framework for automated black-box testing of restful apis,”
in 2022 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2022, pp. 504–508.

[27] “WuppieFuzz: coverage-guided REST API fuzzer.” [Online]. Available:
https://github.com/TNO-S3/WuppieFuzz

[28] M. Zhang and A. Arcuri, “Open problems in fuzzing restful apis:
A comparison of tools,” ACM Trans. Softw. Eng. Methodol., vol. 32,
no. 6, Sep. 2023. [Online]. Available: https://doi.org/10.1145/3597205

[29] M. Kim, Q. Xin, S. Sinha, and A. Orso, “Automated test generation
for rest apis: no time to rest yet,” in Proceedings of the 31st
ACM SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA ’22. ACM, Jul. 2022. [Online]. Available:
http://dx.doi.org/10.1145/3533767.3534401

[30] “American Fuzzy Lop (AFL).” [Online]. Available: https://lcamtuf.
coredump.cx/afl/

[31] “libFuzzer: A Library for Coverage-Guided Fuzzing.” [Online].
Available: https://llvm.org/docs/LibFuzzer.html

[32] “free5GC: An Open-Source 5G Core Network Implementation.”
[Online]. Available: https://free5gc.org/

5


