
Decoupling Permission Management from
Cryptography for Privacy-Preserving Systems

Ruben De Smet
Department of Engineering Technology (INDI)

Department of Electronics and Informatics (ETRO)
Vrije Universiteit Brussel

rubedesm@vub.be

Tom Godden
Department of Engineering Technology (INDI)

Vrije Universiteit Brussel
tom.godden@vub.be

Kris Steenhaut
Department of Engineering Technology (INDI),

Department of Electronics and Informatics (ETRO)
Vrije Universiteit Brussel

kris.steenhaut@vub.be

An Braeken
Department of Engineering Technology (INDI)

Vrije Universiteit Brussel
an.braeken@vub.be

Abstract—The principle of privacy-by-design more often than
not requires the implementation of privacy-enhancing technolo-
gies (PETs). In turn, the implementation of PETs requires in-
depth knowledge of cryptography engineering, which hinders
a.o. rapid prototyping, modularity, and readability. This article
proposes research on loose coupling of cryptographic primitives
to business logic. As a running example, we look at the per-
mission management of Signal’s private groups, and propose an
alternative design, keeping in mind extensibility, modularity, and
improved transparency and auditability.

I. INTRODUCTION

The integration of privacy-enhancing technologies (PETs)
in new software systems requires a meticulous engineering
effort, and often involves cryptography engineering. This is
a paradoxical observation: software engineers are told not to
“roll their own crypto”, but at the same time, have to provide
the most privacy-friendly version of their software. Commonly,
no prior art exists regarding the specific cryptographic require-
ments for new applications, and new protocols need to be
devised. These new cryptographic protocols get tailored to the
specific use-case of the application. This introduces a tight
coupling of business logic to cryptographic implementation
details.

This article demonstrates how declarative programming
languages may enable the decoupling of permission systems
from their underlying cryptographic implementation. Addi-
tionally, we present some work in progress, and ways forward,
to improve the expressiveness and potential of declarative
programming frameworks for PET development.

As a motivating example, this article studies the Signal pri-
vate group management system [1]–[3]. First, we motivate the
need for modularity in cryptographic design in section II-A,
and argue our point with prior art in section II-B. A brief
overview of the Signal private group system is then given
in section II-C, to serve as the motivating example of this
article. Our approach is then explained in section III. In
the discussion, section IV, we emphasize current limitations,
ongoing work, and necessary future work, after which follows
a brief conclusion in section V.

II. BACKGROUND

A. Challenges of privacy-preserving systems

Privacy-by-design and privacy-by-default mandate that in-
formation processing systems safeguard user data against
exposure. However, implementing these principles in practice
is fraught with challenges.

A key tension lies between the cryptographic skills required
to guarantee security and the usability needed for widespread
adoption. Cryptographic systems must meet stringent require-
ments for correctness, confidentiality, and integrity, as even
minor flaws can have catastrophic consequences. At the same
time, developers integrating these systems into real-world
applications often lack expertise in cryptography, leading to
a high risk of implementation errors or insecure shortcuts.

The trade-off between general-purpose and application-
specific solutions further complicates the design of privacy-
preserving systems. On the one hand, generic primitives like
Transport Layer Security (TLS) provide broadly applicable
cryptographic guarantees but fail to address nuanced appli-
cation requirements, such as managing fine-grained access
control, metadata privacy, or privacy-preserving analytics. On
the other hand, tailored cryptographic solutions can precisely
meet application needs but often entangle cryptographic im-
plementation details with application logic, creating systems
that are difficult to debug, extend, standardize, or audit.

Workshop on Innovation in Metadata Privacy: Analysis and Construction
Techniques (IMPACT) 2025
28 February 2025, San Diego, CA, USA
ISBN 979-8-9919276-2-8
https://dx.doi.org/10.14722/impact.2025.23050
www.ndss-symposium.org



This tight coupling of business logic and cryptographic
implementation introduces significant barriers to modularity
and maintainability. For example, when system requirements
evolve, such as adapting a permission model to support new
roles or relationships, developers often face the task of mod-
ifying cryptographic constructs alongside application logic.
Moreover, debugging such systems is inherently challenging,
as privacy-respecting data processing and storage limits the
tools and techniques available for tracing issues.

Privacy-preserving system design demands a balance be-
tween correctness, usability, and modularity. Bridging this gap
requires approaches that can decouple cryptographic imple-
mentation from application logic, enabling developers to focus
on high-level design without sacrificing privacy guarantees.

B. Related work

The design of PETs has often encountered the challenge
of balancing cryptographic correctness with usability [4].
Certain domains of PETs have made significant progress
in developing high-level frameworks and abstractions that
facilitate the adoption of complex cryptographic primitives
while minimizing the risk of misuse. Below, we survey notable
examples of such advancements and discuss their relevance to
our goal of decoupling permission systems from cryptographic
implementation.

High-level frameworks for private information retrieval
(PIR) provide a compelling example of how cryptographic
primitives can be abstracted for easier integration. For exam-
ple, MuchPIR is a plugin-style PIR solution for the main-
stream PostgreSQL relational database management system
(RDBMS), demonstrating how modern databases can adopt
privacy-preserving queries with minimal disruption to existing
workflows [5]. These frameworks emphasize usability by
abstracting away cryptographic details, a principle that aligns
closely with the need for modularity in privacy-preserving
systems.

Declarative frameworks have been proposed to simplify
policy specification and enforcement in privacy and security
systems. Recently, for instance, Farkas, Toldi, Péter, et al.
developed a Prolog-based framework for declarative, zero-
knowledge verifiable policies [6]. Building on the ideas behind
Circuitree [7], their framework extends the capabilities of
declarative systems by enabling the expression of policies
that are both enforceable and provable using zero-knowledge
proofs. Circuitree’s foundational contribution lies in its ability
to encode relations and permissions in a high-level declarative
syntax while leveraging underlying cryptographic primitives.
Notably, the work of Farkas, Toldi, Péter, et al. compares
against the original version of Circuitree, which has mean-
while seen significant improvement and extensions, and a new
comparison might be of interest.

In the domain of access control, several notable models
emphasize modularity and interpretability. Masoumzadeh and
Joshi introduced OSNAC, an ontology-based access control
model tailored for social networking systems [8]. By leverag-
ing ontologies, OSNAC enables dynamic and context-aware

access control decisions, demonstrating the potential of declar-
ative paradigms in simplifying complex policy definitions.
Similarly, the work of Fong and Siahaan on relationship-based
access control (ReBAC) proposes a declarative policy language
that captures complex (data) relationship-based constraints
while maintaining human readability [9]. Neither of these
frameworks, however, are cryptographically enforced.

Despite their theoretical potential, advanced cryptographic
techniques such as oblivious transfer (OT), attribute-based
encryption (ABE), and fully homomorphic encryption (FHE)
often remain relatively inaccessible to non-experts. These
primitives are typically implemented in bespoke ways for spe-
cific applications, resulting in tightly coupled systems that are
difficult to adapt or extend. While frameworks exist for some
of these primitives [10]–[12], their integration into mainstream
application development remains an ongoing challenge.

These prior works collectively highlight the potential ben-
efits of decoupling business logic from cryptographic imple-
mentation. Frameworks like those for PIRs and declarative
policy specification provide valuable insights and inspiration
into how abstraction can enhance modularity, extensibility,
and usability in PETs. Access control systems, in particular,
demonstrate how declarative paradigms can be used to define
and enforce complex policies.

This article extends these ideas by advocating for a declar-
ative approach to structuring permissions management. By
abstracting away cryptographic complexity, such an approach
facilitates transparency, auditability, and ease of adoption,
while maintaining the cryptographic correctness required for
privacy-preserving applications.

C. Signal Private Groups

Modern instant messaging systems are expected to include
group chat functionality, which requires managing the distribu-
tion of messages among group members. Two primary models
exist for this purpose: server fan-out and client fan-out.

In the server fan-out model, the server receives a message
from the sender and distributes copies of the message to each
group member. While efficient, this model requires the server
to maintain knowledge of the group composition, creating
potential privacy risks.

Privacy-preserving instant messaging systems, such as Sig-
nal, adopt the client fan-out model to mitigate these concerns.
In this approach, the sender distributes a copy of the message
directly to each recipient, ensuring that the server does not
know the group composition. However, this distributed model
complicates the management of group membership, necessi-
tating mechanisms to ensure consistency and integrity without
violating privacy.

To address these challenges, Signal introduced its “private
group system” [1] in 2019. This system relies on storing an
encrypted group state on the server and using an anonymous
credential system to enforce well-formed and consistent up-
dates to the group state. For example, while only administra-
tors should have the authority to add group members [2], any
member should be allowed to leave the group independently.

2



Signal’s anonymous credential system [3] is tailored specifi-
cally to its use case, enabling it to achieve strong guarantees of
privacy and security. In contrast, this work proposes leveraging
a more general zero-knowledge proof (ZKP) system to achieve
similar guarantees while introducing greater expressivity and
flexibility. A generalized ZKP system can enable more com-
plex assertions of group state consistency and extend the
capabilities of the private group system to support additional
features.

Careful attention, however, must be given to the perfor-
mance trade-offs of adopting a more general approach, en-
suring that the enhanced expressivity does not come at the
cost of usability, efficiency, or security.

III. DECLARATIVELY MODELING PERMISSION SYSTEMS

Permission systems define and enforce the rules governing
who can access or modify specific resources. Declarative
approaches to modeling such systems provide a high-level,
expressive, and human-readable way to specify these rules,
separating the business logic from implementation details.
This separation stimulates modularity, makes the rules easier
to verify, and enables reuse across different applications or
domains.

Declarative frameworks use formal languages to define the
relationships and constraints in the permission system. These
languages are particularly well-suited to capture the dynamic
and hierarchical nature of permission systems. For example,
they can specify rules such as:

a) Membership Inheritance: If a user is an administrator
of a parent group, they automatically gain permissions in
subgroups.

b) Context-Specific Constraints: Certain permissions
may only be valid under specific conditions, such as time of
access or resource state.

c) Conflict Resolution: Declarative systems may explic-
itly encode policies for resolving conflicts, such as when two
rules grant overlapping but contradictory permissions.

Declarative systems also enable auditability and inter-
pretability. Since the rules are expressed in a high-level,
human-readable form, they can be analyzed and debugged in-
dependently of the underlying cryptographic implementation.

A. Circuitree
Circuitree [7] is a framework for declaratively modeling

witnesses, public inputs, and proof statements using Datalog.
Its core strength lies in leveraging the simplicity and expres-
siveness of Datalog to encode the relationships and constraints
that define the permission system. As such, Circuitree is a
ZKP system for Datalog statements. While Circuitree initially
lacked support for certain features required for more expres-
sive permission systems, arithmetic constraints have since been
implemented in the framework. This addition significantly
expands Circuitree’s applicability, particularly for modeling
permission systems that rely on numerical constraints. More-
over, the system has undergone substantial performance im-
provements, although both these results have yet to be for-
mally evaluated and published. These advancements improve

Circuitree’s efficiency while extending its flexibility, enabling
a wider range of applications.

While Circuitree provides a powerful starting point, it
lacks certain features needed for more expressive permission
systems. Specifically, one more missing feature in Circuitree
would be some form of support for negation. Declarative
permission systems often need to encode rules such as “no
unauthorized user can access a resource.” Negation in Datalog
is a complex topic, and care has to be taken to assure the prover
always terminates. Extending Circuitree to support stratified
negation [13, Section 15.2], without negation-as-failure, would
enable such constraints to be modeled directly.

In contrast to the approach proposed by Farkas, Toldi,
Péter, et al. [6], which introduces a Prolog-based extension
for policy evaluation, our proposed extensions would main-
tain Circuitree’s efficient architecture. This should allow for
efficient proof generation and verification while extending the
system’s flexibility to capture a broader range of permission
models.

B. Modeling Signal private groups in Circuitree

Signal’s private group system addresses the challenges of
managing group membership in privacy-preserving messaging
by storing the encrypted group state on a server. Modifications
to the group (e.g. adding or removing members) must be
performed in a way that ensures the integrity of the group
structure and the correctness of updates, without revealing
sensitive information, if any information at all, to the server.

To achieve this, Signal relies on an anonymous credential
system [3] tailored to its specific use-case. Circuitree, as a
more general-purpose ZKP system, can be used to achieve
similar goals. Circuitree enables the encoding of rules and
constraints declaratively, making it easier to extend the per-
mission system’s feature set.

Consider the scenario where a user wishes to add a new
member to the group. The group state stored on the server
includes the current members and their roles, and a set of
rules governs how modifications can be made. The following
example demonstrates how to model this process in Circuitree.
The server stores the following encrypted group state:
% Old group structure
member(alice, prevGroup, member).
member(bob, prevGroup, admin).

% We can encode higher-order rights!
allow(add, alice, prevGroup).

The challenge is to prove the updated group structure. For
example, we may need to demonstrate that Alice and Bob
remain administrators in the new group, and that Carol is
now a member. Additionally, we need to ensure that no access
rights have been violated and that there is always at least one
administrator in the group. The new group structure could look
like this:
% New group structure
?- member(alice, newGroup, admin).

3



?- member(bob, newGroup, admin).
?- member(carol, newGroup, member).

% Access rights in the new group
?- allow(add, alice, prevGroup).

% Prove that none of the rights were
violated↪→

?- not violation.
% At least one admin remains
?- member(_, newGroup, admin).

The new group structure is formatted as a Datalog query,
since it is the statement that we want to prove with Circuitree.

The system can validate these relationships by specifying a
changeset, represented as a witness by the prover. For example,
we could specify the change of Alice adding Carol as a
member with the following:
% Declare the change
action(add, carol, member, alice).

To compute the new group structure based on the changeset,
we would write Datalog rules. These rules are fixed on both
the server, and the prover. The program below demonstrates
this approach:
% Additions imply membership in the new

group↪→

member(X, newGroup, Role)
:- action(add, X, Role, Member).

% A member in the old group also exists in
the new group↪→

member(X, newGroup, Role)
:- not action(delete, X, Role, Member),

member(X, prevGroup, Role).

violation
:- action(Action, _, Role, Member),

not allow(Action, Member, prevGroup).

% Define default rights based
allow(add, Member, Group)

:- member(Member, Group, admin).
allow(delete, Member, Group)

:- member(Member, Group, admin).
At first glance, this Datalog program seems like an elegant

way to capture the desired group dynamics. However, this
program relies on negation, which is not currently supported
by Circuitree.

In theory, a semipositive Datalog¬ formulation should be
sufficient for such a program. In practice, implementing strat-
ified negation [13, Section 15.2] would likely be necessary.
Currently, Circuitree’s implementation does not support strati-
fied negation, which limits its ability to directly represent this
permission system.

C. Transparency and usability
Declarative permission models are inherently human-

readable and interpretable, which improves transparency in

privacy-preserving systems. Stakeholders, including develop-
ers, administrators, and auditors, can easily review the rules
and ensure they align with organizational policies or regulatory
requirements.

For example, the following rule makes it clear that only
admins can add members to a group:
allow(add, Member, Group) :-

member(Member, Group, admin).

In contrast to imperative implementations that obscure logic
within code, or within the cryptography itself, declarative rules
explicitly state the relationships and constraints, enhancing
trust and accountability.

A key advantage of using declarative frameworks is the
lower barrier to entry for non-experts in cryptography or
privacy-preserving system design. Circuitree’s high-level ab-
straction reduces the need for deep technical expertise, en-
abling broader participation in developing secure systems.

Consider the following simple rule for validating actions:
violation :-

action(Action, _, _, Initiator),
not allow(Action, Initiator, Group).

This rule encodes misuse resistance by automatically flag-
ging any unauthorized action, reducing the likelihood of
human error. Non-expert developers can confidently build
systems by relying on well-defined, declarative primitives,
stimulating safer and more widespread adoption of privacy-
preserving technologies.

D. Integration into Signal

Up until now, this article considers Circuitree as an isolated
building block for modeling permissions. In theory, it is possi-
ble to use Circuitree to prove statements about the pre-existing
encrypted group state. By intelligently picking the elliptic
curve used for the Circuitree ZKP, a backwards-compatible
design, reusing Signal’s current ElGamal-encrypted group
state could be rather efficient.

Alternatively, the server could keep a cryptographic com-
mitment to the group state on the Signal servers, instead of
the full (encrypted) state. This approach keeps the group state
information-theoretically secure. The actual new group state
would need to be gossiped around the group members, but
this infrastructure is already in place.

Either approach requires some bespoke ZKP design to tie
the group state to Circuitree, but neither design fundamentally
changes the current protocol. In both cases, a so-called “gad-
get” needs to be designed to transform the hidden group state
into Circuitree datalog facts.

IV. DISCUSSION

As demonstrated by the Signal example, the decoupling
of underlying cryptographic systems renders the system as
a whole more modular, transparent, and usable to non-
cryptographers. However, it is also important to quantify the
cost.

Circuitree has seen substantial performance improvements,
even with new features such as arithmetic constraints included.

4



Whereas these optimizations remain unpublished, initial re-
sults suggest that the framework remains highly efficient, even
improving its suitability for real-world applications. A detailed
performance comparison with frameworks such as [6] and
imperative ZKP systems like Circom [14] would further clarify
these trade-offs.

The approach presented in this article allows for permission
models to be developed and analyzed independently of the
cryptographic machinery, significantly lowering barriers to en-
try for developers of privacy-preserving systems. However, this
modularity does not come without trade-offs, and it is crucial
to carefully quantify the associated costs and limitations, and
to further study the potential security impact of the approach.

A. Performance trade-offs

One of the primary challenges lies in the computational
cost of extending declarative frameworks such as Circuitree.
While Datalog is inherently efficient for a variety of declarative
queries, the addition of features like negation may introduce
performance bottlenecks. Furthermore, practical applications
often require scalability to accommodate large group sizes,
such as those in messaging systems like Signal. The impact
of these extensions on scalability and proof efficiency remains
an open question, requiring evaluation in future work.

B. Interfacing with encrypted states

Another key challenge is the integration of declarative
systems with encrypted stored states. In the case of Signal,
for example, group membership and permissions are stored on
the server in an encrypted format. To leverage Circuitree, this
encrypted state must be transformed into a format that can be
processed by the ZKP system, which involves implementing
a proof-of-decryption. These gadgets introduce an additional
layer of complexity, in terms of development effort, coupling
and runtime performance. Developing a set of generic “input
gadgets” tailored to Circuitree would be an interesting research
direction.

C. Applicability to broader systems

Although this article focuses on modeling Signal’s private
group system, the proposed approach is general enough to be
applied to a wide range of privacy-preserving systems. Future
work should explore how declarative ZKP frameworks can be
adapted to other domains, such as access control in online
social networks, blockchain smart contracts, and privacy-
preserving machine learning. Comparisons with existing sys-
tems like the Prolog-based approach of Farkas, Toldi, Péter,
et al. [6] or Signal’s native implementation will also provide
valuable insights into the practical trade-offs of declarative
versus specialized solutions.

D. Comparison to imperative frameworks

In addition to declarative frameworks, imperative ZKP
frameworks such as Circom [15] or Cairo [16] offer power-
ful tools for implementing privacy-preserving systems. These
frameworks provide a Turing-complete approach to designing

ZKPs, allowing developers to transform imperative, C-like
code to a ZKP. This imperative paradigm may provide greater
familiarity to the developer, but may come at a significant
performance cost.

Future work should include a direct comparison of declara-
tive and imperative ZKP frameworks, evaluating their respec-
tive strengths in terms of performance, developer usability, and
adaptability to different domains.

E. Future directions for Circuitree

Several extensions to Circuitree would enhance its utility as
a privacy-preserving permission framework:

• Adding support for stratified negation, with a focus on
maintaining proof efficiency.

• Investigating the feasibility of incorporating systems be-
yond ZKPs, such as oblivious transfer or secure multi-
party computation, into the declarative framework.

• Developing practical performance benchmarks against
real-world systems, including those with bespoke cryp-
tographic implementations.

• Improving the interoperability of declarative frameworks
with encrypted states through reusable input gadgets,
streamlining integration with existing cryptographic sys-
tems.

• Support for open queries (e.g. ?- member(_, new-
Group, _))

F. Limitations

The modularity and abstraction offered by declarative per-
mission modeling come with limitations, primarily centered
on performance and integration challenges. Additionally, while
declarative frameworks excel at human-readable transparency,
they may still require a significant learning curve for devel-
opers unfamiliar with logical programming paradigms such as
Datalog. Further research is needed to ensure these systems
are not only powerful but also intuitive and easy to adopt.

V. CONCLUSION

We present a case for the use of declarative frameworks in
the modeling of privacy-preserving permission systems, with
a specific focus on extending the capabilities of Circuitree.
By decoupling permission management from cryptographic
implementation details, declarative systems provide a pathway
toward modular, transparent, and usable privacy-preserving
systems.

Using the Signal private group management system as a mo-
tivating example, we demonstrated how declarative approaches
can encode and enforce complex permission models. We
identified key enhancements required to extend Circuitree’s
applicability, including support for negation, and efficient
mechanisms for bridging encrypted states with declarative
proofs. While these enhancements promise greater expressivity
and usability, the performance trade-offs remain an open
question.

Compared to imperative ZKP frameworks like Circom,
declarative systems offer significant advantages in terms of

5



usability, modularity, and interpretability, making them a
compelling choice for rapidly evolving systems. Future work
should explore the practical implications of these trade-offs,
through both theoretical analysis and empirical benchmarking,
and investigate the potential for declarative frameworks to
generalize beyond ZKPs into broader domains of privacy-
preserving computation.

We believe declarative systems represent a promising direc-
tion for the development of next-generation privacy-preserving
technologies. Their ability to reduce implementation complex-
ity, facilitate iterative development, and uphold cryptographic
guarantees makes them valuable tools for advancing the prac-
tical adoption of privacy-enhancing technologies.

ACKNOWLEDGMENT

This work is being performed within the framework of In-
noviris 2024-RPF Sufficiency and Data Minimization (SDM)
and Cybersecurity Research Program Flanders - second cycle
(VOEWICS02).

REFERENCES

[1] J. O’Leary. “Technology Preview: Signal Private Group
System,” Signal Messenger. (Dec. 9, 2019), [Online].
Available: https://signal.org/blog/signal-private-group-
system/ (visited on 04/27/2021).

[2] R. Sarafa. “New Features Coming to Signal Groups,”
Signal Messenger. (Oct. 14, 2020), [Online]. Available:
https : / / signal . org / blog / new - groups/ (visited on
04/27/2021).

[3] M. Chase, T. Perrin, and G. Zaverucha, “The Signal
Private Group System and Anonymous Credentials Sup-
porting Efficient Verifiable Encryption,” in Proceedings
of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, Virtual Event USA: ACM,
Oct. 30, 2020, pp. 1445–1459, ISBN: 978-1-4503-7089-
9. DOI: 10.1145/3372297.3417887. [Online]. Available:
https://dl.acm.org/doi/10.1145/3372297.3417887.

[4] A. Whitten and J. D. Tygar, “Why Johnny Can’t En-
crypt: A Usability Evaluation of PGP 5.0.,” in USENIX
Security Symposium, vol. 348, 1999, pp. 169–184. [On-
line]. Available: https : / / www . usenix . org / legacy /
events / sec99 / full papers / whitten / whitten . ps (visited
on 06/26/2024).

[5] E. Liones, ReverseControl/MuchPIR, Nov. 8, 2024.
[Online]. Available: https://github.com/ReverseControl/
MuchPIR (visited on 01/15/2025).

[6] M. Farkas, B. Á. Toldi, B. Z. Péter, and I. Kocsis,
“A Prolog-based Approach to Self-Evaluated, Declar-
ative and Zero-Knowledge Verifiable Policies,” in 2024
32nd International Conference on Modeling, Analysis
and Simulation of Computer and Telecommunication
Systems (MASCOTS), Krakow, Poland: IEEE, Oct. 21,
2024, pp. 1–6, ISBN: 9798331531300. DOI: 10.1109/
MASCOTS64422.2024.10786564. [Online]. Available:
https://ieeexplore.ieee.org/document/10786564/ (visited
on 01/13/2025).

[7] T. Godden, R. De Smet, C. Debruyne, T. Vandervelden,
K. Steenhaut, and A. Braeken, “Circuitree: A Datalog
Reasoner in Zero-Knowledge,” IEEE Access, vol. 10,
pp. 21 384–21 396, 2022, ISSN: 2169-3536. DOI: 10 .
1109/ACCESS.2022.3153366.

[8] A. Masoumzadeh and J. Joshi, “OSNAC: An Ontology-
based Access Control Model for Social Networking
Systems,” in 2010 IEEE Second International Confer-
ence on Social Computing, Minneapolis, MN, USA:
IEEE, Aug. 2010, pp. 751–759, ISBN: 978-1-4244-
8439-3. DOI: 10.1109/SocialCom.2010.116. [Online].
Available: http : / / ieeexplore . ieee . org / document /
5591484/ (visited on 04/16/2020).

[9] P. W. Fong and I. Siahaan, “Relationship-based access
control policies and their policy languages,” in Proceed-
ings of the 16th ACM Symposium on Access Control
Models and Technologies, ser. SACMAT ’11, New
York, NY, USA: Association for Computing Machinery,
Jun. 15, 2011, pp. 51–60, ISBN: 978-1-4503-0688-1.
DOI: 10.1145/1998441.1998450. [Online]. Available:
https://doi.org/10.1145/1998441.1998450 (visited on
09/03/2020).

[10] FENTEC, “FENTEC Project: Increasing Trustworthi-
ness of ICT solutions developing Functional Encryp-
tion,” Madrid, Spain, Press release, Mar. 31, 2018, p. 1.
[Online]. Available: https://fentec.eu/sites/default/files/
fentec/public/content-files/article/FENTEC PR 1.pdf
(visited on 01/17/2025).

[11] M. Abdalla, D. Catalano, R. Gay, and B. Ursu, “Inner-
Product Functional Encryption with Fine-Grained Ac-
cess Control,” in Advances in Cryptology – ASIACRYPT
2020, S. Moriai and H. Wang, Eds., Cham: Springer
International Publishing, 2020, pp. 467–497, ISBN: 978-
3-030-64840-4. DOI: 10.1007/978-3-030-64840-4 16.

[12] M. Tilen, J. Hartman, and G. Thibs, Fentec-
project/CiFEr, fentec-project, 2021. [Online]. Avail-
able: https://github.com/fentec-project/CiFEr (visited
on 01/17/2025).

[13] S. Abiteboul, R. Hull, and V. Vianu, Foundations
of Databases. Reading, Mass: Addison-Wesley, 1995,
685 pp., ISBN: 978-0-201-53771-0.

[14] H. Garcı́a Navarro, “Design and implementation of
the Circom 1.0 compiler,” M.S. thesis, Universidad
Complutense de Madrid, Madrid, Spain, 2020, 57 pp.

[15] M. Bellés-Muñoz, M. Isabel, J. L. Muñoz-Tapia, A.
Rubio, and J. Baylina, “Circom: A Circuit Description
Language for Building Zero-Knowledge Applications,”
IEEE Transactions on Dependable and Secure Com-
puting, vol. 20, no. 6, pp. 4733–4751, Nov. 2023,
ISSN: 1941-0018. DOI: 10.1109/TDSC.2022.3232813.
[Online]. Available: https://ieeexplore.ieee.org/abstract/
document/10002421 (visited on 01/17/2025).

[16] L. Goldberg, S. Papini, and M. Riabzev, “Cairo –
a Turing-complete STARK-friendly CPU architecture,”
1063, 2021. [Online]. Available: https://eprint.iacr.org/
2021/1063 (visited on 09/02/2021).

6


