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Abstract—We design a privacy-preserving data proxy mech-
anism within the FIWARE Data Space framework, utilizing
searchable encryption to ensure metadata confidentiality. The
system is engineered to enable secure and efficient data querying,
hiding the queries from the proxy and other data in the proxy
from the querying agent. Recognizing the necessity of regulatory
compliance, this paper integrates GDPR compliance modules into
the FIWARE Data Space architecture, addressing data collec-
tion, storage, sharing, and erasure processes to enhance global
applicability and regulatory adherence. In essence, we preserve
metadata privacy. Experimental evaluations demonstrate the
feasibility of the proposed query privacy mechanisms, focusing on
metadata confidentiality and system scalability in data-intensive
environments.

I. INTRODUCTION

Data Spaces [1], [2], defined by the International Data
Spaces Association (IDSA) [3] and European Data Space
initiatives [4], [5], are emerging as a new form of digital
platform aiming at enabling controlled, secure, and trusted data
sharing to facilitate realizing the digital economy. A growing
number of reports by commercial entities and governmental
bodies highlight their business potential and the possible
societal impact. The European Union has been supporting
developments in this area for many years, but many other
countries and regions are now embracing the vision and
technologies, supporting research and development, including
China.1

A data space is composed of building blocks that enable
semantic interoperability of data, uniform data access methods,
as well as increased data sovereignty and trust [5]. Data

1It is being reported (25 Nov. 2024) that “China aims for more
than 100 ‘trusted data spaces’ by 2028 under national action plan”
(https://www.scmp.com/news/china/politics/article/3287937/china-aims-more-
100-trusted-data-spaces-2028-under-national-action-plan).

intermediaries or brokers play a key role in the data space
architecture [3].

Metadata privacy within data spaces has become a
paramount concern. Metadata, including query patterns and
user interactions, is vital for query processing and system
management but poses privacy risks even when data is en-
crypted [6], [7]. Ensuring metadata privacy is critical for
safeguarding user confidentiality and meeting regulatory re-
quirements. Metadata is not message content but information
about the communication [8]. The surge in the Internet of
Things (IoT) devices has escalated the volume and variety
of metadata, complicating its collection, analysis, and pro-
tection. Ensuring metadata privacy is essential not only for
safeguarding individual privacy, but also for complying with
stringent regulations like the General Data Protection Regu-
lation (GDPR) and China’s Personal Information Protection
Law (PIPL). These mandate comprehensive data protection
measures, including data minimization, transparency, and user
control over personal information. However, industrial and
financial data security and metadata privacy are perhaps even
more important. Thus, robust mechanisms are urgently needed
to preserve data integrity, availability and confidentiality, but
also metadata confidentiality without compromising system
performance.

Current approaches have made progress in addressing meta-
data privacy risks. For instance, de Montjoye et al. introduced
openPDS [9], a personal metadata management framework
that allows individuals to collect, store, and grant fine-grained
access to their metadata. openPDS enhances privacy by im-
plementing SafeAnswers, which converts high-dimensional
metadata into low-dimensional responses, thereby mitigating
re-identification risks and preserving sensitive information.
However, openPDS is limited in high-dimensional, dynamic
IoT environments that require real-time and detailed queries.

For decentralized systems, Greschbach et al. demon-
strated [10] that metadata in Decentralized Online Social
Networks (DOSNs) can expose sensitive user information
through inference attacks, even when content is encrypted.
They identified challenges such as leakage of stored object
properties, access control mechanisms, and communication
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flows. Building on this, our work targets metadata privacy in
query processing—a critical aspect of decentralized systems.
Specifically, we aim to hide the content of user queries and
the identities of users from intermediary nodes in data spaces,
ensuring that neither query keywords nor user identities can
be inferred by proxies or other potential adversaries.

Legal and regulatory requirements further complicate meta-
data privacy. Chiara noted that advanced encryption tech-
niques often fail against metadata analysis, especially with
encrypted traffic [11]. GDPR compliance introduces additional
complexities, requiring comprehensive designs that address
both technical and legal challenges. Chen et al. proposed
Mohito [12], a scalable IoT metadata-hiding system using
oblivious key-value storage to protect user-device interactions.
Mohito is focused on specific IoT use cases.

Building on the above foundational studies, this paper
focuses on the query privacy issues of intermediaries in a
FIWARE Data Space (i.e., context brokers or proxy com-
ponents), especially metadata privacy. Our key contributions
include:

• Integration of Decentralized Identifiers (DIDs) and Veri-
fiable Credentials (VCs): Assigning each query a unique
DID and generating a unique VC ensures fine-grained,
trust-based access and authorization (and Zero Trust
properties).

• Searchable Encryption (SE) and Metadata Obfuscation:
Specifically, we utilize Searchable Symmetric Encryption
(SSE) to enable direct processing of encrypted queries,
maintaining confidentiality, while metadata obfuscation
conceals auxiliary data such as IP addresses and user
agents, minimizing leakage risks.

• Multi-layer Digital Watermark Verification: Embedding
watermarks at each stage by clients, agents, and data
providers ensures data integrity and authenticity through-
out the transmission chain.

• Integration with the FIWARE Framework: We propose
the “Extended Proxy Server,” combining a traditional data
proxy with FIWARE’s Context Broker, which aligns with
NGSI-LD standards, enabling privacy-preserving queries
and metadata obfuscation while ensuring encrypted, un-
linkable queries and full FIWARE interoperability.

The remainder of this paper is organized as follows: Sec-
tion II reviews related work. Section III presents the sys-
tem design. Section IV presents our evaluation in multiple
dimensions. Finally, Section V provides brief conclusions and
directions for future work.

II. RELATED WORK

Achieving query privacy in data spaces involves several
key elements: metadata privacy, cryptography, decentralized
identity management, and regulatory compliance. This section

reviews relevant literature, discussing major contributions and
challenges.

Metadata, while enhancing data utility, also introduces pri-
vacy risks [9]. In federated learning, sharing metadata like
feature names boosts model accuracy but compromises pri-
vacy [6]. Similarly, in secure VoIP communications, exposing
metadata such as caller identities and call durations despite
encryption presents a privacy concern [13]. These examples
highlight the need for privacy-preserving mechanisms that
protect metadata without sacrificing functionality.

Searchable encryption (SE) enables secure queries over
encrypted data [14], protecting indexes and access patterns.
However, it often encounters performance-security trade-
offs in large-scale scenarios, and identity privacy remains a
key challenge. We adopt Searchable Symmetric Encryption
(SSE) [15] for its sublinear search and reduced metadata
leakage. SSE’s index-based structures and dynamic updates
preserve confidentiality without compromising performance.

Decentralized Identifiers (DIDs) and Verifiable Credentials
(VCs) are emerging standards for decentralized identity man-
agement, providing secure mechanisms for identity verification
and authorization. Mazzocca et al. [13] survey DIDs and
VCs, examining their implementations, applications, regula-
tory frameworks, and the challenges and future directions
for their adoption beyond Self-Sovereign Identity systems. In
the IoT context, Mahalle et al. [16] investigate decentralized
identity management by analyzing various identification meth-
ods, evaluating DIDs and VCs in resource-constrained devices
through a smart home case study, and conducting a threat
analysis to ensure secure and scalable IoT deployments. While
current solutions effectively manage identities, integrating
DIDs and VCs into data spaces is complex, particularly in
achieving seamless interoperability and scalability.

The General Data Protection Regulation (GDPR) has estab-
lished stringent data privacy and protection standards, signifi-
cantly shaping the design and implementation of data manage-
ment systems. The study of Wachter [17] highlights GDPR’s
crucial role in addressing privacy and identifiability challenges
within the IoT, demonstrating how its standards balance neces-
sary identification and access control with user privacy rights.
Similarly, the study of Zaeem et al. [18] indicates that GDPR
has advanced user data protection, particularly by granting
rights to edit and delete personal information. Despite these
improvements, integrating GDPR compliance into dynamic
and decentralized data environments remains challenging [10].

Data spaces facilitate interoperable data sharing, supporting
a collaborative data economy [4]. While open standards are es-
sential, robust privacy mechanisms are often underdeveloped.
FIWARE, an open-source IoT platform, addresses this gap
through components like the Context Broker and Data Space
Connector, enabling privacy management based on NGSI-LD
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standards [19]. Recent enhancements, including FIWARE’s
IDS Certification for the Data Space Connector, reinforce
GDPR compliance using identity management protocols like
X.509, did:web, and Self-Sovereign Identity (SSI) [3].

By integrating FIWARE with advanced data connector stan-
dards and aligning with Data Space initiatives, our system
addresses contemporary privacy and regulatory challenges,
contributing a solution towards the maturing of the data
economy.

III. SYSTEM DESIGN

A. System Architecture

The privacy-preserving data proxy system ensures secure
data querying and effective metadata privacy management.
It comprises three main components: Client, Extended Proxy
Server, and Data Provider.

Client: Initiates queries by generating a unique Decentral-
ized Identifier (DID) for each request, ensuring unlinkability
to previous queries. Queries are encrypted using SSE, allowing
the proxy server to process them without revealing their
content. A timestamp is added as a digital watermark for
traceability and integrity verification. The encrypted query,
along with the DID and timestamp, is transmitted to the proxy
server to mitigate tracking risks.

Extended Proxy Server: Acts as an innovative intermedi-
ary, integrating the data proxy with FIWARE’s Context Broker
to enhance functionality. It verifies the DID and timestamp to
ensure query authenticity and integrity. By leveraging SSE,
it retrieves relevant data from the encrypted Key-Value (KV)
store. After query validation, it issues a Verifiable Credential
(VC) to authorize subsequent client queries [20], [21], en-
suring only the original DID-associated client can continue
operations, preventing session hijacking and maintaining a
secure, privacy-preserving user experience.

Data Provider: Stores encrypted data and processes queries
forwarded by the proxy. It employs SE to search within en-
crypted storage, encrypts matching responses using symmetric
encryption (e.g., AES), and returns them to the proxy. The
proxy then validates and forwards the response to the client.

The system utilizes a Key-Value (KV) model for encrypted
storage, where both the proxy server and data provider main-
tain encrypted key-value pairs. Keys are encrypted using SE,
enabling encrypted query terms to serve as keys, while values
store data encrypted with symmetric algorithms like AES. The
proxy server maintains minimal metadata (e.g., data names
and descriptions) to support query matching, whereas the data
provider handles encrypted queries and responses [22]. This
architecture ensures that the proxy server only indicates data
availability, maintaining data confidentiality throughout the
query process.

Figure 1 primarily highlights the query privacy mechanisms,
focusing on the interaction during encrypted query processing.

B. Privacy-Preserving Query Mechanisms

This section details how our system implements privacy-
preserving modules to protect queries and their metadata. We
concentrate on the actual usage of SE and Metadata Obfus-
cation within our prototype environment. Figure 2 illustrates
the implementation of SE in the system, utilizing an encrypted
Key-Value (KV) list for query matching.

1) SSE-Based Queries in a Key-Value Store: To safeguard
query privacy in potentially untrusted infrastructures [23],
[24], we adopt a symmetric Searchable Encryption (SSE)
scheme [22], [24] that encrypts both keywords and documents
before storing them in a KV repository. We denote:

• D = {d1, d2, . . . , dn}: The dataset of n encrypted docu-
ments, each stored as a KV pair.

• K = {k1, k2, . . . , km}: The set of m relevant keywords.
• Enck(·): A block cipher under key k.
• SSEIndex: The secure index that maps encrypted key-

words Enck(kj) to sets of encrypted documents Enck(di).

The client avoids storing plaintext KV pairs {kj : di} by
computing an SSE index with pseudo-code shown in Algo-
rithm 1. With exclusive access to the secret key k, the client
encrypts each keyword kj into tokenized entries. The server,
receiving only these encrypted entries, cannot interpret the
original keywords or document content. This description uses
a basic “exact match” SSE scheme, which can be extended to
support fuzzy or range queries [24].

Algorithm 1 Building SSEIndex in Key-Value Store
Require: Dataset D = {d1, . . . , dn}, Keyword set K =

{k1, . . . , km}, Symmetric key k

Ensure: SSEIndex = {Enck(kj) : {Enck(di) . . .}}
1: SSEIndex← ∅
2: for each document di in D do
3: KWi ← ExtractKeywords(di) {plaintext extraction}
4: EncDoci ← Enck(di) {encrypt entire document}
5: Store(KV,EncDoci) {put in KV store}
6: for each keyword kw in KWi do
7: TKw ← Enck(kw∥r) {random nonce r ensures

distinct ciphertext}
8: SSEIndex[TKw]← SSEIndex[TKw] ∪ {EncDoci}
9: end for

10: end for
11: return SSEIndex

Here:

• Line 7 includes a random nonce rkw so that
Enck(kw1∥r) ̸= Enck(kw1∥r′) [22].
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Fig. 1. Query system architecture overview

Fig. 2. Searchable Encryption workflow with Key-Value store integration

• The KV store ends up holding the actual encrypted doc-
uments Enck(di), while the SSEIndex cross-references
Enck(kj) to Enck(di).

To perform a query q, the client extracts its keywords
and encrypts them as Enck(q). The proxy or server matches
the resulting token Cq with the SSEIndex. When a match
is found, the system returns the corresponding encrypted

records Enck(di) [23], [24]. Algorithm 2 gives a simplified
representation:

Algorithm 2 SSE Querying in Our Prototype
Require: Query q, Symmetric key k, SSEIndex
Ensure: Set of matching ciphertexts {Enck(di)}

1: tokens← ExtractKeywords(q)
2: for each keyword w in tokens do
3: Tw ← Enck(w∥rw) {fresh nonce rw each time}
4: results← results ∪ SSEIndex[Tw]

5: end for
6: return results

In our FIWARE-based system, the Extended Proxy Server
can store metadata about these SSE-protected KV entries. The
proxy holds no plaintext—all matching is done over encrypted
tokens Tw.

Figure 2 illustrates an SSE-based query framework inte-
grated with a key–value repository: the attribute center issues
secret keys to both data provider and client, the data provider
encrypts documents into KV pairs (applying metadata obfusca-
tion) and builds the SSE index, and the extended proxy server
(combining a data proxy with FIWARE) mediates encrypted
queries—ensuring only the client with the correct secret key
can retrieve matching ciphertexts under strict access control.

2) Metadata Obfuscation: While SSE protects query con-
tents, metadata (e.g., timestamps, IP addresses, user patterns)
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may still reveal user identities [7], [24]. Our metadata obfus-
cation module resides within the proxy:

• IP Pseudonymization: The proxy intercepts sensi-
tive fields such as IP addresses, replacing them with
pseudonyms Hash(IP ∥ salt).

• Timestamps: For each request, the proxy adds a random
offset ∆ ∼ N(0, σ2) to the original timestamp to hamper
correlation analyzes.

t′ = t+∆. (1)
• Padding and Noise: A random length of bytes is

appended to each request body, making the final size
less predictable. Let PadLen ∼ Uniform(a, b). Then the
request is:

Req← Req ∥ RandomBytes(PadLen). (2)
Pseudo-code for request obfuscation is as follows:

Algorithm 3 ProxyObfuscation
Require: Original request R, (salt, σ, [a, b])
Ensure: Obfuscated request R′

1: (IP, t, body, . . .)← Parse(R)

2: pseudoIP← Hash(IP ∥ salt)
3: ∆← Gaussian(0, σ2)

4: t′ ← t+∆

5: padLen← Uniform(a, b)

6: body′ ← body ∥ RandomBytes(padLen)
7: R′ ← (pseudoIP, t′, body′, otherMeta)
8: return R′

Once obfuscated, the request is forwarded, so even if
compromised, an adversary gains minimal insight into real
user identities or query patterns. This approach aligns with
the layered anonymization and differential privacy recommen-
dations from [23], [24], [25].

3) DIDs, VCs, and FIWARE Integration: While SSE and
metadata obfuscation focus on query confidentiality, we also
require authorization and authenticity [13]. We incorporate
DIDs and VCs to ensure that only legitimate users can submit
or replay queries. The workflow is as follows:

Algorithm 4 DID+VC Flow
Require: DID, oldVC (or None), Timestamp
Ensure: newVC

1: if VCstore[DID] ̸= oldVC then
2: reject ”Invalid VC or DID”
3: else
4: newVC← H(DID ∥ oldVC ∥ Timestamp)
5: VCstore[DID]← newVC
6: return newVC
7: end if

This approach links each request to a valid DID/VC
chain, blocking replay and unauthorized access. The SSE

scheme safeguards query content, while metadata obfuscation
anonymizes sensitive fields.

C. Security Analysis

To rigorously show our system’s security, we adopt an
adaptive SSE model similar to [22]. This model ensures
an adversary cannot recognize or decrypt encrypted queries
beyond the inherent leakage profile (for instance, result sizes).
Let A be a polynomial-time adversary that follows the honest-
but-curious model. The system starts with a secret key k

known only to the client. When the client queries a keyword w,
it creates an ephemeral token Token(w) = Ek(w ∥ ρ), where
ρ is a fresh random nonce. The adversary may see Token(w),
partial metadata, and returned ciphertexts, but never learns w

or gains k. Under adaptive indistinguishability, if A provides
two document sets {D0, D1} and adaptively picks keywords
from them, A cannot tell which set or which keyword is used,
except with negligible advantage. This aligns with simulation-
based SSE: a simulator can replicate the adversary’s view
using only known leakage (mostly the sizes of result sets),
without revealing actual keywords.

Our design adds ephemeral DID-based credentials to stop
unauthorized submissions and replay. Each query carries a
DID δ and a verifiable credential ν that links δ to a time-based
secret. The proxy’s credential store checks (δ, ν). If valid, the
store updates the credential so old ones become invalid. An
attacker intercepting ν cannot reuse it, since new queries need
a freshly issued credential. Even if A obtains a valid trapdoor
Token(w), it cannot submit new queries without the correct
ephemeral credential. Cryptographic binding of DID and ν

relies on collision-resistant hashes and signature checks, so
forging them is negligible in probability.

We also employ metadata obfuscation to counter linkage
attacks from [26], which rely on repeated IP addresses, stable
timestamps, or predictable packet lengths. For each transmis-
sion, the proxy hashes the IP with salt, pads the packet by a
random amount χ, and shifts the timestamp by a Gaussian-
distributed delay ∆. If A tries to correlate repeated queries by
matching IP-Timestamp-Size tuples, the randomness from ∆

and χ lowers correlation success below any realistic threshold
(see Section IV). An attacker thus cannot reliably decide
whether two obfuscated queries come from the same user or
the same keyword, especially given SSE token randomization.

Each component works at a separate protocol layer with
different keys, so there is no compositional conflict. The SSE
secret key k is distinct from DID signing keys, and obfuscation
does not reveal the trapdoor process. A breach of the DID
store does not uncover SSE tokens, and manipulating the
SSE index does not yield valid credentials. The combined
system achieves adaptive-query confidentiality (the adversary
cannot differentiate which keywords appear), prevents replay
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Fig. 3. Privacy-Preserving Data Space Architecture with an Extended Proxy (FIWARE + IDSA)

or stolen-credential use, and frustrates traffic-analysis based on
size or timing patterns. The formal SSE framework from [22]
is extended to cover ephemeral credentials and randomized
metadata. Suppose A issues many queries {w1, . . . , wq} while
observing their tokens and ephemeral credentials. If A could
distinguish any wi from another wj with non-negligible prob-
ability, that would contradict SSE security plus credential
constraints on query issuance. Random IP hashing and Gaus-
sian timestamp shifts further cut the chance that repeated
queries can be linked, since each request has high entropy
in {IP′,Time′,Size′}.

Overall, combining SSE tokens, rotating DID-based cre-
dentials, and stochastic metadata obfuscation prevents any
single mechanism from leaking plaintext queries or user
identities. The adaptive SSE underpinnings and ephemeral
credential scheme give negligible advantage to a polynomial
adversary, while the noise layer greatly reduces real-world
traffic correlation. This architecture aligns with FIWARE-
based data exchanges [27] and meets GDPR/PIPL demands
for confidential data handling and minimized linkability.

D. Integration with FIWARE

Our privacy-preserving data proxy uses and extends FI-
WARE’s open-source framework to support secure data ex-
change and metadata protection in Data Spaces. The FIWARE
documentation [27] shows that a consistent digital-twin view
needs domain-agnostic APIs and clear governance. We use

the Context Broker and Data Space Connector to combine
query encryption and metadata obfuscation with NGSI-LD.
We now describe how the Extended Proxy Server aligns with
FIWARE guidelines while keeping query confidentiality and
data sovereignty.

1) Context Management via NGSI-LD: FIWARE Context
Brokers (e.g., Orion-LD, Scorpio) offer an NGSI-LD interface
for creating, updating, and querying context entities as digital
twins. Our Extended Proxy Server adds privacy measures.
Specifically, when a client sends an encrypted query with
SSE, the proxy intercepts it and interacts with the Context
Broker only through ciphertext-based lookups. This ensures
that even if the Context Broker runs in a partially untrusted
environment, it processes data without ever seeing the under-
lying query keywords. At the same time, the proxy applies
IP pseudonymization and random timestamp shifts. NGSI-LD
operations and subscriptions remain unchanged, but the broker
does not see the original parameters.

2) Data Sovereignty and Trust: The FIWARE ecosystem
promotes data sovereignty through Identity and Access Man-
agement (IAM) mechanisms, often combined with IDS con-
nectors to enforce organizational-level trust. We strengthen this
approach by embedding Decentralized Identifiers (DIDs) and
Verifiable Credentials (VCs) in the Extended Proxy Server.
Each NGSI-LD request (GET, POST, UPDATE) must in-
clude a ephemeral DID-VC pair. The proxy verifies these
credentials before decryption or forwarding. This two-tier
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control—(i) organizational-level authentication through the
FIWARE Data Space Connector and (ii) fine-grained DID-
based authorization—ensures only authorized participants can
retrieve encrypted records or post new contextual data. Our
solution augments FIWARE’s OAuth2 or X.509 mechanisms
(e.g., Keyrock) with ephemeral DID sessions, lowering replay
risk and preventing misuse of valid credentials.

3) Right-Time Data Sharing and Metadata Confidential-
ity: FIWARE aims for real-time data exchange in dynamic
scenarios (city traffic, industrial IoT, predictive maintenance).
Under conventional circumstances, repeated NGSI-LD updates
might reveal user behavior patterns—e.g., query frequency,
IP location, or data consumption habits. We address this
by adding a metadata-obfuscation layer. Concretely, each
NGSI-LD request is padded to a random size and assigned
a pseudonymized source identity. Since the Context Broker
remains agnostic to SSE tokens and ephemeral credentials,
it merely routes encrypted payloads and notifications to the
correct destinations. This setup preserves normal FIWARE
flows, yet it hides user identities and prevents traffic analysis
based on size or frequency.

4) Extensibility with FIWARE Data Marketplace Compo-
nents: Beyond direct NGSI-LD data exchange, FIWARE
supports a broader “Data Marketplace” functionality, which
can define terms and conditions for accessing and mone-
tizing specific data streams. Our Extended Proxy Server is
compatible with these marketplace components; once data
owners publish a dataset or real-time context feed in the
marketplace, the marketplace can enforce pricing or usage
policies at the organizational level. Simultaneously, our proxy
continues to operate at the query layer, maintaining SSE-based
confidentiality and anonymizing all metadata. This allows data
monetization while meeting strict data privacy regulations like
GDPR and PIPL. It also ensures compliance with data-space
governance standards defined in FIWARE’s guidelines.

5) Alignment with European Data-Space Initiatives: Since
FIWARE’s principles are adopted by initiatives like GAIA-X
and IDSA, our system inherits their focus on interoperability,
modularity, and open standards. By embedding privacy protec-
tion directly into FIWARE components (Context Broker, Data
Space Connector, IoT Agents), we reduce adoption barriers for
organizations aiming for a privacy-preserving approach. The
system efficiently handles sensitive queries in data-intensive
settings (e.g., industrial analytics, city-scale sensor networks),
aligning with the trust, transparency, and data-sovereignty
goals of European Data Spaces.

Figure 3 shows our privacy-preserving architecture, where
the Extended Proxy Server integrates FIWARE and IDSA
components.

In summary, our privacy-preserving proxy is a drop-in
extension for FIWARE-based data ecosystems. It adheres to

NGSI-LD’s minimal data model assumptions, maintains the
original semantics of real-time data sharing, and integrates
with standard FIWARE security and marketplace services. At
the same time, it ensures query confidentiality and protects
metadata privacy. This approach offers a practical solution
for implementing secure, standards-compliant, and easily in-
tegrable privacy controls in modern Data Spaces.

IV. EVALUATION

This section outlines the experimental setup, performance
evaluation, and verification of protections against metadata-
based threats. We compare three scenarios: direct query trans-
mission, proxy with standard padding, and proxy with varying
padding ranges to assess the privacy-overhead trade-off. Re-
sults confirm the approach’s scalability and robust metadata
confidentiality.

A. Experimental Setup and Feasibility

Our system consists of a client sending randomized queries,
a proxy for metadata obfuscation and credential verification,
and a server storing data with searchable encryption. Metadata,
such as timestamps, query patterns, and IP addresses, can leak
user details even with encrypted data [28]. To mitigate this,
the client encrypts each query and delivers only ciphertext to
a Key-Value store. When enabled, the proxy anonymizes IPs,
randomizes timestamps, and applies configurable padding to
hamper size-based inferences, ensuring interoperability within
FIWARE infrastructures [19].

We design four cases:

• Minimal Defense (Case 1). The server verifies cre-
dentials for 10% of requests (vc check prob=0.10). The
proxy applies large padding and random timestamps to
10% of queries (big pad prob=0.10), with minimal or
no padding for the remaining 90%. Clients reuse nonces
in 40% of cases (nonce reuse prob=0.40), and tokens are
included in 20% of queries (token prob=0.20), offering
limited resistance to dictionary attacks.

• Medium Defense (Case 2). VC checks increase to
40% (vc check prob=0.40), and 40% of queries receive
substantial padding/time offsets (big pad prob=0.40).
Nonce reuse drops to 30% (nonce reuse prob=0.30),
while token insertion rises to 40% (token prob=0.40),
improving protection against dictionary attacks.

• Enhanced Defense (Case 3). VC checks cover
70% of requests (vc check prob=0.70), with 70% of
queries applying large padding and random timestamps
(big pad prob=0.70). Nonce reuse reduces to 20%
(nonce reuse prob=0.20), and token insertion reaches
60% (token prob=0.60), enhancing resistance to attacks.

• High Defense (Case 4). Nearly all requests (95%)
undergo VC checks (vc check prob=0.95). The proxy
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enforces large padding and timestamps for 90% of queries
(big pad prob=0.90). Nonce reuse is minimal at 10%
(nonce reuse prob=0.10), while token inclusion peaks
at 90% (token prob=0.90), significantly reducing attack
success rates.

Each scenario involves 500 queries, logged with nonce-
ciphertext pairs and request sizes. We systematically evaluate
replay, dictionary, linkage, and inference attacks across all
configurations.

In addition to these four defense-level cases, we also
compare the following four system-level scenarios to sys-
tematically evaluate how enabling Secure Searchable Encryp-
tion (SSE), Decentralized Identifiers/Verifiable Credentials
(DID/VC), and obfuscation affects performance and security
under varying concurrency. Our goal is to isolate the contri-
bution of each component, illustrating their cumulative impact
on privacy defenses while quantifying overhead:

1) Baseline (TLS only): We begin with a minimal configu-
ration—standard TLS with no SSE or credential checks. This
setup has the fastest response times. It acts as our reference
for seeing how extra security measures affect latency and
protection against attacks.

2) SSE-only: We then add SSE-based storage and queries.
By comparing it to the baseline, we see how SSE alone
blocks dictionary and replay attacks, though it adds some
overhead. This approach isolates SSE’s effect before we add
more defenses.

3) SSE + DID/VC: We add DID-based credential checks
to some requests. This step shows how verifying users reduces
replay attacks and clarifies the cost of DID checks.

4) SSE + DID/VC + Obfuscation: Finally, we integrate
substantial metadata obfuscation (padding and random timing)
with both SSE and DID/VC checks. This fully fortified setup
hinders traffic analysis and lowers attack success rates further,
but it has the highest overhead.

By enabling SSE, DID/VC, and obfuscation in stages,
we see how each layer boosts confidentiality and counters
advanced threats. Combined with our defense-level cases,
these scenarios indicate that the extra overhead remains rea-
sonable for many IoT and smart-city environments. This
layered design delivers strong safeguards against dictionary,
replay, and traffic-analysis attacks while preserving acceptable
performance.

B. Performance Analysis

Table I summarizes the system’s operations. Metadata trans-
formations remain linear in the number of fields processed,
while logarithmic SSE lookups maintain rapid query han-
dling. The encryption overhead remains lightweight even when
padding is significant, preserving real-time responsiveness.

TABLE I
COMPLEXITY OF OPERATIONS IN THE SYSTEM

Component Operation Complexity
Metadata Obfuscation Auxiliary metadata transformation O(m)

Query Matching Searchable encryption lookup O(logn)

Encryption Overhead Query and response encryption O(q + d)

Fig. 4. Average Latency vs. Concurrent Clients

Figure 4 shows how average latency changes from 250 to
2000 concurrent clients. Under the baseline, it rises from about
25 ms at 250 clients to about 70 ms at 2000 clients. SSE-only
ranges from about 30 ms to 75 ms. SSE + DID/VC goes from
about 32 ms to 80 ms because of credential checks. SSE +
DID/VC + Obfuscation pushes latency from about 40 ms to 90
ms because of more complex metadata transformations. Multi-
layer obfuscation raises latency further, but performance stays
acceptable, showing the feasibility of our approach under high
concurrency.

C. Security Evaluation

Our system mitigates replay, dictionary, linkage, and in-
ference attacks through ephemeral credential checks, SSE-
based query encryption, random token insertion, and dynamic
obfuscation. As shown in Figure 5, minimal defense (Case 1)
results in high attack success—often exceeding 40–50%—due
to sparse credential checks and limited padding, exposing
exploitable patterns. Linkage and inference remain similarly
elevated when timestamps or IPs remain consistent, or when
nonce usage is too predictable.

Progressively increasing padding, randomizing timestamps,
and embedding tokens reduces attack success rates across
Cases 2–4. Replay and dictionary attacks, initially 40–60%
under minimal settings, drop to 10–20% in Case 4. Linkage
and inference similarly decline as greater obfuscation dis-
rupts adversarial correlations. SSE encryption further obscures
query-response pairs, mitigating the 70–80% attack rates seen
without proxy measures.
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Fig. 5. Attack Success Rates Under Different Defense Scenarios

Fig. 6. Comparison of Attack Success Rates by Defense Strategy

To show security safeguards clearly, figure 6 compares
four configurations—Baseline (TLS only), SSE-only, SSE
+ credential verification (VC), and SSE + VC + Obfus-
cation—tested under dictionary, replay, and traffic analysis
attacks. The Baseline setup, relying solely on TLS, exhibits
roughly 65% dictionary-attack success, 85% replay-attack
success, and 75% traffic-analysis success. Introducing SSE
encrypts both keywords and documents, substantially reducing
dictionary-attack effectiveness; adding credential verification
(VC) enforces stricter identity checks, mitigating replay at-
tacks; and query obfuscation scrambles request patterns, weak-
ening traffic analysis. As a result, SSE + VC + Obf limits these
attack successes to around 5% for dictionary, 4% for replay,
and 8% for traffic analysis—demonstrating the robust, layered
security benefits of our proposed design.

Overall, these results show that using ephemeral credentials
and obfuscation measures reduces each attack vector. Although
performance latency increases with more concurrent clients,

the effect is small and manageable. This ensures that the secu-
rity improvements do not significantly affect efficiency. These
findings highlight the effectiveness of privacy-preserving tech-
niques in query-heavy environments, balancing security with
system performance.

V. CONCLUSION

The designed privacy-preserving query mechanism signifi-
cantly advances decentralized and interoperable Data Spaces..
By combining metadata obfuscation, searchable encryption,
and decentralized identity management within the FIWARE
framework, it effectively addresses critical challenges around
metadata confidentiality and query privacy. Experimental re-
sults demonstrate the system’s effectiveness, showing substan-
tial reductions in the success rates of dictionary, replay, and
traffic analysis attacks, even under high concurrency. These
results confirm that the design delivers robust privacy protec-
tion while maintaining acceptable performance. The system’s
scalability, efficiency, and security make it ideal for dynamic
Big Data environments, while its compliance with GDPR and
PIPL further strengthens its applicability in privacy-sensitive
contexts. The thorough verification of each security compo-
nent confirms that the system safeguards against sophisticated
attacks without compromising query efficiency. This work lays
a solid foundation for building trust-focused, user-controlled
data ecosystems, supporting secure, transparent, and scalable
data-sharing environments. Future work will expand empirical
evaluations and explore diverse data-sharing applications.
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