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Abstract—With the ascendance of artificial intelligence (AI),
one of the largest problems facing privacy-enhancing technologies
(PETs) is how they can successfully counter-act the large-scale
surveillance that is required for the collection of data–and
metadata–necessary for the training of AI models. While there
has been a flurry of research into the foundations of AI, the
field of privacy-enhancing technologies still appears to be a grab-
bag of techniques without an overarching theoretical foundation.
However, we will point to the potential unification of AI and PETS
via the concepts of signal and noise, as formalized by information-
theoretic metrics like entropy. We overview the concept of entropy
(“noise”) and its applications in both AI and PETs. For example,
mixnets can be thought of as noise-generating networks, and so
the inverse of neural networks. Then we defend the use of entropy
as a metric to compare both different PETs, as well as both PETs
and AI systems.

Keywords—artificial intelligence, privacy-enhancing technolo-
gies, entropy, information theory

I. INTRODUCTION

Our fundamental thesis is that privacy-enhancing technolo-
gies and artificial intelligence can be considered two sides of
the same coin: Artificial intelligence (AI) systems are based
on minimizing entropy in noisy data to discover informa-
tion, while on the other hand privacy-enhancing technologies
(PETs) can be characterized by the addition of noise (entropy)
to obfuscate information. However, so far this relationship
between AI and PETs has not even been sketched.

Although there was considerable interest in privacy after
Snowden’s revelations of mass surveillance, at the present
moment both academic and popular attention are focused on
AI. Yet AI is neither magic nor much of a philosophical
wonder if one grasps its technological essence: The incredible
feats that Large Language Models (LLMs) like ChatGPT
are capable of are the result of processing vast amounts of
human data in order to build generative probabilistic models.
These models in turn can generate the very patterns that they
originally learned from the underlying human-generated data,
but customized to respond to user input [1].

In fact, the current gold rush in building AI systems may in
fact prefigure a revival of PETs, for behind the curtain of AI’s
capabilities is a social quandary: The data which fuels these AI
systems is collected via vast surveillance systems controlled

by a few large companies, and often includes not just public
data such as Wikipedia but also sensitive personal data [2].
Beyond waxing poetic about the future of superintelligence
or panicking over the possible loss of jobs due to automation,
one unrecognized challenge that AI presents is that in its quest
for evermore sources of data, AI itself poses a threat to the
continued existence of privacy and thus human autonomy [3].
However, privacy-enhancing technologies (PETs), such as
anonymous communication systems and differential privacy,
both lack deployment in practice and are fragmented in terms
of research, and so are unable to impede the spread of AI-
based surveillance.

While one practical reaction to the rise of AI is to immedi-
ately push PETs into deployment, this requires building new
real-world systems that may take years. Yet how do we know
if these PETs even work against powerful AI adversaries? So
another less intuitive reaction to the challenge posed by AI is
to revisit the lack of solid theoretical foundations for PETs.
Only with some unified paradigm and clear metrics can (1)
PETs be compared to each other and (2) the performance of
PETs be measured against AI-based surveillance. As a starting
point, we suggest a research paradigm based on information
theory and entropy, rather than considering PETs to be a
subfield of information security in some broadly conceived
manner or just another form of applied cryptography. In this
position paper, we informally sketch how the well-known
paradigm of the discovery–and hiding–of a signal in noise
is the common thread that unites both PETs and AI, and
allows them to be measured in terms of entropy. This revival
of what has been negatively termed entropism in a positive
valence opens the space for PETs to systematically challenge
the growing hegemony of AI [4].

The overarching goal of this position paper is to revive the
concept of entropy (also considered as “noise” or “uncertainty”
in terms popular parlance) in both AI and PETs as a core
guiding principle of both fields. First, in Section II, we define
AI as the general-purpose detection of information (“signal”)
within noise. In contrast, in Section III PETs are defined as
the general-purpose application of the obfuscation of infor-
mation by noise, leading to the concept of a noise-generating
networks (NGN) as a counterpart to neural networks. This
is exemplified by noise-generating mixnets (NGM) in the
present literature [5]. We then confront Syverson’s objections
to entropy [4] in Section IV. In Section V, we outline future
research directions in fleshing out this theoretical framework
that has only been sketched so far.
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II. ARTIFICIAL INTELLIGENCE

With enough complexity in their design, AI systems–
perhaps more accurately termed “machine-learning”
algorithms–are able to find signals (which can also be
thought of as “patterns” or “regularities”) across almost any
form of data. In other words, what AI systems do is reduce
uncertainty and so discover information within data.

In terms of information theory, AI can be thought of as
non-linear function-fitting for arbitrary functions, where the
function determines the signal and the rest of the data is
the noise [6]. For an intuitive example: Imagine you are
having a phone conversation while walking down a busy street:
the voice on the other end is the signal, while the noise
is everything else in the background. We often fail to hear
particular words and have to guess their meaning using clues
on the context: A signal is discovered via fitting despite all
the noise based on our predictions of likely words due to our
“training” in language. The signal leads to our understanding
of speech via the correct prediction of missing aspects. In
supervised learning, the nonlinear function is learned from
the “training” data, and then extrapolated to new data, i.e.
the “test” data. Neural networks can detect signal in existing
data and predict functions in future data.

In many cases, signals may be so difficult to discover that
no human mind can detect them of its own accord, even when
given the powerful predictive theoretical frameworks and tools
of modern science. In this case, AI systems are now stepping in
to discover these hidden signals. While humans can be easily
overwhelmed by the amount of noise–whether it’s the sound of
a subway interrupting a phone call or complex flows of traffic
through a network–an AI can easily sift through noise with the
patience and speed of its seemingly infinite data processing
capability. The world has many hidden structures, and AI
promises to discover them. These signals may not map to
analytically or scientifically discoverable laws, or even signals
that can be easily formalized via mathematics, but nonetheless
can be captured and predicted via AI [7]).

In information theory, Shannon entropy measures the
amount of randomness or uncertainty in a system. So a
binary variable that has the maximum amount of entropy
(1.0) is completely random, and any decrease in entropy can
be thought of as a gain in information. In the far more
common multivariate case, the entropy is bounded by log2(N)
where N is the number of values that can be taken by a
variable. In classical approaches to AI, entropy is often used to
decide what feature partitions a data-set, such as in decision-
trees, where relative entropy (i.e. reducing the entropy by the
maximum amount given all other possible features) is used to
choose the feature that “splits” the decision-tree optimally [8].
Turning to more sophisticated machine-learning algorithms,
one rule to choose a prior probability distribution in Bayesian
inference is to choose the distribution with the maximum
entropy, thus the name “maximum entropy classifier” [9]
However, in general Bayesian machine-learning with a clear
foundation in information theory have fallen out of favor

in AI (as well as simple techniques such as decision-trees,
although they are valued for their ease of explanation in
creating transparent and trustworthy AI systems), and to a
large extent previous AI systems have been replaced by neural
networks [1].

Today, AI is dominated by neural networks. Although AI is
quite a varied field with many different types of models, neural
networks are one of the most flexible models. Neural networks
are composed of layers of artificial neurons, which in turn can
each be considered to take part of the task in a distributed
way, such as a classification or regression task. Each neuron
can be considered a mathematical function that maps from
one set of vectors to another set of vectors [10]. Working in
combination, the precise kinds of multivariate functions can
be implemented by a neural network depend on the number
of layers and other parts of the structure of the neural network.
Although neural networks were long derided as unprincipled,
they are remarkably adept at learning, and new techniques
such as deep learning enable representation learning by neural
networks, where the network learns features from unlabeled
data itself.

Although the original neural networks of a single layer fell
out of fashion due their inability to capture even simple XOR
functions [11], surprisingly neural networks with additional
layers were able to capture increasingly complex functions,
although their inner works remained – and still are – a relative
mystery. The universal approximation theorem shows that a
sequence of neural networks are in theory capable of capturing
arbitrary functions for anything from image recognition to
natural language if it can be captured by a mathematical
function: For each function f , there exists a sequence of
neural networks ϕ1, ϕ2, . . . such that ϕn → f [11], a finding
that was recently generalized to multivariate functions [12].
More importantly, it appears that with enough data for training
and enough layers of artificial neurons, a neural network can
discover any arbitrary hidden signal by learning from past
data. Once trained, a neural network can discover the signal
in future data. Typically, as the amount of data on which the
network is trained increases, the more accurate it becomes at
discriminating signal from noise [13]. This training is a “black
box” as the universal approximation theorem simply states
that, for a given function, a neural network exists in theory
that can approximate the given function, but how to train a
neural network to approximate a given function in reality is
another matter entirely.

Just because a neural network is theorized to simulate a
function in general, there is no guarantee that such a neural
network exists, and the universal approximation theorem gives
no guidance on the number of networks, layers, and other
structure. Thus, in order to create such a neural network, it
must be trained via some form of error-correction where their
predictions are tested against some “ground truth” training data
or via a policy for reinforcement learning when there is no
training data. Similar to logistic regression, neural networks
end up being built upon entropy: It appears most of the myriad
cases of training can be reduced to minimizing entropy [14].
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Neural networks often use cross-entropy or relative entropy,
which attempts to minimize the divergence between the ground
truth and predicted distributions. Of course, simplistic predic-
tions would fail to generalize, so entropy can also be used to
regularize the network so that the training does not overfit the
data.

AI can also be used to generate new information, not simply
classify or predict information. Generative AI like ChatGPT
simply uses the underlying probabilistic function learned from
training to generate new information, but as “perturbed” by a
user query. This use-case of predicting and generating English
language texts via building a language model was foreseen by
Shannon himself in his early work in the 1950s, but with the
rise of large amounts of data on the Web [15]. What happened
recently to cause ChatGPT to increase in efficacy is that a new
kind of more effective neural network sequence, the generative
pre-trained transformer, was effectively trained on the entire
Web [16]. Since the Web is really an aggregate of human
information and interactions, AI began to discover patterns in
what appears to be our entire social form of life. ChatGPT
can detect signal in natural language questions via one neural
network (an encoder) and use these signals to generate answers
in text via another neural network (the decoder) [1]. Related
AI algorithms can do the same with images, videos, and
anything else imaginable, and various techniques that can also
be formalized from the standpoint of entropy for multi-modal
learning and generation [17].

III. PRIVACY ENHANCING TECHNOLOGIES AS
NOISE-GENERATING NETWORKS

Yet there is also a dark side to AI. In the end, the training
data comes from somewhere: it may be your personal life
or secret information [16]. If so, AI systems can be used
to predict and control your behavior with everything from
“deepfakes” to persuading you to endorse a particular political
view [11]. It can even be used to exterminate you via a drone
strike! For example, an AI algorithm that is trained on your
location data can discover your daily routine, and so can
predict your future location. These kinds of uses of AI is cause
for serious privacy concerns.

So how can we stop AI? The answer is simple: add noise
to your information, such as blurring existing locations and
creating fake locations. In effect, this can be thought of as
using a form of AI against AI. We will argue that this concept
of the addition of noise is at the heart of privacy-enhancing
technologies, from anonymous communication networks to
differential privacy.

On an historical aside, the formalization of the intuitive
concepts of signal and noise in terms of entropy was invented
by Shannon in his foundational paper that defined information
theory [18]. What is not quite as well-known is that the
motivation for Shannon’s invention of information theory was
his earlier cryptographic research that was classified at the
time [19]. Information theory is to a large extent based
on cryptography with the classified cryptographic elements
removed and the concepts generalized.

Noise can be added at different levels of a system. In
particular, cryptography can be defined as the production of
entropy at the level of the information-carrying messages
themselves. This entropy is created in a message (encryption)
by the application of the entropy given in the key required
to encrypt and decrypt a message (and various equivalents
in terms of other constructions such as digital signatures).
As defined by Shannon, perfect information-theoretic secrecy
holds if H(P |C) = H(P ), where P is the possible values
of the plaintext and C the possible values of the encrypted
ciphertext. In terms of information theory, the ciphertext and
the key used to encrypt the plaintext have the same amount of
entropy. For example, noise can used as a one-time pad key for
a message. Of course, most cryptographic systems are defined
using weaker notions of secrecy, such as semantic security
(where the adversary’s advantage in inferring information is
negligible over a given bound, rather than non-existent) and the
weaker (and lesser-known) entropic security, a cryptographic
scheme that guarantees that the entropy of a message is above
a certain bound for a given adversary [20]. This application
of information theory to cryptography is perhaps most clear
in coding-based cryptographic systems such as the McEliece
cryptosystem [21].

A larger problem is metadata, the information that can be
inferred from the sending of messages. This often includes
aspects traditionally left out cryptography, such as the length of
a message or the time it was sent. More importantly, it includes
the probability distribution of messages. On a higher-level of
abstraction, metadata includes the distribution of information
in general, such as the distribution of characteristics like
gender in a database. Unlike personal data and classified infor-
mation, metadata has almost no legal protections in regulations
like the General Data Protection Regulation (GDPR), making
metadata ripe for abuse. Cryptography can defend the privacy
of the information carried by messages, but PETs are needed
to defend the privacy of metadata. Given the amount of actors
that can observe metadata, PETs should be a thriving area of
research.

Yet PETs is a relatively small field of research despite
its importance. Unlike cryptography, which has been given a
systematic formal information-theoretic treatment by Shannon
that led to various notions of provable security [19], privacy-
enhancing technologies lack a unified conceptual framework
based in information theory and so have a more fragmented
formal foundation than cryptography, although various sub-
fields of PETs around particular technologies such as anony-
mous communication networks and differential privacy have
rigorous formal foundations. In general, entropy seems to
best fit the bill for creating both a unified foundation and a
comparative metric, as entropy is used in privacy-enhancing
technologies in use-cases ranging from anonymous communi-
cation [22] to location privacy [23].

Superficially, what we see in privacy-enhancing technolo-
gies is the rise of many ad-hoc measurements, with over 80
distinct measurements being recorded in a survey of privacy
metrics [24]. Perhaps the original metric is the simple size is
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the anonymity set, which measures how many other individu-
als could fulfill a particular function. Being uniquely identified
usually means the reverse of privacy (or anonymity), and has
been given new terms such as unicity in the literature [25].

Differential privacy seems quite similar to entropy-based
approaches to privacy, as it uses noise to achieve privacy
in databases. Indeed, differential privacy does explicitly refer
to entropy in making its guarantees [26]. So differential
privacy can naturally be interpreted in terms of entropy. Yet
this unity may not be immediately apparent, as differential
privacy comes with a bewildering zoo of measurements: k-
anonymity that measures the number of other individuals
that can be distinguished by a query [26], l-diversity that
measures the variation in certain attributes and t-closeness
measures whether or not a certain attribute’s distribution in
the results of a query matches that of the entire database
[27] More confusingly, new metrics are constantly proposed
such as k-map, δ-presence, β-likeness and δ-disclosure. Thus,
there is a real risk that each new technology, or even each
new experiment, produces its own metric for success. Yet the
core metrics such as k-anonymity can each in their respective
foundational paper be measured in terms of entropy [26]. What
matters is often ‘what’ is being measured, and this may be
easier to measure using a derivative metric, but the core metric
of entropy remains valuable.

From an intuitive standpoint, what is done in privacy-
enhancing technologies is typically to obscure information via
noise (deleting attributes or individuals from a database) or
add new noise to the dataset (adding fake individuals to a
database). Although most research on anonymous communica-
tion systems has focused on mixing [28], most modern mixnet
systems actually add “fake’ or “dummy traffic,” although
seemingly as an afterthought [5]. However, traffic can be
added in a non-uniform manner, as to match bursty or power-
law distributions during internet usage. Regardless of the
particulars, it is precisely this ability to add noise that is
essential, and mixing and cryptography itself can be thought
of as variants as noise. Therefore, we can generalize a sort
of anti-neural network that adds noise (and thus entropy)
to prevent information discovery by a neural network. One
useful way to think about this is a noise generating network
(NGN): To invert the universal approximation theorem [11]
to a universal obfuscation theorem, for each function f , there
exists a sequence of noise generating networks that can add
noise δ1, δ2, . . . to neural networks ϕ1 + δ1, ϕ2 + δ2 . . . such
that there does not exist a neural network ϕ → f . Noise-
generating networks allow us to conceptualize differential
privacy and mixnets as doing the same abstract function of
adding entropy to a distribution.

A stratified mix network with fully connected layers of mix
nodes appears–both graphically and formally in terms of an
ordered sequence of fully connected layers of nodes–to be
quite similar to a neural network, but with a different purpose.
So mixnets can be thought of as a kind of noise-generating
network, in particular a noise-generating mixnet (NGM). For
example, when one sends traffic through the Nym NGM, cover

traffic is also sent out with your “real” data packets [5]. From
the outside, these packets look exactly like real ones, but
they’re empty. This not only obscures the type of content
you’re sending–for instance, by making a data transfer during
some period look larger than it is–but also increases the overall
anonymity of the network for everyone. Adding delays can
also be thought of as adding noise to an underlying distribution
by changing the frequency, rather than adding or subtracting
packets. Thus, data mixing creates timing obfuscation so that
the order and frequency of packets handled by a node are
scrambled and cannot be analyzed to reveal the traffic patterns
of users, for instance, based on when a packet arrives and
leaves from a server. In the future, noise-generating mixnets
should be built for scaling. Surveillance systems are now
global, so privacy technology needs to be capable of scaling
to meet the demand as internet traffic increases.

IV. WHY I AM AN ENTROPIST

The most famous objection to the use of entropy to study
anonymous communications is Paul Syverson’s polemic “Why
I am not an Entropist” [4]. Syverson is particularly noteworthy
as he is one of the original inventors of onion routing and
Tor [29], who despite his background in philosophy ended
up working at the Naval Research Laboratory and procuring
the original funding for Tor. Thus, due to the widespread
success of Tor, the use of entropy-based metrics has fallen out
of favor as a metric for anonymous communication systems.
We will argue against his point that entropy gives information
to the adversary or is impossible to estimate. In general, it
appears Syverson’s argument is not against entropy per se,
but against the all-knowing global passive adversary (GPA)
that can track each and every packet’s flow throughout the
network, an adversary that just happens to be beyond the scope
of Tor’s threat model [29].

Syverson argues informally, much in the same style as
this paper, that entropy should not be the guiding metric for
research into anonymous communication system, much less
privacy more widely as we have argued. Although Syverson
does note that the problem “is not that entropy entirely fails
to reflect uncertainty,” Syverson argues against entropism,
which he characterizes as ”using entropy as the meaning, the
criterion for anonymity or how anonymous something is as
it “does not capture everything important” [4]. Of course,
no metric captures everything, and even a metric such as
entropy has numerous variants (Renyi and Hartley, as noted by
Shannon) and so the choice of a particular measure of entropy
depends both on the data and the problem at hand. It is self-
evident to note that no quantitative metric is perfect or even
necessarily sufficient in of itself for any particular problem.
Yet lacking a unified metric that allows comparison between
different techniques leads research to be incomparable, lost
in a quagmire of ad-hoc measurements, where each particular
technique can brandish its own unique measurement to claim
success.

Syverson then claims that entropy “provides your adversary
with an explicit target that he has available resources to over-
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come” [4]. While the observation that a measurement gives an
adversary some vital clue in deploying their finite resources
may have been valuable in the 1990s, today computational
resources are increasingly cheap, and so it should not be
assumed that the adversary has a finite monetary budget or
a computational bound on the resources to overcome any
proposed privacy technology. In other words, the correct real-
world model will increasingly appear to be a global passive
adversary with some active capabilities. Of course, having
no metric provides cold comfort. Syverson also claims that
“metrics should not depend on the values of variables for
which we cannot make adequate relevant determinations or
predictions,” such as the number of senders and receivers of a
message [4]. Again, needs to be historicized: While it may be
true that Tor itself may not know precisely its number of users
due to its own technical limits, a global passive adversary such
as the NSA can certainly determine the numbers of senders
and receivers of a message in Tor, as well as the number of
messages sent: Just because you can’t count the number of
users of a system doesn’t mean that the adversary cannot!
Furthermore, making the best attempt at accurate models of
users and other variables should be part of an experimental
design for any research.

However, what Syverson reveals is that his main problem
with entropy is that while mixnet designs can be measured
in terms of entropy, Tor cannot. So Syverson’s real gripe is
with the threat model of the Global Passive Adversary (GPA)
that can monitor all packets in a network. Syverson wants
to uphold Tor as a good enough technical solution against
realistic adversaries and so claims that adversaries such as the
GPA are inherently “unrealistic,” although this was shown to
be false: The NSA and possibly other commercial companies
are quite close approximations of a GPA due to their control
over myriad Internet Exchange Points (IXPs). He then claims
local roaming adversaries are more realistic even although they
are weaker, even though these adversaries have been shown to
be measurable within an entropy-based framework [30]. Yet
research shows that adversaries with only a local view of the
network can indeed be measured using entropy, as well as
active attackers that are actively compromising nodes (as it
increases the prior knowledge of adversaries and so reduces
entropy) [30]. Even attacks such as the active interference
or altering of traffic distributions is clearly amendable to a
treatment in terms of entropy, as the difference between any
two distributions can be measured using using entropy-based
measures like KL divergence.

Although it is inarguable that onion-routing cannot defeat a
GPA, due to their “wide distribution” Tor is more “relatively
resistant to other kinds of adversaries,” although what precise
adversaries these are if left unexplained [4]. The key to the
relatively strange threat model of Tor is that the adversaries
it works well against are those that are nation-states that do
not have vast surveillance capacities, at least outside their
own (virtual) borders. This makes sense, as Tor is quite
useful as a censorship-resistance tool against countries such
as Iran, Russia, and (to a lesser extent) China, as they lack

the mass surveillance capabilities of the United States. Still,
the NSA can likely approximate a GPA. So the weak threat
model of Tor is perfectly sufficient against many countries,
but seems less plausible when faced with the “Five Eyes”
alliance. Of course, this makes sense as the US government
would likely not support a privacy-enhancing technology that
could defeat its own surveillance capacities. Thus, Syverson
claims due to issues with usability and incentives, in practice
mixnets and DC-nets would “not scale enough” to protect
against the powerful adversaries. Yet current research on DC-
nets like Dissent demonstrates the possibility of scaling [31],
and real-world deployed mixnets like Nym appear to be
able to scale to as many users as Tor [5]. The primary
issue facing critics of entropy and the entire information-
theoretic paradigm for measuring anonymity is that “despite
their critiques of entropy, we do not know definitively what
to put in its place” [4]. However, what is arguably worse than
having too many metrics is having no metric whatsoever to
measure the anonymity provided by a system. Many of the
critics of entropy come from an incredibly narrow view of
entropy, restricting its usage only to measuring the anonymity
of the senders and receivers of a message probabilistically
as is done in anonymous communication networks. Yet this
weakness may be a strength, as the narrow usage of entropy
would allow it to be tested against AI techniques for de-
anonymization easily. Furthermore, as then privacy and AI can
be unified via the study of entropy, entropy ends up being a
metric that most other metrics can be reduced to. Entropy
characterizes the anonymity properties of PETs, but also the
ability of AI systems to de-anonymize various proposed PETs.

V. CONCLUSION

It is reasonable to expect an increasing use of AI to
empower the collective intelligence of humanity and machines,
allowing us to solve a vast variety of problems that have so
far remained beyond our cognitive reach. Yet this requires
restricting the data it can operate on, and we hypothesize this
requires a new kind of AI (or an anti-AI based as PETs) that
determines the precise amount of noise needed to prevent mali-
cious AI from harvesting data. Privacy-enhancing technologies
such as the proposed noise-generating networks should allow
data to become essentially invisible to AI surveillance. Thus,
rather than ban or regulate AI, we can reverse the process
by which AI works using its own principles. If a malicious
AI finds signals in noise, then an anti-surveillance AI can
add noise to the existing signal, making it more difficult for
patterns to be discovered and so polluting the “training” data
available to AI. Training these networks would in principle
be similar to generative adversarial networks, but rather than
having a neural network be trained to minimize entropy in
an adversarial manner, the goal would be to generate enough
noise to prevent pattern recognition by a neural network. The
key metric would be maximizing the relative entropy.

Taking entropy seriously as a metric would also allow
fertile interdisciplinary conversations. Despite the origin of
the notion of entropy in thermodynamics, Shannon claimed

5



von Neumann told him that “no one really knows what
entropy really is, so in a debate you will always have the
advantage” [32]. Despite–or because of–this fundamental un-
certainty about the meaning of entropy, entropy as a measure
of noise has been increasingly used to study phenomena
ranging from social media [33] to biology [34]. As the massive
energy expenditure of generative AI training drives increased
interest in sustainable computing systems, entropy could be
a valuable concept to help develop sustainable systems; and
it should not be forgotten that privacy-enhancing technologies
that add noise via cryptography and cover traffic inherently
consume more resources than systems without privacy. The
use of a thermodynamical conception of entropy in ecological
economics has been recently revived, and has even led to
the exploration of combining a thermodynamical reading of
entropy with the information-theoretic reading of the term by
philosophers [35]. Entropy may not only help unify PETs with
AI, but help unify computing with the rest of the sciences to
tackle current concerns around catastrophic climate change.

Note that we are refraining from discussing the privacy
goals of particular AI applications, although adding privacy in
some form to AI (for example, to create forms of anonymous
AI that does not track its users) is a laudable goal. This is
because these particular goals are rather varied. What we are
focused on is the abstract paradigm of entropy and how it
binds together AI and privacy. However, there is much work
to be done. We have only had the time to qualitatively sketch
the possible unification of AI and PETs via information theory.
A thorough systematization of knowledge of the various uses
of entropy across AI and PETs would be the first step. Then
the most important next step would be the formalization of
the notion of a noise-generating network and if possible, a
proof–or proof of non-existence!–of the universal obfuscation
theorem could be done. Despite these limitations, a unified
conceptual framework for thinking AI and privacy together via
the strong foundations of information theory offers tantalizing
prospects. As for the future of privacy in the age of AI,
wherever there is signal, there can also be noise.
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