
BrowserFM: A Feature Model-based Approach to
Browser Fingerprint Analysis

Maxime Huyghe
Univ. Lille, Inria, CNRS,

UMR 9189 CRIStAL
maxime.huyghe@univ-lille.fr

Clément Quinton
Univ. Lille, Inria, CNRS,

UMR 9189 CRIStAL
clement.quinton@univ-lille.fr

Walter Rudametkin
Univ. Rennes, Inria, CNRS,

UMR 6074 IRISA
walter.rudametkin@irisa.fr

Abstract—Web browsers have become complex tools used
by billions of people. The complexity is in large part due to
its adaptability and variability as a deployment platform for
modern applications, with features continuously being added.
This also has the side effect of exposing configuration and
hardware properties that are exploited by browser fingerprinting
techniques.

In this paper, we generate a large dataset of browser finger-
prints using multiple browser versions, system and hardware
configurations, and describe a tool that allows reasoning over
the links between configuration parameters and browser finger-
prints. We argue that using generated datasets that exhaustively
explore configurations provides developers, and attackers, with
important information related to the links between configuration
parameters (i.e., browser, system and hardware configurations)
and their exhibited browser fingerprints. We also exploit Browser
Object Model (BOM) enumeration to obtain exhaustive browser
fingerprints composed of up to 16, 000 attributes.

We propose to represent browser fingerprints and their
configurations with feature models, a tree-based representation
commonly used in Software Product Line Engineering (SPLE)
to respond to the challenges of variability, to provide a better
abstraction to represent browser fingerprints and configurations.
With translate 89, 486 browser fingerprints into a feature model
with 35, 857 nodes from 1, 748 configurations. We show the
advantages of this approach, a more elegant tree-based solution,
and propose an API to query the dataset. With these tools and
our exhaustive configuration exploration, we provide multiple
use cases, including differences between headless and headful
browsers or the selection of a minimal set of attributes from
browser fingerprints to re-identify a configuration parameter
from the browser.

I. INTRODUCTION

Web browsers have become ubiquitous tools, deployed
across a wide spectrum of applications and use cases. They
offer an extensive array of functionalities and maintain com-
patibility with numerous devices and peripherals. Users can
customize their browsing experience through various con-
figuration options, including settings, flags, command line
switches and a diverse ecosystem of extensions. This wealth
of customization options is known to render browser instances
distinctly unique and identifiable through the aggregation of

distinct attributes used to create unique identifiers, commonly
referred to as a browser fingerprint [1]. Fingerprints are often
unique because web browsers disclose diverse attributes of
their computing environments, including hardware specifi-
cations [2], [3], [4], operating system parameters, installed
fonts [5], browser extensions [6], [7], among other technical
characteristics.

Browser fingerprint tracking can compromise user privacy.
The ability to identify unique browser configurations enables
sophisticated tracking methods that persist even when users
attempt to maintain anonymity through conventional means,
such as private browsing modes or cookie deletion. The
granularity of fingerprinting attributes—ranging from hard-
ware specifications to software configurations—can uniquely
identify users across different websites and sessions [1], [8],
[3], [9]. Of particular concern is the high entropy of certain
attributes, which makes them especially effective. Developers
and privacy advocates face the challenging task of identify-
ing and mitigating these discriminating characteristics while
maintaining existing browser features. This challenge is further
complicated by the rapid evolution of browser technologies
and the continuous emergence of new fingerprinting vectors,
necessitating automated approaches for comprehensive identi-
fication and assessments.

We argue that feature models, a compact tree-based repre-
sentation of variability in software used by the community of
Software Product Line Engineering (SPLE) [10], can provide
developers with abstractions and tools to better reason about
browser fingerprints and to better identify and understand side-
effects that lead to “fingerprintable” privacy issues. Feature
models allow representing in a structured way the links
between features with their constraints. Because browser fin-
gerprints reflect the software and hardware variability of a
system and are constructed through designed APIs, we have
found it straightforward to represent fingerprints as feature
models, allowing for a more elegant, efficient and lossless
representation of large browser fingerprint datasets.

We propose to explore the links between browser finger-
prints and the underlying configurations (i.e., browser, system
and hardware) that make them unique. Our approach proposes
that developers explore browser configurations (e.g., switches,
flags, settings) as exhaustively as possible, collecting a browser
fingerprint per configuration option in order to identify even

Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb) 2025
28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-9-0
https://dx.doi.org/10.14722/madweb.2025.23017
www.ndss-symposium.org



minute changes. Our approach relies on collecting exhaustive
browser fingerprints through Browser Object Model (BOM)
enumeration [11], which we have found may contain up to
16 thousand attributes. Furthermore, we propose to not only
represent browser fingerprints as feature models, but also the
browser’s configuration and the hardware configuration. By
including extensive system and hardware configuration infor-
mation in a unified system, developers can use our approach to
identify links between attributes of a browser fingerprint and
the hardware, software or browser configuration that effected
it.

In this paper, we present benefits of representing browser
fingerprints, and the underlying configurations, as feature
models, providing an elegant framework for reasoning. We
also provide an API to interact with the system and we present
a methodology for identifying a minimal set of attributes
necessary to identify partial browser configurations from their
browser fingerprints. Our approach is validated using a dataset
we have constructed with 89, 486 browser fingerprints, col-
lected from 1, 748 unique configurations parameters across
13 Chromium versions, from two hardware platforms.

The remainder of this paper is structured as follows. Sec-
tion II provides background knowledge to better understand
this work, in particular Section II-B presents feature mod-
eling and their advantages in the browser fingerprint field.
Section III motivates our work with practical scenarios. Sec-
tion IV present our approach of representation of the browser
fingerprint as feature models. Section V proposes queries
to explore the browser fingerprint and configuration feature
models. Section VI Section VII presents related work. Finally,
Section VIII concludes the paper.

II. BACKGROUND

Web browsers have evolved into highly complex software
systems serving billions of users globally. Their continuous
evolution is driven by the need to accommodate emerging
web technologies and user requirements. Browser vendors
enhance functionality through both in-house development and
integration of third-party components [12], leading to increas-
ingly sophisticated and complex codebases. This evolution
has spawned a diverse ecosystem of browser implementations,
each offering distinct feature sets and capabilities. The prolif-
eration extends beyond traditional desktop browsers to include
specialized variants for mobile devices, ARM-based archi-
tectures, and various operating systems. Furthermore, users
can extensively customize their browsing environment through
extensions, settings, experimental flags, and over a thousand
switches.1 These layers of complexity from core browser
implementations to user level customizations create unique
browser configurations. Each configuration variant potentially
influences the browser’s fingerprint, creating distinctive signa-
tures that reflect both the underlying browser architecture and
user customizations.

1https://peter.sh/experiments/chromium-command-line-switches/

A. Browser Fingerprinting

Browser fingerprinting employs various technical ap-
proaches and methodologies to identify unique browser config-
urations [13]. Some fingerprinting techniques focus on specific
attribute values, such as Canvas rendering [14], [15] and
the User Agent string [13], which are particularly effective
for unique identification. Our research utilizes Browser Object
Model (BOM) enumeration, as first presented by Schwarz et.
al [11] to construct comprehensive browser fingerprints. BOM
enumeration systematically explores the browser’s public APIs
to obtain all exposed attributes, values and methods from the
browser, providing a comprehensive snapshot of the browser
and its configuration. A significant privacy concern stems from
the accessibility of these fingerprinting attributes through stan-
dard browser APIs, which do not require explicit user consent,
enabling the stealthy collection of fingerprinting data. More
generally, fingerprints have been shown to uniquely identify
browsers without relying on cookies or logins information [1],
[16]. As a result, browser fingerprinting is increasingly adopted
by websites for tracking and user identification [17], and
interestingly, for bot detection [18], [19].

Browser fingerprints generally consist of structured
attribute-value pairs that characterize browser properties or,
quite similarly, of function calls and their return values. State-
of-the-art research shows that modern browser fingerprints can
include over 13, 000 distinct attributes [11]. This figure contin-
ues to grow as browsers evolve and expand their functionality,
we have found upwards of 16, 000 attributes, highlighting the
growing complexity of fingerprinting and its implications for
user privacy.

B. Encoding Software Variability

Modern Web browsers have evolved into highly-variable
software systems. This variability arises from user personal-
ization options (e.g., extensions, settings, plugins), operating
system compatibility (e.g., Windows, macOS, Linux, Android,
iOS), and diverse hardware platforms (e.g., desktop computers,
mobile devices, vehicles, IoT devices). This multi-dimensional
variability creates an extensive space of configurations, which
impacts browser fingerprint characteristics, creating a complex
mapping between configuration parameters and fingerprint
attributes. This complexity necessitates robust analytical tools
to model and understand these configuration-fingerprint rela-
tionships.

Software Product Line Engineering provides an approach
to managing variability in software systems [20]. In SPLE,
feature models [21] are a commonly used tool to represent
software variability. Feature models employ a hierarchical
tree structure consisting of a root node and its descendant
nodes. In this structure, each node may possess multiple
children but is restricted to a single parent, with terminal nodes
designated as leaves. For a feature model to be complete,
each feature must be associated with a hierarchical constraint.
The most restrictive constraint is mandatory, which implies
that the feature is always present in every configuration if the
parent feature is also present. In contrast, the least restrictive

2



constraint is optional, indicating that the feature may or
may not be present if the parent feature is also present. In
addition, group relationships can also be defined, such as OR
and XOR relationships. In the former case, a parent feature
includes one or more of its child features, while in the latter,
a parent feature includes exactly one of its child features.

III. ON CAPTURING FINGERPRINTS VARIABILITY

Representing browser fingerprints as feature models pro-
vides a structured and systematic approach to understanding
and analyzing the variability and uniqueness of browser fin-
gerprints, as well as their practical implication.

A. Browser fingerprint sampling

A key challenge in browser fingerprint research lies in the
limited access to real-world fingerprint data due to privacy
concerns. Requests to share such datasets are often refused
as they pose significant risks of exposing sensitive user infor-
mation, limiting the ability to conduct extensive research or
develop novel fingerprinting techniques. Feature model-based
sampling offers a promising solution to this issue [22]. By
using the constraints and variability encoded in the feature
model, one can generate synthetic browser fingerprints that
are both realistic and diverse. That is, synthetic fingerprints
are derived from a feature model based on an existing dataset.
These synthetic fingerprints retain the structural characteristics
and variability of real-world data without exposing the origi-
nal, sensitive data. Moreover, even a small dataset of browser
fingerprints can be significantly expanded through sampling
techniques by systematically exploring the variability within
the feature model and generating new fingerprints.

B. User identification

Browser Object Model (BOM) enumeration collects thou-
sands of attributes per fingerprint, significantly increasing
the overall fingerprint size compared to other more targeted
approaches. The collection and comparison of browser fin-
gerprints during each website visit presents substantial data
management and storage challenges. While various techniques
exist for user re-identification across multiple fingerprints2,
including full fingerprint hashing and partial attribute subset
hashing, these approaches have inherent limitations. Although
hashing provides efficient user re-identification, it proves
fragile in practice, making it difficult to identify specific
changes when hash values differ between visits. Hence, the
selection of the attributes to create the hashed value must
target those with high entropy that remain stable over extended
periods of time. Furthermore, the redundancy of attributes
across multiple browser fingerprints presents an additional
challenge. The repetitive storage of identical attributes across
multiple browser fingerprints introduces unnecessary computa-
tional overhead and storage inefficiencies, suggesting the need
for an optimized data management strategy. These limitations
in current approaches highlight the need for an innovative
fingerprint representation that optimizes storage requirements

2https://github.com/fingerprintjs/fingerprintjs

while maintaining reliable identification capabilities and an
better comprehension of the browser fingerprint at a large
scale.

C. Evolution and History

Browser fingerprint generation always occurs client-side,
while storage, analysis, and comparison are typically per-
formed server-side. This is common practice because any
client-side calculations can be spoofed and are thus better
protected server-side. This architectural separation poses chal-
lenges for researchers, as it make the fingerprinting process
difficult to identify [23] and limits access to the fingerprint
datasets and the evolution of fingerprints over time. Previous
efforts to address the challenge of understanding fingerprints
overtime have relied on browser extensions to collect finger-
prints from the same devices over long periods of time [8],
[3]. While such solutions provide some utility, they also
exhibit several limitations. For instance, extensions such as
AmIUnique3,4 provide users access only to their individual
fingerprints but not to the entire dataset because it can be
used to re-identify other users and may contain other sensitive
data. Such an approach does not support the analysis of
global fingerprint patterns or variations over time by the
larger research community. Furthermore, data collected via
such tools is inherently biased, as users who install privacy-
focused extensions typically exhibit higher privacy awareness
and often utilize additional privacy-enhancing technologies,
making them unrepresentative of the general population [24].
Finally, without access to high-traffic websites, it remains
challenging to collect a substantial and representative dataset
of browser fingerprints, especially one that spans over a long
period. And in any case, browsers protect the device and limit
what websites can collect. The browser’s configuration, the
system configuration, and the hardware’s configuration and
specifics can not be collected through JavaScript, making any
inferences difficult or limited because of the lack of ground
truth values.

We propose an alternative to these website-based datasets,
which contain information that may re-identify users and
are thus not shareable nor otherwise reviewable by users or
researchers. By exhaustively exploring browser configurations
and collecting fingerprints on our own hardware, we can gen-
erate datasets that better understand the fingerprinting surface
of browsers, the links between configuration parameters and
fingerprinting attributes, and we can share the datasets freely
since they no longer re-identify other users. The tradeoff is
a loss of the extensive diversity of devices found in other
datasets [1], [16], [24] for a gain in controlling and collecting
the entire hardware, system and browser configurations. Our
approach relies on exhaustively exploring browser configura-
tions (i.e., browser version, switches, flags and settings) on
hardware in our control for which we also collect extensive

3https://addons.mozilla.org/firefox/addon/amiunique/
4https://chrome.google.com/webstore/detail/amiunique/

pigjfndpomdldkmoaiiigpbncemhjeca

3

https://github.com/fingerprintjs/fingerprintjs
https://addons.mozilla.org/firefox/addon/amiunique/
https://chrome.google.com/webstore/detail/amiunique/pigjfndpomdldkmoaiiigpbncemhjeca
https://chrome.google.com/webstore/detail/amiunique/pigjfndpomdldkmoaiiigpbncemhjeca


configuration information. Furthermore, by representing fin-
gerprints as feature models, existing approaches on feature
model and software product line evolution [25], [26] can thus
be applied. For example, by constructing a feature model
for each browser version, it becomes easy to compare how
and when browser features are introduced or deprecated,
track changes across different browser versions, and identify
attributes with high entropy.

D. Fingerprint Storage

During our experiments, we compared the size of browser
fingerprints stored in a traditional format, such as a json
file, with their representation in our feature model. For a
set of 89, 486 browser fingerprints, the json representation
occupies 121 GB, whereas the feature model requires only
13.4 GB, resulting in a size reduction of 9 times. It is
worth noting that our feature models include some additional
metadata not common in other modeling approaches. Figure 1
shows that each and every node stores the UUIDs of the
fingerprints that contained that node (see Section IV-B). This
makes the conversion to the feature model lossless, as well as
allowing for various queries (see Section V). However, some
use cases, such as fingerprint sampling, do not require the
additional metadata. When removed, the size of the feature
model further decreases to 2.1 MB. This significant reduction
enables long-term storage of a greater number of browser
fingerprints, facilitating a more comprehensive understanding
of their characteristics and evolution over time.

E. Browser Comparison

There is a wide variety of web browsers. However, the
majority of popular browsers are currently derived from
Chromium. Some browsers, such as Brave5, Ungoogled
Chromium6, and Epic Privacy Browser7, place a strong em-
phasis on privacy. Two of these browsers specifically claim
to protect users against browser fingerprinting through vari-
ous techniques. By encoding browser fingerprints in feature
models, we can facilitate comparisons between Chromium
and its derivatives to then evaluate the effectiveness of their
fingerprinting protection mechanisms. We can compare these
browsers to gain a deeper understanding of how their dif-
ferences, and more specifically, their anti-fingerprinting tools
impact browser fingerprints.

F. Reduction of Fingerprinting Detection

Recent research in anti-fingerprinting technologies has fo-
cused extensively on analyzing attribute sets targeted by fin-
gerprinting scripts [27], [28], [29], [23]. Understanding the
complex relationships between browser configurations and
their corresponding attributes is crucial for developing so-
phisticated fingerprint algorithms as well as optimal spoofing
countermeasures. This knowledge enables the implementation
of dynamic attribute selection mechanisms that can vary with

5https://brave.com
6https://github.com/ungoogled-software/ungoogled-chromium
7https://epicbrowser.com/

each browser session, effectively enhancing privacy protection.
By identifying minimal subsets of attributes necessary for re-
identification, we can strongly reduce the attributes needed
as well as the time to fingerprint a device. Furthermore, we
find that many attributes are either activated or deactivated in
groups when a configuration parameter changes, making the
attributes have similar importance in identifying the browser
or the configuration parameter. For example, WebGL support
adds about 2000 attributes simultaneously to the BOM. Instead
of collecting all WebGL-related attributes, the system may
verify the presence of WebGL support and authenticate the
browser version, preventing unnecessary attribute collection
while maintaining robust spoofing detection capabilities due
to the many similar attributes that can be tested. Identifying
these attributes and selecting minimal sets can make the
fingerprinting process much more efficient. Also, by imple-
menting randomized attribute selection strategies on attributes
with similar levels of importance, we can create dynamically
generated fingerprinting scripts that can mitigate client-side
attribute spoofing in a moving target approach. This targeted
approach significantly improves both the efficiency and the
effectiveness in detecting spoofed browser configurations.

IV. FINGERPRINTS AS FEATURE MODELS

The representation of browser fingerprints naturally maps to
the hierarchical structure of feature models. This is arguably
because the BOM exposes the browser’s APIs, which are
designed in a structured manner as any API is. We take
each attribute from the fingerprint, seen in it’s fully qualified
path form (e.g., window.screen.width, and decompose
it into a sequence of nodes called features in SPLE (e.g.,
window, screen, width), beginning from the root node
(i.e., window for all browser fingerprints) and extending
through each path component. In our model, attribute values
are represented as leafs at the termination points of their
respective branches. This structure maintains a one-to-one
relationship between an attribute and its value within a single
fingerprint, while allowing for the aggregation of different
values across multiple fingerprints. Consequently, while an
attribute path may be associated with multiple leaf nodes
when considering different fingerprints, it maintains strict
uniqueness within the context of any individual fingerprint.
An example can be seen in the Fingerprints feature model
presented in Figure 1.

A. Generating Browser Fingerprints and Linking Configura-
tions

To construct our feature model8, we generate
89, 486 browser fingerprints using the Chromium browser
from versions 115.0.5790 to 127.0.6533. We run each browser
version thousands of times to collect a fingerprint for unique
browser configurations. We also explore the browsers in both
headless and headful configurations, an interesting use case
to identify bots. During each launch, we record the browser’s

8https://s.42l.fr/BrowserFM

4

https://brave.com
https://github.com/ungoogled-software/ungoogled-chromium
https://epicbrowser.com/
https://s.42l.fr/BrowserFM


configuration, and importantly, its environment, which
includes the system’s hardware and software information. By
representing the browser fingerprint within the feature model,
a framework traditionally used to represent configurations,
we extend its application. Specifically, we create a new
feature model based on the configurations and environments
employed during browser fingerprint generation. Ultimately,
we obtain three distinct feature models, each representing a
different aspect of the process:

• The browser fingerprint feature model, encompassing
89, 486 distinct fingerprints.

• The system information feature model, including the
hardware and software characteristics of the system in
which the browser was executed during fingerprint gen-
eration.

• The browser’s configuration, detailing the browser ver-
sion and its configuration parameters.

These three feature models enable us to determine which
configurations impact the browser’s fingerprint and the nature
of their impact. Leveraging this understanding, we can identify
the attributes in the browser fingerprint that are affected by
specific configurations and use this information to link a
given fingerprint and re-identify its originating configuration
parameter.

B. Building feature models

A browser fingerprint can be formally represented as a hier-
archical structure of attribute-value pairs. We construct a tree-
based representation according to the following transformation
rules:

• Each distinct attribute is transformed into an internal node
in the tree structure;

• The corresponding values are represented as leaf node in
the hierarchy;

• Nested attributes establish parent-child relationships,
where containing attributes become parent node to their
constituent attributes.

Like mentioned in section II-B, we use constraints to
enhance our understanding of the relationships among subsets
of attributes, however, they do not establish relationships
between different branches of the feature model. To address
this limitation, we assign a unique UUID to each generated
fingerprint and associate it directly with each feature. This
approach allows us to trace which attributes are influenced
by specific configurations or environments, as each UUID
is also stored in the nodes of the system information and
browser information feature models. An additional advantage
of this approach is the ability to reconstruct the original
browser fingerprint from the feature model, even when the
feature model contains a large collection of fingerprints.
In the end, all browser fingerprints are consolidated into a
single feature model. Unlike the case where all fingerprints
would be merged into a single JSON file—resulting in the
loss of their origins, this approach preserves the provenance
of each fingerprint, eliminates redundancy, and provides a

more structured storage solution. We constructed three feature
models. The first is based on 89, 486 browser fingerprints
and contains 35, 857 nodes with 18, 194 leafs (values). The
second represents system information, with 464 nodes. The
third captures browser information, comprising 92, 998 nodes.
These three feature models enable us to directly track configu-
rations and their impacts on browser fingerprints, and provide
to us different advantages and use cases. Figure 1 illustrates
a partial representation of the three feature models, showing
how information (including names, constraints, children, and
UUIDs) is stored within each feature. The example showcases
six browser fingerprints, four of them are generated from a
browser with the disable-3d-apis switch enabled. Their
corresponding UUIDs appear in the disable-3d-apis
feature of the BrowserInformation model but are notably
absent from the wgl feature in the Fingerprints model. Such
absence shows how enabling this switch affects the browser
fingerprint by preventing certain features from being present,
and demonstrates the direct impact of specific configurations
on browser fingerprints. To ease practical use of our approach,
we propose an API, allowing for seamless queries across these
feature models to efficiently extract the desired data.

V. QUERYING THE FEATURE MODEL

To leverage the feature model, we developed an API for
querying fingerprint information. This API includes, but is not
limited to, queries for :

• Fingerprint reconstruction: Reconstruct a complete fin-
gerprint from its attributes.

• Fingerprint retrieval: Retrieve a fingerprint based on a
specific criteria (e.g., UUID).

• Configuration identification: Identify all configurations
where a particular attribute is present.

An excerpt of this API is shown in Listing 1, where three
queries are computed on a feature model built from a JSON
file. In the following, we provide more details on three core
queries of the API.

Extracting fingerprint. To reconstruct complete fingerprints
from their constituent attributes, the process traverses the
feature tree for identifying nodes that contain the target UUID
identifier. When a feature node contains the specified UUID, it
is stored in memory, and the algorithm continues its traversal
through the node’s children. For nodes that do not contain
the target UUID, the algorithm examines sibling nodes. If
no siblings are present, the search continues with the parent
node’s siblings. Upon completion of the tree traversal, all
features and their hierarchical paths associated with the target
UUID are assembled into a complete fingerprint structure. This
reconstructed fingerprint can then be serialized into various
formats, such as JSON or key-value pairs, depending on the
specific implementation requirements.

Searching attributes. The process of extracting attributes
based on specific constraints begins with the definition of
search criteria, such as targeting a particular browser version.
The algorithm first queries the browser information feature
model to identify all UUIDs associated with the specified

5



Fig. 1. Partial representation of the three feature models. (1) the Browser Fingerprint model capturing attribute characteristics. (2) the Browser Information
model containing browser configuration and version. And (3) the System Information model representing hardware and software specifications.

6



1 browser_query = FeatureModelQuery(
2 model=FeatureModelLoader.load("path/to/browserModel.pkl"),
3 model_type=FeatureModelType.BROWSER_INFO
4 )
5 fingerprint_query = FeatureModelQuery(
6 model=FeatureModelLoader.load("path/to/fingerprintModel.pkl"),
7 model_type=FeatureModelType.FINGERPRINT
8 )
9 system_query = FeatureModelQuery(

10 model=FeatureModelLoader.load("path/to/systemModel.pkl"),
11 model_type=FeatureModelType.SYSTEM_INFO
12 )
13

14 fingerprint = fingerprint_query.from_origin({'123e4567-e89b-12d3-a456-426614174000'}) \
15 .get_attributes_values_json() \
16 .print_results()
17

18 browser_version_uuids = browser_query.from_name({'Chrome/125.0.6422.141'}) \
19 .get_uuids() \
20 .print_results()
21

22 attributes = fingerprint_query.from_origin({browser_version_uuids}) \
23 .from_name({'languages','0','en_us'}) \
24 .get_attributes_values() \
25 .print_results()
26

27 configurations = system_query.from_name({'displays','Display_1','model'}) \
28 .get_children() \
29 .get_uuids() \
30 .print_results()
31

Listing 1: API Requests for extracting a fingerprint and searching for attributes and configurations

browser version. These UUIDs then serve as input for ex-
ploring the broader browser fingerprint feature model, fol-
lowing the previously described traversal methodology. The
constraint-based search can be further refined by incorporating
additional criteria such as timezone, language preferences, or
screen resolution specifications. These additional constraints
are applied sequentially, filtering the attribute set while main-
taining the initial browser version constraint. The result is
a precise subset of attributes that satisfies all specified con-
straints across both feature models.

Searching configurations. Understanding attribute pres-
ence patterns provides valuable insights into configuration-
dependent behaviors. By analyzing when specific attributes
appear or disappear based on system configurations, we can
identify direct relationships between hardware, operating sys-
tem or browser configurations and fingerprint characteristics.
For example, observing the correlation between dedicated
graphics card presence and certain attributes helps establish
clear hardware-fingerprint dependencies. This knowledge not
only enhances our understanding of fingerprint generation
but also creates potential pathways for identifying virtual
environments or automated systems through attribute analysis.
Such insights could prove particularly valuable for future
research in bot detection and virtual machine identification.

VI. MINIMAL FINGERPRINTS

One interesting application of feature models is determining
the minimal set of attributes in a browser fingerprint required
to identify specific configuration elements. To achieve this, we
selected certain sets of switches based on a subset of attributes.
We established links between attributes and switches, assign-
ing a weight to each attribute. The weight was determined
by the number of switches affecting the attribute for a given
browser version. Specifically, if an attribute was impacted by
only one switch, it was considered highly important. Con-
versely, if an attribute was influenced by multiple switches, its
weight decreased proportionally to the number of switches af-
fecting it. We retrieve this information by counting the UUIDs
in the feature model. In our experiment, we first generated
a sample of browser fingerprints using various switches, as
detailed in section IV-A. We measured and recorded the impact
of each switch on the browser fingerprints. Subsequently, we
generated a new sample on a different machine with a distinct
set of switches known to affect browser fingerprints The goal
was to identify these switches based on their impact on the
browser fingerprint. During the identification process, we an-
alyzed the fingerprints impacted by switches and successfully
identified between 74.7% and 87.3% of the switches. This
experiment was repeated with progressively smaller subsets
of attributes ranked by weight: the top 75%, 50%, 25%,
10%, and finally just one attribute (the highest-weighted) for

7



the 0% case. For the 0% case, only the single most critical
attribute was used to identify switches. During the experiment,
the algorithm was provided with the browser version, the
fingerprint, a list of attributes with their weights, and the links
between attributes and switches. Based on this information,
the algorithm deduced the list of switches that could plau-
sibly have impacted the fingerprint. Feature models proved
instrumental in identifying minimal attribute sets necessary
for detecting configuration elements in browser fingerprints.
By leveraging weighted attribute analysis, where weights are
inversely proportional to the number of switches influencing
each attribute, this approach prioritizes attributes uniquely tied
to specific switches over those impacted by multiple switches.
Figure 2 highlights two significant changes in identification
performance: one between 0% and 10%, and another between
25% and 75%, depending on the browser version. Notably,
it is surprising to observe that identification rates range from
63.1% to 76.4% using only a single attribute. These results
demonstrate that certain attributes carry high entropy and are
particularly effective for configuration identification. From the
data presented in Figure 2, we can infer that efficient config-
uration identification can be achieved with as little as 10% of
the impacted attributes. Additionally, the performance gains
between 75% and 100% attribute selection vary depending
on the browser version. The minimal browser fingerprint can
compromise the entropy for user re-identification, as it focuses
on identifying the client-side configuration rather than directly
identifying the user. However, in future work, we aim to refine
this approach by selecting the optimal set of attributes for
user identification. By adjusting attribute selection, we can
achieve a balanced trade-off between identification accuracy
and performance.

VII. RELATED WORK

A. Software variability

In the context of software variability, Swanson et al. [30]
propose a methodology to track valid configurations over
time and provide solutions when inconsistencies arise. This
represents a crucial tool for evolving software systems, where
configuration changes may lead to operational errors. Several
studies have explored the application of Software Product
Line Engineering techniques in diverse domains. For instance,
Cashman et al. [31] demonstrate the potential of feature
models in biological applications. Specifically, they show how
feature models facilitate the reuse of DNA elements within
their Biobrick repository. These studies highlight both the
versatility of feature models across different domains and their
potential applications to browser fingerprinting scenarios. The
feature model has different constraints, and the state of the
proposal different approach. She et al. [32] tackled the problem
with automatic model synthesis from propositional constraint
on two normal form (conjunctive and disjunctive), providing
an NP-hardness enhancement. Ryssel et al. [33] propose to
incorporate the concept of or-groups and xor-groups. Their
proposal can automatically extract the relation between fea-
tures from existing configurations. Acher et al. [34] have an

approach to extract the feature model from the product de-
scription, then permit to have a model process more structured
and efficient. The study of Herrejon et al. [35] propose an
application of evolutionary algorithms for reverse engineer
a feature models. Their approach provides the potential to
reconstruct a feature models from existing systems.

B. Browser Fingerprinting

Schwarz et al. [11] propose a framework for BOM enumer-
ation, the creation of templates for browser fingerprints and
their comparison. However, in their framework, the cleaning
phase is based on the difference after a refresh of the web
page, and doesn’t include the other dynamic attributes in
longer terms. During the analysis phase, they compare browser
fingerprints one by one, which is not scalable at large scale
and limits the usage. Huyghe et al. [36] propose an approach
to represent browser fingerprints in feature models, however
they limit their usage to browser fingerprints, don’t provide
any ways to explore them and don’t share any results on
the identification of configurations from browser fingerprints.
Andriamilanto et al. [37] propose a tool to select the best
attributes to identify users. However, the experimentation is
limited to a handful of attributes, and doesn’t take into con-
sideration all other existing attributes with potentially higher
entropy.

VIII. CONCLUSION

This work highlights the potential of feature models in the
domain of browser fingerprint analysis. Theses representation
give access to a series of tools and approaches from the
SPLE domain, offering new opportunities to get a better
comprehension of the browser fingerprint and optimize fin-
gerprinting defenses, including dynamic attribute selection and
efficient verification processes. Our experiments demonstrate
that certain attributes exhibit high entropy, making them par-
ticularly impactful for configuration identification. Moreover,
we showed that meaningful insights can be derived even
with a reduced set of attributes, thereby reducing redundancy
and improving storage efficiency. These findings underline
the importance of understanding the relationships between
browser features, configurations, and fingerprints in order to
enhance privacy protection mechanisms.

ACKNOWLEDGMENT

This work has been financially supported by the Agence
Nationale de la Recherche through the ANR-21-CE39-0019
FACADES9 and the ProjetIA-22-PECY-0002 iPoP10 projects
and was made possible by Software Heritage11, the great
library of source code.

9https://anr.fr/Project-ANR-21-CE39-0019
10https://anr.fr/ProjetIA-22-PECY-0002
11https://www.softwareheritage.org/

8

https://anr.fr/Project-ANR-21-CE39-0019
https://anr.fr/ProjetIA-22-PECY-0002
https://www.softwareheritage.org/


Fig. 2. Identification results by browser version, showing the percentage of selected attributes (ranging from a single attribute at 0% to 100%)and their
effectiveness in identifying switches.

REFERENCES

[1] P. Eckersley, “How unique is your web browser?” in Privacy
Enhancing Technologies: 10th International Symposium, PETS 2010,
Berlin, Germany, July 21-23, 2010. Proceedings 10. Springer, 2010, pp.
1–18. [Online]. Available: https://doi.org/10.1007/978-3-642-14527-8 1

[2] T. Saito, K. Yasuda, T. Ishikawa, R. Hosoi, K. Takahashi, Y. Chen, and
M. Zalasiński, “Estimating CPU features by browser fingerprinting,” in
2016 10th International Conference on Innovative Mobile and Internet
Services in Ubiquitous Computing (IMIS), 2016, pp. 587–592. [Online].
Available: https://doi.org/10.1109/IMIS.2016.108

[3] T. Laor, N. Mehanna, A. Durey, V. Dyadyuk, P. Laperdrix, C. Maurice,
Y. Oren, R. Rouvoy, W. Rudametkin, and Y. Yarom, “DRAWN APART :
A device identification technique based on remote GPU fingerprinting,”
in Proceedings 2022 Network and Distributed System Security Sympo-
sium. Internet Society, 2022.

[4] S. Chalise, H. D. Nguyen, and P. Vadrevu, “Your speaker or
my snooper? measuring the effectiveness of web audio browser
fingerprints,” in Proceedings of the 22nd ACM Internet Measurement
Conference, ser. IMC ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 349–357. [Online]. Available:
https://doi.org/10.1145/3517745.3561435

[5] D. Fifield and S. Egelman, “Fingerprinting web users through font
metrics,” in Financial Cryptography and Data Security, R. Böhme and
T. Okamoto, Eds. Springer Berlin Heidelberg, 2015, vol. 8975, pp.
107–124, series Title: Lecture Notes in Computer Science. [Online].
Available: http://doi.org/10.1007/978-3-662-47854-7 7

[6] A. Vastel, W. Rudametkin, and R. Rouvoy, “FP-TESTER: Automated
testing of browser fingerprint resilience,” in IWPE 2018 - 4th
International Workshop on Privacy Engineering, ser. Proceedings of
the 4th International Workshop on Privacy Engineering (IWPE’18),
2018, pp. 1–5. [Online]. Available: https://hal.inria.fr/hal-01717158

[7] O. Starov and N. Nikiforakis, “XHOUND: Quantifying the
fingerprintability of browser extensions,” in 2017 IEEE Symposium
on Security and Privacy (SP), 2017, pp. 941–956, ISSN: 2375-1207.
[Online]. Available: https://doi.org/10.1109/SP.2017.18

[8] A. Vastel, P. Laperdrix, W. Rudametkin, and R. Rouvoy, “Fp-stalker:
Tracking browser fingerprint evolutions,” in 2018 IEEE Symposium
on Security and Privacy (SP). IEEE, 2018, pp. 728–741. [Online].
Available: https://doi.org/10.1109/SP.2018.00008

[9] M. Huyghe, C. Quinton, and W. Rudametkin, “FP-Rainbow: Fingerprint-
Based Browser Configuration Identification,” in Proceedings of the ACM
Web Conference 2025, WWW’25, Sydney, Australia, 2025, pp. 1–11.

[10] C. Quinton, L. Duchien, P. Heymans, S. Mouton, and E. Charlier, “Using
feature modelling and automations to select among cloud solutions,”
in 2012 Third International Workshop on Product LinE Approaches in
Software Engineering (PLEASE), 2012, pp. 17–20.

[11] M. Schwarz, F. Lackner, and D. Gruss, “JavaScript template
attacks: Automatically inferring host information for targeted exploits,”
in Proceedings 2019 Network and Distributed System Security
Symposium. Internet Society, 2019. [Online]. Available: https:
//doi.org/10.14722/ndss.2019.23155

[12] C. Qian, H. Koo, C. Oh, T. Kim, and W. Lee, “Slimium:
Debloating the chromium browser with feature subsetting,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2020, pp. 461–476. [Online].
Available: https://doi.org/10.1145/3372297.3417866

[13] P. Laperdrix, N. Bielova, B. Baudry, and G. Avoine, “Browser
fingerprinting: A survey,” ACM Transactions on the Web (TWEB),
vol. 14, no. 2, pp. 1–33, 2020. [Online]. Available: https://doi.org/10.
1145/3386040

[14] M. A. Obidat, “Canvas deceiver-a new defense mechanism against
canvas fingerprinting,” in Systemics, Cybernetics and Informatics,
2021. [Online]. Available: https://www.iiisci.org/journal/pdv/sci/pdfs/
SA899XU20.pdf

[15] K. Mowery and H. Shacham, “Pixel perfect: Fingerprinting
canvas in html5,” Proceedings of W2SP, 2012. [Online]. Avail-
able: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=
3208feae829cba6bd319421fe1fea58962da8fd9

[16] P. Laperdrix, W. Rudametkin, and B. Baudry, “Beauty and the
Beast: Diverting modern web browsers to build unique browser
fingerprints,” in 37th IEEE Symposium on Security and Privacy

9

https://doi.org/10.1007/978-3-642-14527-8_1
https://doi.org/10.1109/IMIS.2016.108
https://doi.org/10.1145/3517745.3561435
http://doi.org/10.1007/978-3-662-47854-7_7
https://hal.inria.fr/hal-01717158
https://doi.org/10.1109/SP.2017.18
https://doi.org/10.1109/SP.2018.00008
https://doi.org/10.14722/ndss.2019.23155
https://doi.org/10.14722/ndss.2019.23155
https://doi.org/10.1145/3372297.3417866
https://doi.org/10.1145/3386040
https://doi.org/10.1145/3386040
https://www.iiisci.org/journal/pdv/sci/pdfs/SA899XU20.pdf
https://www.iiisci.org/journal/pdv/sci/pdfs/SA899XU20.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3208feae829cba6bd319421fe1fea58962da8fd9
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3208feae829cba6bd319421fe1fea58962da8fd9


(S&P 2016), San Jose, United States, May 2016. [Online]. Available:
https://inria.hal.science/hal-01285470

[17] S. Englehardt and A. Narayanan, “Online tracking: A 1-million-site
measurement and analysis,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’16.
Association for Computing Machinery, 2016, pp. 1388–1401. [Online].
Available: https://dl.acm.org/doi/10.1145/2976749.2978313

[18] A. Vastel, W. Rudametkin, R. Rouvoy, and X. Blanc, “FP-Crawlers:
Studying the Resilience of Browser Fingerprinting to Block Crawlers,”
in MADWeb’20 - NDSS Workshop on Measurements, Attacks, and
Defenses for the Web, O. Starov, A. Kapravelos, and N. Nikiforakis,
Eds., San Diego, United States, Feb. 2020. [Online]. Available:
https://inria.hal.science/hal-02441653

[19] B. Amin Azad, O. Starov, P. Laperdrix, and N. Nikiforakis, “Web runner
2049: Evaluating third-party anti-bot services,” in Detection of Intrusions
and Malware, and Vulnerability Assessment: 17th International Confer-
ence, DIMVA 2020, Lisbon, Portugal, June 24–26, 2020, Proceedings
17. Springer, 2020, pp. 135–159.

[20] A. Metzger and K. Pohl, “Software product line engineering and
variability management: achievements and challenges,” in Future of
Software Engineering Proceedings, ser. FOSE 2014. New York, NY,
USA: Association for Computing Machinery, 2014, p. 70–84. [Online].
Available: https://doi.org/10.1145/2593882.2593888

[21] D. Nešić, J. Krüger, u. Stănciulescu, and T. Berger, “Principles of
feature modeling,” in Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ser. ESEC/FSE 2019. New
York, NY, USA: Association for Computing Machinery, 2019, p.
62–73. [Online]. Available: https://doi.org/10.1145/3338906.3338974

[22] Y. Xiang, X. Yang, H. Huang, Z. Huang, and M. Li, “Sampling
configurations from software product lines via probability-aware
diversification and sat solving,” Automated Software Engineering,
vol. 29, no. 2, p. 54, 2022. [Online]. Available: https://doi.org/10.1007/
s10515-022-00348-8

[23] U. Iqbal, S. Englehardt, and Z. Shafiq, “Fingerprinting the fingerprinters:
Learning to detect browser fingerprinting behaviors,” 2021 IEEE Sym-
posium on Security and Privacy (SP), pp. 1143–1161, 2020. [Online].
Available: https://api.semanticscholar.org/CorpusID:221094754

[24] A. Gómez-Boix, P. Laperdrix, and B. Baudry, “Hiding in the crowd: an
analysis of the effectiveness of browser fingerprinting at large scale,”
in Proceedings of the 2018 world wide web conference, 2018, pp.
309–318. [Online]. Available: https://doi.org/10.1145/3178876.3186097

[25] M. Acher, P. Heymans, P. Collet, C. Quinton, P. Lahire, and P. Merle,
“Feature model differences,” in Advanced Information Systems Engi-
neering, J. Ralyté, X. Franch, S. Brinkkemper, and S. Wrycza, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 629–645.

[26] C. Kröher, L. Gerling, and K. Schmid, “Comparing the intensity of
variability changes in software product line evolution,” Journal of
Systems and Software, vol. 203, p. 111737, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121223001322

[27] A. Gómez-Boix, D. Frey, Y.-D. Bromberg, and B. Baudry, “A collabo-
rative strategy for mitigating tracking through browser fingerprinting,”
in Proceedings of the 6th ACM Workshop on Moving Target Defense,
2019, pp. 67–78.

[28] C. F. Torres, H. Jonker, and S. Mauw, “Fp-block: usable web privacy
by controlling browser fingerprinting,” in Computer Security–ESORICS
2015: 20th European Symposium on Research in Computer Security,
Vienna, Austria, September 21-25, 2015, Proceedings, Part II 20.
Springer, 2015, pp. 3–19.

[29] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens,
and G. Vigna, “Cookieless monster: Exploring the ecosystem of web-
based device fingerprinting,” in 2013 IEEE Symposium on Security and
Privacy. IEEE, 2013, pp. 541–555.

[30] J. Swanson, M. B. Cohen, M. B. Dwyer, B. J. Garvin, and J. Firestone,
“Beyond the rainbow: self-adaptive failure avoidance in configurable
systems,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE 2014.
New York, NY, USA: Association for Computing Machinery, 2014, p.
377–388. [Online]. Available: https://doi.org/10.1145/2635868.2635915

[31] M. Cashman, J. Firestone, M. B. Cohen, T. Thianniwet, and W. Niu,
“Dna as features: Organic software product lines,” in Proceedings of
the 23rd International Systems and Software Product Line Conference
- Volume A, ser. SPLC ’19. New York, NY, USA: Association

for Computing Machinery, 2019, p. 108–118. [Online]. Available:
https://doi.org/10.1145/3336294.3336298

[32] S. She, U. Ryssel, N. Andersen, A. Wasowski, and K. Czarnecki,
“Efficient synthesis of feature models,” Information and Software
Technology, vol. 56, no. 9, pp. 1122–1143, 2014, special Sections from
“Asia-Pacific Software Engineering Conference (APSEC), 2012” and “
Software Product Line conference (SPLC), 2012”. [Online]. Available:
https://doi.org/10.1016/j.infsof.2014.01.012

[33] U. Ryssel, J. Ploennigs, and K. Kabitzsch, “Extraction of feature
models from formal contexts,” in Software Product Lines Conference,
2011. [Online]. Available: https://doi.org/10.1145/2019136.2019141

[34] M. Acher, A. Cleve, G. Perrouin, P. Heymans, C. Vanbeneden,
P. Collet, and P. Lahire, “On extracting feature models from product
descriptions,” Proceedings of the 6th International Workshop on
Variability Modeling of Software-Intensive Systems, 2012. [Online].
Available: https://doi.org/10.1145/2110147.2110153

[35] R. E. Lopez-Herrejon, J. A. Galindo, D. Benavides, S. Segura, and
A. Egyed, “Reverse engineering feature models with evolutionary
algorithms: An exploratory study,” in International Symposium on
Search Based Software Engineering, 2012. [Online]. Available:
https://doi.org/10.1007/978-3-642-33119-0 13

[36] M. Huyghe, C. Quinton, and W. Rudametkin, “Taming the variability
of browser fingerprints,” in Proceedings of the 28th ACM International
Systems and Software Product Line Conference, 2024, pp. 66–71.

[37] N. Andriamilanto, T. Allard, and G. Le Guelvouit, “Fpselect: low-cost
browser fingerprints for mitigating dictionary attacks against web au-
thentication mechanisms,” in Proceedings of the 36th Annual Computer
Security Applications Conference, 2020, pp. 627–642.

10

https://inria.hal.science/hal-01285470
https://dl.acm.org/doi/10.1145/2976749.2978313
https://inria.hal.science/hal-02441653
https://doi.org/10.1145/2593882.2593888
https://doi.org/10.1145/3338906.3338974
https://doi.org/10.1007/s10515-022-00348-8
https://doi.org/10.1007/s10515-022-00348-8
https://api.semanticscholar.org/CorpusID:221094754
https://doi.org/10.1145/3178876.3186097
https://www.sciencedirect.com/science/article/pii/S0164121223001322
https://doi.org/10.1145/2635868.2635915
https://doi.org/10.1145/3336294.3336298
https://doi.org/10.1016/j.infsof.2014.01.012
https://doi.org/10.1145/2019136.2019141
https://doi.org/10.1145/2110147.2110153
https://doi.org/10.1007/978-3-642-33119-0_13

	Introduction
	Background
	Browser Fingerprinting
	Encoding Software Variability

	On Capturing Fingerprints Variability
	Browser fingerprint sampling
	User identification
	Evolution and History
	Fingerprint Storage
	Browser Comparison
	Reduction of Fingerprinting Detection

	Fingerprints as Feature Models
	Generating Browser Fingerprints and Linking Configurations
	Building feature models

	Querying the Feature Model
	Minimal fingerprints
	Related Work
	Software variability
	Browser Fingerprinting

	Conclusion
	References

