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Abstract—Password composition policies (PCPs) are critical
security rules that govern how users create passwords for
online authentication. Despite passwords remaining the primary
authentication method online, there is significant disagreement
among experts, regulatory bodies, and researchers about what
constitutes effective password policies. This lack of consensus has
led to high variance in PCP implementations across websites,
leaving both developers and users uncertain. Current approaches
lack a theoretical foundation for evaluating and comparing
different password composition policies. We show that a structure-
based policy, such as the three-random words recommended by
UK’s National Cyber Security Centre (NCSC), can improve
password security. We demonstrate this using an empirical
evaluation of labelled password datasets and a new theoretical
framework. Using these methods we demonstrate the feasibility
and security of multi-word password policy and extend the
NCSC’s recommendation to five words to account for non-
uniform word selection. These findings provide an evidence-based
framework for password policy development and suggest that
current web authentication systems should adjust their minimum
word requirements upward while maintaining usability.

I. INTRODUCTION

The lack of consensus on password composition policy (PCP)
and the lack of adoption of best practices on the web [1]–
[8] suggests that our knowledge on password security is not
yet complete. Although passwords remain the main method
of authentication, experts and regulatory bodies disagree
fundamentally about what makes a good password policy. State
agencies recommend one set of rules, while professional organ-
isations suggest another, and academic researchers advocate
for yet different approaches. This lack of consensus reveals a
troubling gap in our understanding of password security. What
password composition rules should web developers implement
to best protect their users?

National organisations such as NIST (US) [9] and
NCSC (UK) [10] provide similar guidance on PCP, UK’s NCSC
additionally recommends minimum of three word password
structure. This paper is most interested in structure related
policies to enhance user secret security–should a system or
web admin recommend such three word password structure
policies? In this paper, we develop a model that allows us
to reason analytically about PCPs. Using this, we tackle the

PCP recommended by the UK’s NCSC (minimum of three
random words). We present a novel theoretical framework for
analysing password composition policies, bridging the gap
between security requirements and user behaviour.

The gap between research and practice compounds the
inconsistency in the PCP recommendation. Consider Dropbox,
which developed zxcvbn [11] Password Strength Meter
(PSM). Despite creating this tool, which has 14.7K Github stars
and has been validated by independent research [12], Dropbox’s
own web authentication policy contradicts current best practices.
Their website requires passwords with a minimum of eight
characters, one letter, one digit, and one symbol. Even more
concerning, they do not appear to use their own PSM.
zxcvbn [11] has some weaknesses; it awards its maximum
score of 4/4 to girlsruledaworld and a strong 3/4 to
asdf1fdsa1 —passwords that we would consider vulnerable
as they are common phrases or sequences.

THREAT SCENARIO. We assume that some users will
choose memorable passwords, eschewing password managers
or WebAuthn alternatives. Although password managers offer
stronger security, our model addresses the reality that many
users, from a broad population, will rely on human-generated
passwords. Passwords are also useful in offline and air-gapped
systems too where out-of-band systems are limited. Therefore,
system and web admins have to consider such scenarios.
We therefore analyse password security against the most
challenging threat model: an offline attack where adversaries
can make unlimited guessing attempts without rate limiting.

OUR CONTRIBUTIONS ARE AS FOLLOWS:
• Empirical validation of a structure-based password policy

in addition to existing policies. This provides quantitative
support for existing password composition recommenda-
tions, particularly the NCSC’s three-word policy

• A formal mathematical model describing the recom-
mended number of words to mitigate user behaviours
such as choosing words from a non-uniform distribution.

This work addresses core areas of web security, and our
results provide actionable insights for improving password
policies across web platforms while maintaining usability.
Our findings and insights provide immediate applications for
system and web admins. Our work also provides a theoretical
and reasoning basis for future password composition policy
development and research.Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb) 2025
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II. BACKGROUND

PASSWORD STRENGTH. This metric measures the difficulty
of guessing or cracking a password. However, there is no
consensus on how to quantify such difficulty. Some experts use
dictionary-based methods, while others rely on probabilistic
deep-learning based approaches. Nonetheless, certain lower-
bound measures are widely accepted, such as the minimum
number of characters required to prevent brute-force attacks.

Shannon’s entropy (Eq. 1) quantifies the uncertainty or
information content associated with a random variable.

H(X) = −
∑
x∈X

p(x) log p(x) (1)

In the context of password strength, it measures how unpre-
dictable or ”random” a password is. The higher the entropy,
the more difficult the password is to guess, making it stronger.
This metric estimates the minimum number of bits required
to encode the password. However, the entropy measure for
passwords is often given in the form of log2(R

L), where R
represents the total number of characters in the character sets
used in the password, and L is the length of the password.

The limitation of log2(R
L) is that it assumes all R characters

are equally likely, disregarding the dependency between charac-
ters in human-chosen passwords. This approach oversimplifies,
as passwords like 8zm!U6gNL% and p4$sW0rd1! are
calculated to have the same entropy. However, such an
assumption is unrealistic, as the latter password is essentially
the word password with predictable transformations.

PASSWORD COMPOSITION POLICIES (PCP). PCP is set
of rules, often in natural language, that only allows the user to
sample from a password space that is assumed to be resistant
to guessing attacks. The National Cyber Security Centre
(NCSC) [10] in the UK and the National Institute of Standards
and Technology (NIST) [9] in the USA are leading authorities
in cyber-security. Their recommendations, particularly on
password policies, should serve as standards or benchmarks in
the field. Specifically, the NCSC advocates for the use of three
random words [13] and advises against mandatory password
complexity requirements [14]. This approach, detailed in [15],
is based on the principle that a sequence of three random words
is both easier for users to remember and sufficiently complex to
deter unauthorised access, striking a balance between security
and user convenience. This three word and structure-based
PCP is conditioned on the following:
• LENGTH. To satisfy the minimum length requirements.
• IMPACT. Easy to adopt and understand.
• NOVELTY. Unlikely to find it in a breached database.
• USABILITY. More likely to be remembered.

NIST’s [16] PCP is as follows. Passwords should have a
minimum length of 8 characters, but systems should support
more than 64 characters. It is advised to compare the selected
password against prior breach data, dictionary entries, and
repetitive patterns. Context-specific terms should also be
considered. Additionally, users should be aided with strength
meters to gauge password robustness. While rate limiting should

be enforced during authentication attempts, use of specific
composition rules is discouraged. OWASP [17] follows the
recommendations set by NIST.

PASSWORDNINJA DATASET [18] is a human and machine
labelled datasets that has decomposed password strings into its
finer constituents. For example, the password 0rwell1984
would be structured as follows.

0rwell︸ ︷︷ ︸
word (w)

1984︸ ︷︷ ︸
date

The passwordNinja [18] dataset is composed of a complete
hotmail and LizardSquad [19] breached passwords from 2009
and 2015 respectively. The hotmail dataset, which leaked in
2009 [20], comprises 8929 records of passwords. Public sources
indicate that these passwords were procured through phishing.
Abundant evidence within the dataset supports this claim. For
instance, we observe numerous passwords with inverted capi-
talisation and similar passwords that contain typos, suggesting
that users might have unintentionally activated CAPS LOCK.
The LizardSquad dataset contains 11 808 records.

III. PASSWORD COMPOSITION POLICY

There is a lack of consensus on password composition
policy amongst industry experts, academics and government
agencies. This has created some confusion which is evident
by the fact that most web applications do not follow any best
practices [1]–[8]. This raises the question which PCP is the
right one? Specifically, should we have a structure-based policy
as recommended by UK’s NCSC?

To answer this question we pay particular attention to the
NCSC’s PCP of three random words. We first develop a
mathematical model that incorporates password structures, this
is novel and enabled by the passwordNinja dataset.

A. Empirical Evaluation

To analyse how password structure affects security, we
draw on the passwordNinja [18] dataset. This dataset provides
something previously unavailable to researchers: individually
labelled passwords that reveal their structural composition.
This labelling is essential for our analysis, as it allows us
to systematically evaluate how different password structures
influence the security strength.

Our analysis of password datasets reveals several key
vulnerabilities in how users choose passwords. First, users
select words from a highly biased distribution, making pass-
words more predictable (Figure 1a). Second, commonly used
password structures contain patterns that attackers can exploit
using techniques such as Probabilistic Context-free Grammar
( PCFG [22]) or mask attack mode in Hashcat [21].

As shown in Table I, single words (w) and names (n)
dominate password structures, making them vulnerable to
dictionary attacks. The effectiveness of these attacks varies by
hash function; our tests using consumer hardware demonstrate
significantly different cracking times across hash functions. A
newer dataset (LizardSquad [19] 2015) shows similar structural
patterns (More detail in Table III following Reference section.)
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Figure 1: Charts showing the log-log plot of word and structure against their respective rank for the hotmail dataset. Words are
from extracted unique passwords. The distribution of both words and structure exhibit a power law similar to Zipf’s law.

However, passwords containing multiple words (such as w4

structures) demonstrate much stronger security, resisting hybrid
attacks even when hashed with MD5. Yet this strength depends
critically on word choice. When users select related words
or popular phrases (such as song lyrics), passwords become
more predictable. For example, the phrase "mira que eres
canalla" is vulnerable even though it is made up of four
words. This is because it originates from Mexican folk music.

To maximise security, users should select words with minimal
semantic or probabilistic relationships in their sequence. This
prevents attackers from using language models to predict
subsequent words in multi-word passwords or passphrases.

Our analysis of the passwordNinja datasets supports the
NCSC guidelines. Testing with zxcvbn [11] (Table II)
confirms that multi-word passwords do improve the security
of human-chosen and memorable password.

B. Theoretical Evaluation

1) Password Structure Probability: Let S denote the struc-
ture of a password, where S(p) = (e1, e2, . . . , en) and each
ei ∈ Σ (e.g., Σ = {w, n, d, s, . . . }). The probability of a
structure S is given by P (S) = P (e1, e2, . . . , en). Assuming
dependence between the elements in the structure, this can be
expressed as:

P (S) = P (e1)

n∏
i=2

P (ei | ei−1) (2)

2) Combined Relationship Probability: If ei represents the
type of the element, then let êi represent the instance of the
element, e.g. ê → password if e = w (i.e. a word). We can
represent both structure and instance relationships using a joint

distribution. For a password p with elements (e1, ..., en), we
can define:

P (p) = P (S(p), E(p)) (3)
= P (S(p))P (E(p) | S(p)) (4)

Where E(p) represents the specific element instances.

P (E(p) | S(p)) = P (ê1)

n∏
i=2

P (êi | êi−1, S(p)) (5)

The final equation simplified is:

P (p) = P (e1)P (ê1)

n∏
i=2

[P (ei | ei−1)P (êi | êi−1, S(p))] (6)

3) Incorporating NCSC’s Recommendation: Aligning with
the NCSC’s recommendation of using at least three ran-
dom words, we define a specific structure S∗ where
S∗ = (w, w, w). We assume a fixed structure of just
three words, thus P (S∗) = 1. Using Eq. 4, we are left with
P (p | S∗) = P (E(p) | S(p)). We also assume that the
words are chosen independently. Thus, we have:

P (p | S∗) =

3∏
i=1

P (wi) (7)

C. Non-uniform NCSC PCP
In practice humans do not select words at random and

the passwordNinja [18] dataset shows that the selection of
words follows a power-law like distribution. This has significant
implications for the NCSC’s recommendation of using at least
three random words for password composition. Below is a
mathematical framework to model this scenario and assess the
impact on the password composition policy.

3



Table I: The table presents the top 25 labelled password structures from the passwordNinja [18] dataset, accounting for 5 032
(69.5%) of the labelled dataset. Hashcat [21] benchmarks indicate the performance of consumer hardware in a hybrid attack.
The dictionary size for w (words) and n (numbers) is set at 5× 105. zxcvbn [11] serves as a password strength meter, with
scores ranging from 0 to 4, and guess estimates are log based.

Frequency Hashcat using Nvidia RTX 4090 zxcvbn Mean

Structure log perm’ Count % MD5 PBKDF2-sha256 scrypt bcrypt-sha512 Score Guesses

w 1520 21.0 ∼ 0 0.1 s 1 min 4 min 1.3 5.36
n 811 11.2 ∼ 0 0.1 s 1 min 4 min 1.0 4.72

nd 58 0.8 ∼ 0 0.6 s 12 min 42 min 1.4 5.68
wd 91 1.3 ∼ 0 0.6 s 12 min 42 min 1.5 5.97
nl 33 0.5 ∼ 0 1.5 s 30 min 2 h 1.2 5.09

wdd 294 4.1 ∼ 0 5.6 s 2 h 7 h 1.8 6.69
ndd 221 3.1 ∼ 0 5.6 s 2 h 7 h 1.6 6.33

nddd 71 1.0 ∼ 0 56.4 s 19 h 3 day 1.7 6.37
wddd 91 1.3 ∼ 0 56.4 s 19 h 3 day 1.9 6.84
wsdd 29 0.4 ∼ 0 3 min 3 day 9 day 2.0 7.28

ddddw 35 0.5 ∼ 0 9 min 8 day 29 day 2.4 7.95
wdddd 174 2.4 ∼ 0 9 min 8 day 29 day 2.3 7.59
ndddd 205 2.8 ∼ 0 9 min 8 day 29 day 2.0 6.90

nn 376 5.2 1.5 s 8 h 1 yr 4 yr 2.0 6.91
ww 457 6.3 1.5 s 8 h 1 yr 4 yr 2.0 7.04
nw 30 0.4 1.5 s 8 h 1 yr 4 yr 2.2 7.51

ndddddd 51 0.7 3.0 s 16 h 2 yr 8 yr 2.5 8.05
wdddddd 33 0.5 3.0 s 16 h 2 yr 8 yr 2.8 8.84

wwdd 58 0.8 3 min 33 day 111 yr 402 yr 2.9 8.97
nndd 38 0.5 3 min 33 day 111 yr 402 yr 3.2 9.62

wwdddd 33 0.5 4 h 9 yr 1.11 × 104 yr 4.02 × 104 yr 3.3 9.81
nwn 41 0.6 9 day 447 yr 5.56 × 105 yr 2.01 × 106 yr 3.0 8.88

www 165 2.3 9 day 447 yr 5.56 × 105 yr 2.01 × 106 yr 3.0 9.26
nww 35 0.5 9 day 447 yr 5.56 × 105 yr 2.01 × 106 yr 2.7 8.18
nnn 27 0.4 9 day 447 yr 5.56 × 105 yr 2.01 × 106 yr 3.3 9.95

wwww 55 0.8 171 day 8.70 × 103 yr 1.08 × 107 yr 3.91 × 107 yr 3.5 11.24

Table II: Top 10 password structures for each zxcvbn [11]
score of 3 an 4. These are the password structures that are cat-
egorised in the most secure bin (4) by the zxcvbn algorithm;
Avg Guesses is the zxcvbn guesses_log10.

Structure Count Avg Guesses Avg Length
zxcvbn score = 4

r2 r2 160 12.6 14
www w3 57 12.1 14
ww w2 48 12.0 14

wwww w4 34 13.1 15
w w 25 11.3 12
nn n2 24 11.2 13

wdddd wd4 19 11.6 12
wwdddd w2d4 16 11.3 14

nndd n2d2 15 11.5 13
ndddd nd4 14 10.8 12

zxcvbn score = 3
r2 r2 185 8.9 10
w w 100 8.8 10

ww w2 86 8.8 11
nn n2 77 8.8 11

www w3 62 9.1 11
wdddd wd4 44 8.8 11
ndddd nd4 43 8.7 10
wdd wd2 38 9.0 10

wwdd w2d2 31 9.1 11
n n 26 8.9 10

1) Word Frequency Distribution: Let w denote a word from
the vocabulary W . Under Zipf’s law, the probability P (w) of
selecting the r-th most frequent word is given by:

P (wr) =
1/rs∑|W|
k=1 1/k

s
(8)

where s is the exponent characterizing the distribution (typically
s ≈ 1 for natural languages).

For a password p consisting of n words (w1, w2, . . . , wn)
selected independently according to Zipf’s law, the structure
probability P (S) where S = (w,w, . . . , w) is:

P (S) =

n∏
i=1

P (wi) =

n∏
i=1

1/rsi∑|W|
k=1 1/k

s
(9)

where ri is the rank of the i-th word.

2) Entropy of the Password Distribution under Zipf’s Law:
The entropy H of the password distribution. Substituting P (p)
with the structure probability:

H = −
n∑

wi∈W

(
n∏

i=1

1/rsi∑|W|
k=1 1/k

s

)
log

(
n∏

i=1

1/rsi∑|W|
k=1 1/k

s

)
(10)

Simplifying the logarithm:

H = −
n∑

i=1

∑
wi∈W

P (wi) logP (wi) = n ·Hword (11)

where Hword is the entropy per word. We will now use this to
draw a comparison with the uniform distribution, which we
take to be the theoretical version of the NCSC’s PCP.

3) Impact on NCSC’s Recommendation: To align the pass-
word policy with enhanced entropy under Zipf’s law, we need
to determine the minimum number of words n required to
achieve a desired entropy Hdesired. This can be formulated as:

n ≥ Hdesired

Hword
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Figure 2: Chart showing the equivalent number of words
required in practice to match the theoretical complexity
of the National Cyber Security Centre’s (NCSC) password
composition policy. The NCSC recommends at least three
random words, using our model we show that in practice a
minium of 4 words is more secure.

Given that Hword is lower under Zipf’s law compared to a
uniform distribution (due to the presence of highly probable
words), a larger n may be required to achieve the same entropy.

Under a uniform distribution where each word has P (w) =
1

|W| , the entropy per word is:

Huniform
word = log |W|

Comparing with Zipf’s law:

HZipf
word < Huniform

word

Zipf’s law requires more words than a uniform distribution to
achieve the same entropy level. As Figure 2 demonstrates, when
we increase the vocabulary size, the entropy difference between
uniform and Zipf’s distributions also increases. This comparison
leads us to conclude that we need at least 4-5 words to match the
entropy that NCSC’s theoretical PCP describes. Moreover, this
minimum word requirement grows as the vocabulary expands.

To maintain or exceed the entropy level recommended by
NCSC using three random words under a Zipfian distribution,
the policy should be adjusted to:

nadjusted ≥ 3 · log |W|
HZipf

word

This ensures that the password composition maintains suffi-
cient entropy despite the skewed word frequency distribution.

4) Adjusted Password Structure Probability: If we adjust
the structure to use n words to counteract the lowered entropy
per word, the structure probability becomes:

P (Sn) =

n∏
i=1

P (wi) =

Ç
1∑|W|

k=1 1/k
s

ån n∏
i=1

1

rsi
(12)

Ensuring that n is sufficiently large to maintain high entropy
despite the non-uniform word distribution.

IV. DISCUSSION

Password Composition Policy is a culmination of our under-
standing of password security, it takes into account password
complexity (or strength), password guessing algorithms, and
user behaviour. Whilst many policies exist such as minimum
number of characters, the NCSC recommendation of three
random words is the only one that proposes a structure policy.
This paper has then analysed this policy and its necessity. We
find that a structure-based policy in addition to other existing
policies does improve password strength.

The passwordNinja dataset showed that the expected com-
plexity of password structures that are unrestricted (i.e. no
recommendation or policy) is weak. In order for a system
or web admin to increase the expected complexity of their
dataset then they can recommend their users to adopt complex
password structures, such as multiple words.

Using a theoretical model we show that in practice a user
would need 4 to 5 words to mitigate the lack of randomness
in choosing a word. Our recommendation is then a five word
password structure policy to offset non-uniform word selection.

A. Ethical Considerations

In handling sensitive password data, we enforce strict ethical
safeguards. We limit our analysis to the well-established
SecLists datasets [23], which researchers have extensively used
in prior password-guessing literature. This choice allows us to:

• Avoid releasing any new compromised data.
• Ensure complete removal of personally identifiable infor-

mation (PII)—No PII is processed or stored.
• Build upon an established ethical framework in password

research. The datasets used in this study have been
regularly used and vetted in prior research.

B. Limitations

The passwordNinja [18], while valuable, represents a specific
snapshot in time (2009-2015) and primarily includes English
and Spanish-language passwords. This could limit the gener-
alisability of our findings. However, even between 2009 and
2015, there were insignificant differences in the characteristics
of the data. This leads us to believe that patterns observed in
the older datasets would also be present in more recent ones.

The evaluation of our theoretical model could, in the
future, account for semantic relationships between instances
of elements. Although we accounted for this in our model,
we did not consider these semantic relationships in the final
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evaluation. Future research could explore how these semantic
connections influence the overall system behaviour, particularly
in edge cases where traditional evaluation metrics may fall short.
However, this limitation does not diminish the significance of
our findings. Moreover, the theoretical model could evaluate
other types of password structures beyond three words.

Despite these limitations, our findings provide strong evi-
dence supporting the need for adjusted password composition
policies that account for real-world user behaviour while
maintaining security requirements. The proposed five-word
minimum represents a practical enhancement to existing
guidelines that balances security needs with human factors
in password creation.

V. RELATED WORK

Despite extensive research in password complexity measures
and meters, recommendations for password policies remain
scarce. Bonk et al. [24] offer guidance on constructing
passphrases, suggesting longer sequences, such as seven words
or more. The study found that long passphrases (7+ words)
achieved login success rates of 74-86% with average login
times of 25-30 seconds, suggesting reasonable usability for
high-security accounts accessed daily. However, the paper
mainly focussed on usability. Our recommendation of five
words provides a more quantitative reasoning behind its choice.
Gerlitz et al. [8] provided a comprehensive analysis of password
composition policies in Germany.

Early password modelling techniques, such as the Markov n-
gram model [25], focused on individual characters, positing that

”the distribution of letters in easy-to-remember passwords likely
mirrors the letter distribution in the user’s native language.”
We have validated this hypothesis at the word level. The
observation that letter distribution is not uniform holds true
for words, exhibiting a power-law distribution akin to Zipf’s
law. Modelling passwords based on Probabilistic Context-Free
Grammars ( PCFG [22]) was the next innovation in password
modelling. Our insights into empirical password structures can
refine PCFG modelling. Incorporating Wn and Nn as variables
for words and names respectively enhances the computational
viability of modelling more intricate structures. Subsequent
advancements have leveraged machine learning techniques in
password modelling, including neural networks [26], GANs
[27], RNNs [28], and Transformers [29], among others.

Historical analyses of password characteristics have focused
on length, count, and character-level structures [30]–[37].

zxcvbn [11] employs dictionaries and bespoke rules to
gauge password strength on a scale from 0 to 4. However,
zxcvbn has its limitations; for example, it incorrectly parses
the password gomythsun as go myths un, impacting its
strength rating. Additionally, it struggles with transformations
like numbr from number. Wang et al. [38] delve deeper into
evaluating password strength meters. Their endorsement of
zxcvbn and Markov n-gram models informed our method.

In an analysis of Chinese passwords [31], Li et al. conduct a
broad analysis on the syntax of passwords. Our research extends
their work by digging deeper into the password structures. For

instance, Li et al. identified LLLLLL as the predominant
structure within the Rockyou dataset, typically representing a
word as we showed in our results. Further structural analysis
on various password datasets is presented in [39].

Das et al. [32] explored password syntax, notably introducing
analysis on word or phrase transformations. However, we
disagree with their classification of sequential keys, alternate
keys, and sequential alphabet as transformations, viewing
these more as sequences. Riddle et al. [40] delve into the
composition and semantics of passwords, with an emphasis on
the psychological significance of words.

VI. CONCLUSION

We have developed a rigorous model that incorporates
password structure and empirical user behaviour patterns,
filling a critical gap in our understanding of password se-
curity. Through analysis of real-world password datasets, we
demonstrate that structure-based password policy such as three-
words (w,w,w) empirically and theoretically offer security
advantages. However, the NCSC’s previously recommended
three-word password policy, while theoretically sound, fail to
account for users’ non-uniform word selection which follows a
Zipf-like distribution. Our framework provides both theoretical
foundations and practical guidelines for developing more robust
authentication policies that reflect actual user behaviour rather
than theoretical ideals.

We recommend extending the NCSC’s password composition
policy to require five words, which our models show provides
comparable security to the theoretical three-word ideal even un-
der real-world usage patterns. This recommendation maintains
usability while providing demonstrably stronger protection.

Future work includes incorporating memorability into our
optimisation problem. Memorability represents the cognitive
overhead with respect to some password structure. Memorabil-
ity would capture the expected structure given some policy.
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Table III: The table presents the top 25 labelled password structures from the Lizard-Squad dataset. Hashcat [21] benchmarks
indicate the performance of consumer hardware in a hybrid attack. The dictionary size for w (words) and n (numbers) is set at
5×105. zxcvbn [11] serves as a password strength meter, with scores ranging from 0 to 4, and guess estimates are log based.

Frequency Hashcat using Nvidia RTX 4090 zxcvbn Mean
Structure log perm’ Count % MD5 PBKDF2-sha256 scrypt bcrypt-sha512 Score Guesses

w 594 5.5 ∼ 0 0.1 s 1 min 4 min 0.9 4.24
n 189 1.7 ∼ 0 0.1 s 1 min 4 min 0.8 4.13

wd 254 2.3 ∼ 0 0.6 s 12 min 42 min 1.2 5.06
nd 135 1.2 ∼ 0 0.6 s 12 min 42 min 1.5 5.71

wdd 667 6.1 ∼ 0 5.6 s 2 h 7 h 1.4 5.64
ndd 457 4.2 ∼ 0 5.6 s 2 h 7 h 1.4 5.85

wddd 736 6.8 ∼ 0 56.4 s 19 h 3 day 1.6 6.10
nddd 409 3.8 ∼ 0 56.4 s 19 h 3 day 1.6 6.04

wdddd 465 4.3 ∼ 0 9 min 8 day 29 day 1.7 6.41
ndddd 359 3.3 ∼ 0 9 min 8 day 29 day 1.7 6.18

nddddd 58 0.5 0.3 s 2 h 81 day 293 day 1.8 6.51
wddddd 84 0.8 0.3 s 2 h 81 day 293 day 2.0 6.89

nn 139 1.3 1.5 s 8 h 1 yr 4 yr 1.6 6.03
nw 26 0.2 1.5 s 8 h 1 yr 4 yr 1.8 6.42
ww 666 6.1 1.5 s 8 h 1 yr 4 yr 1.5 5.84

ndddddd 51 0.5 3.0 s 16 h 2 yr 8 yr 2.3 7.24
wdddddd 52 0.5 3.0 s 16 h 2 yr 8 yr 1.9 6.92

nnd 73 0.7 15.2 s 3 day 11 yr 40 yr 2.4 7.82
wwd 231 2.1 15.2 s 3 day 11 yr 40 yr 2.1 7.18

wwdd 307 2.8 3 min 33 day 111 yr 402 yr 2.4 7.61
nndd 86 0.8 3 min 33 day 111 yr 402 yr 2.8 8.64

wwddd 233 2.1 25 min 326 day 1.11× 103 yr 4.02× 103 yr 2.5 7.93
nnddd 48 0.4 25 min 326 day 1.11× 103 yr 4.02× 103 yr 2.9 8.96

nndddd 28 0.3 4 h 9 yr 1.11× 104 yr 4.02× 104 yr 3.1 9.54
wwdddd 76 0.7 4 h 9 yr 1.11× 104 yr 4.02× 104 yr 2.8 8.39

www 210 1.9 9 day 447 yr 5.56× 105 yr 2.01× 106 yr 2.3 7.33
wwwd 42 0.4 88 day 4.47× 103 yr 5.56× 106 yr 2.01× 107 yr 2.3 7.45

wwwdd 42 0.4 2 yr 4.47× 104 yr 5.56× 107 yr 2.01× 108 yr 3.1 9.43
wwwddd 39 0.4 24 yr 4.47× 105 yr 5.56× 108 yr 2.01× 109 yr 2.9 9.02

wwww 54 0.5 1.21× 104 yr 2.24× 108 yr 2.78× 1011 yr 1.00× 1012 yr 3.1 9.77
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