
SNITCH: Leveraging IP Geolocation for Active
VPN Detection

Tomer Schwartz
Data and Security Laboratory

Fujitsu Research of Europe Ltd.
Tel Aviv-Yaffo, Israel

Email: tomer.scwhartz@fujitsu.com

Ofir Manor
Data and Security Laboratory

Fujitsu Research of Europe Ltd.
Tel Aviv-Yaffo, Israel

Email: ofir.manor@fujitsu.com

Andikan Otung
Data and Security Laboratory

Fujitsu Research of Europe Ltd.
Slough, United Kingdom

Email: andikan.otung@fujitsu.com

Abstract—Cyber attacks and fraud pose significant risks to
online platforms, with malicious actors who often employ VPN
servers to conceal their identities and bypass geolocation-based
security measures. Current passive VPN detection methods iden-
tify VPN connections with more than 95% accuracy, but depend
on prior knowledge, such as known VPN to IP mappings and
predefined communication patterns. This makes them ineffec-
tive against sophisticated attackers who leverage compromised
machines as VPN servers. On the other hand, current active
detection methods are effective in detecting proxy usage but are
mostly ineffective in VPN detection.

This paper introduces SNITCH (Server-side Non-intrusive
Identification of Tunneled CHaracteristics), a novel approach
designed to enhance web security by identifying VPN use without
prior data collection on known VPN servers or utilizing intrusive
client-side software. SNITCH combines IP geolocation, ground-
truth landmarks, and communication delay measurements to
detect VPN activity in real time and seamlessly integrates into
the authentication process, preserving user experience while
enhancing security. We measured 130 thousand connections from
over 24 thousand globally distributed VPN servers and client
nodes to validate the feasibility of our solution in the real world.
Our experiments revealed that in scenarios where the State of
the Art fails to detect, SNITCH achieves a detection accuracy of
up to 93%, depending on the geographical region.

I. INTRODUCTION

Virtual Private Network (VPN) servers run software that
forwards network traffic through an encrypted tunnel while
obfuscating the source of the communication. They have
multiple uses, such as enabling secure remote access to pri-
vate networks, source IP spoofing (which enables geolocation
spoofing), and providing an additional layer of encryption
for users in insecure networks [1] [2]. Consequently, not all
VPN usage is malicious, but through the use of IP spoofing,
malicious actors can hide their identity and avoid detection.
Specifically, malicious actors can use privately owned or
hacked machines or routers as proxy/VPN servers [3] [4] to
avoid detection mechanisms, particularly those used by state-
of-the-art (SOTA) passive detection systems. As an example,
state-level malicious actors have been seen to use hacked

devices as proxies in multiple campaigns [5] [6], ranging from
intrusion vectors to botnets used in DDoS attacks. Detection
of these threats is crucial for web service security.

VPN detection is an important security mechanism used
to detect bots, scrapers, and other malicious actors, but it is
especially important for services that use IP geolocation as
a security factor, such as zero-trust infrastructure and fraud
prevention services [7] [8]. The global Zero Trust security
market was valued at 26.45 billion dollars and is projected to
reach 162.9 billion dollars by 2032 [9], similarly, the size of
the fraud detection and prevention market was valued at 36.89
billion dollars in 2022 and is projected to grow to 182.66
billion dollars by 2030 [10].

Passive VPN detection methods are the current state of the
art and can detect VPN usage with an accuracy of up to 95-
99% [11] [12] [13]. However, passive detection methods re-
quire prior knowledge of VPN to IP address mappings and will
fail to detect new private VPNs until updated (the limitations
are discussed in Section II-B2). Furthermore, multiple server-
side active detection methods have been tried over the years
[14], but they have been circumvented by VPN services, which
are actively trying to avoid detection.

To address this, we propose SNITCH, a server-side VPN
detection solution/framework with real-time delay measure-
ment of client and (approximate) VPN communication. Our
approach to VPN detection uses direct delay measurements of
client-side communication, IP geolocation, and the utilization
of trusted landmarks. Our method does not require prior
known-VPN knowledge for detection and communicates with
trusted landmarks in proximity to the perceived location of the
client, thus avoiding the need to communicate with the VPN
server and overcoming the limitations of previous solutions.
We have shown the viability of SNITCH through extensive
experimentation on leading VPN services, achieving up to
93% detection accuracy in regions with modern network
infrastructure. It can be seamlessly integrated into the authen-
tication process, enabling web services to detect new or private
VPN servers in cases where existing solutions are unable to
do so due to the aforementioned reasons.

Our paper is structured as follows. Section II presents
the background of IP geolocation, VPN technologies, and
known detection methods with their limitations. Section III
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describes the detection method in detail and discusses the
reasoning behind the methods used. Section IV describes
the components and structure of the experiment. Section V
provides the obtained results. Section VI discusses the efficacy
of the proposed method, as well as possible future work to
address the limitations. Section VII concludes the article.

II. BACKGROUND

In this section, we discuss IP geolocation methods and
their security use cases. Followed by existing VPN detection
methods and their limitations.

A. IP Geolocation

IP Geolocation [15] is the process of locating a device
based on information obtained from its IP address. It is used
in Internet security both to profile potential targets and as
a security measure, especially in the fraud prevention and
Zero Trust markets [8] [16]. IP geolocation techniques can
be categorized as: passive, active, and hybrid.

• Passive techniques utilize data analyzable purely from
the IP address without direct device communication.
Various passive methods demonstrate notable results. [15]
[17] [18] [19]

• Active techniques typically employ probes to ascertain
the delay to the target, which, combined with delay-to-
distance models, assists in estimating the target device’s
location. [20] [21]

• Hybrid techniques integrate two methodologies, utiliz-
ing prior data and machine learning algorithms to enhance
active detection results. [17] [22] [23]

1) Technology applications: Zero Trust security models
rely on IP geolocation as an additional security factor. Specif-
ically, Multi-Factor Authentication (MFA) providers utilize IP
Geolocation to permit and deny access to certain users based
on their location or implement further security restrictions
when a user attempts to log in from an anomalous location.
Microsoft Azure’s Conditional Access policy [24] allows orga-
nizations to block users from accessing the services from coun-
tries and regions that the organization never operates from.
Furthermore, the proliferation of national and multinational
legislatures on data and user protection (e.x. GDPR) requires
certain data to remain within certain borders. [25]

2) IP Geolocation Limitations: Passive geolocation meth-
ods require extensive ground truth data to maintain adequate
accuracy [17]. In contrast, active methods need much less
data but are more vulnerable to network failures, which can
lead to major inaccuracies [20]. The essential premise of IP
Geolocation is that the IP address presented by the target
device is the one allocated to the user’s device or network.
The use of VPNs and proxies to hide the client’s IP renders
geolocation security ineffective. This limitation applies to all
IP Geolocation methods, as both passive and active methods
depend on this core assumption. To address this, some IP
geolocation services employ server-side VPN/proxy detection
as a countermeasure [15].

B. VPN Detection

1) VPNs vs Proxies: Virtual Private Networks (VPNs)
enable secure connections across public networks [26]. This
security is achieved through the encapsulation and encryption
of outbound packet data from the client, which is subsequently
unpacked at the VPN server and forwarded as though origi-
nating from the server itself. Upon receiving a response, it is
encapsulated, encrypted, and retransmitted to the client. This
technique conceals the client’s original IP address from the
accessed service or facilitates access to internal networks, si-
multaneously encrypting sensitive data across public networks.
Separately, HTTPS proxies [14] establish secure connections
on the transport layer. When a client connects to a web server
through a proxy, all HTTPS requests pass through the proxy
server, obfuscating the client’s IP address. Client requests
are transmitted to the proxy over TCP, necessitating distinct
TCP handshakes for each session by both the client and the
web server, effectively “breaking” the TCP connection at the
proxy. On the other hand, VPNs function at the network layer,
maintaining a continuous TCP connection with the destination
server. Figure 1 illustrates the differences in handshake proto-
cols between direct connections, proxies, and VPNs.

The core VPN server implementations, such as OpenVPN
[27], used by PIA [28], encapsulate and transport all client-
generated packets through a tunnel without partitioning server-
bound handshakes. The established tunnel explains the in-
ability of the previous solutions to detect VPN usage. Cer-
tain VPN services function similarly to proxies, where TCP
handshakes are broken, but TLS handshakes are tunneled. Our
measurements have observed this technique in NordVPN [29]
and ExpressVPN [30]. In contrast, VPNs with SSL decryption
capabilities (typically used in corporate settings, such as Palo
Alto’s GlobalProtect) interrupt the TLS handshake, resulting
in a TLS round-trip time (RTT) shorter than TCP RTT. VPNs
incorporating these features are identifiable through standard
proxy detection methodologies, such as BADPASS [31] which
measures the difference between the TCP and TLS handshake.

2) Detection Methods: There are multiple solutions for
Server-side Proxy/VPN detection, each with their own
strengths and weaknesses. For the purpose of our paper, we
will discuss only detection methods that can be implemented
from the server side. The service being accessed is doing the
detection and only has access to the communication from the
client after it has passed through the VPN / proxy. These
solutions can be divided into two main categories. The first is
the passive approach, which is commonly based on known IP
databases (DBs). DBs can include behavioral analysis data and
reputation scores based on reports and passive data collection.
Passive data can include raw packet capture at key junctures,
offline port scanning, source analysis, etc. The main players
include Maxmind, SEON, IPQualityScore, etc. [11] [12] [13].

The second approach is the active detection approach, which
has multiple techniques.

• Active port and service scanning: common VPN solu-
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Figure 1. Initial handshake between client and web server with either Direct,Proxy, or VPN communication

tions/services have default ports, protocols, and patterns
that can be scanned to determine if a VPN service is
running on a server using a method called fingerprinting.
When a connection is initiated on the server, ideally a
scan of the source IP can determine if the client is using
a VPN. New fingerprinting methods are constantly devel-
oped [32] in a constant game of cat and mouse between
VPN and detection services. Fingerprinting methods have
been shown to not be robust because the ports and
protocols used can be easily switched with non-default
configurations and cause false negatives. [14] However,
more sophisticated methods such as VPNChecker [33]
that use a graphical representation of the ports probed,
topological analysis, and communication information,
have shown impressive results. VPNChecker achieved an
accuracy of up to 89.3%, but requires probing access
to the VPN server (which is not a given) and node
connection information, which are significant limitations.

• Deep Packet Inspection: VPN usage causes full en-
capsulation of the original packet; this fact can change
the available size for data in the packet and cause a
few detectable changes in the TCP headers. Specifically,
the MTU/MSS fields in the header can shift from the
norm. This limitation also causes more variance in the
data size and other characteristics of the received packets
over time. Deep packet inspection can be implemented
on the server using any sniffing tool. However, there
are multiple issues with this approach. The TCP field
anomalies can be (and have been) solved with simple
configuration changes. The packet content anomalies are
not consistent and require a significant amount of packets
and complex machine learning models to identify with
sufficient accuracy. Prominent examples of such models
are “Detection of VPN Network Traffic” [34] which
achieved an accuracy of 93.8%, and “Detection of Virtual
Private Network Traffic using Machine Learning” [35]
which achieved an accuracy of up to 97.82% on its
dataset. It is important to note that most methods using
packet inspection and machine learning try to identify
the encrypted communication between the client and the

VPN server, and are therefore not analyzed here.
• Delay and RTT measurement: Delay anomaly mea-

surements have been implemented in multiple papers
to detect proxies, using RTT measurement of the TCP
handshake [36] compared to either the TLS Handshake
[37] or application layer communication, [14] [38]. BAD-
PASS, by Elisa Chiapponi et al. [31] specifically achieves
excellent results for proxy detection (and is utilized in
our solution as a first step to detect proxy usage). This
technique has proven effective at detecting proxies, but
has failed to consistently detect VPNs. This is caused
by the fact that in a VPN service without extensions
(as discussed previously), the entire communication is
encapsulated, and does not “break” at the VPN server, and
thus does not have significant differences in the RTT mea-
surement of different protocols or applications. A newer
technique called Calculatency [39] by Reethika Ramesh
et al. integrates both ICMP ping requests and 0trace
measurements to achieve impressive detection results for
VPN connections as well as proxy usage. However, a
significant limitation in their detection method is the
requirement for the VPN server to respond to ICMP pings
or send out an ICMP TTL exceeded response, which are
both easily blocked by the service. Furthermore, machine
learning-based methods [40] require significant initial
training, data collection, and a significant amount of data
to generate a detection. Other more intrusive methods
can include running JavaScript code that generates new
connections to the server (or multiple servers).

For the purpose of using VPN detection as a security
factor, a solution is required that could be incorporated into
the authentication process. Practically, the user experience
should not be (significantly) affected via loading times or
false positive errors. Most importantly, security standards
must be maintained, which requires very high accuracy as
well as fast detection speeds. The issue with the passive
detection approach is that even though it is extremely fast
and accurate, it requires prior knowledge. Meaning that it
is very good at detecting known, well-established VPN ser-
vices (which will tend to have a benign use), but when
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encountering new non-mainstream VPN servers (higher risk
of malicious activity), the passive approach will essentially
always get a false negative, which is unacceptable from a
security perspective. Port scanning is unreliable and easily
circumvented, as we discussed. Deep packet inspection paired
with machine learning approaches shows promise, but thus far
have required a lot of communication flow data to be effective,
which we do not have access to in a log-in process. Based on
these known limitations, we decided to take a deeper look at
delay measurement. In the following section, we will go over
the method itself, with a focus on the thought process and
assumptions it is based on.

III. METHOD DESCRIPTION

Our detection method utilizes geolocated landmarks to
generate approximate RTT measurements to the VPN. In the
following subsections, we will explain the detection method
in depth as well as the underlying assumptions.

A. Delay vs Geolocation

When looking at a client’s communication to a web server
(which we will call the server for this explanation) through
a VPN or a proxy, we can divide the communication into 3
sections (as illustrated in Figure 2):

CSRTT is the full RTT (round trip time) from the client to
the server.

CVRTT is the RTT from the client to the VPN.
V SRTT is the RTT from the VPN to the server, where

essentially CSRTT = CVRTT + V SRTT .
From the servers’ perspective, V SRTT is the RTT measured

from the server to the clients’ perceived IP, which is the VPN
servers’ IP when one is used and the clients’ IP otherwise.
When no VPN is used CVRTT = 0 and in an attempt to
measure V SRTT we should get approximately the same result
as CSRTT . As a server, we have no access to CVRTT and in
the detection process we essentially attempt to prove that it
has a nonzero value. We can do this with measurements of
CSRTT and CVRTT .

To measure CSRTT , the TCP and TLS handshake RTTs
are measured. We then use the established BADPASS [31]
method to check if there is a significant difference between
the TCP and TLS RTTs and detect proxy usage. The novel
aspect of our method lies in the measurement of V SRTT when
no such difference is present. The naive approach would be to
simply ping the VPN. However, VPNs try to hide or obfuscate
their presence as much as possible. There are multiple ways
in which this is done, but a simple method is that the VPN
servers just ignore all unrecognized incoming communication.

To solve the issue of intentional obfuscation by the VPN,
we implemented a method to measure the expected delay
difference indirectly using trusted probes and landmarks. Our
baseline assumption is that with modern network infrastructure
and endpoint hardware, the network delay is mostly dictated
by the physical distance between the communicating network
endpoints (in our case, these are the client, VPN server
and web server). When measuring a significant difference in

the RTT between CSRTT and V SRTT , we are essentially
detecting that the client is farther away from the server than
is indicated by its IP address (IP Geolocation spoofing).
Therefore, if this assumption holds, the measurement of the
delay between landmarks geographically close to the VPN
and the detection server will produce very similar results to
the expected V SRTT value. This assumption fails in unstable
connections, which can be detected using standard deviation
analysis and other relevant metrics. With current passive
geolocation technologies, we can expect city-level accuracy
for most urban areas and country / region-level accuracy for
the rest [41] [42]. Specifically, for the IP geolocation databases
analyzed by Callejo et al. [41], more than 80% of the IPs
had a geolocation error of 100 km or less. Using passive IP
geolocation on the perceived clients’ IP will return a good
approximation of either the clients’ or VPNs’ geolocation.
An error of 100-200km is negligible in its effect on delay
measurement on an international scale, with an expected
propagation speed between half and 2/3 the speed of light over
short distances (up to 100 km per ms RTT) [43]1. With the
returned geolocation, we can use a ground truth service to find
geographically close landmarks. The trusted landmarks can be
pinged for direct RTT measurement, which will generate a
very good approximation of V SRTT .

The difference between V SRTT and CSRTT proves that
some sort of IP geolocation spoofing is taking place, but
remember that our method activates only when no proxy is
detected, meaning that a VPN or another tunneling protocol
is used. With that solution in hand, we can now build a full
VPN detection solution.

Figure 2. Direct vs VPN landmark connection RTT representation

B. The Detection Method

Our solution runs a detection server alongside any running
service and requires permissions to run a sniffing tool. The
steps are as follows:

1) The client initializes communication with the web
server. That initial communication will be analyzed to
calculate the full RTT from the client to the server

1Ideally, we would want to use a geolocation service that is as accurate as
possible, which would usually be an active geolocation service, but the system
has to be non-disruptive for the client, which requires very fast geolocation
speeds, so a balance must be reached.
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(CSRTT ). The RTT is measured using TCP and TLS
handshakes (as described in Section IV-B).

2) If the connection has a high jitter and is considered
unstable.2 return an unstable connection error.

3) Using the BADPASS [31] algorithm, if a significant dif-
ference is measured between the minimal TLS and TCP
RTTs, a proxy is detected. if no significant difference is
detected, continue.

4) The client IP is geolocated and nearby landmarks are
located in a specified radius. The 3 geographically clos-
est responding landmarks are chosen. If no landmarks
are found in that radius, return an error.

5) The RTT to the chosen landmarks is measured using
multiple pings and aggregated to generate a good esti-
mation of V SRTT . These will be called the SNITCH
landmarks going forward

6) A determination is reached using the measured RTTs
with error margins calculated based on the measured
CSRTT value.

Both the TCP and TLS handshake RTTs are measured
multiple times per client. Multiple requests are triggered
when accessing the web server from base image/javascript
tags that are expected parts of any website, with the addi-
tional assumption that the requested artifacts are uncached. If
needed, more requests can be triggered with additional tags
(img/javascript/iframe, etc.).

Detection Parameters and Equation:
• CSRTT is the the minimal RTT between the perceived

client and our server (units: [ms])
• LSRTT is the minimal RTT from the server to the

geolocated landmarks (units: [ms])
• CEM is a relative error margin of detection based on

CSRTT . The specific function is specified in subsection
IV-C

• LSSTD is the standard deviation of the RTT measured
between the chosen Landmarks and the server. (units:
[ms])

• DCL is the median distance between the geolocated IP
and the landmarks (units: [km])

• GE is the expected error in the IP Geolocation service
we are using (units: [km])

• ω is the expected propagation speed of communication
through the network (units: [km/ms])

Based on these, we conclude the presence of a VPN when
the following condition is satisfied:

CSRTT > LSRTT · (1+CEM )+LSSTD+
DCL +GE

ω
(1)

The detection criterion is that the RTT between the client
and the server (CSRTT ) is longer than the RTT measured
from the landmark by an error margin, which represents the
expected jitter of the communication and an additional buffer
based on the expected geolocation error and the distance of
the landmark from the VPN server.

2which we measure using an RTT standard deviation of more than 40 ms,
derived from acceptable ranges of jitter [44]

To contend with unstable connections, we added the stan-
dard deviation of the measured LSRTT to the detection
equation. Connections with increased jitter (represented with
the STD) are less likely to achieve the true minimum RTT
during the connection process.

The detection confidence value is the difference between the
RTTs and the buffers divided by the expected jitter buffer, with
an upper bound of 1 and a lower bound of -1. The confidence
is calculated as:

CSRTT − LSRTT · (1 + CEM )− LSSTD − (DCL +GE)/ω

LSRTT · CEM
(2)

After presenting the detection process in depth. In the
following section, we will present the experimental setup,
process, and limitations.

IV. EXPERIMENT

A. Experimental setting

Through the use of VPN services, one gets access to tens
of thousands of unique VPN servers in diversified locations.
However, no comparable service exists for direct clients, mak-
ing it challenging to access thousands of globally distributed
to test our solution. To overcome this limitation, we decided
to use the residential IP proxy service Bright Data [45]. As
discussed previously, we know that the TCP connection is
“broken” when a proxy is used. Therefore, we can use the
TCP RTT of proxied TCP communication as a direct RTT
measurement from the proxy, which we treat as the direct
client. An in-depth explanation is given in subsection IV-A2.
The efficacy of proxy detection has been shown in previous
work. Therefore, for our experiment, we used VPN services
that generate a full tunnel and only used the TCP RTT for
detection, bypassing proxy detection entirely.

1) Clients and servers: we set up 8 servers and 8 clients
using Azure virtual machines in diversified locations. 2 in
North America, 3 in Europe, 2 in South East Asia, and 1
in the Middle East (both for clients and servers).

Our detection server includes a simple flask web server
with an additional packet sniffing script (described in Section
IV-B) that communicates with the detection server. Both are
implemented using Python3. Our detection method can run
separately from any service running on the server, but will
need to run alongside it with packet sniffing privileges.

To accommodate connections to VPN and proxy services
from remote machines, as well as to maximize the authenticity
of the connection, we created an automation script using
Selenium [46] with a Chrome driver and the VPN services
Linux cli applications and proxy settings. Every few seconds,
the client script connects to a random VPN server from
our chosen VPN services or a random residential proxy and
accesses our detection servers. The client sends the original IP
of the client, as well as the service and protocol as metadata.
This information is used for validation of the detection results
and further analysis.
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2) VPN and Proxy Services: To prove the efficacy of our
solution, we tested our detection method on two well-known
VPN services that use a full tunnel (PIA and PureVPN) [28]
[47]. Each service can be configured to use a subset of modern
VPN protocols. Those are OpenVPN [27], IKEv2/IPSec [48],
and WireGuard [49]. We tested our solution with each service
and each available protocol.

We used bright data residential proxies [45] as “direct”
clients. Bright Data’s residential network architecture, which
was analyzed in the paper by Xianghang et al. [50]3, includes
a proxy gateway, which routes client requests using multiple
hidden gateways to residential hosts running proxy software.
The residential hosts forward the client request to the destina-
tion server (with the residential hosts ip visible to the server)
and send the answer back through the proxy gateway to the
client.

The SSL connections originate from the client and pass
through the entire infrastructure, which could add very signif-
icant delays to the connection, but the TCP connection breaks
at the residential host as it would with any other HTTPS proxy
and can therefore be considered a direct connection that will
be unaffected by the prior residential proxy infrastructure.
Specifically, we will use the TCP handshake RTT from the
residential proxy as the RTT measurement from client to
server CSRTT and ignore the SSL RTT measurement in this
experiment.

Our connection configuration used HTTPS proxies with
randomized geolocation targeting to ensure internationally
diverse direct client locations.

3) IP Geolocation and Ground Truth Landmarks: The
geolocation service that we used for the experiment is the
ipinfo geolocation service [52]. It is a passive geolocation
service with an API that is easy to integrate. There are other
IP geolocation services that might have better results, but we
made a choice of convenience for the experiment. Based on
past measurements [41] that showed that over 80% of the
analyzd IPs have an error of less than 100[km], we set an
expected geolocation error (GE) of 100 km.

We chose to use the RIPE Atlas API [53] to access trustwor-
thy geolocated probes. Probe information around a geolocation
can be queried using the API. Based on the information
provided, we find the closest available probes.

The main cause of RTT is the distance traveled, meaning
that the further away a landmark is from the VPN server or the
direct client, the less representative it is of the actual machines’
RTT, which is what we are trying to approximate and will
therefore reduce detection accuracy.

For this experiment, we chose a radius of 200 km to balance
between accommodating the coverage limitations of RIPE
ATLAS, having a wide margin from the expected city-level
accuracy for most IPs worldwide [41], and keeping the RTT
approximation valid.

The RTT from the server to the 3 closest available land-
marks is measured with direct ICMP ping, and the minimal

3Bright Data was called Luminati previously and was renamed [51]

RTT is chosen because of the stability of direct connections
and to filter out slow landmarks.

B. Client RTT Measurement

The sniffing script measures both the TCP and TLS hand-
shakes, in a similar fashion to the measurement method used
in previous delay-based proxy detection systems. First, the
TCP RTT is measured using the TCP handshake. The interval
between the server sending the SYN-ACK packet and the
received client ACK packet is measured. The TLS handshake
is then used for an additional RTT measurement. The interval
between the SERVER HELLO packet sent from the server to
the next TLS packet received from the client, which includes
either the CHANGE CIPHERSPEC or TLS APPDATA FLAG
depending on the TLS version [37], these are visualized in
figure 1. To mitigate errors/noise, 7 TCP and TLS RTTs are
measured from each client and sent to the detection server. The
number of handshakes measured can be changed depending on
the use case; increasing the number of measured handshakes
would improve error mitigation but would slow detection times
and could affect the user experience.

This measurement method works on any successful TLS
authentication and exceptions for edge cases can be easily im-
plemented, just through control of the server side. Therefore,
control of the client that does not correlate directly with the
real-world use case will not cause undue bias.

C. Error margin determination

To develop the error margin, we analyzed the relative differ-
ence of the measured RTT between the client and the landmark
communication for both direct and VPN communications. It
was clear that there is no constant difference between the RTT
point of reference and the client RTT, and a relative margin
approach was more likely to generate accurate detections.
We used positive and negative deviation analysis to find the
accurate margin, which is presented in figure 3. We determined
that the positive and negative deviation should be calculated
separately because RTT has a strict lower bound (limited by
the maximal network propagation speed) and network delay
can cause very significant positive deviations. Our expectation
was that there would be a definitive margin between the
negative deviation of VPN communication and the positive
deviation of direct communication, but that was not the case.
The positive and negative deviations overlap in multiple areas.
The cause of this incongruence with our hypothesis will be
discussed in later sections.

To maintain security standards, it is more important to limit
false negatives than false positives (while keeping the false
positive rate at a reasonable rate). Therefore, we fit the error
margin to the positive deviation of the direct client RTT.
The deviation does not have a consistent trend, so we fit a
third-order polynomial to avoid overfitting. The resulting error
margin is (where CSRTT = x):

CEM = −1.972 · 10−8x3 + 1.939 · 10−5x2 − 4.952 · 10−3x+ 0.620

(3)
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Figure 3. CSRTT−LSRTT
LSRTT

ratio between VPN clients, direct clients,
and SNITCH landmarks communication, aggregated over 20ms intervals for
deviation analysis and clarity

D. Data collection

Each VPN client connects in varying intervals to a random
configuration of service, protocol, and available region. We
ran multiple iterations of the experiment from 10/09/2024
to 15/10/2024. Over the course of our experiment, we have
analyzed over 130k connections with over 24k unique IPs
and corresponding locations. The data was collected in a
centralized Azure SQL server. Each detection gets a unique
record in a detection information table and a client connection
information table, which are then joined for analysis (the
detection mechanism has no access to client data). Each
connection from our clients includes unique fields and only
those are added to the client database, joining the tables
allows us to filter out detections that were not triggered by
our clients. The sniffing tool restarts every 15 minutes, and
during that time frame limits each unique IP to one detection.
(After acceptance, we will make the data and code publicly
available.)

E. Experiment Limitations

RIPE Atlas probe reliability and coverage: Atlas probes
are not under our direct control and their setup conditions vary.
Therefore, they are not necessarily reliable and might have
a significant delay in relation to the expected communication
delay of their area. Specific regions or probes that have signif-
icant deviations in latency can be detected and addressed over
time. However, it is difficult to determine whether a significant
deviation is representative of the region or a malfunction of
the probe.

Another major limitation is that RIPE Atlas Coverage varies
per region and a significant amount of direct clients were in
locations that did not have a landmark in a radius of 200 km
and therefore could not be detected. We measured 42k unique
IPs for direct connections but could only generate detections
for 17.3k of them. That is not the case for VPN connections,
almost all VPNs had landmarks co-located with them. It seems
that almost all data centers have RIPE ATLAS probes and tend
to be in business networks. Most significantly, almost half of
the connected IPs could not be detected properly due to the
lack of coverage. This will be addressed in the discussion and
must be a focus of future work.

Geolocation reliability/spoofing: Our method relies on
the speed and precision of modern passive IP geolocation
technology. For most regions, the expected accuracy is city-
level [41] [42], with geolocation errors below 100 km for
most IPs (80% in the analyzed databases), but remote regions
can have a more significant error with an expected accuracy
of region-level or even country level. In the range of a 200
km error the RTT difference between two machines should
be insignificant on an international scale, with the expected
propagation. However, in cases of more severe errors or even
spoofing detection, the results could be severely affected,
causing false positives or false negatives depending on the
error.

Skewed Dataset: The dataset is slightly skewed due to the
probe coverage limitation which affected direct connections
more than VPN connections.

Possible future work to address these limitations is dis-
cussed in Section VI

Following the experiment setup, in the next section we
will present the results. Initially, we will substantiate our
assumptions on the basis of our detection method, followed
by the detection results performance metrics analysis.

V. RESULTS

A useful correlation to validate our initial assumption is
the distance traveled versus the measured client-server RTT
visualized in Figure 4. The correlation has a good linear
fit (R2 of 0.95); this result validates our initial assumption
that the total distance traveled between the endpoints is the
most significant contributor to the RTT of the communication.
However, it is worth noting that the standard deviation is quite
large.

Based on the same assumption, we expect a significant
difference in measured RTT between the client and landmark
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Figure 4. Aggregated endpoint distance (server to VPN to client) vs measured
server to client RTT (CSRTT ) with standard deviation errors

when a VPN is used, and a minimal difference for direct
connections. A histogram of the CSRTT versus LSRTT dif-
ferences of VPN connections is visualized in Figure 5 and
the direct connections are shown in Figure 6. The relative
difference ratio of RTT is calculated simply as CSRTT−LSRTT

LSRTT
.

A significant difference between VPN and direct connections
can be seen. The direct connection distribution is somewhat
normal, but the VPN distribution definitely isn’t normally
distributed, so we used a Mann-Whitney U test to analyze
the difference. The results of the U test were a U-value of
274149589 with a P-value of 0 showing that the difference in
the distributions is statistically significant. VPN connections
have a median RTT difference of 109% compared to direct
communication, which has a median RTT difference of 5%.
As expected, the RTT difference for direct communications is
close to zero and much more significant for VPN communica-
tion. However, there are also VPN connections that have low
RTT differences, some as low as 0%. We found that for VPN
communication, these cases are mostly caused by instances of
clients located in the same city or region as the VPN server.
For direct connections, we found that some cases are more
complicated; we found that residential vs. business networks
have a more significant effect on communication delay than
expected, and we will discuss these cases in Section VI.

The minimal client RTT below which detection has been
proven impossible is 3[ms], and detection reaches a true
positive rate of 50% at 25[ms]. When the distance the packet
travels is very short, the RTT difference becomes less sig-
nificant than our minimal detection threshold (equation 1)
which is based on standard network jitter, congestion, and
IP geolocation errors. The rest of the low and negative RTT
difference values are rare cases of extensive network delays
for landmark communication, which can be caused by random
packet drops or congestion.

Analysis of the detection results with the standard metrics

Figure 5. CSRTT vs LSRTT RTT difference histogram for VPN commu-
nication

Figure 6. CSRTT vs LSRTT RTT difference histogram for direct client
communication

of accuracy, precision, and recall for our detection rate. We
observed a significant effect of the region of the perceived IP
of the client on our detection method. Therefore, we chose to
visualize the detection performance metrics for each continent
(see Figure 7). Whether the communication originates from a
direct client or passes through a VPN in that region, the com-
munication passes through the infrastructure of the presented
region. We believe that the observed regional effect can be
correlated with the quality of the network infrastructure. Less
developed regions (South America, parts of Asia, and Africa)
which tend to have lower quality network infrastructure can be
clearly seen in the data to have lower detection rates contrasted
by the high reliability observed in more developed regions
(North America, Europe, Oceania), where SNITCH achieved
an accuracy rate between 89- 93%, which can be seen in
Figure 7.

As an additional factor to the binary detection value we have

8



Figure 7. Detection metric scores with 0.5 confidence based on the geographic
region of the IP address visible to the web server.

a confidence value that we can use to set our detection thresh-
olds, we generated performance metrics for binary detection,
0.5 confidence, and full confidence, as can be seen in Figure
8. Increasing the confidence threshold improves the detection
performance, but detection entries whose confidence values
do not meet the specified confidence threshold are discarded.
Detection with 0.5 confidence for all communications returns
results of: accuracy: 0.891, precision: 0.897, recall: 0.939

We have not found statistically significant differences in
detection rates between the tested services or when different
protocols are used. These results (with acknowledgment of
the limitations of the experiment) show that server-side VPN
detection using geolocated landmarks and RTT measurement
is effective and a viable option for security services.

Figure 8. Detection confidence threshold metric score comparison.

VI. DISCUSSION

We are proposing a new method for VPN detection based
on RTT measurement and IP geolocation, which is triggered
once proxy detection fails. With the detection of both proxies
and VPNs, a fully implemented SNITCH system can be used
to detect any kind of “proxy” usage (HTTPS Proxy, VPN,
SSH forwarding, TOR, etc.).

SNITCH overcomes the limitations of existing passive and
active detection solutions. Enabling detection of hijacked
machines used as first-time VPNs, and circumventing the need
for the TCP connection to break, or the requirement of ICMP
responses from the VPN server.

A hybrid approach that uses passive VPN detection along-
side SNITCH (the passive VPN detection can usually be paired
with the IP geolocation service) can lead to more indicative
detections. If a VPN is detected by SNITCH but is not detected
by the passive detection system, that could be indicative of
private VPN usage which has a higher risk of malicious intent.

Our initial assumptions of direct correlation between dis-
tance traveled and RTT and the following significant difference
between VPN and direct communication RTT hold true. We
have shown consistency in different services, protocols, and
modern network infrastructures. We also found some limita-
tions that can be overcome in future work:

1) Distance vs Jitter: As we have shown, the RTT is
directly correlated with the distance traveled. Therefore, with
an expected jitter of up to 30[ms] [44] plus standard network
congestion, in instances where the client and the VPN server
are geographically close the jitter becomes very significant
relative to the RTT between the machines. This makes our
method unreliable in detecting VPN usage within a suitable
margin of error that addresses both standard network jitter and
congestion.

We can show the effect of jitter vs distance and our effec-
tive range, using a distance-to-ratio and confidence analysis
presented in Figure 9. Both the ratio of CSRTT versus
LSRTT and the detection confidence increase consistently as
the distance from the client to the VPN increases, with the
detection confidence increasing rapidly starting from 500 [km]
where the confidence was effectively 0 to 1000 [km] where the
confidence was greater than 0.3. These results show that as the
effect of network jitter becomes less significant compared to
the increase in RTT, caused by the distance traveled between
the VPN server and the client, detection improves as expected.
Furthermore, we can see that our effective range starts at a
distance of 500 [km] between the client and the VPN server.

Future works can implement geolocation-based DNS en-
tries and diversified server locations to ensure ideal detection
conditions for every direct client and improve conditions for
VPN clients (the distance between the client and VPN is
inaccessible to the detection server) without affecting user
experience. However, it is important to note that if the VPN
server is geographically close to the client, The IP geolocation
will likely generate a reasonably accurate geolocation for
current security or regulation purposes.
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Figure 9. CSRTT−LSRTT
LSRTT

ratio and detection confidence measurements for
VPN client connections, aggregated over 250[km] intervals.

2) Network Infrastructure: Based on the experiments mea-
surements, we found that regions with outdated network in-
frastructure (namely Africa and parts of Asia) have significant
deviations in network delay, which significantly affects the
results of SNITCH. This is probably due to high packet drop
rates and low bandwidth. Above a certain threshold of jitter
(represented by the RTT STD), detection becomes very unreli-
able. SNITCH filters out connections with excessive jitter. The
filter can be further refined in future iterations with other rele-
vant metrics to increase reliability. Detection of slow/outdated
network infrastructure based on prior knowledge or variance
measurements can trigger additional measurements, harming
the user experience but ensuring security. This method could
also be used to detect malfunctioning landmarks.

3) Business vs residential Networks: A broader issue that
we identified that affects delays globally is the significant
difference in delay between residential and business networks.
From our measurements, RIPE Atlas Probes that are geo-
graphically close to direct clients but are located in business
networks have a consistently shorter RTT than direct clients
which are in residential networks. This effect occurs even
when the connection is stable and the jitter is very low and
causes an increase in false positives. The difference between
business and residential networks can be addressed in multi-
ple ways. For example, increasing the number of landmarks
in residential networks and differentiating between business
and residential networks when determining the error margins
needed for detection.

4) Landmark distribution: A significant limiting factor for
SNITCH is the distribution of geolocated landmarks world-
wide. A large portion of the connections from residential
proxies in the experiment could not be detected at all due
to the lack of nearby landmarks. To be able to use SNITCH

as a robust security solution, landmark coverage needs to
be significantly improved worldwide, especially in residential
networks. We believe that increasing the radius significantly
would make the approximate RTT less representative of the
actual VPN server RTT and therefore would reduce detection
accuracy. 88% of the landmarks used for detection were less
than 50 [km] from the source IP location, making the data
for this analysis highly skewed. However, it should be noted
that there was a marked decrease in detection accuracy from
91.1% to 88.9% for detections with landmarks less than 50
[km] distance vs. greater than 50 [km], which aligns with our
initial analysis but requires more robust verification.

The lack of landmark coverage is a very significant impedi-
ment to the implementation of SNITCH as a security product.
In future work, the effect of changing the search radius of
landmarks should be explored, to check if a better balance
between coverage and accuracy can be achieved. Exploration
of additional landmark sources besides RIPE Atlas should also
be carried out to increase the usable distribution.

5) IP geolocation errors: If a significant error occurs in IP
geolocation , it is very likely that the detection accuracy will
be negatively affected. To make sure that does not happen,
there are a few measures that future implementations can
take. Future implementations could cross-reference multiple
IP geolocation services to ensure accuracy, and in cases of
significant deviations, return an error, or take additional steps
to verify the location, including active detection methods.

A. Mitigation methods

An essential question to ask ourselves is what mitigation
methods VPN services can apply to avoid detection using our
method. A somewhat “simple” mitigation would be breaking
both TCP and TLS communication in a similar fashion, as
discussed in BADPASS, E. Chiapponi et al. [31]. This method
leads to a heavy technical burden, which is very costly for
busy servers or residential IP servers which try to limit their
presence as much as possible. More importantly, it could cause
major privacy issues for clients because the servers will have
access to encrypted information passing through them unless
a second encryption layer is implemented. If a service does
decide to break both the TCP and TLS connections, there are
other possible ways to measure the RTT at the application
layer or using JavaScript, these are more intrusive but not
hard to implement. A mitigation method that affected previous
solutions, of artificially increasing the RTT at the VPN server,
would not detract from our detection rates and would likely
improve them. Another possible mitigation is fully spoofing
the VPN server IP addresses to cause errors in geolocation and
detection. This is technically difficult and could be mitigated
with more sophisticated active IP geolocation techniques,
making this method unlikely to become a major issue.

Clients can circumvent our detection by opting to use
VPN servers that are geographically close to their location.
Effectively hiding their identity without significant geolocation
spoofing.
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VII. CONCLUSION

This work presents SNITCH: a server-side VPN detection
solution which uses real-time network delay measurements
and geolocated landmarks. Unlike existing passive approaches,
which rely heavily on known VPN to IP address mappings or
active methods that fail if the VPN does not ’break’ the TCP
connection. SNITCH identifies VPN connections without prior
knowledge of specific VPN endpoints or performing intrusive
client-side actions.

The method showed strong detection performance, accu-
rately classifying connections from leading VPN services in
diverse regions and achieving a detection accuracy between
89-93% in regions with modern network infrastructure and
above 84% for all regions. Crucially, SNITCH can be seam-
lessly integrated into an authentication process to extend
the capabilities of existing passive VPN detection solutions.
Such a hybrid detection system would enhance the security
layer by providing additional mitigation against sophisticated
adversaries that attempt to evade geolocation-based defenses
using unknown private VPNs.

Our future work should explore refining jitter handling
mechanisms, residential vs. business network detection metric
analysis, and exploring methods to increase landmark cover-
age.
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