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Abstract—Network telescopes (IP addresses hosting no ser-
vices) are valuable for observing unsolicited Internet traffic from
scanners, crawlers, botnets, and misconfigured hosts. This traffic
is known as Internet radiation, and its monitoring with telescopes
helps in identifying malicious activities. Yet, the deployment of
telescopes is expensive. Meanwhile, numerous public blocklists ag-
gregate data from various sources to track IP addresses involved
in malicious activity. This raises the question of whether public
blocklists already provide sufficient coverage of these actors,
thus rendering new network telescopes unnecessary. We address
this question by analyzing traffic from four geographically
distributed telescopes and dozens of public blocklists over a two-
month period. Our findings show that public blocklists include
approximately 71% of IP addresses observed in the telescopes.
Moreover, telescopes typically observe scanning activities days
before they appear in blocklists. We also find that only 4 out of 50
lists contribute the majority of the coverage, while the addresses
evading blocklists present more sporadic activity. Our results
demonstrate that distributed telescopes remain valuable assets
for network security, providing early detection of threats and
complementary coverage to public blocklists. These results call
for more coordination among telescope operators and blocklist
providers to enhance the defense against emerging threats.

I. INTRODUCTION

Network telescopes are IP addresses publicly announced
on the Internet but hosting no services [1, 2]. The traffic
they receive is thus unsolicited and includes a mixture of
packets coming from misconfigured hosts, backscattering (i.e.,
response traffic from hosts receiving packets with spoofed
source addresses) as well as crawlers and network scans. The
latter is composed of both legitimate scans performed by
security companies [3] as well as malicious ones performed
by botnets in the search for vulnerable hosts. This unsolicited
traffic is known as Internet Background Radiation in the liter-
ature [4]. Telescopes are used to capture Internet radiation for
multiple network security tasks, both by companies that dis-
tribute IP reputation lists [3] and by researchers. Examples of
research applications include the study of (i) DDoS attacks [5],
(ii) Internet censorship [6], (iii) large-scale scanning [7], and
(iv) botnet activities [8].

Traditional telescopes collect Internet radiation traffic from
completely dark address spaces [4, 9]. Yet, some recent work

has explored alternative telescope designs. Authors of [10]
leverage CDN infrastructure to study Internet radiation traffic
reaching the distributed replica servers, showing how this
traffic differs from traditional telescopes. Attracted by the
live CDN nodes, attackers target the nodes with a variety
of attacks not observed in classic telescopes. DScope [11]
introduces cloud-native telescope deployments, while systems
like Spoki [12] and others [13, 14] augment telescopes with
the ability to respond to some incoming requests through
honeypots.

Regardless of its type, a telescope deployment is expensive.
IPv4 addresses are a scarce resource that can hardly be spared
for such a monitoring infrastructure.1 Yet, several works [16,
3, 10] have shown that the information observed from multiple
telescopes is complementary. In other words, distributed tele-
scope deployments increase the visibility of ongoing scanning
activities. Large deployments however receive a high volume
of unsolicited traffic: processing and explaining such Internet
radiation traffic becomes a complex task, calling for advanced
algorithms and additional measurements for understanding the
possible attacks behind the traffic [17, 1].

The ultimate goal of running a telescope is to build
IP reputation lists—lists of addresses engaging in particular
activities, such as network scans, brute-force attempts, etc.
However, multiple Cyber Threat Intelligence (CTI) sources
do distribute public blocklists already. There are hundreds
of lists that aggregate data from various sources, including
spam monitoring systems, antivirus and anti-malware software,
honeypots as well as private telescopes. These blocklists are
often used by network administrators to block traffic and
anticipate (or mitigate) cyber-attacks [18].

The challenges and costs for deploying telescopes raise
a major question: Do public blocklists provide sufficient cov-
erage of the scanning activity observed in new telescopes?
Answering this question is instrumental to the deployment of
new telescopes. If public blocklists adequately represent the
interesting events seen telescope traffic, the burdens and costs
of operating new telescopes could be avoided. Conversely, if
new telescopes observe a considerable amount of interesting
events that are absent from blocklists, they could be used to
complement blocklists, reinforcing the call for data exchange
and coordination among telescope operators [16, 3, 10].

We thus investigate to what extent IP addresses seen in

1We ignore IPv6 telescopes, which usually receive little traffic [15].
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public blocklists overlap with those scanning telescope IP
ranges, completing our previous work [19]. Specifically, we
answer the following research questions (RQs):

RQ1 To what extent IP addresses scanning telescope IP ranges
are reported in public blocklists?

RQ2 Considering the overlap between blocklists and tele-
scopes, are the reporting of new IP addresses synchro-
nized?

RQ3 How do different blocklists cover the IP addresses scan-
ning telescope ranges?

RQ4 What are the IP addresses seen in telescopes but not in
blocklists?

To answer these questions, we collect data from four
geographically distributed telescopes, located in Europe and
South America, over a two-month period. Simultaneously, we
daily gather data from dozens of public blocklists, which vary
in size, update frequency and methodology to compose the
lists. The telescopes are heterogeneous not only in terms of
geographic location but also in terms of IP ranges. They
capture a broad spectrum of traffic, receiving packets from
approximately 209 643 IP addresses per day in median (con-
sidering only scanning traffic), with a daily median of 8.3GB
of traffic. We evaluate the overlap between the IP addresses
observed in the telescopes and those reported in the blocklists,
considering temporal aspects and regional variations.

Our findings can be summarized as follows:

• Public blocklists only partially cover the scanning traffic
seen in telescopes. Daily, 80% of the IP addresses seen
in telescopes are either in blocklists or are well-known
benign scanners. The percentage of telescope traffic that
can be explained with those lists ranges from 58% to
81%.

• Telescopes usually observe the activity of IP addresses
earlier than they are reported in blocklists. Approximately
5% of scanners appear in the blocklists 1-5 days after
they are observed in the telescopes.

• The vast majority of the coverage is contributed by only
4 out of 50 blocklists.

• The IP addresses found in telescopes but evading block-
lists vary quickly and likely belong to compromised user
devices or servers.

The remainder of the paper is organized as follows. Sec-
tion II describes our datasets and methodology. Section III
discusses blocklist coverage, while Section IV quantifies the
delay of blocklists with respect to telescopes. Then, Sec-
tion V evaluates the effectiveness and specificity of individual
blocklists in enumerating scanners, while in Section VI, we
investigate the sources observed in the telescopes that evade
blocklists. Finally, Section VII summarizes the related work,
and Section VIII concludes the paper.

II. DATASETS AND METHODOLOGY

We have collected data for more than 9 weeks from both
a distributed telescope infrastructure and public blocklists,
specifically from July 5, 2024, to September 10, 2024.2 Next,

2Due to a malfunction in the collection, data is unavailable for the period
between August 25, 2024 and August 28, 2024

TABLE I: Overview of the telescope deployments.

Location Subnet Size Subnets Reserved IPs Total IPs

T0 South America /19 1 0 8190
T1 Europe /24 2 11 497
T2 Europe /24 1 2 252
T3 Europe /22 1 0 1022

we describe our distributed telescope infrastructure and the
blocklists used in our analysis.

A. Telescopes

We rely on a distributed telescope infrastructure consisting
of non-continuous /24 networks deployed across Europe, while
South America is represented by a single /19 network. For
privacy reasons, we do not disclose specific IP addresses of the
telescopes. Table I summarizes the infrastructure in terms of
size. The “Reserved IPs” column indicates the number of ad-
dresses allocated for other services in each telescope—they are
addresses for which we do not register the eventual unsolicited
traffic. Network and broadcast addresses are also excluded
from the captures. The smallest telescope, T2, consists of a
single /24 subnet with 2 reserved addresses, resulting in a total
of 252 free IP addresses. In contrast, the largest telescope, T0,
is a single /19 subnet with no reserved addresses, providing a
total of 8190 IP addresses.

These telescopes are continuously monitored using network
probes that record all incoming packets. This setup allows us
to collect a comprehensive, geographically distributed dataset,
enabling the analysis of unsolicited traffic patterns. None of
these telescopes have hosted public services in recent years,
with the exception of T2. The T2 telescope has been previously
used for hosting production services. It is known from previous
work [16, 5] that scanners more often target IP addresses seen
online, and this pattern persists even after the target host goes
offline. As such, the traffic observed in this telescope may
differ from the others.

Blocklists are expected to report hosts performing ma-
licious activities only, whereas telescopes observe a large
number of packets coming from actual victims of attacks—the
so-called backscattering phenomenon. In these cases, attackers
(usually performing DDoS) send large numbers of spoofed
packets to victims. When attackers casually pick a telescope
address as a spoofed source, the telescope may receive re-
sponse packets from the victim. These packets must be ignored
in our analysis since the IP addresses of these victims are not
expected to be present in blocklists.

To filter out these packets, we discard all non-TCP packets
and all TCP packets that are not pure SYN packets, i.e., any
packet with other TCP flags. Moreover, following the approach
used in [17, 1], we filter out IP addresses that send fewer
than 5 packets per /24 in a telescope, e.g., 20 packets for the
/22 telescope. We thus present results considering only the
most active IP addresses reaching the telescopes, ignoring any
packet compatible with backscattering, even if this filtering
approach may drop some malicious scanning traffic. We will
show later that this filtering approach does not change our
conclusions.
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Fig. 1: Number of packets arriving at each telescope.

TABLE II: Overview of the telescope dataset.

Metric Cumulative Median daily

Volume of Data 542GB 8.3GB
Total Packets 5 673 137 282 84 076 822
Filtered Packets 4 912 714 466 71 456 394
TCP Traffic 92.89% 92.51%
UDP Traffic 5.92% 6.12%
Unique IP Addresses 4 964 306 209 643
Unique IP Addresses (Filtered) 252 879 22 087

As shown in Figure 1, the traffic volume varies across tele-
scopes and is roughly proportional to the size of the network as
reported in previous work [16]. For all four deployments, the
figure shows well-known patterns related to unsolicited traffic:
a baseline of continuous scan noise and some sporadic peaks
of traffic. These episodic events are usually large-scale scans or
attacks, often launched from botnets. Interestingly, these peaks
are not synchronously seen in all telescopes.

We provide overall statistics on the four telescope datasets
in Table II. The telescopes observe a significant traffic volume,
totaling 542GB and 5.6 billion packets. The dataset is largely
composed of TCP traffic, i.e., 92.89% of the total volume,
with UDP traffic making up 5.92%; the remaining traffic
is composed of different protocols, e.g., ICMP. In terms of
IP addresses, there are nearly 5 million unique addresses,
with only 252 879 remaining after applying our filters to drop
backscattering. Yet, while we drop approximately 95% of the
total IP addresses, they generate only 12% of the total traffic.

B. Blocklists

We start from the set of blocklists used by Feal et al. [18],
which is a comprehensive previous work. However, due to
the evolving nature of online services, some providers are no
longer available, calling for an update to the sources. We ex-
tend the blocklists with several publicly available ones from the
FilterLists3 online aggregator, a platform that hosts over 300
public lists. These lists span various fields, including malware,
phishing sites, ad-blocking, and IP addresses associated with
suspicious activity. We here focus on blocklists that provide
IPv4 addresses linked to malicious activity such as malware
distribution and scans, ignoring all those providing information

3https://filterlists.com/
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Fig. 2: Size of the 50 selected blocklists (number of IP
addresses).

not observed in telescopes, such as hostnames or URLs. The
lists are typically formatted as “host files”, where each entry
corresponds to an individual IP address or an IP range. From
these sources, we obtain 50 blocklists providing IP addresses—
27 from [18] and 23 from FilterLists. We report the full list in
the Appendix. We collect a total of 13.7GB of blocklist files in
our capture period, and they include about 16.5 million unique
IP addresses. Due to a change in the FilterLists API, we do
not have information for 23 blocklists from July 24, 2024,
to August 28, 2024. We will show later that this outage has
negligible impact on conclusions as those 23 blocklists usually
provide minor coverage of the IP addresses seen in telescopes.

Figure 2 illustrates the size of the selected blocklists in
terms of IP addresses observed per day. In the top plot, we
show the distribution of the median number of IP addresses
reported by each blocklist. The distribution has a bell shape
with most lists containing something between 1000 and 10 000
addresses, with some few lists appearing as outliers with
less than 10 or more than 1 million IP addresses. Therefore,
blocklist sizes vary significantly, with some providers offering
small, curated lists, while others provide large datasets that
may include less reliable entries. In the bottom plot, we show
how the daily sizes of blocklists vary during the period using
a scatter plot of the minimum and maximum size of each
blocklist. The size of most lists is rather constant, as illustrated
by the points along the diagonal. Yet, we see that some lists
change substantially, with hundreds of addresses added and/or
removed during specific days of our data capture.

3
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Fig. 3: Daily median pairwise Jaccard index between block-
lists.

The smallest list in terms of size is Feodo Tracker IoC,
with a median of a single IP address per day and a total of 10
addresses over the data capture period. Spamhaus is the largest
blocklist and it includes a median of slightly more than 11
million addresses per day, of which 99.98% are not present in
any other blocklist. This list proved to be highly static, with
few additions and rare updates throughout our analysis. Some
blocklists, on the other hand, are very dynamic. Considering
Nix Spam and IPsum Level 6, for example, approximately
one-third of the addresses are renewed each day.

We also analyze the overlap between blocklists by calcu-
lating the pairwise Jaccard Index to quantify the similarity
between the sets of IP addresses reported by different blocklists
in each day of our data capture. We compute the median
Jaccard Index over all days for each list pair and show results
in Figure 3. The names of the blocklists are omitted to improve
visualization.

We observe two major clusters for which the Jaccard index
is high, indicating a significant degree of overlap in the IP
addresses contained in these lists. Blocklists in these areas may
be targeting similar types of threats or employing analogous
criteria for the inclusion of addresses. For example, we confirm
that the central region in the figure, where high Jaccard
indexes are seen, consists of blocklists from multiple providers
containing IP addresses associated with malware distribution.
These lists are highly similar, thus resulting in high Jaccard
indexes. The region with high Jaccard indexes in the bottom
right of the figure is formed by a set of blocklists from
Dataplane, a provider included in [18]. Dataplane contributes
12 blocklists to the collection, and 5 of these lists are present
in this specific cluster. Although the type of activity considered
by Dataplane to include addresses in its various blocklists
differs, these 5 lists strongly overlap. Finally, the vast majority
of blocklist pairs present Jaccard index values close to zero.
That is, the lists have no overlap. These lists may focus on
different types of malicious activities, which are performed by
different threat actors and, consequently, IP addresses.

All these results are consistent with those presented in [18,

20]. We next extend these results by evaluating the extent to
which such blocklists can anticipate and explain traffic seen
on the telescopes.

C. Benign Scanners

Besides backscattering, telescopes are constantly reached
by benign scanners from companies that actively monitor the
Internet. Examples include projects like Shodan and Cen-
sys, which catalog and index Internet-connected devices for
analysis and research. Instead, blocklists should explain the
malicious traffic that reaches telescopes. Thus, besides filtering
backscattering, we also identify packets from well-known
benign scanners.

Studies such as [21, 22, 23, 24] provide some hints on
legitimate scanners. Unfortunately, there exists no exhaustive
public list of those scanners, and not all of them publish the
list of IP addresses they use for scanning. Thus, we leverage
the dataset made available by the authors of [22] through
the “Acknowledged Scanners” GitLab repository4 as an initial
reference point. This resource catalogs IP addresses linked
to scanning activities recognized as non-malicious or neutral,
such as academic research projects and security assessment
initiatives as well as services like the just-mentioned Censys.

This source offers IP addresses belonging to 41 different
scanners, updated on different dates. Updating this data is not
straightforward, as many of the scanning services are either
fee-based or do not provide information on their IP address
ranges. We manually updated 8 out of these 41 lists on June
26, 2024, obtaining in total a snapshot of benign scanners
with 12 725 IP addresses. Interestingly, we observe that 3385
acknowledged scanner IP addresses appear in at least one
blocklist—even if their activity is supposedly benign. Thus,
approximately 27% of our initial set of benign scanners is
present in the blocklists too.

III. BLOCKLISTS COVERAGE

We start by examining the coverage that blocklists provide
for telescope traffic, thus answering our RQ1. We define cov-
erage as the percentage of IP addresses (or percentage of their
packets) observed in a given telescope that is also reported in
at least one blocklist. Given that many acknowledged scanners
are also present in blocklists (see Section II), we include the
full set of acknowledged benign scanners in this analysis as
an additional list.

We run the analysis on a day-by-day basis as we are
interested in temporal patterns. For each day, we use the
packets captured by the telescopes on the given day and the
snapshot of blocklists downloaded on the same date.

Figure 4a presents the time series of the IP address cover-
age separately by telescope. The x-axis denotes the date, while
the y-axis represents the corresponding coverage. The y-axis is
zoomed in for clearer visualization. The coverage in terms of
IP addresses is indeed very consistent across telescopes: even
daily fluctuations, such as those seen around 26 July 2024, are
somewhat replicated across the four deployments. Some of the
drops in the series appear to be the beginning of new scanning,

4https://gitlab.com/mcollins at isi/acknowledged scanners/
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Fig. 4: Daily coverage of telescope traffic considering IP addresses present either in blocklists or in our list of acknowledged
benign scanners.

which is reported in blocklists with some delay. We will study
this phenomenon in the coming sections.

By computing the distribution of the points seen in the fig-
ure for each telescope, we find that the median daily coverage
across the entire data collection period for T0, T1, T2, and T3
is 83.57%, 84.94%, 85.70%, and 85.61%, respectively.

Not shown in the figure, the proportion of IP addresses
associated with the acknowledged benign scanners is low and,
in median, it varies from 7.38% (in T0) to 11.01% in T2.
These differences across telescopes are indeed expected and
reflect the fact that different IP address ranges receive traffic
from different scanning sources [16]. More interestingly, the
low percentage of benign scanning traffic shows that telescopes
still capture a large number of attempts by possibly malicious
actors too.

Interestingly, we also evaluate the intersection of IP ad-
dresses covered by blocklists on different days. Although the
daily coverage is on the order of 80% to 85% (see Figure 4),
overall only 71.24% of the entire set of IP addresses appear
at least once in a blocklist. This happens because there is a
high dynamism of addresses evading blocklists. They tend to
be different from day to day, whereas a significant share of
the ones appearing on blocklists reappear on subsequent days,
i.e., blocklists cover the “usual suspects” while missing the
dynamic sources.

To complete the analysis, we report in Figure 4b the packet
coverage, i.e., the share of packets received by the telescopes
whose source IP address is in at least one blocklist or in our
list of acknowledged scanners. Figure 4b shows the results
again separately for the four telescopes. The x-axis represents
the date, while the y-axis shows the percentage of packets
covered by the lists. Notice the different y-axis limits when
compared to Figure 4a.

Here, a much noisier figure emerges. T1 and T3 appear to
show a similar trend, particularly in the initial two weeks of our
monitoring. T2 shows slightly lower percentages. The coverage
in all four telescopes is however very volatile, characterized
by frequent peaks and drops. Overall, no clear trends can be
marked. When calculating the distribution of the points in the
figure, the median coverage for T1, T2 and T3 is 80.48%,

58.35%, and 79.68%, respectively. T0 has the highest median
coverage at 81.21%.

In a nutshell, while we observe some patterns in terms of
IP address coverage, which is around 80% to 90%, packet
coverage is a lot noisier. In other words, the blocklists and the
list of benign scanners do provide somewhat good coverage
of the IP addresses that will be observed scanning a network
in a day. They, however, miss a significant percentage of the
addresses (up to 20%), which often are the ones responsible
for a large share of the scanning traffic.

IV. REPORTING DELAYS

Next, we investigate to what extent telescopes provide an
earlier view of scanning activity with respect to blocklists, thus
answering our RQ2. This is an important metric as it provides
a view of the time networks could remain exposed to malicious
scanning if relying solely on blocklists.

We calculate the reporting delays as follows. We use the
set of IP addresses contacting the telescope on a specific date
as the reference set. Then, we measure the overlap of this
reference set with the cumulative set of IP addresses formed
by the union of all blocklists (augmented with the benign
scanners) in the i days following the reference set, varying
i from 0 to 30.5 Clearly, when i = 0, we are measuring the
instantaneous coverage, as already reported in Figure 4. We
repeat this procedure for 30 different reference days, starting
from July 5, 2024, and for each reference day, we compute
the overlap over the subsequent i-day period, with i from 0 to
30 for all cases. In the end, we compute the average statistics,
considering the 30 reference days. We show results in Figure 5.

Focus first in Figure 5a. We report i on the x-axis, i.e.,
the number of days after the reference day, during which we
accumulate blocklists. The y-axis indicates the coverage as the
percentage of addresses observed in telescopes and found in
the (accumulated) blocklists. Note again the zoomed y-axis
for better visualization. The upward trend in the lines shows
that IP addresses initially unlisted in blocklists are gradually
included in blocklists in the subsequent days. The coverage

5As we download blocklists once a day, our finer granularity for the
reporting delays is 1 day.
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Fig. 5: Reporting delay of blocklists with respect to the appearance of the IP addresses in the telescopes.

grows from around 82% to 85% on average on the day when
IP addresses are observed in the telescopes, to more than 90%
after some days. This result shows that telescopes do observe
some addresses earlier, and a significant share of IP addresses
are added to blocklists only some days after they first contact
the telescopes.

This trend is consistent across different telescopes, ir-
respective of size, with only T3 showing a slightly higher
percentage. In all cases, coverage increases to around 90%
within 5 days and stabilizes between 91% to 92% after about
20 days.6 Therefore, about 50% of IP addresses seen by
the telescopes but not immediately present in blocklists will
appear in the lists within a 20-day window. Notably, the curves
never reach 100%, eventually saturating. Based on manual
inspection of the never-reported addresses, we conjecture that
this saturation can hardly be linked to benign scanners, which
should not be in blocklists. For example, some of the remaining
addresses show a behavior compatible with malicious activity,
with clear fingerprints and scanning patterns of known botnets
such as Mirai.

In Figure 5b we consider how coverage in terms of traffic
volume varies according to the reporting delay. We observe
an increase of approximately 15% to 20% in volume-wise
coverage within the first 5 days after IP addresses appear
in the telescopes.7 As commented before, the coverage in
terms of traffic varies considerably across telescopes, with T0
showing the highest values and T2 the lowest. Notably, all the
curves reach saturation sooner compared to those in Figure 5a,
practically becoming stable already after 5 days. Apparently,
IP addresses generating higher volumes of traffic are included
in blocklists more promptly and, consequently, there is a rapid
increase in traffic coverage, followed by stagnation, even as
more addresses continue to be added to the blocklists.

These large delays suggest that some IP addresses may be
included in blocklists when it is already too late, i.e., when
their activity has already ceased. To further investigate this
behavior, we focus on the top talkers, i.e., the IP sources that
most frequently contact the telescopes, generating the highest

6T2 has mean standard deviation of 1.07%, whereas for T0, T1, and T3,
the values are slightly lower, at 0.77%, 0.69%, and 0.59%, respectively.

7The mean standard deviations in this case are: T3 = 4.93%, T0 = 4.55%,
T1 = 3.48% and T2 = 3.87%.

Fig. 6: Activity of the top talkers during data collection period.

number of packets. For each telescope, we arbitrarily select
the top 150 daily most active IP addresses, and then merge
all found addresses in a single set, resulting in a total of 2509
unique IP addresses. We then track the activity of these top
talkers over the entire data collection period.

In Figure 6, we illustrate the full activity of these top talk-
ers. The x-axis represents the date, while the y-axis marks the
top talkers sorted by their first appearances in the telescopes.
A point is included in the figure when the top talker sends
packets to the telescopes on a given day. The color of the
point indicates the status of the IP address: red if it is listed
in any blocklists, blue if it is not listed. Generally, we observe
more density of points around the first moment in which the
IP address appears in the telescopes; that is, the addresses are
more active when they engage in scanning activity. However,
we see that some IP addresses continue to reach the telescopes
throughout the entire data collection period. We observe in
particular some extremely active sources (around 130) that
remain consistently active, contacting the telescope every day
throughout the entire data collection period, represented by the
lower portion of the figure. Among these examples, only 38 are
continuously listed—and never removed—from the blocklists.
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Overall, around 40% (1014) of the top talkers are never
included in any blocklist, and they can be identified by
horizontal lines that alternate blue and white. Interestingly, 45
of them are active every day and yet are never included in
blocklists. Focusing on the remaining 60% (1495) of sources
that are eventually listed in blocklists at least once, we find that
they have a median active period of 4 days. On their first day of
appearance, around 53% (1327) of top talkers are not listed
in any blocklist, with some of them (313) eventually being
included in the blocklists within a median of 4 days. Among
those, 288 were also dropped from the blocklists during our
capture. This effect is also observed for the remaining 47%
(1182) of sources that are already listed in a blocklist on the
first day they contact the telescopes: among these, 1087 are
later removed from the blocklists, even if 605 reappear in the
blocklists and eventually also in the telescopes.

Overall, a significant number of IP addresses observed in
telescopes are reported in blocklists with significant delays, or
never reported at all. Among those that eventually get reported,
an important share is removed from the blocklists after some
time even if they sometimes still appear in telescopes. This
suggests that blocklists are not always effective in capturing
the most active scanners and that relying solely on them may
lead to missing some of the most aggressive scanners.

V. EFFECTIVENESS OF BLOCKLISTS

We now move to RQ3 and individually evaluate the
effectiveness of each blocklist in detecting the scanners that
we observe in the telescopes. We are interested in quantifying
both (i) the completeness of each blocklist in terms of coverage
it provides and (ii) its specificity in reporting active scanners.
We quantify these two aspects by borrowing ideas from the
recall and precision metrics commonly employed in machine
learning. While leveraging the terminology, we define the
metrics in our context as follows:

Recall The portion of IP addresses seen in the telescopes
that are included in the given blocklist; it measures the
completeness (or coverage) of the blocklist.

Precision The portion of IP addresses reported in the blocklist
that is observed in the telescopes; it measures the speci-
ficity (or efficiency) of the blocklist.

A precision of 100% would indicate that all IP addresses
inserted in the blocklist are active in the telescopes. Achieving
100% recall would mean that all sources observed in the
telescopes are listed on the blocklist.

Figure 7 illustrates the metrics for all blocklists. The x-axis
represents the recall of the blocklists (in percentage), while
the y-axis represents the precision of the blocklists (also in
percentage). Each point corresponds to a blocklist, with the
point color indicating the number of IP addresses listed over
the entire data collection period. Labels identify blocklists with
distinctive characteristics, some of which we will comment on
next.

We observe that 58% (29) of the blocklists have both
precision and recall below 20%, reflecting their minimal
contribution to explaining telescope traffic (see also Figure 4).
Indeed, at least 80% of the IP addresses reported in these
blocklists show no activity in the telescopes. In some cases,
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Fig. 7: Recall and precision of blocklists (colors indicate their
sizes).

these low metrics are somewhat expected, given the method-
ologies used to build the blocklists, e.g., spam emails, which
may be performed by specific IP addresses. Yet, these results
show that using these lists to block malicious network activity
is not effective, particularly when considering network scans.

The majority of blocklists are concentrated along the y-
axis, indicating very low recall—92% have a recall below
20%. However, in some cases, they present a high precision—
17 of them have a precision higher than or equal to 20%.
Among these, the MiraiTracker blocklist (IP addresses sus-
pected to belong to the Mirai botnet) achieves the highest
precision but has a recall of only 2%. These blocklists effec-
tively capture entries observed in telescopes because they focus
on a single phenomenon that is also observed in telescopes,
e.g., the activity of the Mirai botnet. Thus, they may be very
effective when the goal is to block such specific events. As
many other events are also observed in telescopes (e.g., traffic
from multiple other botnets), they offer insufficient coverage
of scanning activities or emerging threats in general.

The remaining 8%—4 blocklists—achieve recall values
ranging from 20% (CinsArmy) to 67% (MalwareWorld).
Interestingly, this higher recall comes with lower precision.
In general, the distribution of colors in the figure, repre-
senting blocklist sizes, shows that there is an interesting
trend between the size of the blocklist and the precision and
recall. Larger blocklists generally demonstrate lower precision,
whereas smaller blocklists tend to exhibit low recall. There
are cases where both precision and recall are exceptionally
low; for instance, Spamhaus—the largest blocklist—achieves
a precision of 0.01% and a recall of only 0.5%.

This pattern appears to reflect a distinction between two
types of lists: blocklists with high recall prioritize coverage and
comprehensiveness, while those with higher precision focus
on quality and accuracy for specific events. Apparently, the
former lists achieve higher recall by including IP addresses
using relaxed policies and/or aggregating many sources of
different nature. Many of these IP addresses are never active
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TABLE III: Characterization of IP addresses found in the
telescopes but evading blocklists.

IP addresses Volume

R
D

N
S Scanners 188 8.79%

Broadband Subscriptions 8915 1.17%

Cloud Providers 5410 6.67%

M
ax

M
in

d ChinaNet 10 809 2.09%

China Unicom 5249 1.53%

DigitalOcean 4129 4.59%

Other 37 905 74.98%

Unknown 133 0.18%

Total Addresses 72 738

in the telescopes. Indiscriminately increasing blocklists may
result in false positives when they are used to block traffic
in production or can pose unnecessary load on middleboxes
filtering traffic (e.g., firewalls or routers). Recall, for example,
that by considering the union of all 50 blocklists, we also
observe 27% of the IP addresses associated with benign
scanners in the blocklists.

All in all, we see a clear distinction between lists that
include hundreds of thousands of IP addresses, achieving high
recall but low precision, and those including only a few ad-
dresses, instead achieving low recall but high precision. While
we selected 50 blocklists for our study, only 4 lists provide
significant coverage of the telescope traffic (high recall). Some
other lists instead provide good precision for some types of
events, such as IP addresses associated with specific botnets.

VI. WHO ARE THE IP ADDRESSES NOT IN BLOCKLISTS?

We conclude by investigating addresses that evade block-
lists, i.e., are observed in the telescopes but never appear in
any blocklist or list of acknowledged scanners, thus answering
our RQ4. Overall, out of the 252 879 addresses found with
the telescopes, only 72 738 (28.76%) are never present in any
blocklist. Recall from the discussion around Figure 5b that
blocklists tend to include the most active IP addresses within
few days after they first appear in our telescope. As such,
IP addresses that still evade blocklists during the whole data
capture generate only 10.54% of the total traffic. We now
provide some insights into those evading the blocklists using
two methods: (i) Reverse DNS and (ii) the MaxMind Geo IP
database, and we present the results in Table III.

As said, we first use Reverse DNS to obtain a possible Fully
Qualified Domain Name (FQDN) for the IP addresses. Notice
that not all IP addresses have registered a reverse DNS record
(specifically a PTR Resource Record). Indeed, we attempt the
Reverse DNS resolution for all 72 738 and obtain an FQDN for
32 233 of them. We then inspect those FQDNs using regular
expressions to match similar FQDNs, and in case they are
informative, we classify the corresponding IP addresses into:

• Additional benign scanner: an IP address of a benign
scanner not included in the previously used lists, for
example, azpdcs47.stretchoid.com

• Broadband Subscription: a public IP address identify-
ing a subscriber’s customer-provided equipment (CPE).
They likely represent compromised user devices (or even
CPEs), for example X-X-75-189.shatel.ir

• Cloud Provider: an IP address identifying a node (typ-
ically a virtual machine) hosted on a well-known cloud
provider. They likely identify compromised machines, for
example, amazonaws.com

With this method, we can categorize 14 513 IP addresses,
since for the remaining 17 720 we are not able to gather
sufficient information to characterize them. Note that this
method requires manual labeling, and we can only speculate
on the nature of an IP address. Achieving certainty on the
reasons a given IP address is scanning a telescope requires a
different approach, which we leave for future work.

As shown in the first three rows of Table III, us-
ing Reverse DNS we discover 188 new IP addresses be-
longing to benign scanners, mostly belonging to Stretchoid
and BynaryEdge organizations. More interestingly, we find
8915 IP addresses belonging to telecommunication compa-
nies, e.g., telecomitalia.it and telekom.de. We also
find 5410 IP addresses belonging to cloud providers (e.g.,
amazonaws.com or googleusercontent.com).

For the remaining 58 225 IP address that we cannot cate-
gorize using Reverse DNS, we employ the MaxMind GeoIP
Database8 to retrieve the organization (i.e., the Autonomous
System) and the country associated with IP addresses. Not
all addresses appear in the MaxMind GeoIP database, and we
gather information for 58 092 of them. Thus, for 133 address
we cannot get any information and mark them as “Unknown”.
Looking at the bottom rows of Table III, we find that Chinese
organizations dominate the rank. Specifically, ChinaNet and
China Unicom, two Chinese Internet Service Providers are
ranked in the first two positions, with 10 809 and 5249 IP
addresses, respectively. Digital Ocean, a US cloud provider,
is ranked third with 4129 addresses. Overall, considering the
country indicated by MaxMind, 20 582 of the sources are
from China, followed by India (3770) and the USA (3211).
Finally, for 133 “Unknown” neither Revers DNS nor MaxMind
can give any insight. Although further investigation might be
possible (using other IP intelligence tools or looking at BGP
data), this would be out of the scope of this paper.

In the last column of Table III, we report the traffic
share due to the different categories of IP addresses, i.e., the
percentage of packets originated from IP addresses in each
category. Notably, while only a few dozen IP addresses belong
to the benign scanner category, they account for up to 8.79% of
the total traffic. Interestingly, nodes hosted in cloud providers
target the T2 telescope in particular. Although it is hard to find
the cause, this behavior might be explained by the fact that,
as discussed in Section II, the IP range of this telescope was
previously used to host legitimate services.

In summary, 72 738 IP addresses never appear in any
blocklist. Among these, 14 513 are categorized via Reverse
DNS, with most belonging to Cloud Providers or Broadband
subscriptions, suggesting potentially compromised machines.
Additionally, 188 IP addresses are identified as benign scanners

8https://www.maxmind.com/en/geoip-databases
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not included in the acknowledged scanner set [22], as detailed
in Section II. Finally, using MaxMind, we associate these IP
addresses with Autonomous Systems and countries, finding
China as the most represented one.

VII. RELATED WORK

We present an overview of the state of the art in research
on network telescopes and blocklists within the field of cy-
bersecurity. To the best of our knowledge, no prior work has
investigated the relationship between telescopes and blocklists.

A. Network telescopes

With advancements in scanning tools, large-scale IPv4
scanning has become widespread and has been analyzed by
several studies. For instance, Durumeric et al. [23] characterize
scans and scanners using a 5.5 million IP telescope. More
recently, Griffioen et al. [25] analyzed 10 years of TCP port
scanning over 45 billion packets using a telescope, noting a
30 times increase from 2015 to 2024, with some organizations
scanning the entire IPv4 space and all ports by 2024. Differ-
ently, Collins et al. [22] focus on acknowledged scanners using
3 telescope /24 networks, observing predictable IP targeting
and distinct port preferences compared to unacknowledged
scanners, and provided a scanner list, which we employ (and
update) for our study.

Recent studies on telescope traffic reveal its complex pat-
terns and implications for cybersecurity. Research highlights
the impact of telescope size and geography on traffic charac-
teristics [16], methods for monitoring with sparse IP blocks
[3], and clustering approaches to detect Distributed Reflection
Denial of Service (DRDoS) and other attack patterns [26, 5].
Dainotti et al. [27] highlight the importance of telescopes by
observing and analyzing the scan of the entire IPv4 address
space conducted by Sality botnet through a /8 telescope.
Enhanced techniques, such as DarkVec, achieve high accuracy
in associating IPs with activity types, even discovering new
attack groups [17, 1]. Additionally, graph-based models have
proven effective for botnet detection [28].

The substantial volume of traffic generated by telescopes
has prompted focused efforts in the research community to
classify and characterize such traffic systematically. Fachkha
et al. [26] developed an approach based on k-means clustering
techniques to infer DRDoS attacks by leveraging data from a
/13 telescope. Furthering this work, Jonker et al. [5] proposed
a framework that characterizes attack patterns, attack targets,
and DDoS Protection Services (DPSs) using telescope traffic.
Gioacchini et al. [17] advanced this field with the introduction
of DarkVec, a method to associate IP addresses with specific
activity types on the telescope; it was able to identify known
attack patterns but also facilitated the characterization of new,
previously unidentified groups of attackers. In a subsequent
study in 2023, the same authors presented an improved and
more scalable version of DarkVec [1]. Additionally, Bou-Harb
et al. [29] utilized telescope data spanning three years to
propose a behavioral model for senders, revealing coordinated
activities over time. In this paper, we quantify to what extent
off-the-shelf blocklists help in this goal.

B. Blocklists

Several studies have evaluated the effectiveness and chal-
lenges of blocklists across internet security, investigating cov-
erage, reactivity, inconsistencies, and overlap.

A comprehensive work has been carried out by Feal et al.
[18], who analyzed 2093 blocklists from 69 open providers
over 6 months, uncovering significant overlaps, frequent prop-
agation of changes among similar lists, unique overlap patterns,
and inconsistencies in labeling and classification processes
that hinder content interpretation. In our work, we study
the same set of blocklists (restricted to the 27 listing IP
addresses), complementing with other 23 by FilterList. We
find that the latter set adds a median overlap of less than
2%, with only 1.73% of unique IP addresses on average, as
most are already listed or identified as scanners. This confirms
significant redundancy among the lists.

Similarly, Umizaki et al. [30] assessed 7 Public Blocklist
Providers, highlighting a low update frequency in four lists
and outdated entries, with only 0.03% valid entries in non-
updated blocklists. They also revealed geographic biases and
inconsistencies, suggesting the need for standardized blocklist
maintenance and improved usability. Again, our study confirms
a notable similarity between them.

Ramanathan et al. [20] focus on the dynamism of 157
public blocklists over 11 months, highlighting variations in
list size, fragmented information, and recurring malicious IP
addresses. They advocate for improved data aggregation and
expanded entries to enhance blocklist effectiveness and address
co-located threats. In our work, we observe that some lists are
often copies and/or use the same method to insert IP addresses,
as the discussion of Figure 3 highlights.

Finally, other works explored different angles of the public
blocklist ecosystem. Sinha et al. [31] analyzed reputation-
based spam blocklists, e.g., NJABL, SORBS, SpamHaus, over
10 days within an academic network of 7000 hosts, finding
high false-negative rates across most lists. These lists failed
to detect low-volume or short-lived spam sources, suggesting
that blocklists alone may not effectively cover the spam land-
scape. Kuhrer and Holz [32] introduced a system to monitor
49 blocklists tracking servers hosting exploits, malware, and
botnets. Over 80 days, they gathered 410 000 unique URLs and
2.2 million entries, integrating with DNS and HTTP data for
deeper insights into malicious infrastructures like Command
and Control servers.

VIII. CONCLUSIONS

We evaluated the extent to which public blocklists can
explain internet radiation traffic, leveraging 4 geographically
distributed telescopes and dozens of public blocklists. Our
results showed that, when aggregated, the blocklists cover only
a portion of the telescope traffic. Blocklists do include the
most active IP addresses observed in the telescopes. However,
28.76% of the addresses observed in the telescopes and
performing potentially malicious scans are never included in
any blocklists, nor are they recognized as legitimate scanners.

To assess the effectiveness of blocklists in covering tele-
scope traffic, we rely on two custom metrics: precision (effi-
ciency) and recall (efficacy). Our findings indicate a clear trend
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related to blocklist size: larger blocklists tend to have lower
precision, while smaller blocklists typically show reduced
recall. Furthermore, we observed that telescopes usually see IP
addresses days before they are reported by blocklists. This is
true even for the top-talkers, i.e., aggressive sources performing
high-volume scans that are likely of major interest to network
administrators who need to block attacks in real time.

These findings show that distributed and localized tele-
scopes are still an important asset for network administrators
and cybersecurity practitioners. They usually provide earlier
information about events and cover more sources targeting a
specific network. Thus, they allow for more effective blocking
of the scanning activities typically seen in early cyberattack
stages. This calls for further cooperation among operators of
telescopes to distribute contextualized and real-time informa-
tion about scans.

As future work, we plan to extend the analysis by consid-
ering other types of telescopes, in particular those operating
active responders such as honeypots. These responders attract
different types of attacks, and we plan to evaluate whether
our findings remain valid in those setups. Finally, we plan
to engage with some blocklist operators to understand how
their lists are formed and eventually set up channels to feed
telescope data into the public lists in a timely fashion.
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APPENDIX

TABLE IV: List of all 50 blocklists in alphabetical order.

AlienVault Reputation List Firehol Level 2
Binary Defense Firehol Level 3
Blocklist.de Full Bogons IPv4
CINS Army Bad Guys gnX Threat Intelligence
DangerRulezSK Brute Force Blocker Greensnow Blacklisted IPs List
Dataplane DNS CH TXT version.bind hpHosts EMD (IPs)
Dataplane DNS recursion desidered hpHosts EXP (IPs)
Dataplane DNS recursion desidered IN ANY hpHosts FSA (IPs)
Dataplane DNS TCP Inversion DNSBL
Dataplane IP protocol 41 IPsum Level 4
Dataplane SIP invitation IPsum Level 5
Dataplane SIP query IPsum Level 6
Dataplane SIP registration ISX Solutions Blocklist
Dataplane SMTP data Maltrail - Parking sites
Dataplane SMTP greeting Malware World suspicious IPs
Dataplane SSH client connection Mirai Tracker
Dataplane SSH password authentication MyIP Blacklist
Dataplane TELNET login Nix Spam DNSBL
Dataplane VNC RFB Nordic Filters
EmergingThreats Block IPs pfBlockerNG - MS-1
EmergingThreats Compromised IPs pfBlockerNG - MS-3
Feodo Tracker Botnet C2 IOCs SecLists (Careto IPs by Kaspersky)
Feodo Tracker Botnet C2 IOCs Agressive Spamhaus DROP v4
Feodo Tracker IP blocklist Turris greylist
Firehol Level 1 Urlhaus-filter
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