

2

3

4

Untrusted
Software

N

H = hash()

Prover Verifier

Trusted Component

RR = mac(N, H)
Random Nonce

Attestation Response

N
R

Is the prover in the
correct state?

Interactive Protocol

Software

Verify R

5

6

A

B

EDC

F
X

Adversary

A

B

EDC

F
DEP

Memory write
Program flow

inject malicious
code

corrupt code
pointer

Control-Flow Attack
[Shacham, ACM CCS 2007]

[Schuster et al., IEEE S&P 2015]

Non-Control-Data Attack
[Chen et al., USENIX Sec. 2005]

[Carlini et al., USENIX Sec. 2015]

ENTRY
asm_ins, …
EXIT

Basic Block

corrupt data
pointer/variable

switch(opmode)
case recovery: C
case op1: D
case op2: E,F

7

8

Cumulative Hash Value: Hi = H (Hi-1, N)
• Hi-1 -- previous hash result
• N -- instruction block (node) just executed

A

B

EDC

F

H1=H(0,A)

H2=H(H1,B)

H5=H(H2,E)

H6=H(H5,F)

H3=H(H2,C) H4=H(H2,D)

9

10

High overhead on the verifier

Program complexity leads to a large
number of valid hashes

Only applicable to small programs

A

B

DC

11

12

What to attest? When to attest? How to attest?Modularization Data-flow attestation Exec path representation
Software is divided into
smaller isolated modules

Attestation is executed
when data is exchanged

A

B

EDC

H1=MSH(0,AB)

Execution path is represented
as a multiset of edges

A B C

A B B C

13

What to attest? When to attest? How to attest?Modularization Data-flow attestation Exec path representation
Software is divided into
smaller isolated modules

Attestation is executed
when data is exchanged

A

B

EDC

H1=MSH(0,AB)

Execution path is represented
as a multiset of edges

A B C

A B B C

Modular software
can be decomposed into simple interacting modules

Data-flow monitoring
Software modules interact through a well-defined communication channels

Isolation Architecture
Software modules are securely isolated for each other

14

What to attest? When to attest? How to attest?Modularization Data-flow attestation Exec path representation
Software is divided into
smaller isolated modules

Attestation is executed
when data is exchanged

A

B

EDC

H1=MSH(0,AB)

Execution path is represented
as a multiset of edges

A B C

A B B C

15

What to attest? When to attest? How to attest?Modularization Data-flow attestation Exec path representation
Software is divided into
smaller isolated modules

Attestation is executed
when data is exchanged

A

B

EDC

H1=MSH(0,AB)

Execution path is represented
as a multiset of edges

A B C

A B B C

16

R

DFMonitor CFMonitor

M2 M1

M3 M4

M6 M5

M3 à M5

M5 à M6

M6 à M3

M2 M1

M4

M6

M5

M3

M3 M5 M6

17

18

Pixhawk: open-hardware project autopilot hardware

PX4: open source flight control software for drones

19

Middleware

NuttX

MAVLink uORB

Flight Stack

Module 1 Module 1 Module 1

20

Objective
Observes data flow between software modules and identify critical ones

Realization
Extending Middleware to enable data-flow monitoring functionalities

Functionalities:

• Extending MAVLink message format to include attestation requests/response

• Extending uORB to record message subscription and data generation

• Flushing uORB data buffers before when sensitive data is requested

21

Extending MAVLink message format

0

Flushing uORB data buffers

Observing data flow between modules
M3

M6 M5

22

Objective
Observes execution of critical modules and records their control flow

Realization
Instrumenting software modules with instructions that allow recording its control flow

Functionalities:

• Logic for recording the control flow events of critical modules

• Instrumentation instruction which call the logic at every control-flow event

23

<e1, 1>, <e3, 1>, <e4, 1>
<e2, 1>, <e4, 1>, <e5, 1>

M6M4M2

CFMonitor
Start

Input CF-event

Module
critical?

Update MSH-Value

Update Path

Critical Modules

1
3
5

ID MSHV

1 mshv1
3 mshv3
5 mshv5

ID Path

1
3
5

M1

e1

e2
e3

e4

M3

e1 e2

e3 e4

e5

M5

e1

e2 e3

e4

e5

M5 , e1

mshv5

<e1, 1 > <e2, 1 > <e4, 1>2

24

Middleware

NuttX

MAVLink DFMonitor

uORB
Filter

Flight Stack

Module 1 Module 1 Module 1

CFMonitor
MSH

Request
Response

Quoter

26

MODULE CFG SIZE EXECUTION PATH ATTESTATION TIME VERIFICATION TIME
GPS 2922 22249 835 849

GYROSCOPE 912 20004 748 760

E-COMPASS 1468 18907 716 718

IMU SENSOR 1905 158671 6341 6357

PRESSURE SENSOR 1051 1150 46 46

FMU 1828 38132 1510 1511

PX4IO 3661 12723 484 489

LED DRIVER 532 32 1 1

STM32 ADC 251 21274 805 808

COMMANDER 7852 9418 354 365

LOAD MONITOR 135 8 0,3 0,4

SENSORS 2032 40410 1618 1623

SYSTEMLIB 2555 662142 26341 26365

TOTAL 27014 1005120 39799,3 39892,4

GPS coordinates involves 1 of 13 executing modules

Modularity entails an improvement of 95% on runtime

Data cmd_state battery_status sensor_acel sensor_gyro

Count

Critical Modules 12 12 2 2

Executed Modules 12 13 7 8

Percentage 100% 92% 28% 25%

∑ "# CFGs

Critical Modules 197823 46860778 194 250

Executed Modules 197823 46862156 1590 1328

Percentage 100% 99% 12% 18%

∑ "# Executed Paths

Critical Modules 26572 26572 3373 2817

Executed Modules 26572 27104 13622 13873

Percentage 100% 98% 24% 20%

2

7

28%

194

1590

12%

3373

13622

24%

HybridSerial

Parallel

Collaboration (no security)
Devices recursively request GPS coordinates

Authentication
Exchanged data is authenticated with ECDSA

DIAT
The control flow of critical modules is attested

0

5

10

15

20

25

0 5000 10000 15000 20000

Ru
nt

im
e

(1
00

0x
s)

Number of devices

Collaboration

ECDSA

DIAT

0
2
4
6
8

10
12
14
16
18

0 5000 10000 15000 20000
Ru

nt
im

e
(1

00
0x

s)
Number of devices

Collaboration

ECDSA

DIAT

0

6

12

18

24

0 5000 10000 15000 20000

Ru
nt

im
e

(s
)

Number of devices

Collaboration

ECDSA

DIAT

Logarithmic in hybrid collaboration

4x authentication based on ECDSA

• All critical modules will be detected and attested

• Adding edges not in CFG will be detected

DFMonitor:

CFMonitor:

• Adding edges in CFG to execution path requires security policy

• Reordering edges in the execution path cannot be detected

33

Static attestation cannot detect runtime attacks

Control-flow attestation (CFA) is too complex

DIAT allows CFA in the autonomous settings. However, this requires

• Modular software design with clear communication

• Strong isolation between software modules

35

Ahmad Ibrahim
ahmad.ibrahim@trust.tu-darmstadt.de

