DIAT:

Data Integrity Attestation for Resilient Collaboration of Autonomous Systems

Tigist Abera, Raad Bahmani, Ferdinand Brasser, Ahmad Ibrahim,

Ahmad-Reza Sadeghi, and Matthias Schunter

Technische Universität Darmstadt, Germany and Intel Labs, Portland, OR, U.S.A.

Motivation

Remote attestation checks trustworthiness of a remote (embedded) device

Remote Attestation

R

Key Limitation: Static attestation schemes do not address runtime attacks

Problem Space of Runtime Attacks

7

Control-flow attestation aims at the detection of runtime attacks

Control-Flow Attestation

Cumulative Hash Value: $H_i = H (H_{i-1}, N)$

- H_{i-1} -- previous hash result
- N -- instruction block (node) just executed

Problems

Control-Flow Attestation

High overhead on the verifier

Program complexity leads to a large number of valid hashes

Only applicable to small programs

Control-flow attestation for autonomous systems

High Level Idea

B

В

Δ

Modularization

Software is divided into smaller isolated modules

Data-flow attestation

Attestation is executed when data is exchanged

Exec path representation

Execution path is represented as a multiset of edges

Assumptions

Modularization

Software is divided into smaller isolated modules

Modular software

can be decomposed into simple interacting modules

Data-flow monitoring

Software modules interact through a well-defined communication channels

Isolation Architecture

Software modules are securely isolated for each other

Data-flow attestation

Exec path representation

Attestation is executed when data is exchanged

Execution path is represented as a multiset of edges

Data-Flow Monitoring

Modularization

Software is divided into solutions and the solution of the soluted modules and the solution of the solution of

Data-flow attestation

Attestation is executed when data is exchanged

Exec path representation Execution path is represented

a multiset of edges

Control-Flow Monitoring

Modularization

Software is divided into solution is a solution is a soluted modules is a soluted module solution is a solution

Data-flow attestation

Attestation is executed when data is exchanged

Exec path representation

Execution path is represented as a multiset of edges

High Level Idea

DFMonitor CFMonitor $M_3 M_5 M_6$ $M_3 \rightarrow M_5$ $M_5 \rightarrow M_6$ $M_6 \to M_3$

Implementation

Autonomous Drones

Pixhawk: open-hardware project autopilot hardware

PX4: open source flight control software for drones

NuttX

DFMonitor

Objective

Observes data flow between software modules and identify critical ones

Realization

Extending Middleware to enable data-flow monitoring functionalities

Functionalities:

- Extending MAVLink message format to include attestation requests/response
- Extending uORB to record message subscription and data generation
- Flushing uORB data buffers before when sensitive data is requested

DFMonitor

Extending MAVLink message format

Flushing uORB data buffers

Observing data flow between modules

CFMonitor

Objective

Observes execution of critical modules and records their control flow

Realization

Instrumenting software modules with instructions that allow recording its control flow

Functionalities:

- Logic for recording the control flow events of critical modules
- Instrumentation instruction which call the logic at every control-flow event

CFMonitor

Integration into PX4

Concept

Evaluation

GPS Coordinates

MODULE	CFG SIZE	EXECUTION PATH	ATTESTATION TIME	VERIFICATION TIME				
GPS	2922	22249	835	849				
GYROSCOPE	912	20004	748	760				
E-COMPASS	1468	18907	716	718				
GPS coordinates involves 1 of 13 executing modules								
FMU	1828	38132	1510	1511				
ΡΧ4ΙΟ	3661	12723	484	489				
¹ Modularity entails an improvement of 95% on runtime								
Shividz Ade	2 <i>3</i> 1	212/7	005	000				
COMMANDER	7852	9418	354	365				
LOAD MONITOR	135	8	0,3	0,4				
SENSORS	2032	40410	1618	1623				
SYSTEMLIB	2555	662142	26341	26365				
TOTAL	27014	1005120	39799,3	39892,4				

Different Data Types

Data		cmd_state	battery_status	sensor_acel	sensor_gyro
	Critical Modules	12	12	2	2
Count	Executed Modules	12	13	7	8
	Percentage	100%	92%	28%	25%
$\sum of$ CFGs	Critical Modules	197823	46860778	194	250
	Executed Modules	197823	46862156	1590	1328
	Percentage	100%	99%	12%	18%
$\sum of$ Executed Paths	Critical Modules	26572	26572	3373	2817
	Executed Modules	26572	27104	13622	13873
	Percentage	100%	98%	24%	20%

Scalability

lati nu Sii 0 Ū

Runtime

Security

Security Considerations

DFMonitor:

• All critical modules will be detected and attested

CFMonitor:

- Adding edges not in CFG will be detected
- Adding edges in CFG to execution path requires security policy
- **Reordering edges** in the execution path *cannot* be detected

Conclusion

Conclusion

Static attestation cannot detect runtime attacks

Control-flow attestation (CFA) is too complex

DIAT allows CFA in the autonomous settings. However, this requires

- Modular software design with clear communication
- Strong isolation between software modules

Ahmad Ibrahim

ahmad.ibrahim@trust.tu-darmstadt.de

