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•Introduction
• Attacks on Encrypted Video Streams based on BURST patterns 

(Schuster et al. Security’17) 

Schuster et al. "Beauty and the burst: Remote identification of encrypted video streams." USENIX Security. 2017.

Traffic Analysis --- Video Streaming 
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•Introduction
• MPEG-DASH standard: adaptive bitrate streaming technique

Traffic Analysis --- BURST Patterns
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•Introduction
• Intuition: different videos have different BURST patterns

Traffic Analysis --- BURST Patterns
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• Data Collection
• 40 videos, 100 traces per video (4000 traces)

• Record (timestamp, packet size) of the first 3 mins

• Automated using Selenium + Tshark

•A Motivating ExampleAttack Replication
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• Preprocessing
• The raw data (time series) is aggregated into 0.25-second bins
• Each 3-minute video stream à array of 720 elements

•A Motivating Example
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• 5 Classifiers
• Support Vector Machine (SVM)
• Logistic Regression (LR)
• Random Forest (RF)
• Neural Net 
• Convolutional Neural Net (CNN)

• Classification Result (5-fold cross-validation)

•A Motivating Example
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Model SVM LR RF Neural Net CNN
Average Accuracy 0.809 0.823 0.751 0.831 0.944
Standard Deviation 0.067 0.063 0.046 0.011 0.004

Attack Replication



•Introduction
• Our work: defense using obfuscation

Traffic Analysis --- Our Work 
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• Defend against ML adversaries

• Crafting Adversarial Samples
• Fast Gradient Sign Method (FGSM) 

•Defense 1: Adversarial MLDefense 1: Adversarial ML
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• Targets the CNN (eps=0.1): 0.944 -> 0.086

• Limitations of Adversarial Samples
Not so effective against others!

More principled approach?

Defense 1: Adversarial ML
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Attacker may choose a 
different classifier

Attacker may conduct 
adversarial training 
(0.086 à 0.908)
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• Privacy in database

• Adding noise with a 
randomized Alg. M

•Defense 2: Differential PrivacyDefense 2: Differential Privacy
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Calculating randomized 
results from data object 

Parameterizing the 
indistinguishability with 
distance metric d 

•Defense 2: Differential PrivacyDefense 2: Differential Privacy --- d-privacy
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Calculating randomized 
results from data object 

Parameterizing the 
indistinguishability with 
distance metric d 

•Defense 2: Differential PrivacyDefense 2: Differential Privacy --- d-privacy
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Small ✏⇥ d(X,X 0) ! Similar Distribution



• Fourier Perturbation Algorithm (FPAk): Rastogi et al. (SIGMOD’10)

• d*-private Mechanism: Xiao et al. (CCS’15)

•Defense 2: Differential Privacy

Rastogi et al. "Differentially private aggregation of distributed time-series with transformation and encryption." SIGMOD, 2010.
Xiao et al. “Mitigating storage side channels using statistical privacy mechanisms.” CCS, 2015.

Defense 2: Differential Privacy --- FPAk & d*

�2(Q) denotes the L2 sensitivity of a set of Qs.

d⇤-private mechanism is (d⇤, 2✏)-private and (l1, 4✏)-private.

FPAk(Q,�) is ✏-di↵erentially private for � =
p
k�2(Q)/✏,
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Defense 2: Differential Privacy --- data flow
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Defense 2: Differential Privacy --- data flow
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Defense 2: Differential Privacy --- data flow
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•Defense 2: Differential PrivacyEvaluation

✏ = {5⇥ 10�8, 5⇥ 10�7, · · · , 50}
w = {0.05s, 0.25s, 0.5s, 1s, 2s}
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• 40x100 traces
• Params:

• Clip bound for each window: [0, 1GB]
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• 40x100 traces
• Params:

• Clip bound for each window: [0, 1GB]

•Defense 2: Differential PrivacyEvaluation

✏ = {5⇥ 10�8, 5⇥ 10�7, · · · , 50}
w = {0.05s, 0.25s, 0.5s, 1s, 2s}
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•Defense 2: Differential Privacy
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Security Evaluation --- FPAk
wA = w: e↵ect of w



•Defense 2: Differential Privacy
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wA = w: e↵ect of ✏

w = 0.05s w = 2s

Security Evaluation --- FPAk
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w 6= wA

Security Evaluation --- FPAk

w = 0.05s w = 2s

WA does not matter



• Original cumulative trace A, noised cumulative trace B
• Waste:
• Deficit:

•Defense 2: Differential PrivacyUtility Evaluation

deficit = max1in{max(A[i]�B[i], 0)}
waste = max1in{max(B[i]�A[i], 0)}
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Utility Evaluation --- Waste

FPAk

d*

31



•Defense 2: Differential PrivacyUtility Evaluation --- Deficit

FPAk

d*
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•Defense 2: Differential PrivacyFPAk vs. d*

FPAk(w = 2s, ✏ = 0.5)

d⇤(w = 0.5s, ✏ = 5e� 6)

Baseline Accuracy (2.5%)
Lowest Waste
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• Chrome Extension: change the `range` in the HTTP request (FPAk)

•Defense 2: Differential PrivacyImplementation --- Workflow

35

A: Client
(Chrome)

B: Chrome
Extension

C: Youtube
ServerRequest

Customized
Request

Response

Response

Constant Rate



• Dataset: 10 videos, 100 traces per video with extension
• 80% training, 20% test

• Settings:

• Features:
• up/down/total bytes per bin (BPB)
• up/down/total packets per bin (PPB) 
• up/down/total average packet length per bin (LPB)
• up/down/total bursts (BURST)
• the combination of all 12 features (ALL)

•Defense 2: Differential PrivacyImplementation --- Effectiveness

FPAk(w = 1s, ✏ = 0.5) wA = {0.05s, 0.25s, 0.5s, 1s, 2s}
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• Classification result (CNN)

•Defense 2: Differential Privacy
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wA(s) BPBup BPBdown BPB PPBup PPBdown PPB LPBup LPBdown LPB BURSTup BURSTdown BURST ALL
0.05 0.16 0.12 0.16 0.12 0.16 0.14 0.14 0.13 0.16 0.14 0.15 0.16 0.13
0.25 0.20 0.16 0.22 0.18 0.16 0.20 0.12 0.08 0.16 0.23 0.14 0.19 0.21
0.5 0.19 0.12 0.22 0.14 0.16 0.20 0.14 0.08 0.10 0.19 0.14 0.15 0.20
1 0.16 0.14 0.18 0.14 0.19 0.13 0.10 0.10 0.11 0.16 0.14 0.12 0.18
2 0.14 0.12 0.16 0.13 0.14 0.16 0.10 0.10 0.09 0.16 0.16 0.19 0.17

Implementation --- Effectiveness



•Defense 2: Differential PrivacyImplementation --- Demo: original
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•Defense 2: Differential PrivacyImplementation --- Demo: w. extension
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• Reducing waste:   
• Lowering clip bound (e.g. [0, 1GB] -> [0, 100MB])
• Increasing

•Defense 2: Differential PrivacyDiscussion
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✏



• Leakage through video length
• Cannot prevent due to utility loss
• Possible solution: grouping the videos by length and 

padding them to the longest length in each group

•Defense 2: Differential PrivacyDiscussion
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• We borrowed techniques from adversarial ML and differential privacy to 
address privacy concerns of streaming traffic

• We showed that differential privacy effectively defeats inference-based traffic 
analysis, while remains agnostic to the ML classifiers

• Results suggested that the two differentially private mechanisms offer good 
security protection with moderate utility loss

•ConclusionConclusion
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Xiaokuan Zhang
zhang.5840@osu.edu

Thanks for listening!
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Backup Slides
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•Defense 2: Differential Privacy
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Security Evaluation --- FPAk
wA = w: e↵ect of w
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•Defense 2: Differential Privacy
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wA = w: e↵ect of ✏

w = 0.05s w = 2s

Security Evaluation --- FPAk



50

w 6= wA

Security Evaluation --- FPAk

w = 0.05s w = 2s



•Defense 2: Differential Privacy
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Security Evaluation 
wA = w: e↵ect of w d*



•Defense 2: Differential Privacy
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Security Evaluation
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Security Evaluation

d*: w = 0.05s d*: w = 2s



•Defense 2: Differential PrivacySecurity Evaluation --- Train w. clean, test w. noised
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• Window size: w seconds
• Max value of all bins of all videos (4000 traces): C
• Baseline defense mechanism: C bytes per w seconds (all videos)

•Defense 2: Differential PrivacyBaseline Approach
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• The Attacker has the knowledge of distribution of both clean data 
and noised data (but not the mapping between the two)

• First try to remove noise, then perform classification

•Defense 2: Differential PrivacyOptimal Attacker
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Improvement 
of accuracy:

 2%

Naldi et al. “Differential privacy for counting queries: can bayes estimation help uncover the true value?”, arXiv:1407.0116.



• Chrome Extension: change the byte range in the HTTP request

•Defense 2: Differential PrivacyImplementation --- Workflow
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• Comparing FPAk with d*
• Accuracy ßà Security Guarantee
• FPAk requires the knowledge of the entire time series

•Defense 2: Differential PrivacyDiscussion
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