

THE OHIO STATE UNIVERSITY

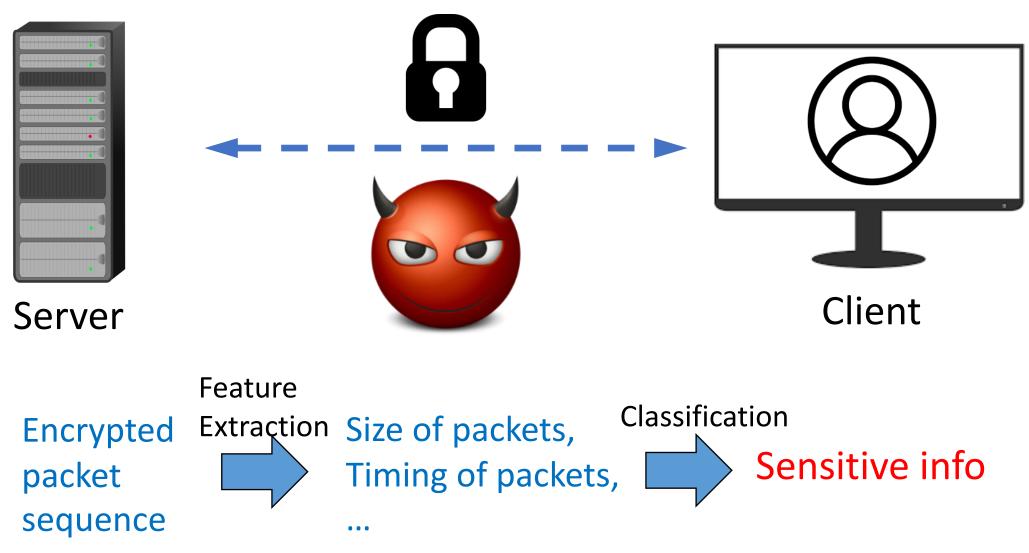
THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Statistical Privacy for Streaming Traffic

Xiaokuan Zhang¹, Jihun Hamm¹, Michael K. Reiter², Yinqian Zhang¹

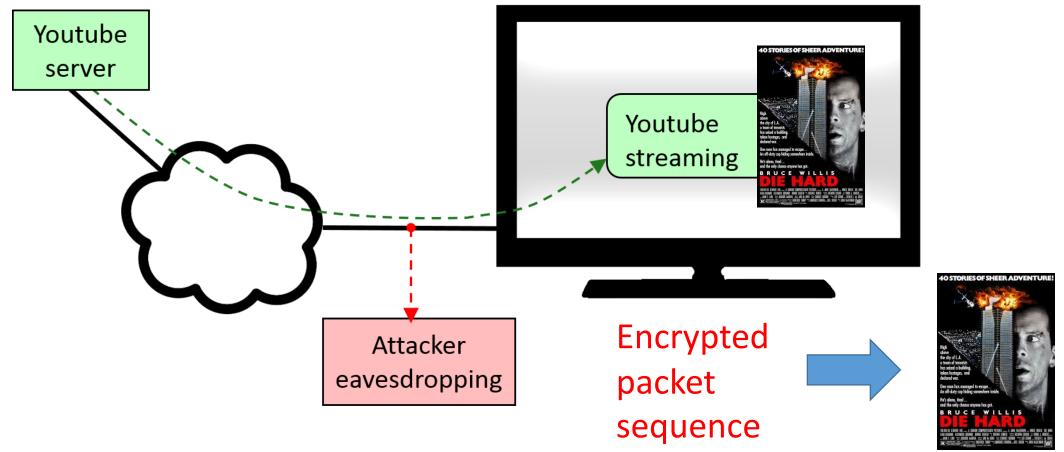
¹The Ohio State University ²University of North Carolina at Chapel Hill

Traffic Analysis



Traffic Analysis --- Video Streaming

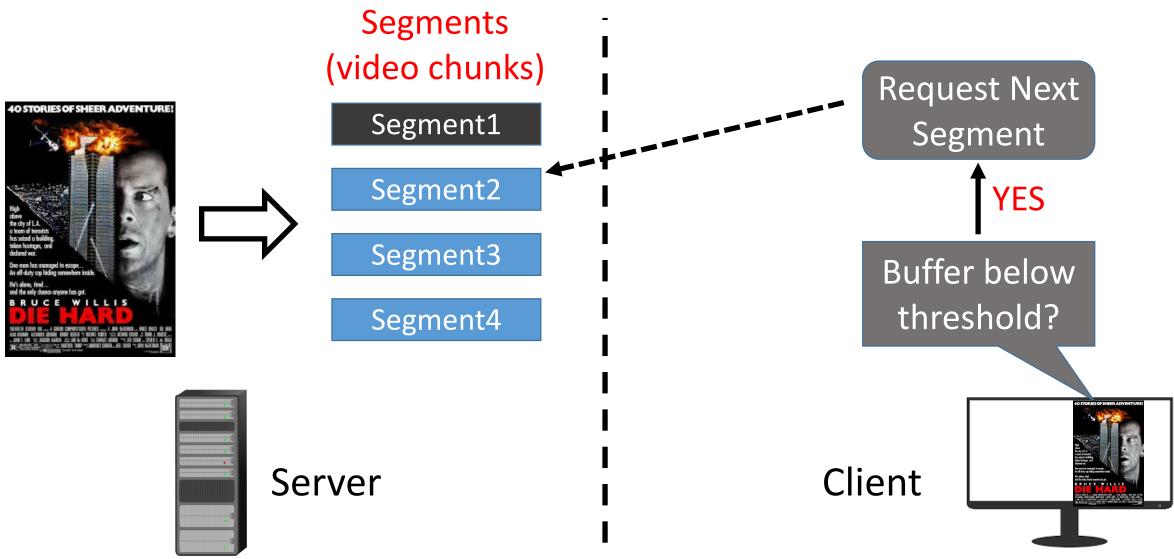
 Attacks on Encrypted Video Streams based on BURST patterns (Schuster et al. Security'17)



Schuster et al. "Beauty and the burst: Remote identification of encrypted video streams." USENIX Security. 2017.

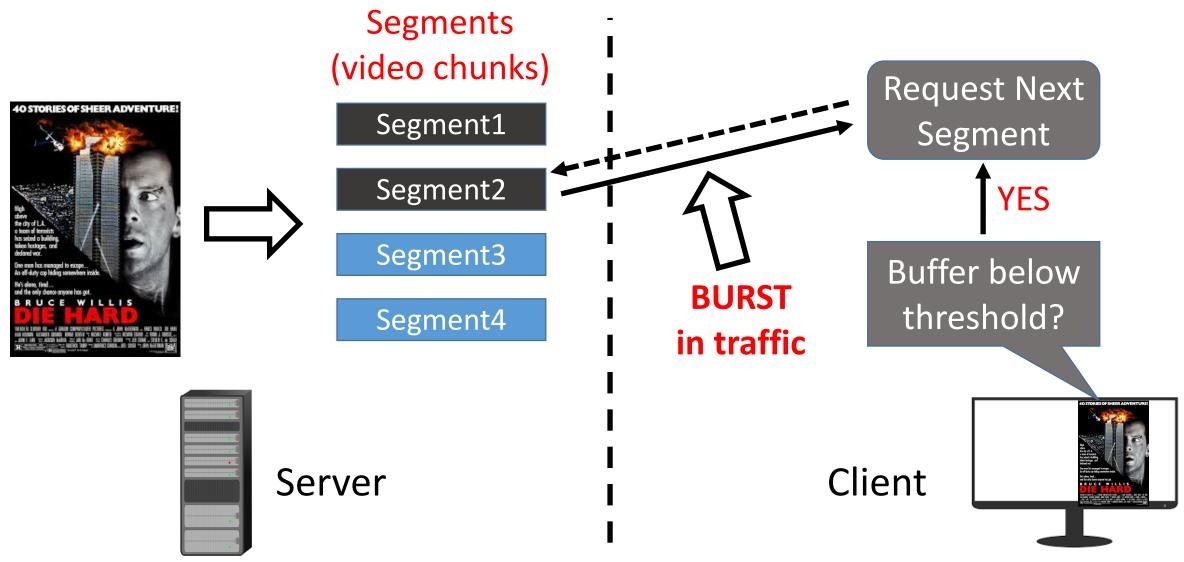
Traffic Analysis --- BURST Patterns

• MPEG-DASH standard: adaptive bitrate streaming technique



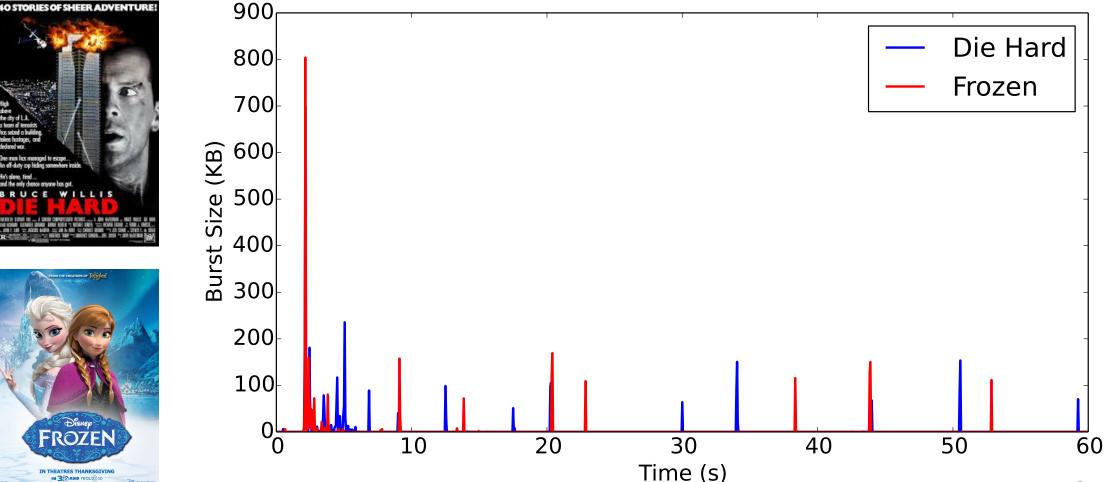
Traffic Analysis --- BURST Patterns

• MPEG-DASH standard: adaptive bitrate streaming technique



Traffic Analysis --- BURST Patterns

• Intuition: different videos have different **BURST** patterns

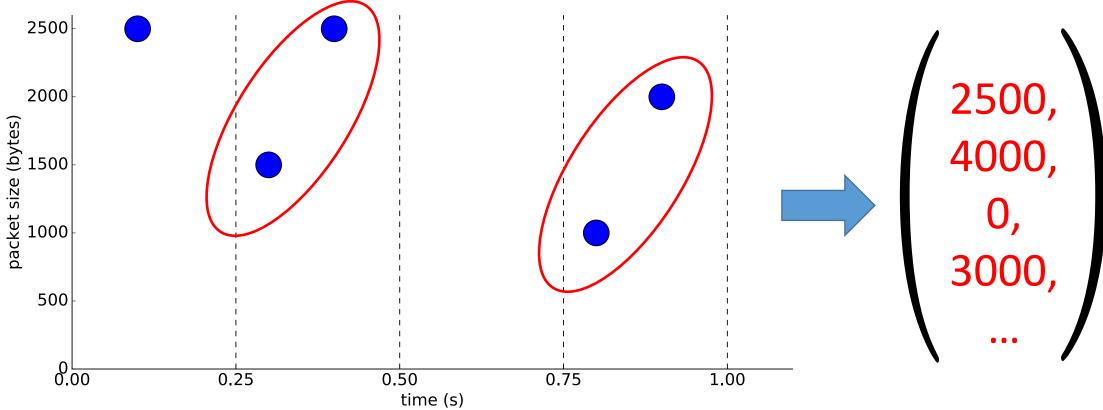


Attack Replication

- Data Collection
- a Collection 40 videos, 100 traces per video (4000 traces)
 - Record (timestamp, packet size) of the first 3 mins ullet
 - Automated using Selenium + Tshark •

Attack Replication

- Preprocessing
 - The raw data (time series) is aggregated into 0.25-second bins
 - Each 3-minute video stream \rightarrow array of 720 elements



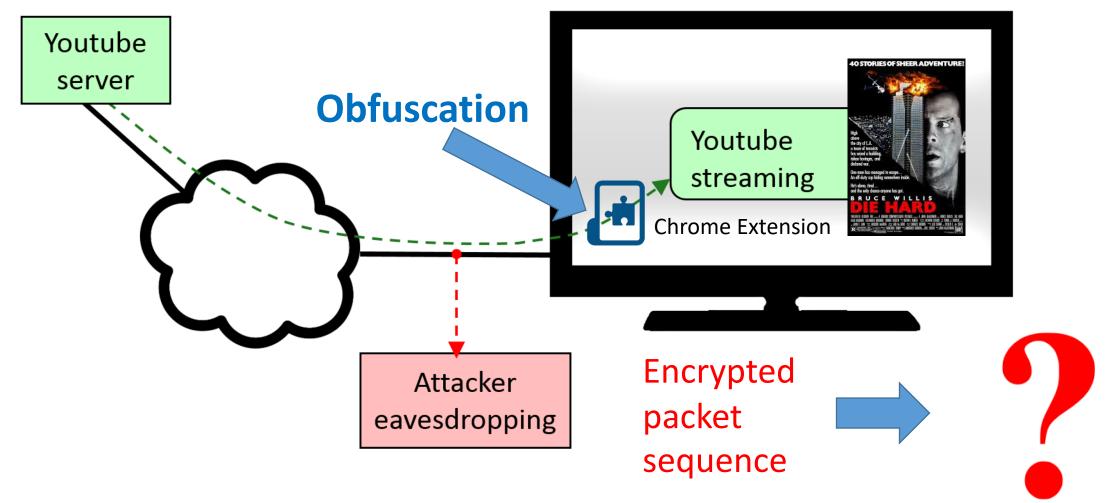
Attack Replication

- 5 Classifiers
 - Support Vector Machine (SVM)
 - Logistic Regression (LR)
 - Random Forest (RF)
 - Neural Net
 - Convolutional Neural Net (CNN)
- Classification Result (5-fold cross-validation)

Model	SVM	LR	RF	Neural Net	CNN
Average Accuracy	0.809	0.823	0.751	0.831	0.944
Standard Deviation	0.067	0.063	0.046	0.011	0.004

Traffic Analysis --- Our Work

• Our work: defense using obfuscation

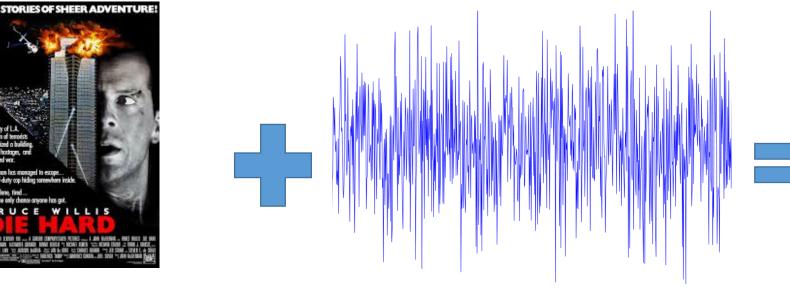


Outline

- 1. Defense 1: Adversarial Machine Learning
- 2. Defense 2: Differential Privacy
- 3. Evaluation
- 4. Real-world Implementation
- 5. Discussion
- 6. Conclusion

Defense 1: Adversarial ML

- Defend against ML adversaries
- Crafting Adversarial Samples
 - Fast Gradient Sign Method (FGSM)



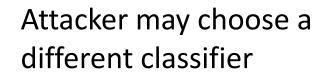
 $\eta \operatorname{sign}(\nabla_x L(g(x;\theta),y))$

Defense 1: Adversarial ML

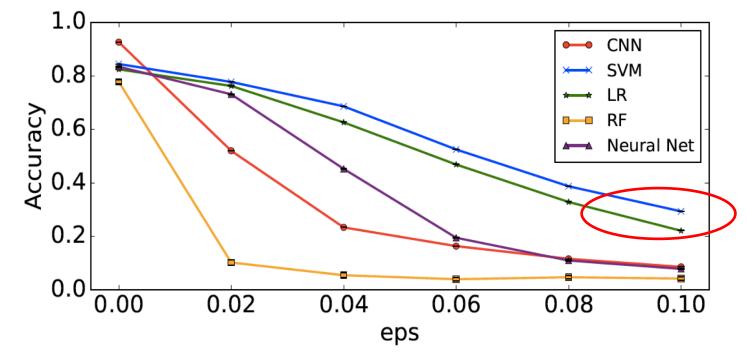
- Targets the CNN (eps=0.1): 0.944 -> 0.086
- Limitations of Adversarial Samples

Not so effective against others!

More **principled** approach?



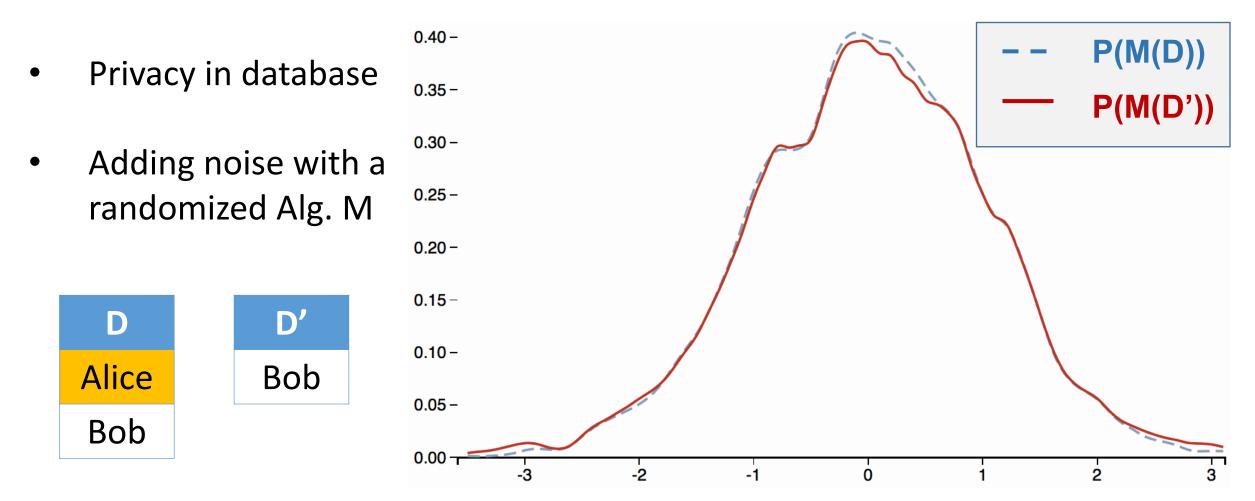
Attacker may conduct adversarial training (0.086 → 0.908)



Outline

- 1. Defense 1: Adversarial Machine Learning
- 2. Defense 2: Differential Privacy
- 3. Evaluation
- 4. Real-world Implementation
- 5. Discussion
- 6. Conclusion

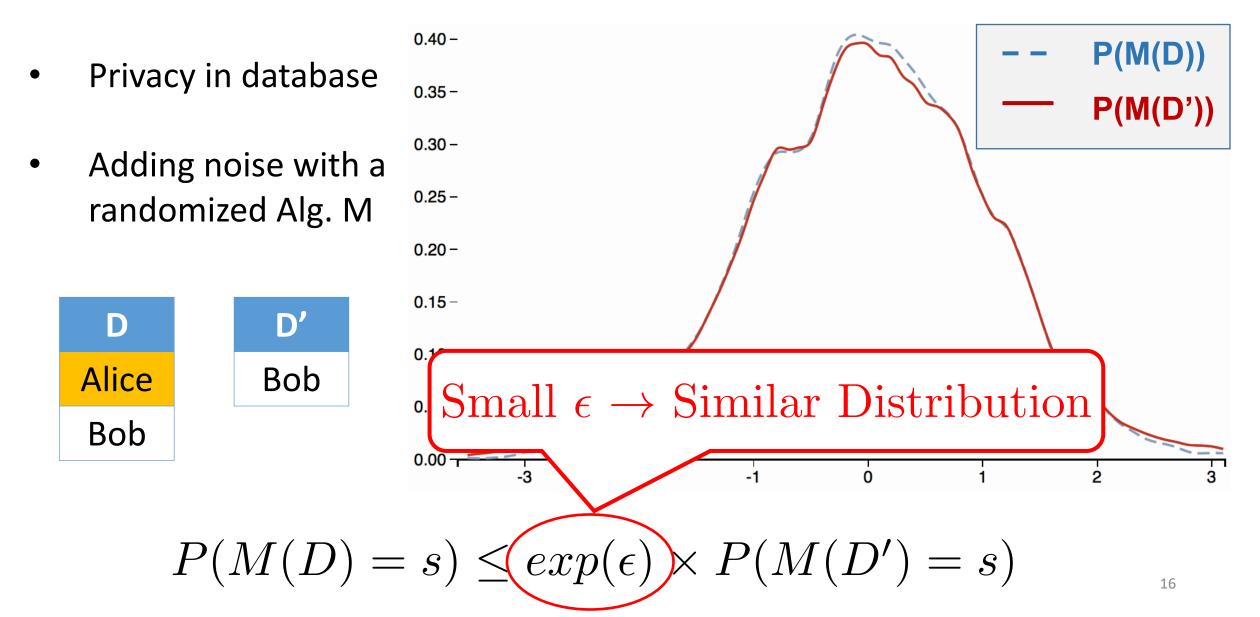
Defense 2: Differential Privacy



 $P(M(D) = s) \le exp(\epsilon) \times P(M(D') = s)$

15

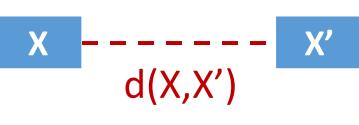
Defense 2: Differential Privacy

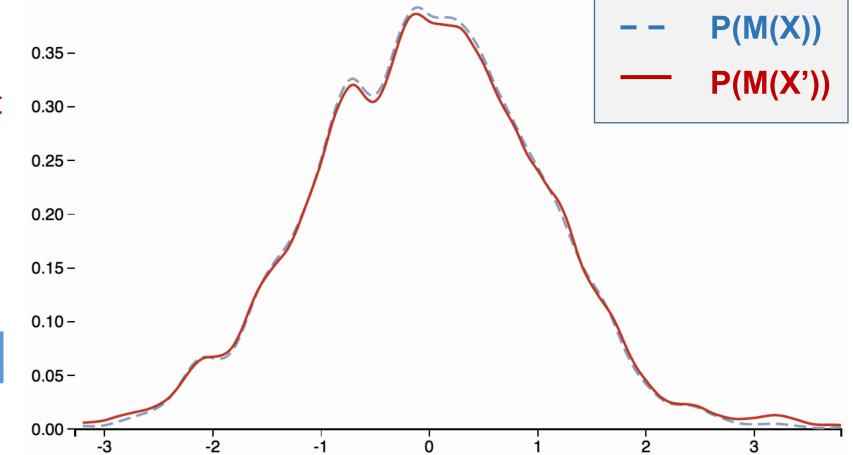


Defense 2: Differential Privacy --- d-privacy

Calculating randomized 0.35results from data object 0.30-

Parameterizing the indistinguishability with distance metric d





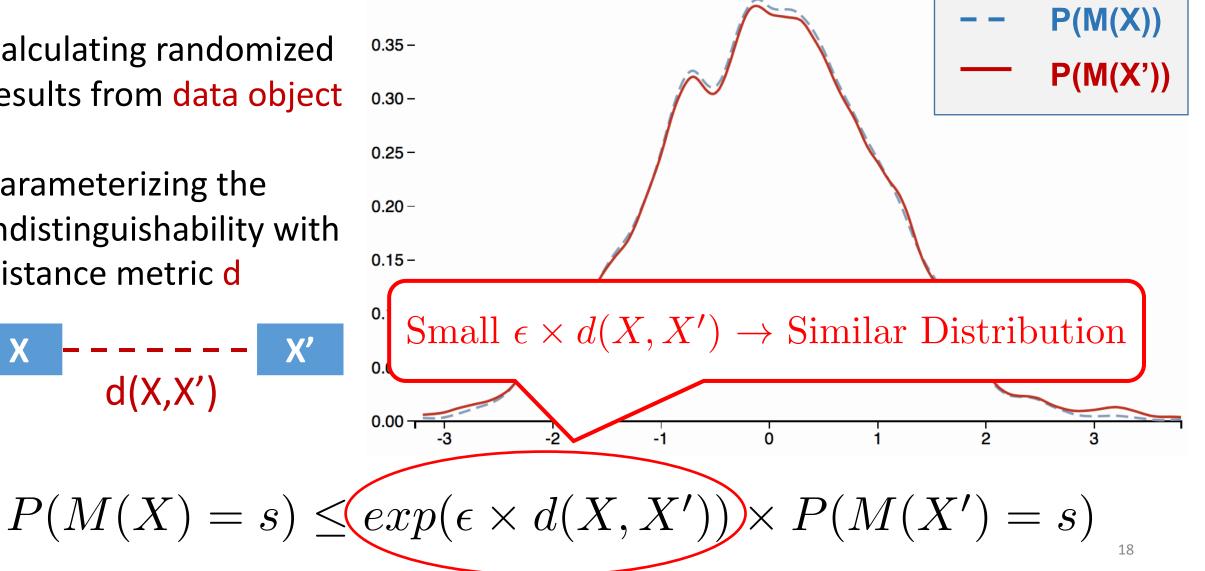
 $P(M(X) = s) \le exp(\epsilon \times d(X, X')) \times P(M(X') = s)$

Defense 2: Differential Privacy --- d-privacy

Calculating randomized results from data object

Parameterizing the indistinguishability with distance metric d

X



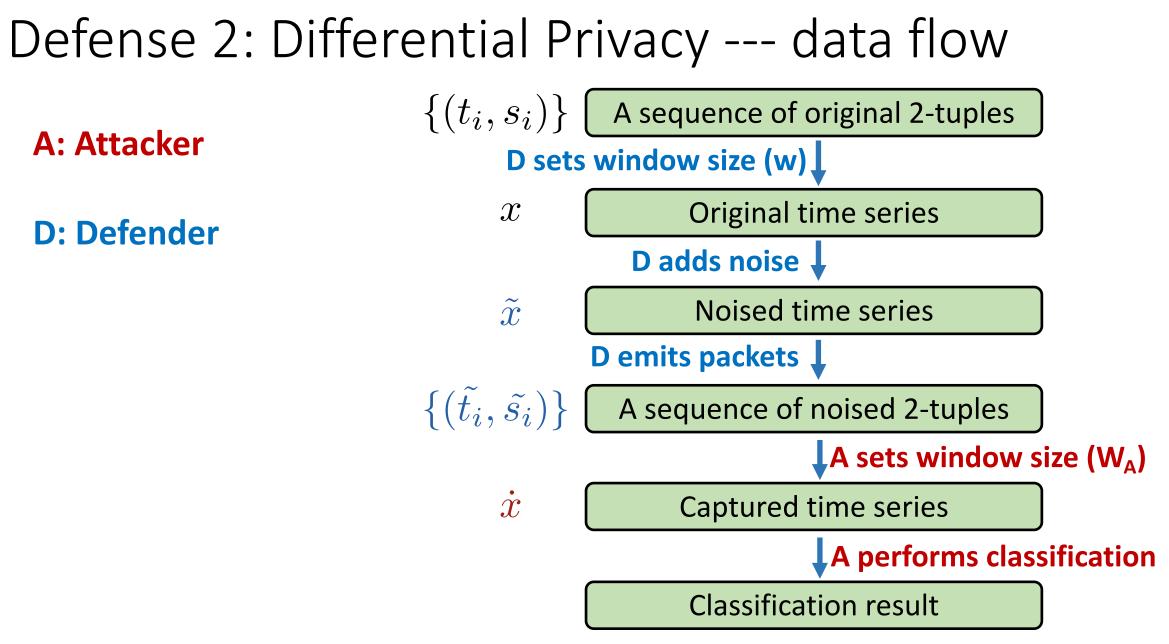
Defense 2: Differential Privacy --- FPA_k & d*

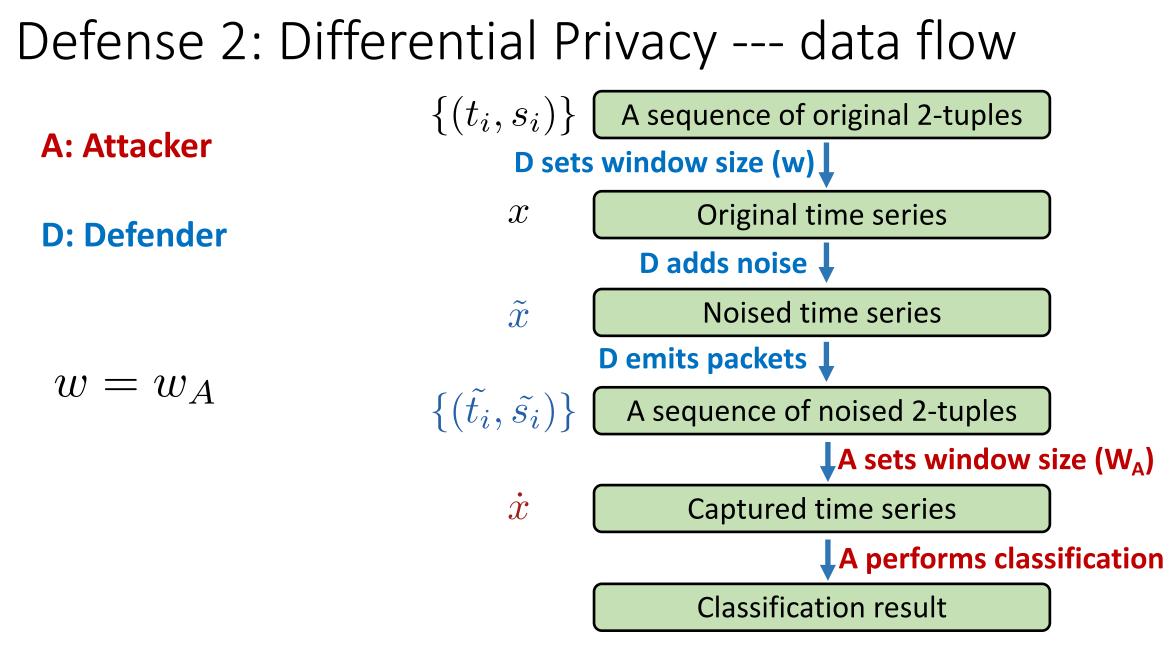
- Fourier Perturbation Algorithm (FPA_k): Rastogi et al. (SIGMOD'10)
 FPA_k(Q, λ) is ε-differentially private for λ = √kΔ₂(Q)/ε,
 Δ₂(Q) denotes the L2 sensitivity of a set of Qs.
- d*-private Mechanism: Xiao et al. (CCS'15)

$$d^*(x, x') = \sum_{i \ge 1} |(x[i] - x[i - 1]) - (x'[i] - x'[i - 1])|$$

d*-private mechanism is $(d^*, 2\epsilon)$ -private and $(l_1, 4\epsilon)$ -private.

Rastogi et al. "Differentially private aggregation of distributed time-series with transformation and encryption." *SIGMOD, 2010.* Xiao et al. "Mitigating storage side channels using statistical privacy mechanisms." CCS, 2015.





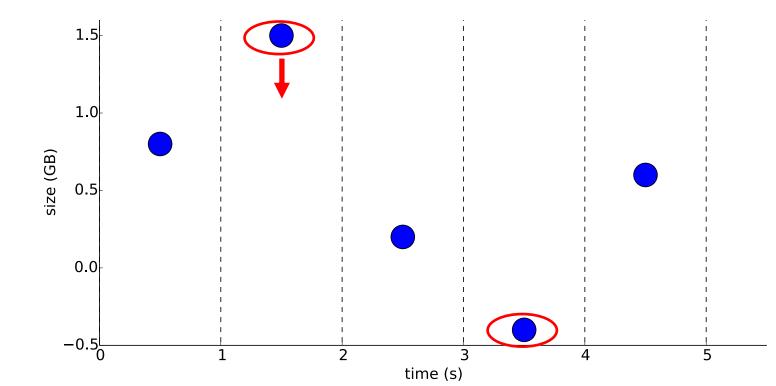
Defense 2: Differential Privacy data flow						
A: Attacker		$\{(t_i, s_i)\}$ A sequence of original 2-tuples D sets window size (w)				
D: Defender	x	x Original time series				
		D adds noise				
	\widetilde{x}	Noised time series				
$w = w_A$		D emits packets				
	$\{(ilde{t}_i, ilde{s}_i)\}$	A sequence of noised 2-tuples				
		A sets window size (W _A)				
$w \neq w_A$	\dot{x}	Captured time series				
·		A performs clas				
		Classification result				

Outline

- 1. Defense 1: Adversarial Machine Learning
- 2. Defense 2: Differential Privacy
- 3. Evaluation
- 4. Real-world Implementation
- 5. Discussion
- 6. Conclusion

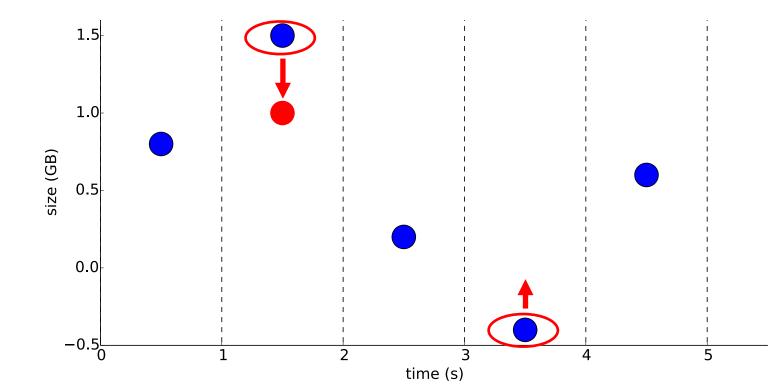
Evaluation

- 40x100 traces
- Params: $\epsilon = \{5 \times 10^{-8}, 5 \times 10^{-7}, \cdots, 50\}$ $w = \{0.05s, 0.25s, 0.5s, 1s, 2s\}$
- Clip bound for each window: [0, 1GB]



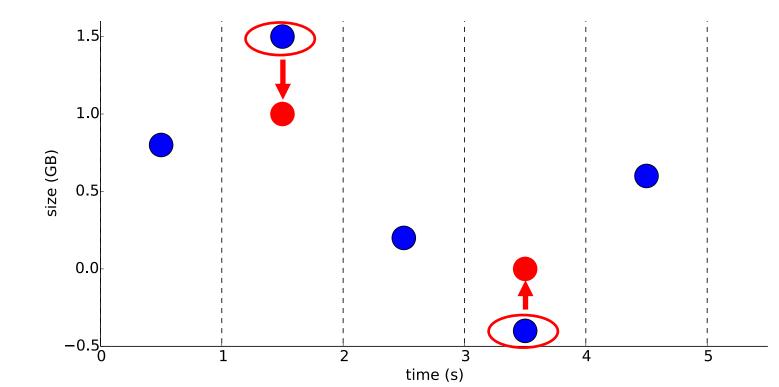
Evaluation

- 40x100 traces
- Params: $\epsilon = \{5 \times 10^{-8}, 5 \times 10^{-7}, \cdots, 50\}$ $w = \{0.05s, 0.25s, 0.5s, 1s, 2s\}$
- Clip bound for each window: [0, 1GB]

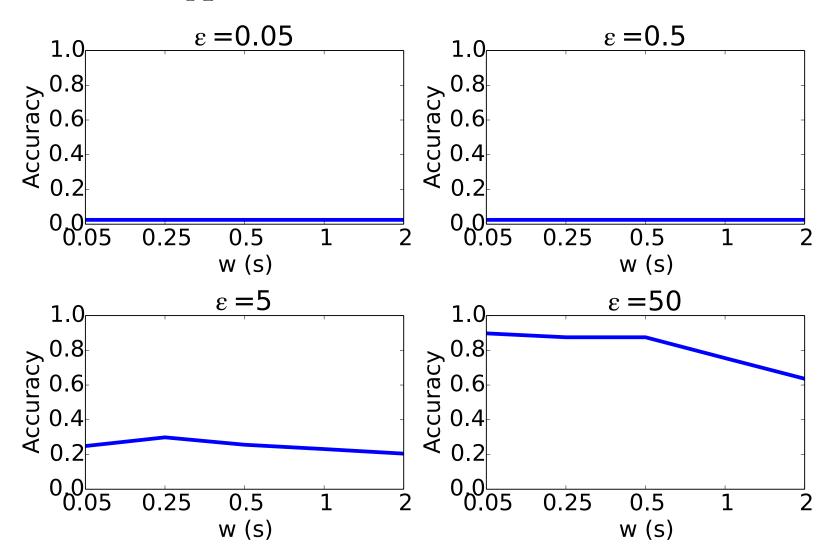


Evaluation

- 40x100 traces
- Params: $\epsilon = \{5 \times 10^{-8}, 5 \times 10^{-7}, \cdots, 50\}$ $w = \{0.05s, 0.25s, 0.5s, 1s, 2s\}$
- Clip bound for each window: [0, 1GB]

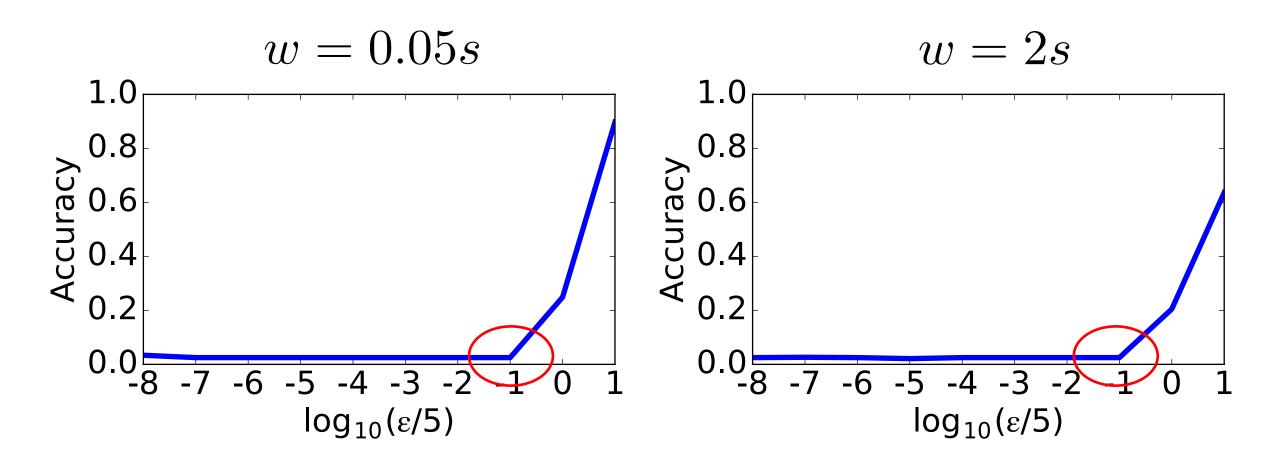


Security Evaluation --- FPA_k $w_A = w$: effect of w



27

Security Evaluation --- FPA_k $w_A = w$: effect of ϵ



Security Evaluation --- FPA_k $w \neq w_A$ w = 0.05sw = 2s1.0 1.0 8.0 9.0 0.4 0.2 0.8 Accuracy *ϵ***=0.05** *ϵ*=0.05 0.6 =0.5 *ϵ***=0.5** 0.4 *ϵ*=50 *ϵ*=50

2

 W_A does not matter

1

0. .2

0.0

0.05

0.25

0.5

 $W_A(s)$

0.2

0.0

0

.05

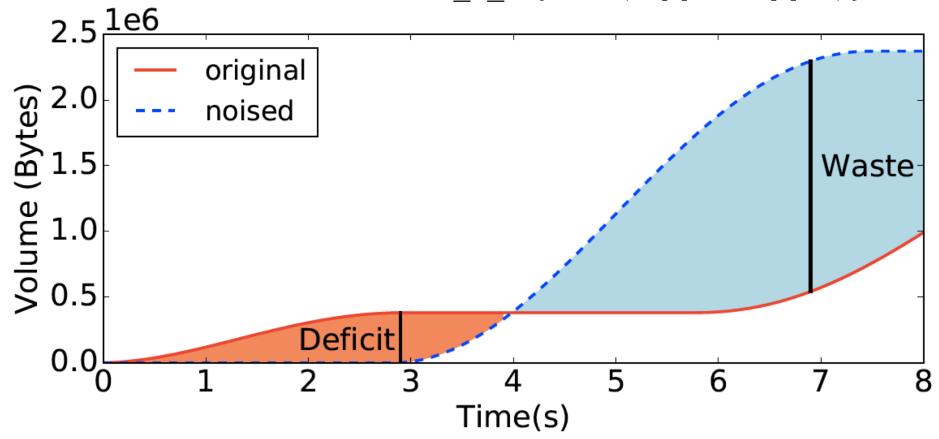
0.25

0.5

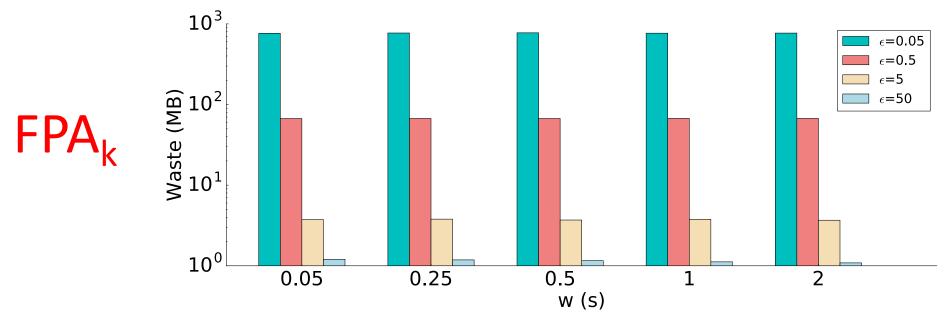
 $W_A(s)$

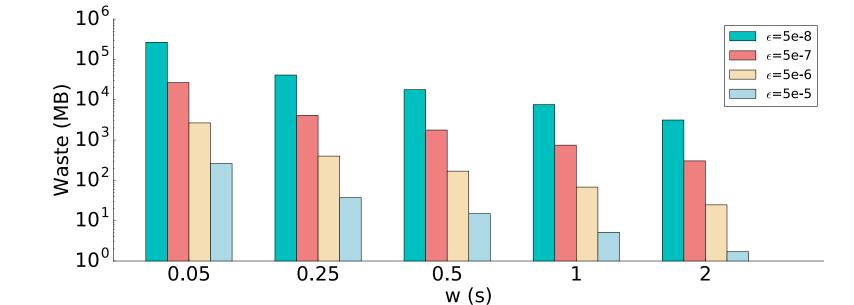
Utility Evaluation

- Original cumulative trace A, noised cumulative trace B
- Waste: $waste = \max_{1 \le i \le n} \{ \max(B[i] A[i], 0) \}$
- Deficit: $deficit = \max_{1 \le i \le n} \{ \max(A[i] B[i], 0) \}$



Utility Evaluation --- Waste

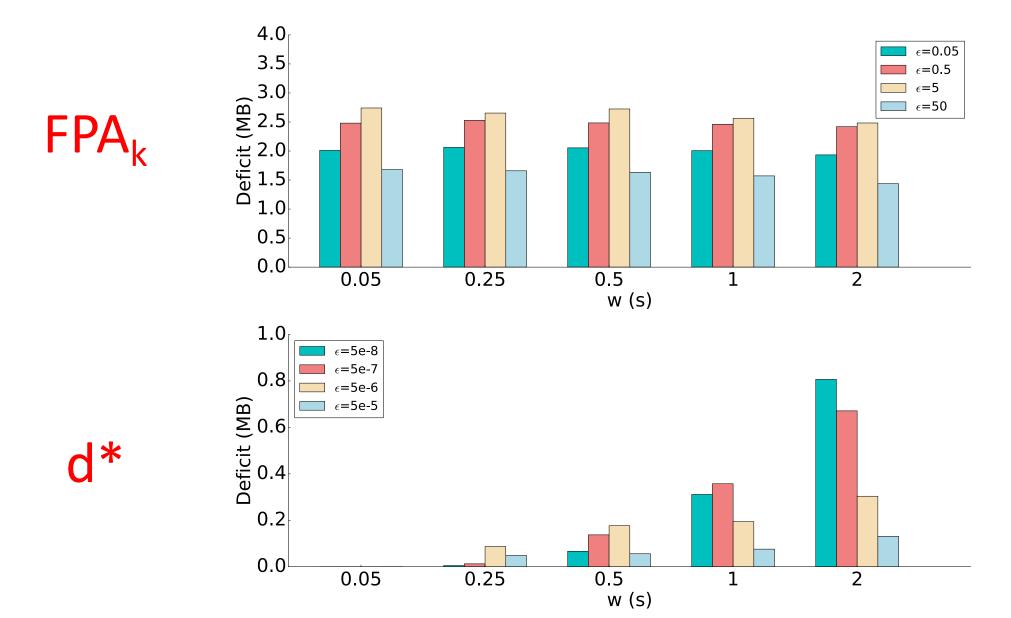




31

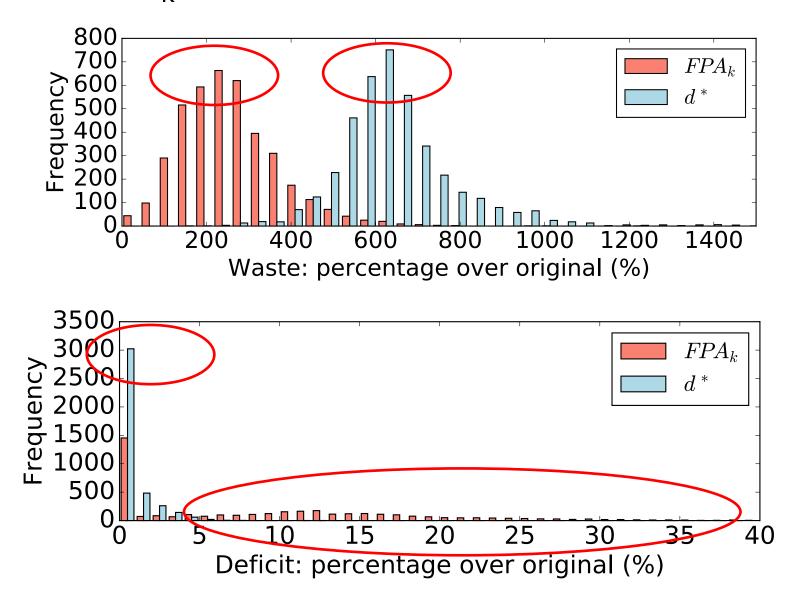
d*

Utility Evaluation --- Deficit



32

 FPA_k vs. d*



Baseline Accuracy (2.5%) Lowest Waste

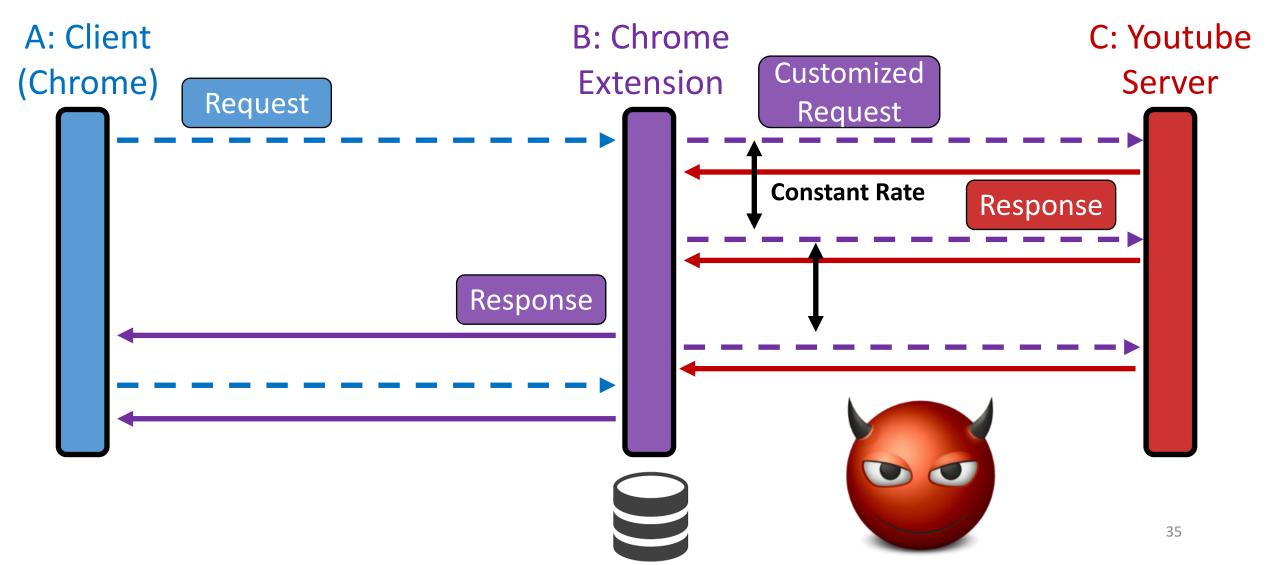
$$FPA_k(w = 2s, \epsilon = 0.5)$$
$$d^*(w = 0.5s, \epsilon = 5e - 6)$$

Outline

- 1. Defense 1: Adversarial Machine Learning
- 2. Defense 2: Differential Privacy
- 3. Evaluation
- 4. Real-world Implementation
- 5. Discussion
- 6. Conclusion

Implementation --- Workflow

• Chrome Extension: change the `range` in the HTTP request (FPA_k)



Implementation --- Effectiveness

- Dataset: 10 videos, 100 traces per video with extension
- 80% training, 20% test
- Settings: $FPA_k(w = 1s, \epsilon = 0.5)$ $w_A = \{0.05s, 0.25s, 0.5s, 1s, 2s\}$
- Features:
 - up/down/total bytes per bin (BPB)
 - up/down/total packets per bin (PPB)
 - up/down/total average packet length per bin (LPB)
 - up/down/total bursts (BURST)
 - the combination of all 12 features (ALL)

Implementation --- Effectiveness

• Classification result (CNN)

$w_A(s)$	BPB_{up}	BPB_{down}	BPB	PPB_{up}	PPB_{down}	PPB	LPB_{up}	LPB_{down}	LPB	$BURST_{up}$	$BURST_{down}$	BURST	ALL
0.05	0.16	0.12	0.16	0.12	0.16	0.14	0.14	0.13	0.16	0.14	0.15	0.16	0.13
0.25	0.20	0.16	0.22	0.18	0.16	0.20	0.12	0.08	0.16	0.23	0.14	0.19	0.21
0.5	0.19	0.12	0.22	0.14	0.16	0.20	0.14	0.08	0.10	0.19	0.14	0.15	0.20
1	0.16	0.14	0.18	0.14	0.19	0.13	0.10	0.10	0.11	0.16	0.14	0.12	0.18
2	0.14	0.12	0.16	0.13	0.14	0.16	0.10	0.10	0.09	0.16	0.16	0.19	0.17

Implementation --- Demo: original

•••	G	Google	×	+	0	🕑 💿 original.mp4	(ð) (ð) (₊
$\leftarrow \rightarrow$	C (G spid		Ť		Ungmat.mp4	
Apps	P	dash.js 2.0 Buffer	UrlDecode.	org R Online regex teste			
About				Google Search			
Advertis	sing	Business			Priv		Privacy Terms Settings

Implementation --- Demo: w. extension

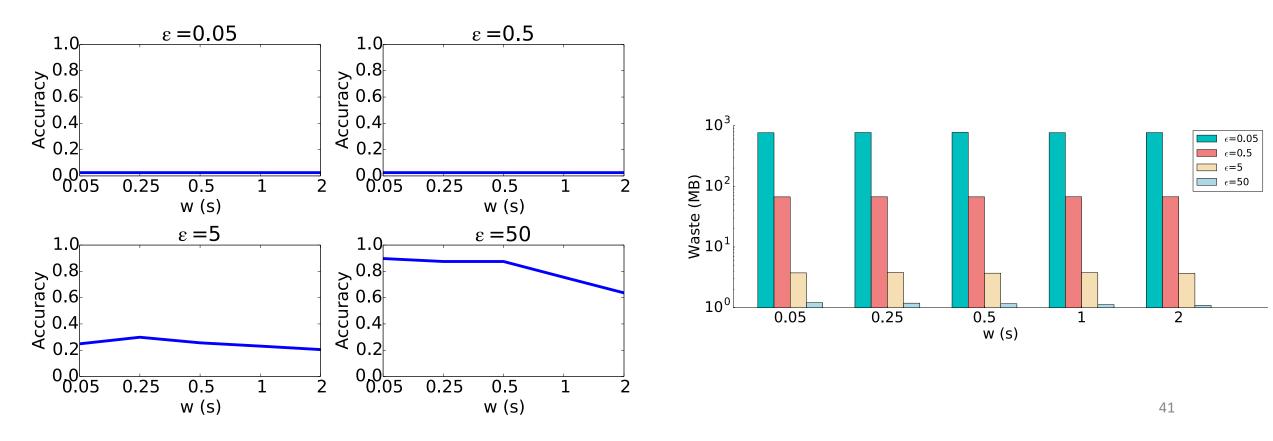
 ← → C G spid Apps dash.js 2.0 Buffer ⁽¹⁾ UrlDecode.org R Online regex teste About Store 	This Can Options Remove f Hide in C	request inter Read and C from Chrome throme Menu Extensions	hange Site Data e		plugin.mp4			
🗰 Apps 🧧 dash.js 2.0 Buffer 🗋 UrlDecode.org R Online regex teste	Youtube I This Can Options Remove f Hide in C	Read and C from Chrome throme Menu	hange Site Data e	•	I			
About Store	Options Remove f Hide in C	from Chrome hrome Menu Extensions	e	Þ	I	T	I	
		/tes Dow	-					1
Google	Ŷ	Total B	-	10	15	20	25	-
Google Search I'm Feeling Lucky					Time (s)			
		> ++					00:00 🛋	

Outline

- 1. Defense 1: Adversarial Machine Learning
- 2. Defense 2: Differential Privacy
- 3. Evaluation
- 4. Real-world Implementation
- 5. Discussion
- 6. Conclusion

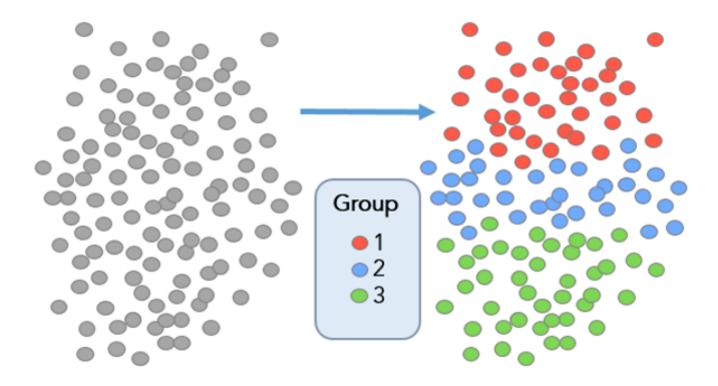
Discussion

- Reducing waste:
 - Lowering clip bound (e.g. [0, 1GB] -> [0, 100MB])
 - Increasing ϵ



Discussion

- Leakage through video length
 - Cannot prevent due to utility loss
 - Possible solution: grouping the videos by length and padding them to the longest length in each group



Outline

- 1. Defense 1: Adversarial Machine Learning
- 2. Defense 2: Differential Privacy
- 3. Evaluation
- 4. Real-world Implementation
- 5. Discussion
- 6. Conclusion

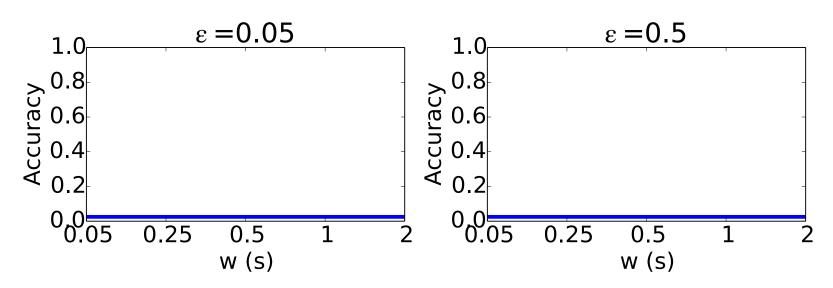
- We borrowed techniques from adversarial ML and differential privacy to address privacy concerns of streaming traffic
- We showed that differential privacy effectively defeats inference-based traffic analysis, while remains agnostic to the ML classifiers
- Results suggested that the two differentially private mechanisms offer good security protection with moderate utility loss

Thanks for listening!

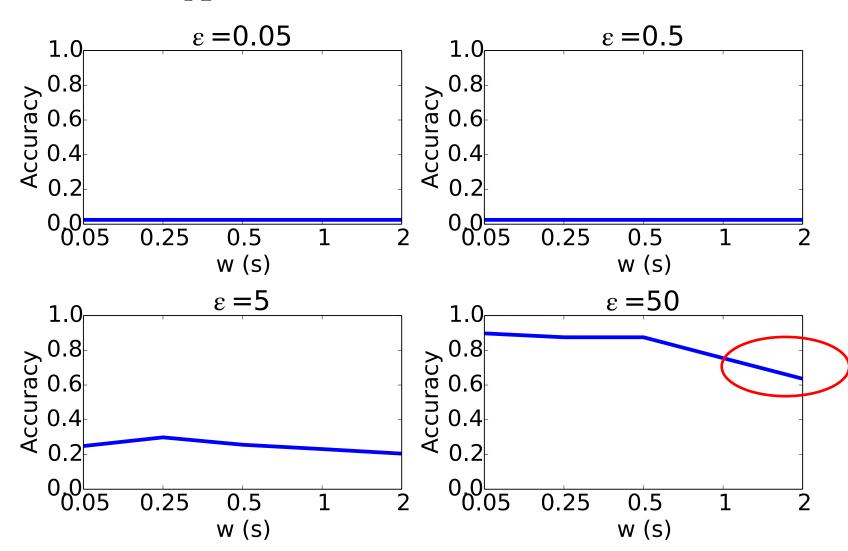
Xiaokuan Zhang zhang.5840@osu.edu

Backup Slides

Security Evaluation --- FPA_k $w_A = w$: effect of w

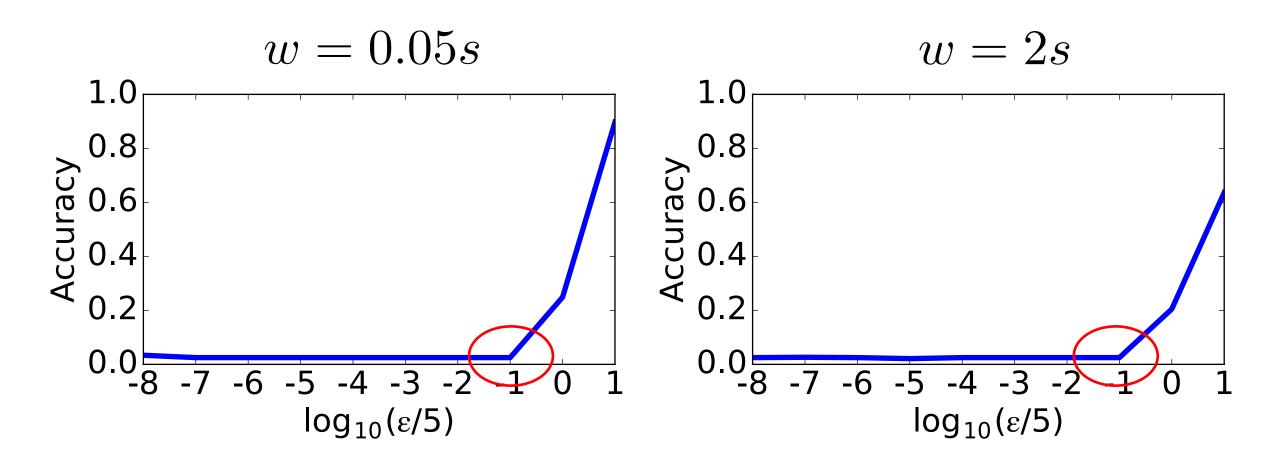


Security Evaluation --- FPA_k $w_A = w$: effect of w



48

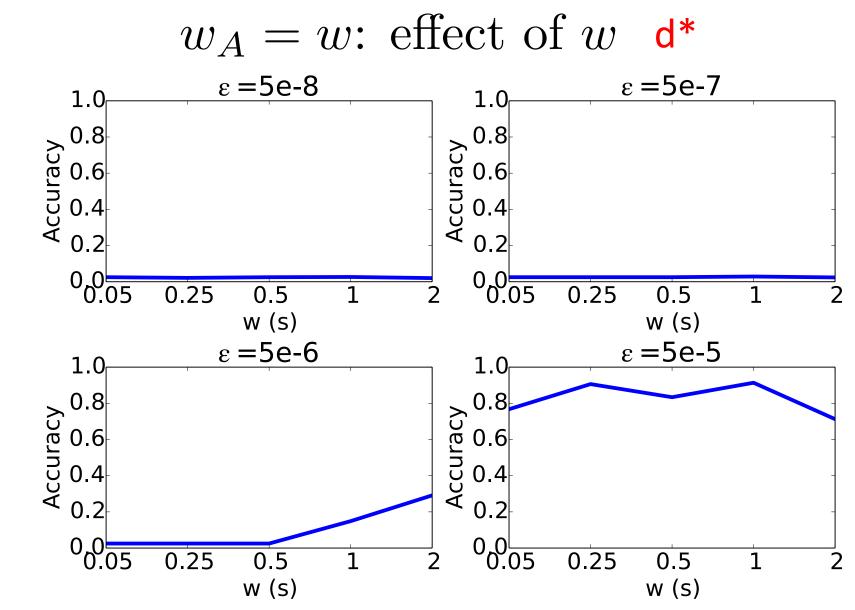
Security Evaluation --- FPA_k $w_A = w$: effect of ϵ



Security Evaluation --- FPA_k

 $w \neq w_A$ w = 0.05sw = 2s1.0 1.0 0.8 8.0 9.0 9.0 0.2 0.8 Accuracy *ϵ***=0.05** *ϵ*=0.05 0.6 =0.5*ϵ*=0.5 *ϵ*=5 0.4 *ϵ*=50 *ϵ*=50 0.2 0. .2 0.0 0.0 0.25 2 .05 0.5 1 о́.05 0.25 0.5 0 $W_A(s)$ $W_A(s)$

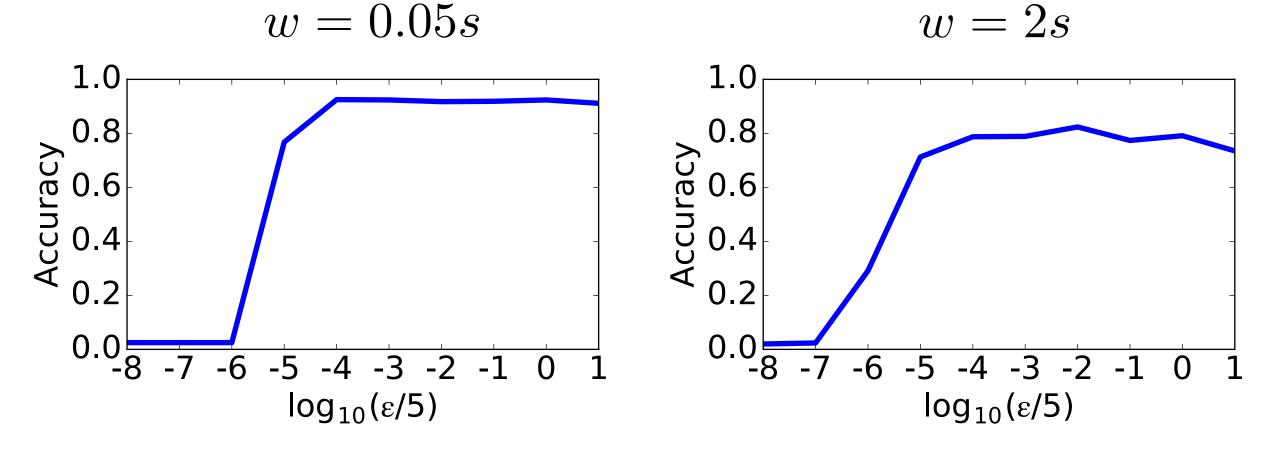
Security Evaluation



51

Security Evaluation

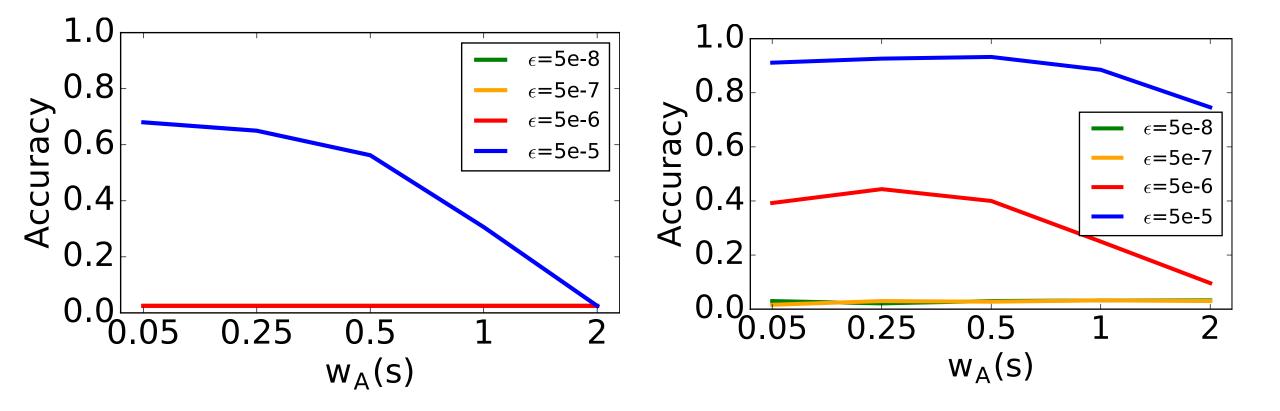
$$w_A = w$$
: effect of ϵd^*



Security Evaluation

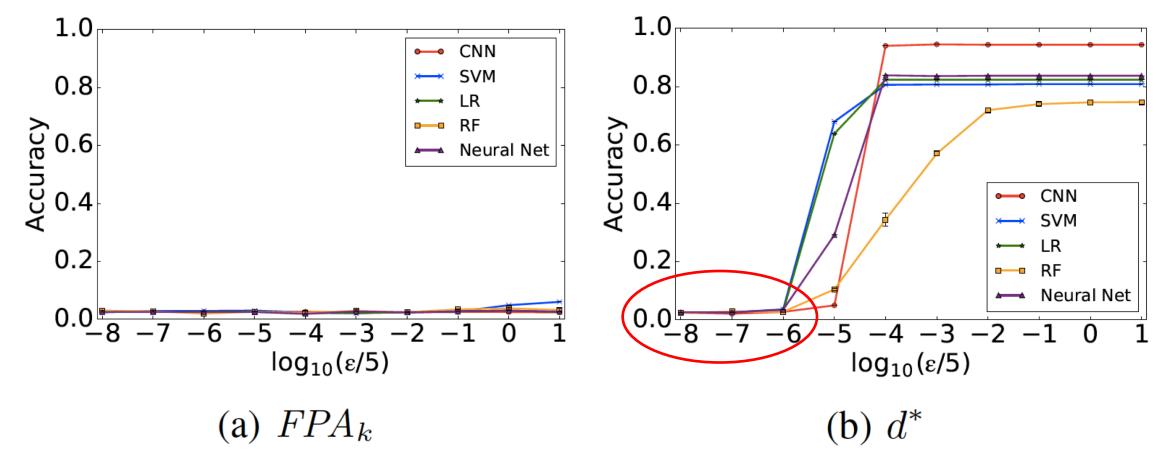
d*: w = 0.05s

d*: w = 2s



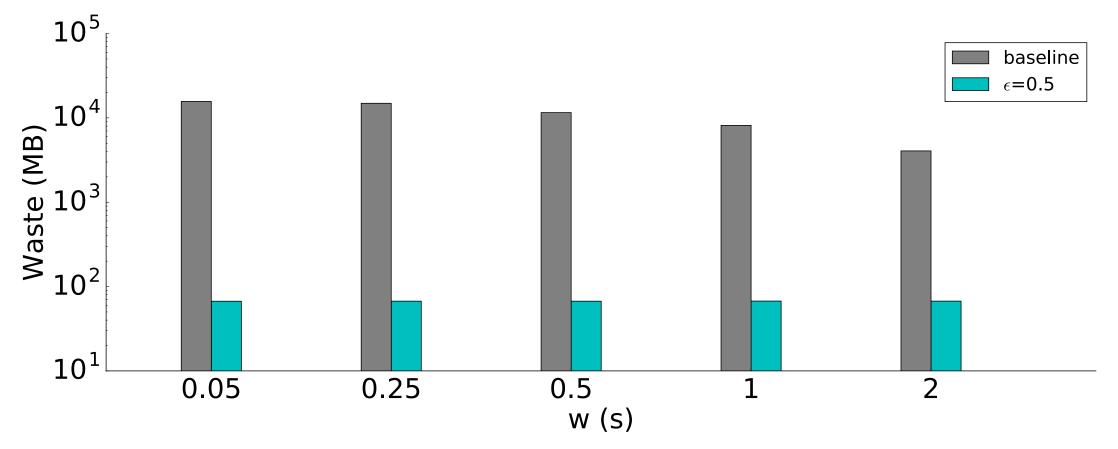
53

Security Evaluation --- Train w. clean, test w. noised



Baseline Approach

- Window size: w seconds
- Max value of all bins of all videos (4000 traces): C
- Baseline defense mechanism: C bytes per w seconds (all videos)



Optimal Attacker

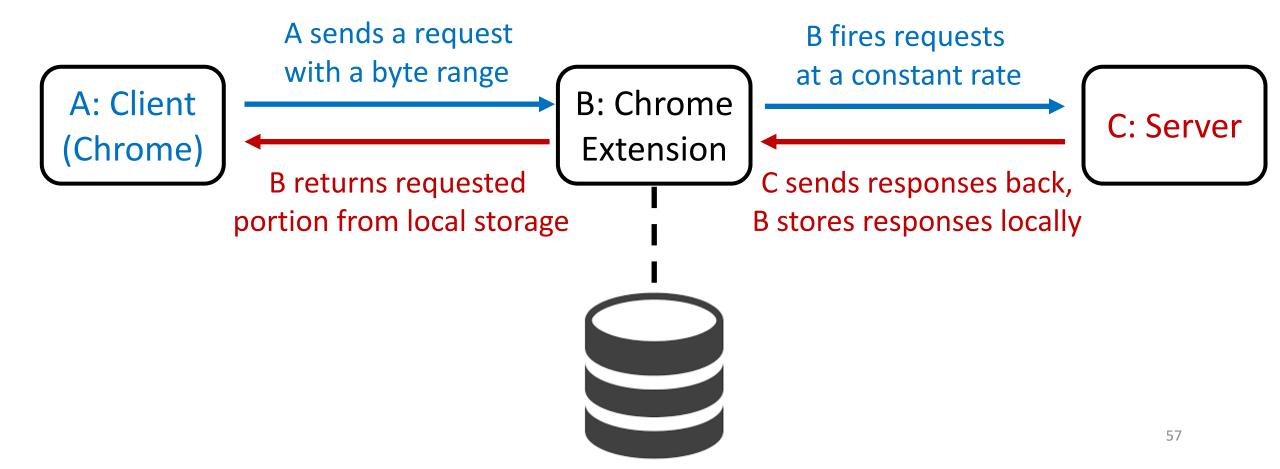
- The Attacker has the knowledge of distribution of both clean data and noised data (but not the mapping between the two)
- First try to remove noise, then perform classification

		FP	PA_k		d^*				
$w(s) \stackrel{\epsilon}{\frown}$	0.05	0.5	5	50	5e-8	5e-7	5e-6	5e-5	
0.05	0.03	0.03	0.25	0.89	0.03	0.03	0.03	0.72	
0.25	0.03	0.03	0.30	0.89	0.03	0.03	0.03	0.89	
0.5	0.03	0.03	0.27	0.87	0.02	0.02	0.03	0.86	
1	0.03	0.03	0.27	0.80	0.02	0.02	0.11	0.89	
2	0.03	0.03	0.17	0.65	0.03	0.03	0.10	0.75	

Improvement of accuracy: $\leq 2\%$

Implementation --- Workflow

• Chrome Extension: change the byte range in the HTTP request



Discussion

- Comparing FPA_k with d*
 - Accuracy $\leftarrow \rightarrow$ Security Guarantee
 - FPA_k requires the knowledge of the entire time series

