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Abstract—Modern technology is advancing on many different
levels, and the battlefield is no exception. India has 15000 km
of lengthy land borders shared with many other neighboring
countries, and only 5 of the 29 states in India do not have
any shared international borders or coastlines. Wire fences and
conventional sensor-based systems are used to protect terrestrial
borders. Wire fences, being the only line of defense against
intrusions at most unmanned borders, result in frequent cases
of unreported incursion, smuggling, and human trafficking.
Typically, intruders cut the fence to gain access to Indian
land, and sensor-based systems are prone to false alarms due
to animal movements. We propose combining the intelligence
of Tiny Machine Learning (TinyML) with the communication
capability of IoT to make borders safer and intrusion more
challenging. To learn the typical fence movements from natural
causes, we use TinyML. Our learning technique is created
explicitly to differentiate between regular fence movement and
suspicious fence disturbance. The system is efficient enough
to detect metal fence cuts and trespassing carefully. With the
aid of online learning environments, the sophisticated Tiny-
ML microcontroller’s built-in accelerometer can differentiate
between different movement patterns. To identify the most
effective defense against sensor-level attacks, we conducted tests
to gauge the tolerance levels of conventional microcontroller
sensor systems against TinyML-powered microcontrollers when
exposed to Electromagnetic Pulse (EMP) based sensor hacking
attempts. To the best of our knowledge, this is the first research
conducted for the Identification of the best suite sensor system for
high-precision Internet of Battlefield Things (IoBT) applications.
During the real-time model test, the system is found to be 95.4%
accurate and readily deployable on TinyML microcontrollers.

Index Terms—TinyML, IoBT, EMP, microcontroller.

I. INTRODUCTION

IOBT is a field that utilizes massive technological inno-
vations to procure human life and territorial protection.

With the advancement of technology used on the battlefield,
we can efficiently utilize the available resources to come
up with an upper hand against cross-border terrorism. India
has one of the longest borders worldwide, making it crucial
to develop technological innovations to keep the country’s
border secure for such a long stretch. The development of
a multi-sensing structure utilizing Wireless Sensor Network

(WSN) has started in response to recent acts of terrorism
and border intrusion that have become very frequent in many
parts of the world. Border surveillance and human infiltration
detection systems are developed using sensor fusion. The
border areas of various geographical types are considered,
including flat area borders, riverside borders, and places with
vegetation. Multi-sensor and vision systems have been used
for intruder direction recognition and surveillance for border
security [5]. Some systems effectively use infrared cameras
to spot suspicious activity in border regions. The invader is
located using automatic spotlights and laser weapon equip-
ment. In addition, a sound-based strategy is used to identify
any unusual sounds and add an extra layer of security against
unauthorized border crossings. Researchers have also devised
border security systems that use thermal imaging for higher
accuracy and detection. Detecting intruders beyond the range
of sensors, especially in adverse weather, becomes a benefit
of using thermal cameras [4].

Due to the usage of multisensor coordination for sensor
fusion in various applications, sensor hacking has become
a prominent issue. Sensor hacking involves external forces
such as lasers, sound waves, EMPs, and noise-disrupting
sensor readings. This interference leads to the processing unit
receiving faulty sensor data, resulting in issues with the overall
system’s interpretation and decision-making capabilities. The
primary challenge is identifying appropriate hardware units
(microcontrollers & sensors) for security-constrained appli-
cations, such as avionics, space science, medical electronics,
and other high-precision uses. Most digital setups nowadays
often contain additional sensors to optimize their accuracy
and durability. Sensor fusion governs the combined use of
several sensors to exploit their features to solve the same
issue or gather collective information. Previous studies have
demonstrated that EMP attacks indeed have the capability
to modify the readings obtained from sensors [7, 15, 16].
Being the first layer of the whole automation mechanism, its
weakness has the potential to bring the entire system tumbling.
We focus on sensor hacking against our TinyML module
to check for any potential flaw in the output. We created a
medium power Electromagnetic Pulse generator to show the
effects of sensor hacking by wirelessly inducing a charge
on the sensors and manipulating their output. TinyML and
sensor hacking are both in their beginning phases presently;
therefore, it will be incredibly advantageous for researchers
in the future to learn more about both from our proposed
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work. Electronic circuits and sensors are known to perform
differently from how they are intended to under the influence
of electromagnetic interference. During our experiment, we
utilize this property of Electromagnetic Interference (EMI) to
mislead the microcontrollers and read the false value as the
original one [16].

Our paper compares the EMI tolerance levels of tradi-
tional sensor microcontroller systems with those equipped with
machine-learning capabilities. Our emphasis lies in evaluating
their performance within IoBT applications, specifically in
comparing the vulnerability of sensor-secured border fences
to attacks on microcontrollers powered by TinyML.

We summarize our proposed experimental analysis as fol-
lows.

• We test hardware-level machine learning intelligence in
the form of TinyML for Battlefield applications using
Edge Impulse and test EMI attacks against that.

• We exert a mid-level EMP attack on an Arduino
Nano’s tethered Inertial Measurement Unit (IMU) sen-
sor (MPU6050) without causing physical damage and
observe the changes in its output during the attack.

• We test an EMI attack over Arduino Nano 33 BLE Sense
and its inbuilt IMU sensor without physically damaging
them and evaluate its result variation against the attack.

• We compare both the above results and identify the better
suite for high precision and fault intolerant setups against
EMI attacks like IoBT.

• Our envisaged work goes a little farther. We perform
multiple stress tests to investigate the potential impact
of Sensor Hacking over TinyML.

• We attempt to mitigate electromagnetic interference with
the hardware-level intelligence and its perception layer
security.

Countries that are radical in the War field have huge Re-
search & Development (R&D) budgets to facilitate new inven-
tions to increase their nation’s security and strengthen offen-
sive war fields. At present, the mainstream fields like robotics,
biomedical, avionics, space science, etc., use hardware-level
intelligence (TinyML) to incorporate Machine learning models
to make smart and effective decisions, but for defensive bat-
tlefield applications, our proposed Internet of IoBT integration
with TinyML approach is probably the first.

The essential observations from earlier works are covered
in our next section so that we can extend our study based on
earlier research footprints.

II. IOBT: BACKGROUND AND OBSERVATIONS

IoBT, or the Internet of Battlefield Things, is a specialized
subset of the Internet of Things(IoT) designed to optimize and
strengthen a unified military force. It achieves this by har-
nessing the potential of sensors and microcontrollers capable
of efficiently utilizing edge or cloud computing capabilities.
The fundamental components of the IoBT architecture include
wireless connectivity between sensors and a central control
and reporting unit. However, deploying Machine Learning
(ML) models poses challenges regarding system requirements,

power consumption, and intricate designs, hindering seamless
field deployment. To address these obstacles, TinyML has been
introduced. This technology focuses on compressing models
to align with the architecture and capabilities of resource-
constrained computing devices, such as Arduino Nano 33 BLE
Sense modules. This adaptation enables real-time implemen-
tation in the dynamic settings of IoBT, overcoming the limi-
tations associated with traditional ML deployment. Although
there has been some research on battlefield incursion, there is
still much need for improvement. The key works in the field
are listed here, along with their development.

Fig. 1: Evolution of Border Security Systems

As depicted in Fig. 1, At the onset of border protection, the
only barriers protecting the borders were armed soldiers and
wire fences. Further advancements in this domain included
early sensor, sound, and vision-based technologies, which laid
the groundwork for more advanced sensor and audio-visual
systems. Artificial intelligence-based solutions are in high
demand due to their high precision and low overhead costs.

TABLE I: Different Technologies Against Battlefield Intrusion

S.No. Development and Approach
Approach Year Key Component

1. Spartan Sensor for Intrusion alert [2] 1990 Sensor
2. Guided Radar Sensors [10] 2007 Sensor
3. Wide Area Surveillance Radars [6] 2008 Sensor/LoS
4. Intrusion-Detector and Firing [13] 2010 Image Processing
5. IoT System Modeling [1] 2017 UML Modelling
6. Automated Border Check gates [8] 2018 FMT
7. WSN & Multi-sensing framework[5] 2019 WSN
8. Ship Detection using CNN [3] 2021 CNN

The power plant was used first to deploy the sensor-based
intrusion detection system and served as the test subject
for future secure premises like military bases, precious and
dangerous object storage units, national security buildings, etc.
The overall development of protecting military and civilian
properties with advanced sensors in the Battlefield domain
started there. The real-time intrusion detection was evaluated
during the trial to ensure that the sensors, known as Sparton
sensors, would be suitable for more complicated deployment
in the future. Magnetic, seismic, acoustic, infrared, pressure
sensors, etc., were the main sensors involved [2]. A substan-
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tially improved version of earlier studies, the guided radar
sensors-based security systems for battlefields took around two
decades to build. Compared to its predecessors, this system
proposed an ultra-wide spread spectrum range guided radar
that was both highly developed and extremely affordable. It
essentially served as a ground surveillance radar that could be
quickly deployed in various types of soil [10]. Later, cutting-
edge technologies like Wide Area Surveillance Radars, which
considered extra design variables to make intrusion detection
far more precise and easily deployable, improved the intrusion
detection systems [6]. The enhancements in the following
decade, improvements in design, accuracy, cost, and other
factors led to the state it is in today [1, 3, 8, 13].

With the advancement of technologies, the precision of the
intrusion detection system as a whole significantly improved.
The first systems depended on people; hardware systems
were later developed from those (Sensors and Actuators).
With the aid of software-level intelligence in computer vision
and image processing, these hardware-based systems started
to have greater accuracy and cheaper implementation costs.
While cameras were employed to detect unauthorized entries,
they were already prone to susceptibility to dust, weather
conditions, and camouflage attacks. As technology advanced,
it became necessary to use machine learning for very accurate
detection but at the cost of high-speed internet connectivity
to run ML models remotely on distant servers. The delay
in response due to network delay started pulling down the
benefits of machine learning during field operations. To over-
come this, we required field-level intelligence by means of
TinyML-compatible microcontrollers to make IoBT devices
self-sufficient standalone units. In our proposed work, we uti-
lize ML intelligence on the battlefield to reduce the likelihood
of false alarms, processing latency, deployment complexity,
etc.

The next section provides the paper’s system design method-
ology and explanation. It provides a comprehensive overview
of all the proposed tasks and necessary components.

III. TINYML DESIGN METHODOLOGY

The planned task and its constituent parts are divided into
subsections for ease of comprehension. The components are
linearly developed and used concerning one another. The
evolution of the entire system follows the linear application
of the design process shown here.

Fig. 2: Design Overview

A. Workspace Organization

To train and test our model, we set up a near-realistic
arrangement that should combine our suggested smart fencing
with the standard cable-based wire fence found in most border
zones.

Fig. 3: Model Train and Test Environment

However, if the border area’s fence design differs, our model
can be retrained for different situations. The unifying denomi-
nator in all conceivable scenarios is that there should be a very
low possibility of human passing without altering the fence
position. Our trained model detects any deviation from normal
movement. Our experimental setup consists of the fence wire
connected and tied to two stationary spots in a large open
area. To record natural interventions and real-world situations,
we ensure that our system receives a variety of difficulties
while being trained as a model. This increases the consistency
and precision of our models, enabling them to operate well
when applied to border regions. Finding the location on the
battlefield where fencing may be most vulnerable is the first
step in the implementation process, especially in areas with
blind spots. In some unique circumstances, we might need
to switch the traditional metal wire fences for our suggested
model-friendly fences, which will increase the accuracy of
spotting unauthorized access.

B. Data Collection

Edge Impulse is a world-famous platform for ML deploy-
ment in edge devices. It offers ML applications a futuristic
perspective and lowers the barrier to cutting-edge ML imple-
mentations on end devices [14]. Edge Impulse offers end-to-
end services for high-quality applications, starting with data
collecting and ending with deployment on an Arduino Nano
33 BLE Sense module [12].

Establishing a connection between the edge impulse cloud
and the data collection equipment is the first step in the data
collection process [9]. A development board, a smartphone,
a computer, a direct data upload, or a device that integrates
the cloud can all be used as the data input device. There are
numerous options for selecting an input device with a seamless
connection. In our scenario, we utilize data-collecting inputs
from a specific phone, namely the IQOO NEO 7 5G. This
is because the data collected from this phone is promptly
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transmitted to the Edge Impulse web service. Addressing
concerns related to fluctuations and noise in accelerometer
data during readings, we implement filters to enhance stability,
as mentioned in the impulse design subsection. However, any
other sensor setup with a suitable communication interface can
be used.

No further pairing processes or application installation are
needed for this. Even sensor data gathered from a phone can
be directly mapped with the specifications of a microcontroller
architecture in the subsequent steps.

We gathered a dataset that captures the movement of a fence
in response to wind across all possible axes. The string, left
to move naturally, was also subjected to controlled vibrations
to simulate strong winds. Data was collected during both the
simulated and actual strong wind scenarios, carefully verifying
motions along the X, Y, and Z axes to encompass all potential
natural movements. This dataset is labeled as ”Wind.”

We added external factors like slight shocks and vibrations
that are very common for this type of real-time setup, enabling
our model to face the actual test scenario. 20% of the training
data set is moved to the testing data set to create a stable
knowledge base.

Sensors and microcontrollers are often deployed in remote
and challenging environments, relying primarily on battery and
solar power. Their operation is constrained by the need to
conserve power for extended periods and withstand adverse
weather conditions such as extreme temperatures, humidity,
dust, and moisture. Consequently, minimizing power con-
sumption is crucial for prolonged functionality. This includes
limiting the number of samples taken to keep the machine-
learning models lightweight. Heavy models impose higher
computational demands, which can lead to increased power
consumption and sluggish performance of the processor.

TABLE II: Data Sample Collection

Data-set Details
Label Type Length No. of Samples
Wind Train 8 Min 30 Sec 51

Intrusion Train 8 Min 30 Sec 51
Wind Test 2 Min 10 Sec 13

Intrusion Test 2 Min10 Sec 13
Total Initial Data Set 21 Min 20 Sec 128

C. Impulse Design

The impulse design essentially serves as our own machine
learning system’s pipeline. Data intake, processing, and learn-
ing systems comprise the impulse design’s subdivisions.

The time series data block refers to the adjustments in the
input data samples to be fit for further processing. When the
window size is increased, it automatically raises the feature
size to provide the learning subsystem with more information,
whereas window size relates to the raw size of features utilized
for training. Frequency is automatically determined based on
the type of supplied data. It refers to how frequently the data
set’s values were taken. When there is no raw data, the system
automatically adds zero if we tick on Zero pad data.

The Spectral Analysis block executes the Digital Signal
Processing (DSP) operation to extract the characteristics that
the learning model depends on. Edge Impulse consistently
suggests the best block based on our input data. The processing
block is the Neural Network(NN), which trains using our raw
data. Different learning blocks are suggested based on our
input, and we choose NN classification, but there are also
possibilities to include Anomaly Detection using K-Means and
Regression.

The extraction of the signal’s power and frequency features
is the main focus of the spectral feature section. In order
to make our input signals considerably more suitable for
further processing, we can employ filters like low/high pass
to smoothen data to the system. In our case, a low pass filter
provides much smoother graphs and accurate results.

D. Neural Network Classification

Our categorization is based on Keras, which serves as an
interface for the TensorFlow library and is in charge of training
and interacting with Neural Network(NN) models. NN takes
input data and outputs a probability score indicating which
category of training dataset the test data belongs to. The neuron
is the fundamental unit of each layer that makes up a NN.
Training data that will be applied to predictions are delivered
to the neurons. The weight of the neuron connections is then
readjusted depending on the outcome after the anticipated out-
puts are compared to the accurate outcomes. Up till accurate
predictions are made, this process is repeated.

The training cycle is the number of times the algorithm
completes the learning cycle and updates its model parameters,
and how fast the NN learns depends on the learning rate.

Fig. 4: Training Performance and Confusion Matrix

As depicted in Fig.4, the confusion Matrix and training
performance indicate how many correct/incorrect responses
our model produces. Our result shows for 2.3% time, “Wind”
is predicted as intrusion, and 6.9% time, “Intrusion” is pre-
dicted as Wind. Overall, our model predicts with 95.4%
accuracy the correct samples, and that is highly acceptable
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(a)

(b)

Fig. 5: Live Test Scenario : (a) Intrusion Test Result, (b) Wind Test
Result

for learning models and real-time implementations. The green
and yellow show Wind and Intrusion data being correctly
predicted, whereas red and orange show incorrectly predicted
data.

TABLE III: On Device Performance

Device Resource Consumption
1. Inferencing 1 ms
2. Peak RAM Usage 1.7 KB
3. Flash Usage 16.3 KB

The on-device performance measures how well our model
will function on a real device and the resources needed
to operate the model effectively. This aids in planning the
hardware system that will allow us to run the model smoothly
and evenly.

E. Live Classification and Model Testing

We can connect our device or phone to test our model
against real-time data during the live classification. We can
quickly validate the model and expect a similar performance
during the field test. We can use existing test data or provide
live data to test from the device directly. To test the efficiency
of our model, we gave live accelerometer input using the
phone. The phone’s movement was imitated as the “Intrusion”
movement input samples. This resulted in matching 47 sample
counts displayed in Fig.5(a). Green color matches are for our
input accelerometer behavior prediction, which is similar to
Intrusion. This results in the successful detection of intrusion
attempts using our model. In the second instance displayed in
Fig.5(b), we provided live data from a phone with a similar
motion to the “Wind” dataset to test our model, and 41 counts

matched with the wind model, 4 counts with the ”Intrusion”
model, and 2 uncertain. Green color matches are for our input
accelerometer behavior prediction like “Wind.”

The following section of our study discusses integrating the
NN model into the sophisticated Arduino Nano 33 BLE Sense
module and stress tests its resistance against sensor hacking.

IV. TEST MODULES

Neural network intelligence against sensor hacking is the
prime forte of our paper, in which we first train the NN
model with the help of Edge impulse and deploy it into
the Arduino Nano 33 BLE Sense module. We compare the
efficiency of Neural Network powered microcontroller and
standard sensor microcontroller duo against the sensor hacking
approach exerted by EMP. In the forthcoming line of our work,
we deploy the learned model as the library to Arduino IDE
and later to Arduino Nano 33 BLE Sense module.

A. Impulse Compilation and Deployment

Our NN classifier has two optimization options, both of
which offer an accuracy of 99.29%, but Quantized (int8)
provides a latency of just 1 ms, which is quick for making
decisions, so we choose that and download the learned model
in the form of library file for Arduino for the entire model
access into TinyML form factor.

This gets dumped into the microcontroller to become
available for field-ready operation. We use one of today’s
most powerful and sophisticated microcontrollers. The sensors
inside the recommended model (Arduino Nano 33 BLE Sense
Module) are embedded in the microcontroller. Thus, their
deployment is wire-free and easy. This makes our system
compact, not as much of power-hungry, portable, and less
visible from a distance.

Fig. 6: Overall TinyML burn to Microcontroller

To prevent hacking and tampering assaults, these properties
are desirable for the secure deployment of the proposed
system.

B. Conventional Sensor System Development

We intend to develop another system that functions similarly
to our work to compare our system tolerance to conventional
sensor systems.

We connect the Arduino Nano to the MPU6050 IMU
sensor. We established an inclination threshold to determine
whether the wire fence had crossed the maintainable limit.
Our motivation is to compare the effects of sensor hacking on
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Fig. 7: Conventional Microcontroller Sensor System

traditional microcontroller sensors to those on microcontrollers
that run on ML training (TinyML).

C. EMP Hacking Unit

Fig. 8: EMP Generator

We develop an Electromagnetic Interference Source to target
EMP to the desired device, which projects the Electromagnetic
Interference on the victim device to induce a charge on
metallic parts. Microcontrollers read the charge coming from
sensors as the indicator of the input to analyze. Based on this
analysis, they make the decisions, but the synthetic charge
produced by our EMI device confuses them, and they start
to make wrong decisions. This ultimately leads to the system
application disorientation.

In the next section, we implement the attack over different
sensor setups and analyze their outcomes.

V. EXPERIMENTAL OBSERVATIONS

In this section, we use our EMP generator and project it
over the Victim sensor system, which could have been utilized
in a battle (for IoBT application) to monitor suspicious fence
movement for encroachment into Indian land.

A. Effect of Sensor Hacking on MPU6050 and Arduino Nano
System

We determined the threshold of various MPU6050 ac-
celerometer readings using the setup shown in Fig. 7 to
discriminate between normal and suspicious fence motions.
Due to its small form factor and low power characteristics,
the Arduino Nano microcontroller we utilized is reasonably
straightforward and used in various applications and projects

[11]. An alarm is generated when a sensor determines that a
fence is being placed improperly. This sensor deployment is
incredibly deployable and practical. Even a net-style border
incursion protection system can be used for this setup. To
detect a particular movement of the fence or net in any other
fashion, we only need to adjust the threshold value of the
MPU6050 sensor.

Fig. 9: Variation in MPU6050 during EMI attack

B. Effect of Sensor Hacking on Arduino Nano 33 BLE Sense

As depicted in Fig.10, we mounted our Arduino Nano 33
BLE Sense module on the fence for the real-time test and
verified for Wind and Intrusion conditions. Our system is
successfully able to identify natural wire movement and when
someone tries to intrude by cutting or moving the fence.

The action was correctly identified as an intrusion, as shown
in Fig.11. To analyze the natural condition of the fence (Wind),
we gently left the fence idle and shook it to check for really
strong winds. Different readings were acquired, each precise
enough to pick up even the slightest variations. We attempted
to cut the wire and enter from the passageway to inspect
the fence’s anomalous state (Intrusion). Intrusion’s detection
value abruptly raised enough to activate the alert system. The
scenario was run numerous times, and each time, our plan was
accurate enough to detect even the most minor differences and
classify the occurrences appropriately.

Observation
We applied EMP in a variety of circumstances, but the
outcome was unchanged. The tiniest changes brought
on by a sensor hacking effort were not noticed over
the TinyML module.

6



(a)

(b)

Fig. 10: Test Setup: Arduino Nano 33 BLE Sense (a). Wind & (b).
Intrusion

(a)

(b)

Fig. 11: No Variation during the attack - (a) Wind (Normal Condition
Detection) & (b) Intrusion Scenario (Intrusion Attempt Detection)

VI. RESULT AND ANALYSIS

A. MPU6050 + Arduino Nano Vs. Sensor Hacking

The sudden variations in the X, Y, and Z values of
MPU6050 are due to an attack from the EMP generator
exerted over the victim circuit. We compare readings obtained
from various distances with and without a sensor hacking
attempt and notice the differences. The fluctuation readings
are regarded as the result of EMP-based sensor hacking. The
MPU6050 sensor uses three separate position points to indicate
X, Y, and Z.

The column is referred to as ”Before Attack” under normal
circumstances when no attack is exerted on the sensor system.

Fig. 12: Variations in MPU6050 Sensor Values due to Attack

Values from the MPU6050 sensor that are listed in the
”After Attack” column are XYZ values. The columns labeled
”Exerted Variation” and ”Times change than expected” show
the total number of times the initial value has changed and the
total number of units that have changed.

TABLE IV: Sensor Variations - Values before and After Attack (At
different attack points)

S.No. Value Before Attack
After

Attack

Exerted

Variation

∼Times Change

than expected

1.
X 1.14 -84.51 85.65 75.131

Y 0.22 -84.58 84.8 385.454

Z 9.84 -77.23 87.07 8.848

2.
X 1.12 -84.58 85.7 76.517

Y 0.20 -77.23 77.43 387.150

Z 9.84 -80.90 90.74 9.221

3.
X 1.14 -84.58 85.72 75.192

Y 0.19 -77.22 77.41 407.421

Z 9.83 1.62 8.21 0.835

4.
X 1.15 -84.51 85.66 74.486

Y 0.19 -84.58 84.77 446.157

Z 9.81 -77.22 87.03 8.871

5.
X 1.13 -84.58 85.71 75.849

Y 0.20 -77.22 77.42 387.100

Z 9.84 -99.28 109.12 11.089

6.
X 1.13 -84.58 85.71 75.849

Y 0.22 -77.22 77.44 352

Z 9.81 -28.18 37.99 3.872

Fig. 13 (a) and Table IV show that the MPU6050 X, Y,
and Z values significantly varied during six sensor hacking at-
tempts. This demonstrates incorrect sensor positioning, which
can be interpreted as sensor failure or system disconnection.

Fig. 13 (b) and Table IV reading demonstrate that the vari-
ation in the MPU6050’s various values for 6 sensor hacking
attempts is up to a maximum of 446 times more than the
initial value without any hacking attempt. The values of ”Y”
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(a)

(b)

Fig. 13: (a) NA Vs. M Graph & (b) NA Vs. V Graph

fluctuated the most, and the values of ”Z” fluctuated the least.
This demonstrates how easily sensors can be hacked in

conventional sensor technologies. Although sensor accuracy
is determined to be extremely good, attempts to hack sensors
render them useless. Even in the case of low-power EMP
attacks, the values are promptly altered, and in the case of
high-power EMP strikes, the system has no chance.

Our model prediction for accuracy during practical imple-
mentation was 99.29%. We did not come across even one
instance during our live testing when the model could not
anticipate the actual state of the fence. Results remain precise
even after using the Sensor Hacking method (EMP). This
demonstrates how the model achieves the accuracy it promises.
To get accuracy, the window size description is as follows.

TABLE V: Sensor Variations - Values before and After Attack

Training Vs. Testing Model Performance- Window Size (WS)
Total
WS

Intrusion
WS

Wind
WS

Testing
WS Accuracy

Training 4794 2397 2397 — 95.40 %
Testing 1222 564 564 94 99.29 %

The Arduino Nano 33 BLE Sense module’s prediction ML
model requires 33ms of DSP processing. We determined the
accuracy for ”Wind” for 3 random test instances to be 96.484
% and 99.609 % for the following 2 case, respectively. We also
used 3 random test instances, and the accuracy for ”Intrusion”
was 92.969 %, 98.828 %, and 99.609 %, respectively.

In the event of a mid-range EMP attack where the EMP
does not physically damage the sensors or microcontrollers but

alters their readings, machine learning-trained microcontrollers
remain unaffected. This is because their functionality isn’t
reliant on external sensors alone. Moreover, multiple data
points make them more resilient against errors. This resilience
stems from that calculations primarily occur internally rather
than relying solely on data imported from external sensors.
The conclusion effectively summarizes the findings of the
study and highlights the potential future enhancements and
applications of TinyML in the context of sensor hacking.

VII. CONCLUSION

The primary goal of our experimental paper was to look
for any resistance from intelligent microcontroller subsys-
tems designed with Neural Network learning models over
conventional microcontroller sensor systems against sensor
hacking for IoBT applications. The secondary goal was to
predict the detection accuracy during battlefield operations
when EMP is exerted over the system to achieve unautho-
rized entry. We compared the performance of results obtained
after exerting EMP type Sensor Hacking approach to both
MPU6050+Arduino Nano and TinyML+Arduino Nano 33
BLE Sense systems. During the field test, TinyML+Arduino
Nano 33 BLE gave an accuracy performance close to its
predicted performance based on the confusion matrix, which
was 95.4%. The deployment test accuracy was expected to be
somewhere around 99.29%, which was easily achieved during
the real-time test. With the injection of sensor hacking, the
traditional sensor microcontroller duo completely failed and
gave unreasonable results with a variation of up to 446 times
the original value. The TinyML system didn’t have any effect
of sensor hacking on the system. The future enhancement of
the paper lies in other performance tests of TinyML in terms of
another form of sensor hacking and exploring another domain
where TinyML has not yet been reached.
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