
More Lightweight, yet Stronger:
Revisiting OSCORE’s Replay Protection

Konrad-Felix Krentz∗ and Thiemo Voigt∗†
∗Uppsala University, Department of Electrical Engineering

†RISE Computer Science
Email: {konrad.krentz,thiemo.voigt}@angstrom.uu.se

Abstract—Object Security for Constrained RESTful Environ-
ments (OSCORE) is an end-to-end security solution for the
Constrained Application Protocol (CoAP), which, in turn, is a
lightweight application layer protocol for the Internet of things
(IoT). The recently standardized Echo option allows OSCORE
servers to check if a request was created recently. Previously,
OSCORE only offered a counter-based replay protection, which
is why delayed OSCORE requests were accepted as fresh.
However, the Echo-based replay protection entails an additional
round trip, thereby prolonging delays, increasing communication
overhead, and deteriorating reliability. Moreover, OSCORE re-
mains vulnerable to a denial-of-sleep attack. In this paper, we
propose a version of OSCORE with a revised replay protection,
namely OSCORE next-generation (OSCORE-NG). OSCORE-
NG fixes OSCORE’s denial-of-sleep vulnerability and provides
freshness guarantees that surpass those of the Echo-based replay
protection, while dispensing with an additional round trip. Fur-
thermore, in long-running sessions, OSCORE-NG incurs even less
communication overhead than OSCORE’s counter-based replay
protection. OSCORE-NG’s approach is to entangle timestamps
in nonces. Except during synchronization, CoAP nodes truncate
these timestamps in outgoing OSCORE-NG messages. Receivers
fail to restore a timestamp if and only if an OSCORE-NG message
is delayed by more than 7.848s in our implementation by default.
In effect, older OSCORE-NG messages get rejected.

I. INTRODUCTION

In the Internet of things (IoT), traffic often goes via middle-
boxes, such as brokers or proxies. This ensues a fragmentation
of the end-to-end security since, e.g., Datagram Transport
Layer Security (DTLS) or IPsec connections terminate at
middleboxes. As a remedy, Object Security for Constrained
RESTful Environments (OSCORE) implements end-to-end
security at the application layer, thereby providing “true” end-
to-end security, i.e., across middleboxes [18].

OSCORE builds upon the Constrained Application Proto-
col (CoAP), which is a lightweight application layer protocol
for the IoT [19]. A CoAP message comprises a header, zero
or more options, and payload. An OSCORE message is also a
CoAP message with (i) the masked header of an unprotected
CoAP message, (ii) unencrypted options of the unprotected

This work was supported by the Swedish Foundation for Strategic Research.

CoAP message, (iii) an inserted OSCORE option, and (iv) a
payload comprising encrypted parts of the unprotected CoAP
message, as well as a message integrity code (MIC). The
OSCORE option imparts data to receivers that they require
for restoring the unprotected CoAP message, as well as for
checking its freshness and authenticity.

Until recently, OSCORE only offered a counter-based
replay protection, which works as follows. Clients insert an
incrementing sequence number into the OSCORE option of
each OSCORE request. When retransmitting an OSCORE
request, the originally assigned sequence number must be
reused. Servers can hence detect replayed OSCORE requests,
but cannot distinguish between retransmitted and replayed
OSCORE requests. Therefore, upon receiving an apparently
replayed OSCORE request, servers have to send a cached
OSCORE response. Caching is dispensable in the case of so-
called idempotent OSCORE requests [3]. These are OSCORE
requests that can be processed multiple times without side
effects. In OSCORE responses, OSCORE options usually elide
sequence numbers. Despite being suppressed, the sequence
number of the corresponding OSCORE request becomes part
of the nonce for the agreed upon Authenticated Encryption
with Associated Data (AEAD) algorithm. A client looks up
an elided sequence number via the ‘Token’ field of the CoAP
header, which must match that of the corresponding OSCORE
request. If a client finds an OSCORE response authentic,
the client deletes the looked up sequence number. Thus, a
lookup only succeeds once and replayed OSCORE responses
get discarded as a result.

OSCORE’s counter-based replay protection has two vul-
nerabilities.

1) First, the fact that servers cannot remain silent upon
receiving replayed OSCORE requests constitutes a
denial-of-sleep vulnerability. This is because it en-
ables attackers to cause an increased energy con-
sumption by replaying OSCORE requests. A non-
compliant fix is to set new sequence numbers in re-
transmitted OSCORE requests [11]. However, this fix
is inapplicable to non-idempotent OSCORE requests.
For supporting non-idempotent OSCORE requests,
it is key to recognize retransmissions. Actually, the
‘Message ID’ field of the CoAP header is intended
for this purpose, but it is left unauthenticated by
OSCORE and hence malleable. Authenticating it may
conflict with CoAP proxies as they may modify
message IDs to coordinate concurrent requests toward
the same destination endpoint.

Workshop on Security and Privacy in Standardized IoT (SDIoTSec) 2024
26 February 2024, San Diego, CA, USA
ISBN 979-8-9894372-6-9
https://dx.doi.org/10.14722/sdiotsec.2024.23003
www.ndss-symposium.org

2) Second, servers cannot detect if an OSCORE request
was delayed. This can, e.g., become critical when
interacting with a door lock [14]. Specifically, an
attacker may delay a command to open the door
until the owner moves out of sight. Even if the door
lock receives other OSCORE requests in the mean-
time, a delay attack may still succeed as OSCORE
maintains a replay window to allow for out-of-order
delivery. A defense is to use the newly introduced
Echo option, which enables servers to ensure the
temporal freshness of an OSCORE request [2]. To
do so, servers reply with an Echo option enclosed
instead of processing an OSCORE request. A client
then has to resend its OSCORE request with a copy
of the received Echo option. Ultimately, servers can
confine the age of an OSCORE request to the age
of its Echo option. That said, the Echo-based replay
protection harms delays, communication overhead,
and reliability due to the added round trip.

In this paper, we propose, analyze, and evaluate OSCORE
next-generation (OSCORE-NG), a version of OSCORE with
a revised replay protection. OSCORE-NG has three benefits:

• First, OSCORE-NG resists denial-of-sleep attacks,
while providing support for non-idempotent requests.

• Second, OSCORE-NG detects shorter delays than the
Echo-based replay protection and not only protects
requests against delay attacks, but also responses.

• Third, OSCORE-NG works without an additional
round trip, thereby avoiding detrimental effects on de-
lays, communication overhead, and reliability. In long-
running sessions, OSCORE-NG has an even lower
communication overhead than OSCORE’s counter-
based replay protection. This is despite of learning
and maintaining clock differences since OSCORE-NG
realizes this by piggybacking synchronization data on
messages that are being sent anyway.

II. RELATED WORK

Counter-based replay protection is ill-suited for the IoT.
For one, its communication overhead is undesirable in IoT
scenarios since low bit rates and energy constraints are typical
there. To reduce its communication overhead, Gouda et al.
proposed the last bits (LB) optimization, which only conveys
lower order bits of counters and restores higher order bits
via anti-replay data [5], [13]. Yet, the LB optimization suffers
from desynchronization and may cost random-access memory
(RAM) [8], [10]. Even without the LB optimization, RAM
consumption can become problematic for constrained IoT
devices as the number of communication partners increases.
To this end, Luk et al. suggested using Bloom filters [13],
but they incur a high energy consumption [7]. After all, a
fundamental issue with counter-based replay protection is that
it only provides sequential freshness, i.e., merely ensures that
a message is not accepted more than once [16]. In short-
running sessions with high packet rates, sequential freshness
often suffices as old messages quickly fall out of the anti-
replay window. However, IoT devices receive rather rarely and
may, e.g., connect to a cloud backend for long. Hence, strong
freshness is desirable. It allows a receiver to not only detect

duplicate messages, but also if a message was sent within a
limited time span prior to its reception [16].

There exist three ways to achieve strong freshness. First,
one can use wall clock timestamps, but they create various
complications [14]. For instance, after correcting a host’s time,
the host may accept old or reject fresh messages. Moreover,
wall clock timestamps may reveal information, such as that
a host accepts expired certificates. Lastly, attacks on time
synchronization also impact replay protection. Second, the side
that requires strong freshness can generate a random nonce
and ask the communication partner to echo that nonce [4].
That approach is actually now standardized for OSCORE [2].
Such Echo-based replay protection compromises on delays,
communication overhead, and reliability. Third, special ways
to achieve strong freshness emerged in Layer 2 security. There,
the general idea is to reuse Layer 2 synchronization efforts
for replay protection. In the time-slotted channel hopping
(TSCH) medium access control (MAC) protocol, for example,
transmissions happen in timeslots whose indices are known
to sender and receiver [1]. By deriving nonces from these
timeslot indices, an authentic frame can also be considered
fresh, provided that session keys are in use. Similarly, in the
coordinated sampled listening (CSL) MAC protocol, transmis-
sions are scheduled around wake ups of the receiver [1]. By
assigning incrementing counters to each wake up and using
these wake-up counters for generating nonces, strong freshness
can be achieved with little initial communication overhead [8]–
[10]. Analogous to wall clock timestamps, however, vulner-
abilities in the Layer 2 synchronization undermine replay
protection. In CSL, such attack paths are excluded through
the adoption of the proven Secure Pairwise Synchronization
(SPS) protocol [4], [20]. OSCORE-NG tailors the third way
to Layer 7 security and also adopts the SPS protocol. More
specifically, OSCORE-NG adopts Sun et al.’s version of the
SPS protocol [20]. Their version has a reduced communication
overhead compared to the original one.

Preuß Mattsson et al. pointed out the possibility of delay
attacks against OSCORE-, DTLS-, TLS-, and IPsec-protected
CoAP traffic [14]. Additionally, they explained so-called mis-
match attacks against DTLS-, TLS-, and IPsec-protected CoAP
traffic. A mismatch attack tricks a client into accepting a
CoAP response that was originally sent in reply to a different
CoAP request. Besides, Preuß Mattsson et al. go into vulner-
abilities that are specific to CoAP’s block-wise transfers. All
vulnerabilities found by Preuß Mattsson et al. were fixed in
RFC 9175 [2]. Unfortunately, its defense against mismatch
attacks entails communication overhead, whereas OSCORE
and OSCORE-NG thwart mismatch attacks by themselves.
This further motivates the use of OSCORE or OSCORE-NG
instead of DTLS, TLS, or IPsec for securing CoAP traffic.

Krentz et al. discussed a remote denial-of-sleep attack
against OSCORE, where a remote attacker injects or replays
OSCORE messages [11]. Basically, since OSCORE only filters
out inauthentic and replayed OSCORE messages at the des-
tination host, injected and replayed OSCORE messages incur
an increased energy consumption. Hence, they put forward a
middlebox that filters out unwanted OSCORE messages in a
trusted execution environment (TEE). Furthermore, their tiny
remote attestation protocol (TRAP) establishes trust in the
TEE, as well as sets up an OSCORE session for communica-

2

TABLE I. TIME VALUES OF OSCORE-NG AND COAP WITH DEFAULT
VALUES OF OUR IMPLEMENTATION AND COAP, RESPECTIVELY

Name Default Description
TIMESTAMP UNIT 0.01s Precision of timestamps
TIMESLOT 10.24s Duration of a timeslot
PHASE UNIT 0.16s Precision of the phase field
MAX DRIFT 30µs

s Maximum divergence of clocks
SYNC INTERVAL 6h Resynchronization interval
ACK TIMEOUT 2s Waiting period before the first retrans-

mission
MAX TRANSMIT SPAN 45s Maximum time span between the first

transmission and the last retransmis-
sion

PROCESSING DELAY 2s Maximum turnaround time

tion with the TEE. One feature of their middlebox is the pre-
vention of remote denial-of-sleep attacks, including the denial-
of-sleep attack we described in the introduction. However,
they adopted the non-compliant fix of setting new sequence
numbers in retransmitted OSCORE requests, thus limiting
their solution to idempotent OSCORE requests. OSCORE-NG
overcomes this limitation. Another feature of their middlebox
is that it frees IoT devices of setting up and maintaining
individual sessions for communication with remote hosts.
Instead, IoT devices just set up and maintain a single OSCORE
session for communicating with the TEE. In this manner, the
resource requirements of OSCORE are much reduced.

III. OSCORE-NG

This section first outlines the threat model and approach of
OSCORE-NG. Next, it details the format of OSCORE-NG op-
tions, OSCORE-NG’s realization of SPS, and OSCORE-NG’s
adaptations to the replay protection-related processing rules
of OSCORE. Finally, this section gives various correctness
and security proofs. For a summary of important configuration
constants of OSCORE-NG and CoAP, see Table I.

A. Threat Model

OSCORE-NG assumes an attacker who can sniff, drop,
replay, inject, modify, and delay any OSCORE-NG message
exchanged between a client and a server. Yet, the attacker
neither controls the communicating endpoints themselves nor
any TEE attested by one of the communicating endpoints. Fur-
ther, preventing the attacker from tampering with unencrypted
options is out of scope. Also, OSCORE-NG’s threat model
excludes traffic analysis attacks. Finally, OSCORE-NG’s threat
model includes denial-of-sleep attacks, yet leaves it up to key
establishment schemes to protect themselves against other rel-
evant denial-of-service attacks, such as amplification attacks.

Altogether, there are two differences between OSCORE-
NG’s and OSCORE’s threat model [18]. First, OSCORE-
NG’s threat model is concerned about delay attacks against all
OSCORE-NG messages. OSCORE’s threat model, by contrast,
considers delay attacks against specific requests benign and
settles for accepting a delayed response as long as its echoed
token is active. Second, OSCORE-NG’s threat model augments
OSCORE’s threat model by denial-of-sleep attacks.

timeslot n timeslot n+ 1

phase ϕ

uptime t when M is transmitted

Fig. 1. Relation of transmission time, timeslot, and phase

B. Overview

OSCORE-NG uses SPS to learn and maintain clock differ-
ences. Except when running SPS, OSCORE-NG options just
carry a truncated transmission timestamp. The portion that is
elided in transit is the so-called timeslot. Let t be the uptime of
a sender at the time of transmitting an OSCORE-NG message
M , as shown in Fig. 1. The timeslot n at time t is determined
by taking a configurable number of the higher order bits of t.
The number of retained bits determines the duration TIMESLOT
of a timeslot. For example, our implementation defaults to
TIMESLOT = 10.24s. Phase ϕ, on the other hand, is the time
span between the beginning of the transmission timeslot and
t, i.e., the truncated bits of t. Both timeslot and phase become
part of the AEAD nonce that is used for securing M .

Receivers restore elided transmission timeslots based on
clock differences, which they learn through SPS and subse-
quently maintain by re-running SPS on occasion. Crucially, if
an attacker delays an OSCORE-NG message by longer than a
configurable delay, the restoration of the transmission timeslot
will fail. In such a case, a wrong AEAD nonce is restored,
causing the delayed OSCORE-NG messages to be considered
inauthentic. As a result, OSCORE-NG attains strong freshness.
To put things into perspective, our OSCORE-NG implemen-
tation rejects a message if it was delayed by more than
7.848s by default, whereas OSCORE’s counter-based replay
protection provides no such guarantees and the Echo-based
replay protection leaves OSCORE requests valid for at least
51s, presuming a default configuration of CoAP [19].

To attain sequential freshness, OSCORE-NG mainly relies
on end-to-end message IDs and includes them in AEAD
nonces, too. If a CoAP proxy needs to modify the ‘Message
ID’ CoAP header field for disambiguation, it moves the
original message ID to the OSCORE-NG option.

Similarly, to prevent mismatch attacks, OSCORE-NG au-
thenticates original tokens and offers the possibility for CoAP
proxies to extend the ‘Token’ CoAP header field. Often, CoAP
proxies can avoid to do so as active tokens are distinct already.

C. Option Format

The format of OSCORE-NG options is shown in Fig. 2.
After various flags, the ‘phase’ field contains the phase in
units of PHASE UNIT

def
= TIMESLOT

24 seconds, e.g., 0.16s in
our implementation by default. During synchronization and
resynchronization, the ‘phase’ field is replaced with times-
tamps. When initiating a synchronization or resynchronization,
a client or server only fills out the ‘tx timestamp’ field. Its value
comprises the transmission timeslot and phase, where phase is
measured in units of TIMESTAMP UNIT seconds, e.g., 0.01s
in our implementation. When replying, both other timestamp
fields are also present. The ‘corresponding tx timestamp’ field

3

re
qu

es
ts

re
sp

on
se

s
0/1 byte

l

un
us

ed

m h

0

1

0

phase

0

1

0

t3l

phase

0/1 byte

un
us

ed

r t1l t2l

t1l bytes

corresponding
tx timestamp

t2l bytes

rx
timestamp

t3l bytes

tx
timestamp

0/1 byte

original
tkl

(if l = 1)

0/2 bytes

original
mid

(if m = 1)

0/1 byte

s
(if h = 1)

s bytes

kid
context

(if h = 1)

leftover
bytes

kid

Fig. 2. Format of OSCORE-NG options. OSCORE-NG retains OSCORE’s ‘s’, ‘kid context’, and ‘kid’ fields. The new ‘phase’ field allows receivers to restore
transmission timestamps, which are entangled in AEAD nonces. During synchronization and resynchronization, up to three timestamps replace the ‘phase’ field.
The ‘original tkl’ field carries the length of the original token. The ‘original mid’ field serves for deduplication and for generating AEAD nonces.

A B

1 t1 t1

t2

2t3t1, t2, t3,
r = 1

t43

opt [
(t2−t1)+(t4−t3)

2 ≤ ACK TIMEOUT
]

compute δA,B = (t2−t1)−(t4−t3)
2

4 t5
t3, t4, t5, r ∈ {0, 1}

t6

opt [
(t4−t3)+(t6−t5)

2 ≤ ACK TIMEOUT
]

compute δB,A = (t4−t3)−(t6−t5)
2

Fig. 3. For learning and maintaining clock differences, OSCORE-NG adopts
Sun et al.’s lightweight variant of the SPS protocol [20]

echoes the received ‘tx timestamp’. The ‘rx timestamp’ field
contains the timeslot and phase when having received the
echoed ‘tx timestamp’. Again, phase is measured in units
of TIMESTAMP UNIT seconds here. Thereafter, OSCORE-NG
requests carry the length of the original token and the original
message ID in the ‘original tkl’ and ‘original mid’ field,
respectively. These fields are dispensable when the ‘Token’
and ‘Message ID’ CoAP header fields are relayed unmodified.
Lastly, OSCORE-NG retains the ‘s’, ‘kid context’, and ‘kid’
fields of OSCORE options. While the ‘kid’ field carries the
client’s ID, the ‘s’-byte ‘kid context’ field can provide inputs
for the generation of session keys and session constants.

D. Secure Pairwise Synchronization

Fig. 3 shows the operation of SPS in OSCORE-NG. At
1 , A initiates the protocol by populating the ‘tx timestamp’

field in an OSCORE-NG message to B. That message can
be a request or a response. At 2 , B creates a response
or request, in which the ‘corresponding tx timestamp’, ‘rx
timestamp’, and ‘tx timestamp’ fields, contain t1, t2, and t3,

2 bits

type

6 bits

kid
length

2 bytes

original
mid

5 bytes

transmission
timeslot

phase

leftover bytes

padding kid

Common IV

⊕ AEAD nonce

Fig. 4. OSCORE-NG derives an AEAD nonce from the CoAP message type,
transmission timestamp, original message ID, and client ID, also called ‘kid’

respectively. B also sets the r flag, which asks A to return
fully populated timestamp fields at the next occasion. At 3 ,
A first checks if (t2−t1)+(t4−t3)

2 ≤ ACK TIMEOUT. This check
confines the repercussions of delay attacks. Next, A computes
its clock difference δA,B compared to B. At 4 , A adds t3, t4,
and t5 to the next OSCORE-NG message to B. The r flag
remains unset if (t2−t1)+(t4−t3)

2 ≤ ACK TIMEOUT, i.e., if A
was able to initialize δA,B . Upon reception, B analogously
checks the round-trip time and computes its clock difference
δB,A compared to A. For the security of SPS, it is necessary
to authenticate all timestamps. Hence, OSCORE-NG expands
the authenticated contents to include all timestamp fields.

Resynchronizations must happen early enough so that the
restoration works correctly throughout a session. As we will
show shortly, a resynchronization must happen before:

SYNC INTERVAL ≤
TIMESLOT

2 − 2ACK TIMEOUT− PHASE UNIT
2

MAX DRIFT
(1)

, where MAX DRIFT is the maximum divergence of clocks
per second in seconds and ACK TIMEOUT is when a retrans-
mission happens at the earliest. Only configurations with
SYNC INTERVAL > 0 are reasonable.

E. Replay Protection

1) Protecting a CoAP Request: OSCORE-NG forms the
AEAD nonce for protecting a CoAP request in two steps, as
shown in Fig. 4. First, OSCORE-NG concatenates the CoAP
message type, the client’s ID, the original message ID, the

4

time

initial transmission last retransmission latest reception time latest response time timeout for responses

MAX TRANSMIT SPAN FRESHNESS HORIZON PROCESSING DELAY FRESHNESS HORIZON

Fig. 5. Message IDs may only repeat after a backoff period so that servers do not falsely detect a request as a duplicate. Additionally, to prevent mismatch
attacks, tokens and message IDs must not be reused before previous responses have become inauthentic due to reaching an age of FRESHNESS HORIZON.

transmission timeslot, and phase. Second, like in OSCORE, the
result is XORed with the so-called Common IV. The Common
IV is a secret session constant, thus making AEAD nonces
unpredictable for attackers.

Crucially, OSCORE-NG constraints when a retransmis-
sion can happen at the earliest and on when a message ID
can be reused. OSCORE-NG requires that ACK TIMEOUT ≥
PHASE UNIT and that message IDs do not repeat before
the timeout for responses, as shown in Fig. 5. Therein,
MAX TRANSMIT SPAN is the maximum time between an
initial OSCORE-NG request and its last retransmission,
PROCESSING DELAY is the maximum turnaround time, and
FRESHNESS HORIZON is defined as follows:

FRESHNESS HORIZON
def
=

TIMESLOT

2
+

PHASE UNIT

2
+ACK TIMEOUT+ MAX DRIFT× SYNC INTERVAL

(2)

It shall turn out that a receiver will find an OSCORE-
NG message inauthentic if it is delayed by more than
FRESHNESS HORIZON. Thus, for servers it suffices to keep anti-
replay data for MAX TRANSMIT SPAN+FRESHNESS HORIZON.

After the authenticated encryption, OSCORE-NG inserts
a corresponding OSCORE-NG option. Normally, the ‘phase’
field is present and imparts the phase of the AEAD nonce.
When synchronizing or resynchronizing, the ‘tx timestamp’
field appears instead and conveys the timeslot and phase
entangled in the AEAD nonce. Other timestamp fields may
also be included as required for SPS. The ‘original tkl’ and
‘original mid’ fields are elided. CoAP proxies add them when
adapting the ‘Token’ or ‘Message ID’ CoAP header field.

2) Verifying an OSCORE-NG Request: On reception of an
OSCORE-NG request at time t, a first step is to generate
the AEAD nonce. As for an OSCORE-NG request with a
suppressed transmission timeslot, the server uses its learned
clock difference δ compared to the client to reconstruct the
transmission timeslot of the AEAD nonce as follows. Let
ϕ denote the product of the value of the ‘phase’ field and
PHASE UNIT. The server rounds t + δ − ϕ to the nearest
beginning of a transmission timeslot and takes that timeslot
as the transmission timeslot. As for an OSCORE-NG request
with timestamps, there are two cases. First, if δ is not yet
in place, the server derives timeslot and phase from the ‘tx
timestamp’ field. Second, if a server is aware of its clock
difference δ compared to the client, the server estimates the
transmission timeslot using only the phase portion of the ‘tx
timestamp’ field. This is crucial to attain strong freshness for
all OSCORE-NG requests in a session (but the very first) that
only have a ‘tx timestamp’ field. Note that if other timestamps
are present, SPS already ensures strong freshness, but poses
stricter requirements. By suppressing the received tx timestamp
and restoring it via the latest δ, OSCORE-NG detects if an

OSCORE-NG request is fresh enough for upper layers, while
it might not be fresh enough for updating δ.

With the AEAD nonce in place, the server de-
crypts and checks the AEAD MIC. If the OSCORE-
NG request turns out authentic, the server moves on
to check if the original message ID reoccurred within
MAX TRANSMIT SPAN + FRESHNESS HORIZON. Additionally,
if less than two OSCORE-NG messages were accepted in
the current session, the server checks if the original message
ID matches that of the first OSCORE-NG request in the
session. If the original message ID reoccurred together with
a previously seen transmission timeslot and phase, the server
suspects a replay attack and silently discards the OSCORE-
NG request. Otherwise, if the original message ID reoccurred
together with a previously unseen transmission timeslot or
phase, the server suspects a retransmission and either re-
protects a cached unprotected CoAP response or, in the case
of an idempotent OSCORE-NG request, may alternatively
process the request again. Unprotected CoAP responses to
a non-idempotent OSCORE-NG request have to be cached
for MAX TRANSMIT SPAN+ FRESHNESS HORIZON and until a
second OSCORE-NG message has been accepted. Finally, if
all checks pass, the server accepts the OSCORE-NG request.

3) Protecting a CoAP Response: The AEAD nonce of
an OSCORE-NG response is formed in the same manner as
that of OSCORE-NG requests. To prevent a nonce reuse, the
combination of CoAP message type, message ID, and client
ID may not repeat within PHASE UNIT. However, if all other
AEAD inputs are also equal, such a nonce reuse will be benign
as this yields the same ciphertext. Thus, an implementation
may alternatively ensure that all AEAD inputs are equal. In
particular, it is safe to re-protect a cached unprotected CoAP
response. Besides, to allow for deduplication, the combination
of CoAP message type, message ID, and client ID may not
repeat within MAX TRANSMIT SPAN+2FRESHNESS HORIZON+
PROCESSING DELAY, unless when retransmitting a response.

In the OSCORE-NG option of an OSCORE-NG response,
the ‘original tkl’ field remains omitted on the whole reverse
path. This is because the original token needs to be restored
on the last leg anyway, except in Empty Acknowledgements
(ACKs) whose ‘Token’ field remains empty on the whole
reverse path, obviating the ‘original tkl’ field, too. Likewise,
the original message ID must be restored on the last leg if a
response’s CoAP message type is ACK or Reset (RST). Else, if
a response is of type Non-confirmable (NON), a CoAP proxy
may need to adapt the ‘Message ID’ CoAP header field for
mapping an RST reply to a NON response. Finally, either SPS-
related fields or the ‘phase’ field are filled as appropriate.

4) Verifying an OSCORE-NG Response: The receiver
of an OSCORE-NG response extracts the original mes-
sage ID from the CoAP header or OSCORE-NG option.

5

Subsequently, the restoration of the transmission times-
lot works like in the case of OSCORE-NG requests. If
an OSCORE-NG response turns out authentic, the re-
ceiver proceeds with checking if the combination of mes-
sage ID and type reoccurred within MAX TRANSMIT SPAN +
2FRESHNESS HORIZON+PROCESSING DELAY, i.e., within the
time frame where authentic responses can come in, as shown in
Fig. 5. If so, the OSCORE-NG response is silently discarded.
Else, the receiver accepts the OSCORE-NG response.

F. Correctness Properties

1) Restoration of Transmission Timeslots: OSCORE-NG
may measure clock differences that deviate significantly from
the real ones for two reasons. First, there is a high variation
in the end-to-end delays when communicating with energy-
constrained IoT devices because of their sleep cycles. Second,
delay attacks may already happen during synchronization.
However, inaccuracies do not negatively affect OSCORE-
NG as long as the restoration of the elided transmission
timeslots works. Recall that this restoration works by rounding
t + δ − ϕ to the closest transmission timeslot, where t is
the time of reception, δ denotes the latest measured clock
difference, and ϕ is the received phase. Let t∗ denote the
real transmission time, δ∗ denote the real clock difference,
and ϕ∗ denote the unrounded value of ϕ. Below, we show
that if the communication delay is below ACK TIMEOUT, i.e.,
|t∗−(t+δ∗)| < ACK TIMEOUT, the restoration of the transmis-
sion timeslot works, i.e., |(t∗ − ϕ∗)− (t+ δ − ϕ)| < TIMESLOT

2 .

We can confine ϕ∗ like follows:

ϕ∗ ∈
[
ϕ− PHASE UNIT

2
, ϕ+

PHASE UNIT

2

)
(3)

⇒ |ϕ∗ − ϕ| ≤ PHASE UNIT

2
(4)

Furthermore, at the time of synchronization, SPS ensures:

|δ∗ − δ|

=

∣∣∣∣δ∗ − (t2 − t1)− (t4 − t3)

2

∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
2δ∗

2
− t2 − t1

2︸ ︷︷ ︸
≤ACK TIMEOUT− t4−t3

2

+
t4 − t3

2︸ ︷︷ ︸
≤ACK TIMEOUT− t2−t1

2

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣−
t2 − t1 − δ∗

2︸ ︷︷ ︸
∈[0,ACK TIMEOUT− t4−t3+δ∗

2]

+
t4 − t3 + δ∗

2︸ ︷︷ ︸
∈[0,ACK TIMEOUT− t2−t1−δ∗

2]

∣∣∣∣∣∣∣∣∣
≤ACK TIMEOUT

(5)

∆ seconds after the synchronization, we have:

|δ∗ − δ| ≤ ACK TIMEOUT+ MAX DRIFT×∆ (6)

With Equation 1, 4, and 6 we get:

|(t∗ − ϕ∗)− (t+ δ − ϕ)|
=|(t∗ − ϕ∗)− (t+ δ − ϕ) + δ∗ − δ∗|
=|(t∗ − (t+ δ∗)) + (ϕ− ϕ∗) + (δ∗ − δ)|

<ACK TIMEOUT+
PHASE UNIT

2
+ ACK TIMEOUT+ MAX DRIFT×∆

<2ACK TIMEOUT+
PHASE UNIT

2
+ MAX DRIFT× SYNC INTERVAL

≤TIMESLOT

2

(7)

2) Uniqueness of Nonces: Since OSCORE-NG uses special
AEAD nonces, it is in order to assure that no such nonce re-
occurs together with the same key. Like OSCORE, OSCORE-
NG derives separate session keys for the sender and receiver
side, which already excludes nonce reuses when OSCORE-
NG messages travel in opposite directions. Thus, it suffices
to ensure that no nonce reuse occurs among all outgoing
OSCORE-NG messages. Observe that the general format of
AEAD nonces is equal and always contains the CoAP message
type, the original message ID, the transmission timeslot, the 4-
bit phase, and the client’s ID. Since requests use different client
IDs than responses, this disambiguates the AEAD nonces of
requests and responses. Thus, it remains to separately ensure
for requests and responses that the concatenation of the other
values is unique. As for requests, because original message IDs
may not repeat within PHASE UNIT, at least phase will change
before an original message ID gets reused. Likewise, retrans-
missions only happen after ACK TIMEOUT ≥ PHASE UNIT,
which is why at least phase differs in retransmissions. As for
responses, the combination of a CoAP message type and an
original message ID may only occur once within PHASE UNIT.
In lieu of that, an implementation ensures to reuse all other
AEAD inputs, too.

G. Security Properties

In the following, we show that, except for the very first
OSCORE-NG request in a session, any OSCORE-NG message
delayed by longer than FRESHNESS HORIZON automatically
gets rejected. Next, we show that no OSCORE-NG message
is processed more than once, unless it is a retransmitted
idempotent OSCORE-NG request. Lastly, we discuss how
OSCORE-NG thwarts mismatch attacks.

1) Strong Freshness: Suppose an attacker delays an
OSCORE-NG message other than the very first request in a
session by d > FRESHNESS HORIZON. Below, we show that the
receiver rejects that delayed OSCORE-NG message. If a mea-
sured clock difference δ is not in place, SPS directly checks
if d ≤ 2ACK TIMEOUT < FRESHNESS HORIZON. Otherwise, a
receiver restores a transmission timeslot by rounding t+ δ−ϕ
to the closest transmission timeslot, where t is the time of
reception and ϕ is the received phase. Let t∗ denote the real
transmission time, δ∗ denote the real clock difference, and ϕ∗

denote the unrounded value of ϕ. With Equations (4) and (6):

6

|(t∗ − ϕ∗)− (t+ δ − ϕ)|
=|(t∗ − ϕ∗)− (t+ δ − ϕ) + δ∗ − δ∗|
=|(t∗ − (t+ δ∗)) + (ϕ− ϕ∗) + (δ∗ − δ)|
=|d+ (ϕ− ϕ∗) + (δ∗ − δ)|

≥|d− PHASE UNIT

2
− (ACK TIMEOUT

+ MAX DRIFT× SYNC INTERVAL)|

>
TIMESLOT

2

(8)

Thus, the receiver restores a different transmission timeslot
than the sender used for generating the AEAD nonce and
eventually find the delayed OSCORE-NG message inauthentic.

2) Sequential Freshness: Suppose a server receives an
authentic non-idempotent OSCORE-NG request in a session
at time t. We show that the OSCORE-NG request will not
be processed more than once. There are two main cases.
First, consider that the server accepted two or more OSCORE-
NG messages in the session beforehand. Then, we can upper
bound the age of the authentic OSCORE-NG request to
FRESHNESS HORIZON at time t. Let us first look at the subcase
that the OSCORE-NG request is a legitimate retransmission. If
there was already an authentic OSCORE-NG request with the
same original message ID within [t− MAX TRANSMIT SPAN−
FRESHNESS HORIZON, t], the OSCORE-NG request is detected
as a duplicate and a cached response is sent, thereby not
processing the retransmitted OSCORE-NG request again. Else,
the retransmitted OSCORE-NG request cannot be a dupli-
cate since the time between an initial transmission and the
latest time when an OSCORE-NG request is authentic is
MAX TRANSMIT SPAN + FRESHNESS HORIZON, as shown in
Fig. 5. Next, let us look at the subcase that the OSCORE-NG
request was replayed. If the replayed OSCORE-NG request
was already received within [t − MAX TRANSMIT SPAN −
FRESHNESS HORIZON, t], it would use the same transmission
timeslot and phase. Therefore, OSCORE-NG would reject it.
Else, the replayed OSCORE-NG request reduces to a retrans-
mitted OSCORE-NG request like in the first subcase. Second,
consider that the server accepted less than two OSCORE-NG
messages in the session. Since OSCORE-NG keeps anti-replay
data at least until accepting a second OSCORE-NG message,
retransmissions of the first OSCORE-NG request in a session
are answered from the cache if non-idempotent, and replayed
ones are discarded.

As for authentic idempotent OSCORE-NG requests, re-
played and retransmitted ones are being detected in an analo-
gous manner. Departing from non-idempotent ones, however,
RAM-optimized implementations process retransmitted idem-
potent OSCORE-NG requests multiple times safely.

Next, assume a client receives an authentic OSCORE-NG
response. We argue that the OSCORE-NG response will be
ignored if that response was received already. This follows
from the fact that within the time frame where the combination
of CoAP message type and message ID uniquely identifies an
OSCORE-NG response, OSCORE-NG maintains anti-replay
data to filter out responses with that same combination.

3) Prevention of Mismatch Attacks: To prevent mismatch
attacks, OSCORE-NG authenticates the ‘Token’ CoAP header
field, which clients use to map responses to requests. This
approach also covers so-called notifications. A notification is
a CoAP response that conveys a new version of a resource
to an observing client [6]. The ‘Token’ CoAP header field of
a notification has to echo the ‘Token’ CoAP header field of
the initial registration message. This allows clients to identify
to which registration an incoming notification corresponds to.
Despite of OSCORE-NG’s defense against mismatch attacks,
however, applications remain in charge of not reusing tokens
while same ones are still active.

IV. IMPLEMENTATION

We integrated OSCORE-NG into libcoap (https://github.
com/kkrentz/libcoap), as well as into Krentz et al.’s middle-
box (https://github.com/kkrentz/filtering-proxy). Our libcoap
implementation runs on Linux hosts, CC2538-based IoT de-
vices [21], as well as in the Cooja network simulator [15]. Our
middlebox implementation runs in a Keystone TEE [12].

Both implementations share the same core implementation
of OSCORE-NG. To ensure that this core implementation per-
forms consistently with our analytical results, we implemented
regression tests. For example, we ensure that if an OSCORE-
NG request is delayed by 8s, it will turn out inauthentic.

For OSCORE-NG communication within an IoT network,
our libcoap implementation offers to establish session keys as
per the protocol specified in Appendix B.2 of OSCORE [18],
henceforth called B2 protocol. The B2 protocol derives session
keys from a pre-shared Master Secret and a pre-shared Master
Salt. It involves four messages, namely Request #1, Response
#1, Request #2, and Response #2. All four messages are being
secured with OSCORE-NG already. Hence, the client and
server learn their clock difference when receiving Response #1
and Request #2, respectively. It is no problem that OSCORE-
NG does not provide strong freshness for Request #1 as the
B2 protocol does not pass its contents to the upper layer, but
first requires the client to confirm a nonce in Request #2.

For OSCORE-NG communication between an IoT device
and a remote host, we integrated OSCORE-NG in Krentz
et al.’s middlebox. Their middlebox uses the TRAP remote
attestation protocol, which is based on Fully Hashed Menezes-
Qu-Vanstone with Confirmation (FHMQV-C) [17]. TRAP in-
volves three request-response rounds, namely a /kno request
and response (short for knock), a /reg request and response
(short for register), and a /dis request and response (short
for disclose). The initial /kno request-response round, as well
as the /reg request protect against amplification attacks like
in DTLS. Besides, the /reg request contains an ephemeral
public key of the initiating IoT device. Upon reception, the
Keystone security monitor (SM) generates an attestation report,
an own ephemeral key pair, as well as FHMQV-C secrets for
the TEE. Subsequently, the TEE generates a Master Secret
for use in OSCORE-NG, as well as a Layer 2 key, which
serves for waking up the initiating IoT device in the future as
is essential for the the remote denial-of-sleep protection. The
/reg response is sent as an unprotected CoAP message and
contains the attestation report in a compressed format. This
attestation report allows the IoT device to establish trust in

7

the TEE and to generate the same Master Secret and Layer 2
key. The subsequent /dis request is the first OSCORE-NG-
protected CoAP message in the session between the initiating
IoT device and the TEE. Again, it is acceptable that OSCORE-
NG does not provide strong freshness until a second OSCORE-
NG message gets accepted because stale sessions get deleted
anyway. After running TRAP, the middlebox relays OSCORE-
NG messages between the IoT device and remote hosts.

V. EVALUATION

In this section, we argue that OSCORE-NG offers stronger
freshness guarantees than the Echo-based replay protection,
while incurring less communication overhead than OSCORE’s
counter-based replay protection in long-running sessions.

A. Comparison to the Echo-based Replay Protection

As for the freshness guarantees of the Echo-based replay
protection, note that an Echo option must at least remain valid
for

ACK TIMEOUT+ PROCESSING DELAY

+MAX TRANSMIT SPAN+ ACK TIMEOUT
(9)

, where ACK TIMEOUT+ accounts for the delay from
server to client, PROCESSING DELAY for the turnaround
time, MAX TRANSMIT SPAN for potential retransmissions, and
+ACK TIMEOUT for the delay from client to server. With the
default values in Table I, this yields a minimum validity
period of 51s. OSCORE-NG, on the other hand, detects delays
greater than FRESHNESS HORIZON = 7.848s by default. Unlike
the Echo-based replay protection, OSCORE-NG even ensures
this for responses, which is very useful when OSCORE-NG
responses are notifications. FRESHNESS HORIZON improves
when lowering SYNC INTERVAL at the cost of resynchronizing
more often. Tightening ACK TIMEOUT also strengthens fresh-
ness guarantees, which is why lower layers should be tuned
accordingly.

As for communication overhead, the Echo-based replay
protection requires sending each request twice, unless a long
validity period is chosen, which would further deteriorate
the freshness guarantees. Another response is also conveyed.
Plus, all these messages are to be secured with OSCORE,
causing further overhead. OSCORE-NG, by contrast, avoids
an additional round trip, which is beneficial in terms of
communication overhead, reliability, and delays.

B. Comparison to the Counter-based Replay Protection

OSCORE’s communication overhead can be separated into
that caused by OSCORE options, AEADs MICs, the rear-
rangement of options, as well as key management. Equally,
OSCORE-NG requires adding an OSCORE-NG option and
an AEAD MIC to an unprotected CoAP message, rearranging
the options of the unprotected CoAP message, and key man-
agement activities. OSCORE-NG does not normally require
scheduling extra messages for resynchronization since keep-
alive messages are sent more often than SYNC INTERVAL in
practice. Hence, we shall focus on comparing the overhead of
OSCORE and OSCORE-NG options. To this end, a Cooja
simulation was run for 60 virtual days, in which a client
sent 6 CoAP requests to a server per virtual hour. In a

0 10 20 30 40 50 60

0
5

1
0

1
5

2
0

2
5

3
0

3
5

time (in days)

cu
m

u
la

tiv
e

 s
iz

e
 o

f
o

p
tio

n
 v

a
lu

e
s

(i
n

 k
B

)

OSCORE
OSCORE-NG

Fig. 6. The communication overhead of OSCORE-NG is even lower than
that of OSCORE’s counter-based replay protection in long-running sessions

first experimental run, all CoAP messages were secured with
libcoap’s OSCORE implementaion. In a second experimental
run, the CoAP messages were secured with OSCORE-NG.
In both runs, the length of the OSCORE(-NG) options was
logged.

Fig. 6 shows the results. Initially, the difference in commu-
nication overhead is marginal. As soon as OSCORE’s sequence
number spans two bytes instead of only one, the communica-
tion overhead of OSCORE options begins to exceed that of
OSCORE-NG options. Similarly, OSCORE-NG’s timestamp
fields increase with uptime. However, the need for transmitting
timestamps arises seldomly with SYNC INTERVAL = 6h.

VI. CONCLUSION AND FUTURE WORK

Delay attacks mislead OSCORE into accepting old re-
quests. This vulnerability poses a severe threat to energy-
constrained IoT devices because such devices receive rarely
and hence old requests only slowly fall out of OSCORE’s
anti-replay window. As a countermeasure, RFC 9175 stan-
dardized the Echo-based replay protection. Unfortunately, its
freshness guarantees are quite weak and the added round trip
harms delay, communication overhead, as well as reliability.
After all, this adjunct leaves OSCORE vulnerable to denial-
of-sleep attacks, unless adopting the non-compliant fix of
incrementing sequence numbers in retransmissions, which is
however inapplicable to non-idempotent requests. OSCORE-
NG has overcome all these limitations. As for delay attacks,
OSCORE-NG entangles implicit timestamps in AEAD nonces.
Presumably, this kind of replay protection has only been
applied to Layer 2 security, yet. As for denial-of-sleep attacks,
short-term anti-replay data allows receivers to distinguish
between replayed and retransmitted OSCORE-NG messages.
Thus, receivers remain silent under replay attacks, respond to
legitimate retransmissions, and do not process non-idempotent
messages more than once. A notable property of OSCORE-
NG is that any improvement in delays pays off twice, once in
terms of strengthened freshness guarantees and once in terms
of shorter cache occupation. Therefore, we aim to shorten the
delays of lower layers in our future work.

8

REFERENCES

[1] “IEEE Standard 802.15.4-2020,” 2020.
[2] C. Amsüss, J. P. Mattsson, and G. Selander, “Constrained Application

Protocol (CoAP): Echo, Request-Tag, and Token Processing,” RFC
9175, 2023.

[3] C. Amsüss, “OSCORE Implementation Guidance,” IETF, Tech. Rep.
draft-amsuess-lwig-oscore-00, 2020.

[4] S. Ganeriwal, C. Pöpper, S. Capkun, and M. B. Srivastava, “Secure time
synchronization in sensor networks,” ACM Transactions on Information
and System Security (TISSEC), vol. 11, no. 4, pp. 23:1–23:35, 2008.

[5] M. G. Gouda, Y. ri Choi, and A. Arora, Handbook on Theoretical
and Algorithmic Aspects of Sensor, Ad Hoc Wireless, and Peer-to-
Peer Networks. Auerbach, 2005, ch. Antireplay Protocols for Sensor
Networks, pp. 561–574.

[6] K. Hartke, “Observing Resources in the Constrained Application Pro-
tocol (CoAP),” RFC 7641, 2015.

[7] D. C. Jinwala, D. R. Patel, S. J. Patel, and K. S. Dasgupta, “Optimizing
the replay protection at the link layer security framework in wireless
sensor networks,” CoRR, vol. abs/1203.4694, 2012. [Online]. Available:
http://arxiv.org/abs/1203.4694

[8] K.-F. Krentz, “A denial-of-sleep-resilient medium access control layer
for IEEE 802.15.4 networks,” Ph.D. dissertation, Potsdam University,
2019.

[9] K.-F. Krentz and Ch. Meinel, “Denial-of-sleep defenses for IEEE
802.15.4 coordinated sampled listening (CSL),” Computer Networks,
vol. 148, no. 15, pp. 60–71, 2019.

[10] K.-F. Krentz, Ch. Meinel, and H. Graupner, “More lightweight, yet
stronger 802.15.4 security through an intra-layer optimization,” in
Proceedings of FPS 2017. Springer, 2017, pp. 173–188.

[11] K.-F. Krentz and T. Voigt, “Reducing trust assumptions with OSCORE,
RISC-V, and Layer 2 one-time passwords,” in Proc. of the 15th
International Symposium on Foundations and Practice of Security (FPS
2023). Springer, 2023, p. 389–405.

[12] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanovic, and D. Song, “Key-
stone: An open framework for architecting trusted execution environ-
ments,” in Proc. of the Fifteenth European Conference on Computer
Systems (EuroSys ’20). ACM, 2020.

[13] M. Luk, G. Mezzour, A. Perrig, and V. Gligor, “MiniSec: A secure
sensor network communication architecture,” in Proc. of the 6th In-
ternational Conference on Information Processing in Sensor Networks
(IPSN ’07). ACM, 2007, p. 479–488.

[14] J. P. Mattsson, J. Fornehed, G. Selander, and C. Amsüss, “Attacks on
the Constrained Application Protocol (CoAP),” draft-ietf-core-attacks-
on-coap-03, 2023.

[15] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-
level sensor network simulation with cooja,” in Proc. of the 2006 31st
IEEE Conference on Local Computer Networks (LCN 2006). IEEE,
2006, pp. 641–648.

[16] D. R. Raymond, R. C. Marchany, and S. F. Midkiff, “Scalable, cluster-
based anti-replay protection for wireless sensor networks,” in Proc. of
the 2007 IEEE SMC Information Assurance and Security Workshop
(IAW 2007). IEEE, 2007, pp. 127–134.

[17] A. P. Sarr, P. Elbaz-Vincent, and J.-C. Bajard, “A secure and efficient
authenticated diffie–hellman protocol,” in Proc. of the European Public
Key Infrastructure Workshop (EuroPKI 2009). Springer, 2010, pp.
83–98.

[18] G. Selander, J. P. Mattsson, F. Palombini, and L. Seitz, “Object Security
for Constrained RESTful Environments (OSCORE),” RFC 8613, 2019.

[19] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application
Protocol (CoAP),” RFC 7252, 2014.

[20] K. Sun, P. Ning, and C. Wang, “TinySeRSync: Secure and resilient
time synchronization in wireless sensor networks,” in Proc. of the 13th
ACM Conference on Computer and Communications Security (CCS
’06). ACM, 2006, p. 264–277.

[21] CC2538 SoC for 2.4-GHz IEEE 802.15.4 & ZigBee/ZigBee IP Appli-
cations User’s Guide (Rev. C), Texas Instruments, http://www.ti.com/
lit/ug/swru319c/swru319c.pdf.

9

